UNITED STATES DEPARIMENT OF THE INTERIOR GEOLOGICAL SURVEY

CROUND-LATER RESOURCES OF THE ROOUE RIVER BASIN, CRECON

By

Richard A. Young

Prepared as a part of the Federal program of the Geological Survey in part made possible by the staff and facilities of the continuing cooperative program with the Oregon State Engineer

January 1959

CONTENTS

	rage
Abstract	l
Introduction	3
Purpose and scope of the investigation	3
Location of the area	3
Provious investigations	5
Acknowledgments	5
Well-numbering system	. 6
Geography	
Surface features	7
The Klamath Mountians	7
The Cascade slope	8
The lowland valleys	9
Drainage	10
Climate	11
Characteristics of the industries	13
Agriculture	13
Lumbering and mining	15
Tourist trade	16
Transportation	16
Geology	17
Description of the rocks	17
Sedimentary rocks	17
Rocks of Paleosoic age	17
Rocks of Mesozoic age	17

Page

ł

Geology - Continued

14

· .

•	Description of the rocks - Continued	
	Sedimentary rocks - Continued	
	Rocks of Cenozoic age	19
	Igneous rocks	22
	Intrusive rocks of Mesosoic age	22
. '	Intrusive rocks of Tertiary or Quaternary(?) age	23
	Extrusive igneous rocks of Tertiary and Quaternary age	23
		-
42	Metamorphic rocks	24
	Structure	25
	Folding	25
••	Faulting	26
	Summary of geologic history	27
Wa	ter resources	30
-	Surface water	30
3	Headwaters of the river	30
	Middle course of the river	32
	Lowest course of the river	34
	Uses of the surface water	35
1	Municipal and domestic water	35
4	Irrigation	35
	Industrial	36
	Recreational	36

forc allocation		Page
Water rea	sources - Continued	
Grou	nd water	36
	Source	36
	Hydrostatic conditions	37
	Perched ground water	37
	Unconfined conditions	37
	Confined (artesian) condition	38
	Water-bearing characteristics of the rocks	38
	Consolidated rocks	•
	Semiconsolidated and unconsolidated rocks .	40
	Water-bearing formations	41
	Llano de Oro formation	4- 1-1
	Agate Desert gravels	42
1.4	Granitic rocks	44
1.8	Hydrologic features	45
100	Recharge	45
The second	Discharge	46
i -	Fluctuations of water level	46
	Present development of the ground-water	49
tight is a	Springs	49
	Wells	49
	Use of ground water in the basin	-7 51
		-
C.1098.5546	the ground water	54
Hard	1888	54
Sard to	hility of the water for invigation	55

. .

Quality of the ground water - Continued Salinity . . 58 Hydrogen-ion potential . . . 59 Important minor chemical and physical characteristics of the ground water . . . 59 . . . Boron 59 Fluoride . . 61 62 Iron . . . 62 Gaseous constituents . 63 Temperature of the ground water 65 Summary . 66 Description of the tables . . References cited 157

....

17

16.

Page

ILLUSTRATIONS

Plate	1. G	eologic maps of the Rogue River basin a. Kerby quadrangle	In back
		so very descretions	AM CASCA
		b. Grants Pass quadrangle	In back
	·	c. Hedford quadrangle	In back
		d. Trail quadrangle	In back
		e. Biddle Quedrangle	In back
	2. G	cologic cross sections in the Rogue River	
		Valley	· In back
	3. K	aps showing locations of representative	4 · · · · · · ·
		wells and springs in the a. Kerby quadrangle	To book
		as werely described a s s s s s s s s s s s s	ALL DRUGA
		b. Grants Pass quadrangle	In back
		c. Medford quadrangle	In back
		d. Trail quadrangle	In back
		e. Biddle quadrangle	In back
			Following page
	le and	. Hep of the State of Oregon showing area	
	4.8 -71.1	covered by the investigation	3
	h-B.	Generalized geologic map of the Rogus River basin, also showing arous	
		covered by plates 1 and 3	3
	5-9.	Climatic charts of the Rogue River basin .	12
· · · · · · · · · · · · · · · · · · ·	0-4-	View north along Highway 99 south of	8 3 S S
-		Ashland	20
נ	0-B.	Inclined strate of Chice formation	
		overlying granodierite	20
1	1-4.	View castward across Bear Creek Valley	
_		north of Ashland	21

-

1. ...

ILLUSTRATIONS

Plate	1. 0	eologic maps of the Rogue River basin	
		a. Kerby quadrangle	In back
		b. Grants Pass quadrangle	In back
		c. Nedford quadrangle	In back
		d. Truil quadrangle	In back
		e. Riddle Guadrangle	In back
	2. G	sologic cross sections in the Regue River	
		Valley	In back
	3. N	aps showing locations of representative wolls and springs in the	
		a. Kerby quadrangle	In back
		b. Grants Pass quedrangle	In back
•		e. Nedford quadrangle	In back
		d. Trail quadrangle	In back
		e. Hiddle quadrangle	In back
. ·			Following page
	44.	Hap of the State of Oregon showing area covered by the investigation	3
	Ц-В.	Generalized geologic map of the Rogue River basin, also showing areas	
·		covered by plates 1 and 3	3
	5-9.	Climatic charts of the Rogue River basin .	12
•	10-A.	View north along Highway 99 south of Ashland	20
:	10 - B.	Inclined strate of Chico formation overlying granodiorite	20
	11-4.	View castward across Bear Creek Valley	
		north of Ashland	21

GROUND-WATER RESOURCES OF THE ROOUE RIVER BASIN, OREGON

By

Richard A. Young

ABSTRACT

The Rogue River basin, an area of about 5,060 square miles, comprises much of the southwestern corner of the State of Oregon. It is mountainous and its arable lands are largely confined to the valley floors along the middle reaches of the Rogue River and its main tributaries, the Applegate and Illinois Rivers and Bear Creek. In these valleys, level farming lands and an equable climate afford hospitable localities to a moderate population. Although mainly an agricultural economy, lumbering, mining, and tourist trade are also economic mainstays of the inhabitants:.

The average annual precipitation on the valley floor is about 21 inches, but it is progressively greater with higher altitudes and reaches 67 inches in the Coast Range at the west and 60 inches in the Cascade Range to the east. The frost-free season averages 176 days in the valleys with frosts seldom occurring later than May or earlier than October. The principal farm crop of the basin is soft fruit, mainly fancy pears. Beef and dairy herds are important in the Applegate and Illinois River valleys.

The rocks which underlie the basin range from Paleozoic to Recent in age. The best water-yielding rocks are the alluvial deposits of Pleistocene and Recent age and the weathered parts of several granitic masses.

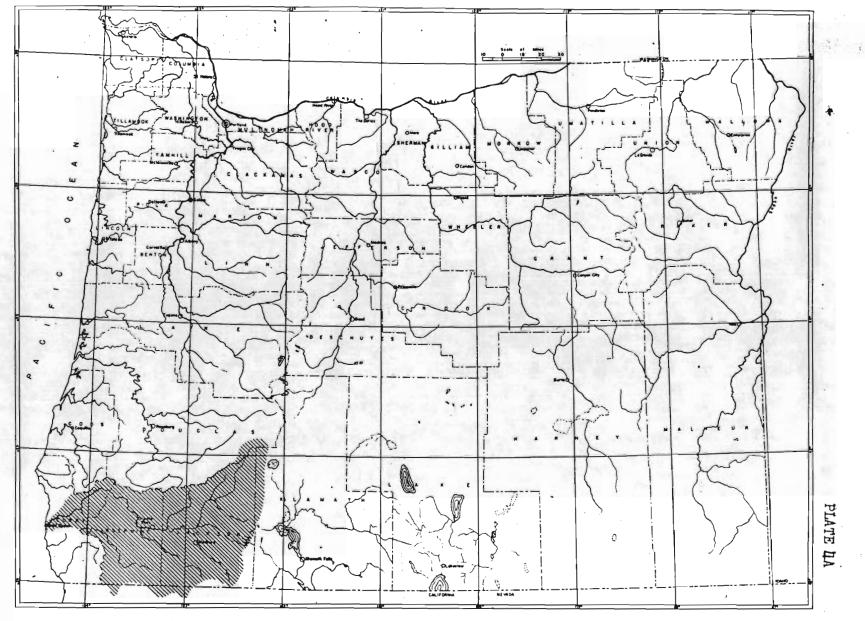
Of 1,035 wells visited, only 52 were drilled exclusively for irrigation. Due to the inadequate yield, a number of these wells were not in use at the time of the field investigation.

The quality of the shallow ground waters is generally good, but the deeper ground waters in many places are too saline for common use. The boron and fluorine content of the ground water from some of the deep wells in the Umpqua and Chico formations is sufficient to render it unsuitable for some uses.

Properly constructed and developed wells in the Agate Desert gravels and in the older alluvium of the Illinois River valley will yield small and moderate supplies of ground water for irrigation. The younger alluvium in places will yield moderate amounts of water to large open wells, locally called "sumps." The weathered part of the granite rock underlying the Grants Pass and Tolo localities yields water sufficiently for small and moderate ifrigation and industrial supplies. The other rock formations of the basin commonly yield water sufficient only for domestic supplies. In many places these rocks are so lacking in permeability that many drilled wells have failed to obtain even adequate yields for household supply.

A. 1. 2. 2. 2.

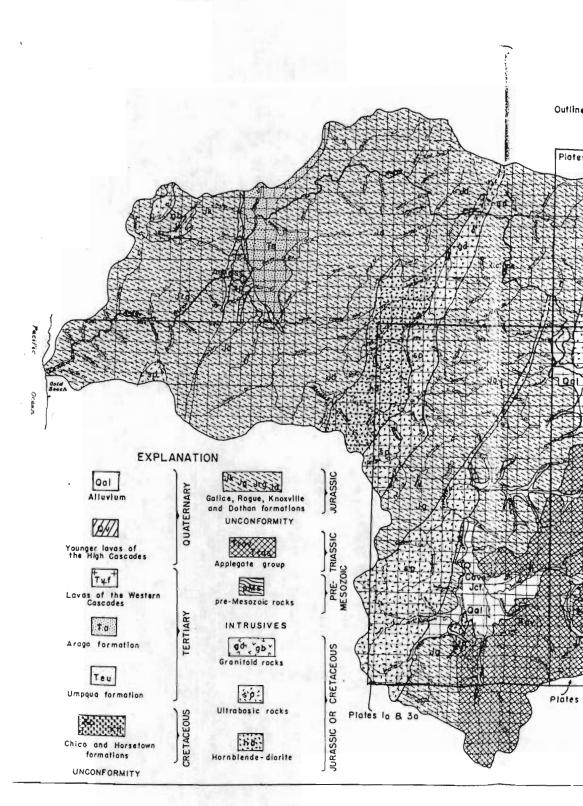
Unpublished records subject to revision

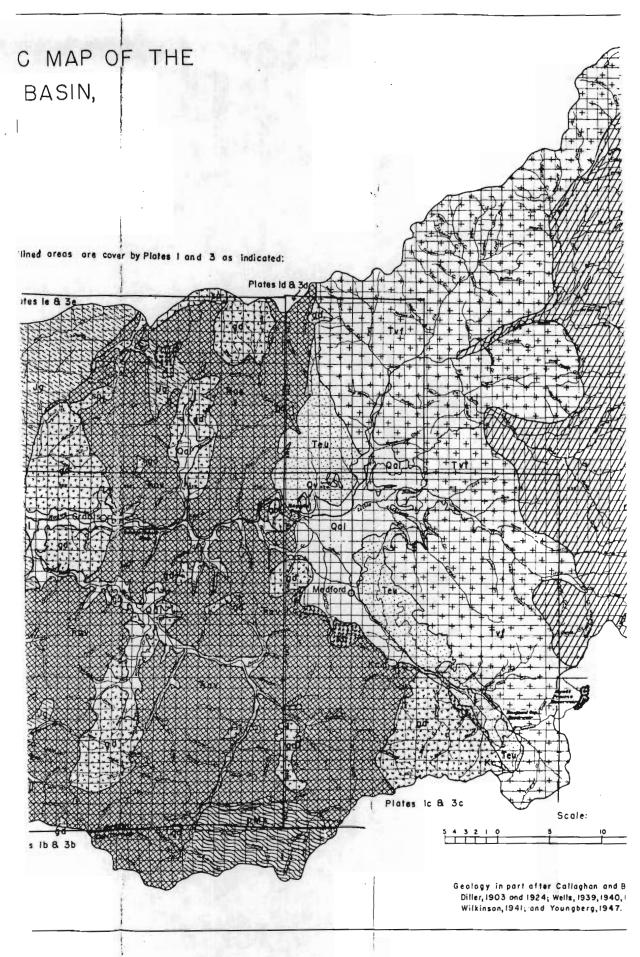

INTRODUCTION

Purpose and Scope of the Investigation

This investigation was made as a part of the water-resources inventories of the Department of the Interior with the special mission of determining if ground water is present to meet some of the irrigation needs in the Rogue River basin. Representative data on ground water was collected and incorporated in the tables and text. The geological information was assembled to portray the basic rock fabric from which the ground water of the area must be developed. The geologic maps of Wells (1939, 1940, 1949, 1953, 1955) were used as the basis of much of the geologic work. The investigation was made concurrently with studies conducted by the Bureau of Reclamation, the Bureau of Mines, the Surface Water Branch of the Water Resources Division of the Geological Survey, and the Fish and Wildlife Service.

Location of the Area


The Rogue River basin comprises an area of 5,060 square miles in southwestern Oregon (see pl. 4A). The river receives the drainage from a part of the western slope of the southern part of the Cascade Range and from the northern part of the Klamath Mountains. The drainage basin lies between longitudes $122^{\circ}21^{\circ}$ and $124^{\circ}25^{\circ}$ west and latitudes $42^{\circ}00^{\circ}$ and $43^{\circ}10^{\circ}$ north. The altitude of the terrain ranges from sea level at the mouth of the Rogue River to about 6,000 feet at the drainage divide of the Cascade Range. The highest peaks in the basin are Mount MaLoughlin (9,760 feet) in the Cascade Range and Mount Ashland (7,530 feet) in



Map of the State of Oregon showing area covered by this investigation

GENERALIZED GEOLOGIC ROGUE RIVER E OREGON

the Klamath Mountains. The lowest parts of the irrigable land lie at about 850 feet near Robertson Bridge on the Rogue River about 14 miles below Grants Pass. The highest irrigable land is at about 3,000 feet altitude in the upper part of the Bear Creek valley south of Ashland. The largest irrigable areas of the valley, those near Medford in the Bear Creek valley and those Aear Grants Pass on the main stem of the Rogue, lie at about 1,300 feet and 950 feet altitude, respectively.

This report treats mainly the central, and most populous, part of the Rogue River basin. A narrow fringe along the crest of the Cascade Range and the deeply canyoned lands along the lower part of the Rogue River are shown on plate hB and mentioned only briefly in the text. The ground water of the volcanic rocks of the high area along the crest of the Cascade Range is of special significance to the base flow of the streams and to the Butte Springs sources of the city of Medford. Otherwise, it is used butlittle and is largely out of reach of the inhabitants of the basin.

In this report the name Klamath Mountains is used for the mountains which lie west of the Cascade Range. This inclusive name, Klamath Mountains, is more commonly used by geologists than by other people or the inhabitants. The Klamath Mountains (Fenneman, 1931, p. 465) include the Siskiyeu and Rogue River Mountains and other local ranges. They include the various mountain areas north beyond the Rogue River valley. The name, Klamath Mountains, is more commonly applied in California than in Oregon, where a confusion of names (including Coast Range) are applied to this mountain areas.

: •

Unpublished records subject to revision

Previous Investigations

The only previous ground-water work in the area was done for the U. S. Soil Conservation Service by R. A. Work in 1930 as part of a drainage study of the Bear Creek valley. Some of the well data obtained at that time by Mr. Work are incorporated in this report.

Geologic reports over parts of the basin have been made by Diller (1903) and Kay (1924), Callaghan and Buddington (1938), Wells (1939, 1940, 1949, 1953, and 1955), and Wilkinson, et al. (1941). The geologic maps of this report were largely adapted from their work.

Acknowledgments

An appreciation for help freely given is due many of the residents of the Rogue River basin. Special thanks is expressed for the assistance of W. J. Attridge and staff of the Medford field office of the Eureau of Reclamation, Professor F. C. Reimer, retired Superintendent of the Southern Oregon State Experimental Farm, R. A. Work, W. T. Frost, Clemmons Ault, and Lloyd Burnett of the Soil Conservation Service, and many well drillers in the area, particularly the firms and individuals including R. H. Coleman, Deister and Cech, Goff Bros., Virgle Gribble, J. H. Mann, and Paquin and Storey.

Unpublished records subject to revision

Well-Mumbering System

In this report each well and spring is designated by a number which indicates its location according to the official rectangular survey of public lands. For example, the number 38/2W-LRL refers to a well in sec. 4, T. 38 S., R. 2 W. The letter after the section number refers to a 40-acre subdivision of the section according to the following diagram, and the number (1) refers to the first well visited in that

Ι	D	C	B	A
Ι	E·	F	0	H
I	M	L	K	J
I	N	P	Q	R

particular h0-acre tract. The townships are all south of the Willamette Base line and the ranges are east or west of the Willamette Prime meridian. Range numbers with the following "W" refer to ranges west of the Willamette meridian.

In the tables the walls and springs are grouped for each sub-basin area and are listed in order below a center heading giving range and township. The extent of each sub-basin, for which the well and spring data are grouped in the tables, is shown on plate ^[1]B. On the well and spring location map (pl 3) the wells are identified by the letter and serial number, as the township, range, and section are determinable from the map.

GEOGRAPHY

Surface Features

The topography of the basin is characterized by three significantly distinct units: The Klamath Hountains, the western slope of the Cascade Range, and the relatively small areas of the valley lowlands.

The land forms reflect the characteristics of the underlying rocks and the tectonic and erosional history. In general, the terrain is rugged in areas underlain by volcanic and metamorphic rocks and is more gentle in areas underlain by sedimentary rocks, alluvial deposits, and granitic intrusive rocks.

The Klamath Mountains

The present topography is in the stage of early maturity. The higher mountain peaks are steep and fairly sharp. The streams flow in deep canyonlike valleys, flattening and broadening abruptly where they traverse the softer rocks of Jurassic age. Comparatively recent uplift in the coastal portions of the Klamath Mountains has resulted in the incision of the sharp inner canyon 500 to 1,500 feet deep through the western part of the Klamath Mountains, downstream from near Grants Pass on the Rogue and near Kerby on the Illinois River. That uplift also steepened stream gradients and caused canyon cutting by the tributary streams in the Illinois River valley below Kerby and in the Rogue River valley below Robertson Bridge. The mountains forming the drainage divide between the Rogue River basin and the Klamath River basin to the south and extending west in this investigational area as far as about longitude

123°00', are known as the Siskiyou Mountains. Other parts of the Klamath Mountains have recognized and local names for mather poorly defined and obscurely limited subranges.

The Cascado Slope

The slope of the Cascade Range from an altitude of 5,000 down to 3,000 feet is a series of poorly developed benches and intervening slopes formed upon lava flows most of which dip gently eastward. Above the 5,000-foot contour the surface is an irregular plateau floored by lava flows. The young volcanic cones rise above the upland plateau; most prominent of these cones are Mount McLoughlin and Mount Mazama, the volcano whose caulders is now occupied by Crater Lake. From these youthful cones and other vents came the lava which underlies much of the present surface of the upland of the Cascade Range.

The streams of the Cascade Range descend gently on the surface of the upland plateau but plunge rather steeply down the western slope. The steep gradient of the western slope has resulted in deep canyons, cut ; mostly in jointed lawas. During Pleistocene time the upland walleys were followed by mountain glaciers which descended the slopes from the higher eminences of the Range and deposited a blanket of glacial till in many of the upland walleys. Subsequent volcanic eruptions blanketed the Cascade upland with pumice; some areas of which were covered by lava flows in Recent(?) time (Callaghan and Buddington, 1938, p. 8).

The Lowland Valleys

The valley of Bear Creek is mainly an erosional lowland whose long axis parallels the strike of the relatively nonresistant strata of the Umpqua formation. East of Bear Creek and south of Roxy Ann Peak the floor of the valley is rolling and hilly, cut with the minor valleys of streams which flow intermittently. The soil is thin and bedrock formations crop out extensively. Cliffs and cuesta-shaped hills are prominent at elevations from 900 to 1,000 feet above the valley plains. Along the east bank of Bear Creek between Ashland and Medford a line of hills across the valley flow marks the outcrop of a more resistant sandstone which is about 400 feet thick.

Beginning just north of Medford and extending to the Rogue River is a cobble-strewn plain known locally as the "Agate Desert." The Agate Desert is underlain by a deposit of older alluvial gravels which mere laid down by the ancestral Rogue River, Bear Creek, Antelope Creek and Little Butte Creek. Patches of similar gravels occur beneath terraces along the Rogue River and in the area lying between the Rogue River and Little Butte Creek.

Alluvium of Pleistocene age also occurs in a relatively thin layer 5 to 30 feet thick, west of Medford beneath the flood plains of Jackson and Griffin Creeks, two western tributaries of Bear Creek.

Terraces underlain by alluvium of Pleistocene age become more numerous down valley to the west. They form most of the alluvial plains in the Illinois River valley, in the Applegate River valley, and in the Rogue River valley as far downstream as Galice.

Unpublished records subject to revision

Drainage

The main stem of the Rogue River, with the two larger tributaries, the Applegate and the Illinoic Rivers, are the major streams of the basin. Important exaller streams in order downstream are Trail, Big Butte, Little Butte, Bear, Evans, Louse, Grave, and Wolf Creeks flowing into the Rogue; Thompson and Williams Creeks flowing into the Applegate; and Sucker and Deer Creeks flowing into the Illinois.

The regularly maintained gaging stations are located sufficiently far upstream that they do not measure the entire surface-water discharge from the basin. The average discharges of the three principal streams during the 10-year period October 1, 1939, to September 30, 1949, are shown in the following table (as taken from records giving the pheerved flow at those stations):

Station	Annual average discharge (cfs)	Area drained (so mi)
Applegate River at Wilderville	639	694
Rogue River at Grants Pass	2,953	2,420
Illinois River at Kerby	1,137	363
Total cubic feet per second,	h,729	

Water from enouncelt swells these streams and results in the peak discharge occurring annually in May or June. Streamflow is maintained at a fairly strong lovel in the summer and fall months on the upper reaches of the Regue River by late snowmelt and by the discharge of groundwater stored in the lawas and fragmentary volcanic deposits which absorb and delay the infiltrated water. In the upper reaches of the Applegate Unpublished records subject to revision

and Illinois Rivers the late summer flows are maintained largely by snow melting on the north slopes of the higher parts of the Klamath Mountains, and by small additions of inflow from ground water.

Climate

Mild, wet winters and warm, dry summers are the predominant characteristic of the climate. The prevailing winds in the summer are from the north and northwest, and drying northerly winds are a usual feature. There is much south and couthwest wind in the winter, but the winds seldom reach destructive force.

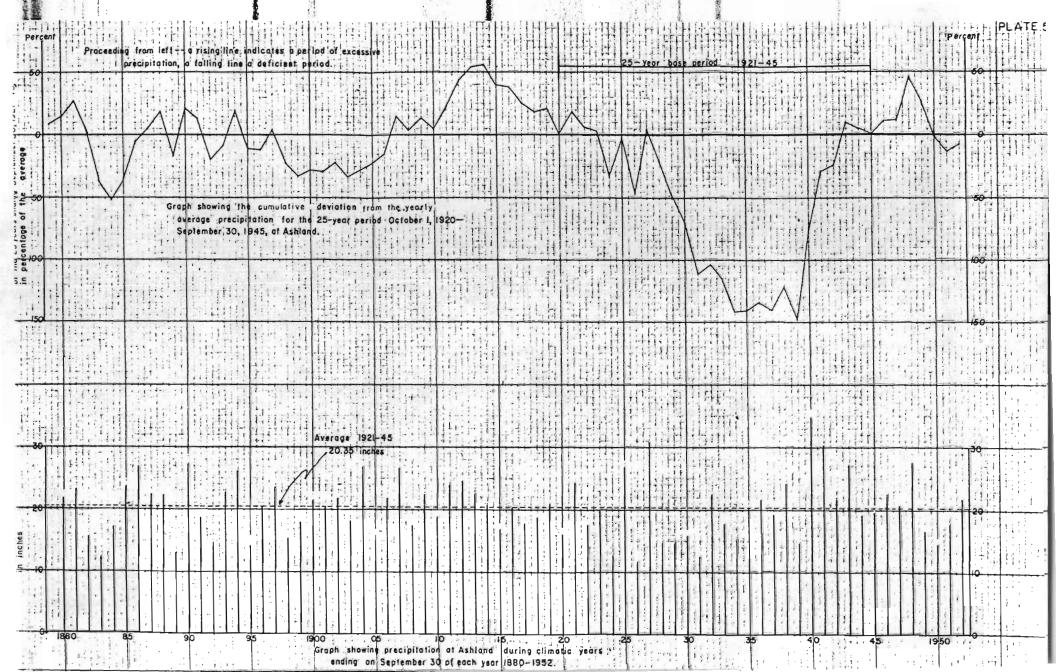
The precipitation received by various parts of the Rogue River basin differs from place to place and this difference at any one particular station is roughly proportional to the altitude and to the nearness to the coast. In 1951 the recorded precipitation ranged from 18.67 inches at Ashland to 104.93 inches at Illahe in the Klanath Mountains (records of the U. S. Weather Bureau).

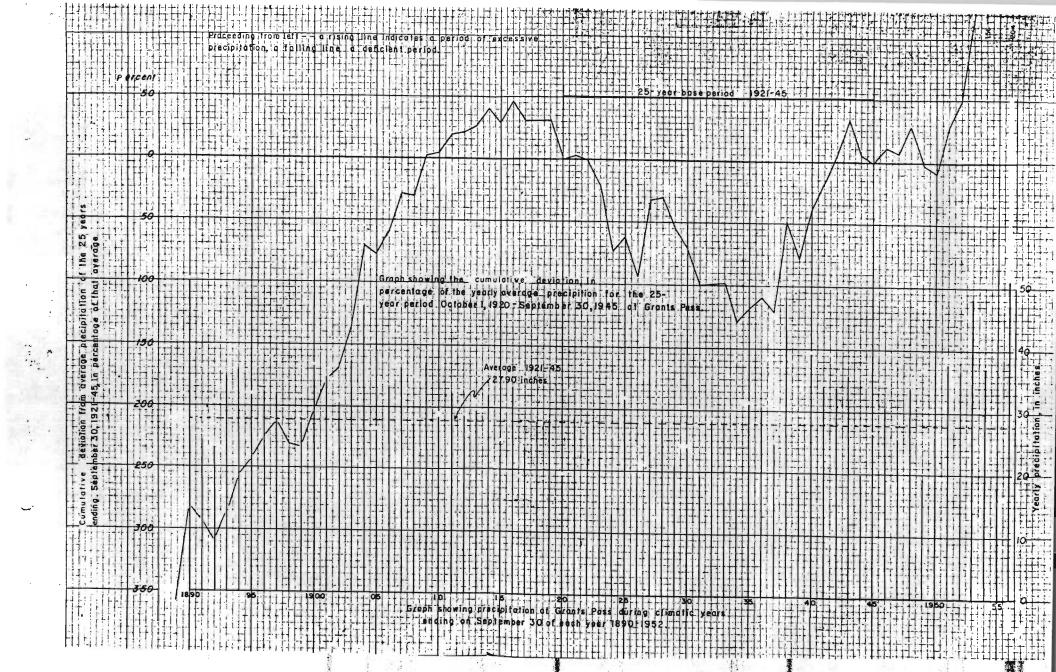
During the 25-year period October 1, 1920, to September 30, 1945, the average annual precipitation at seven stations was as follows:

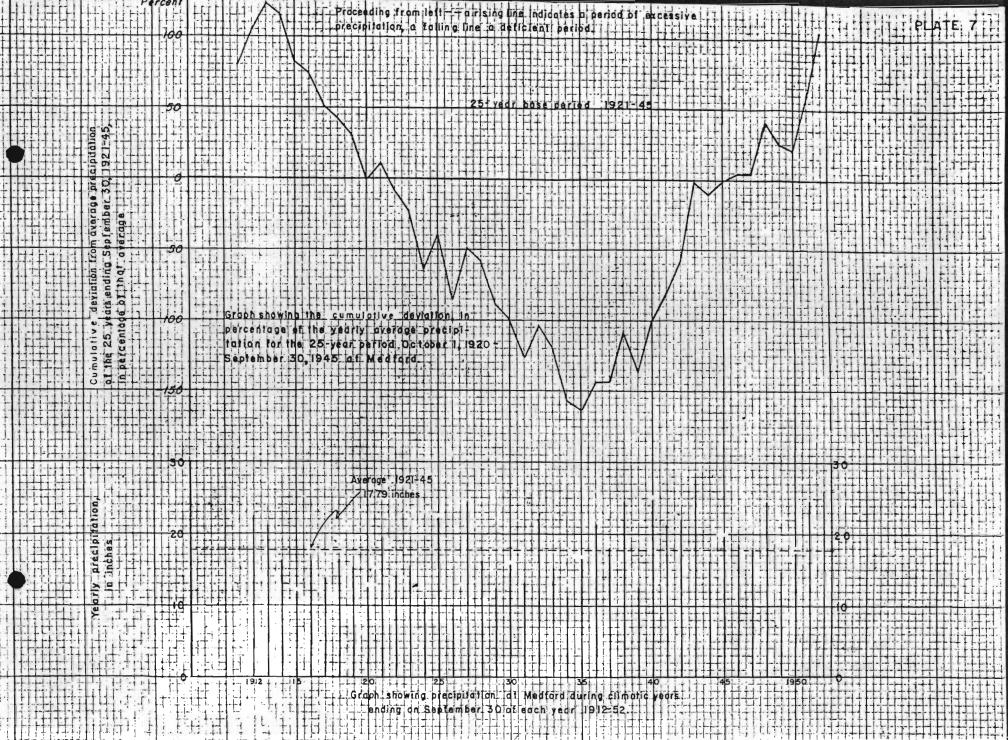
Ashland Grants Pass	27.90	Modoc Orchard Prospect	38.57
Lake Creek Medford	27.59 17.79	Talent	18.06

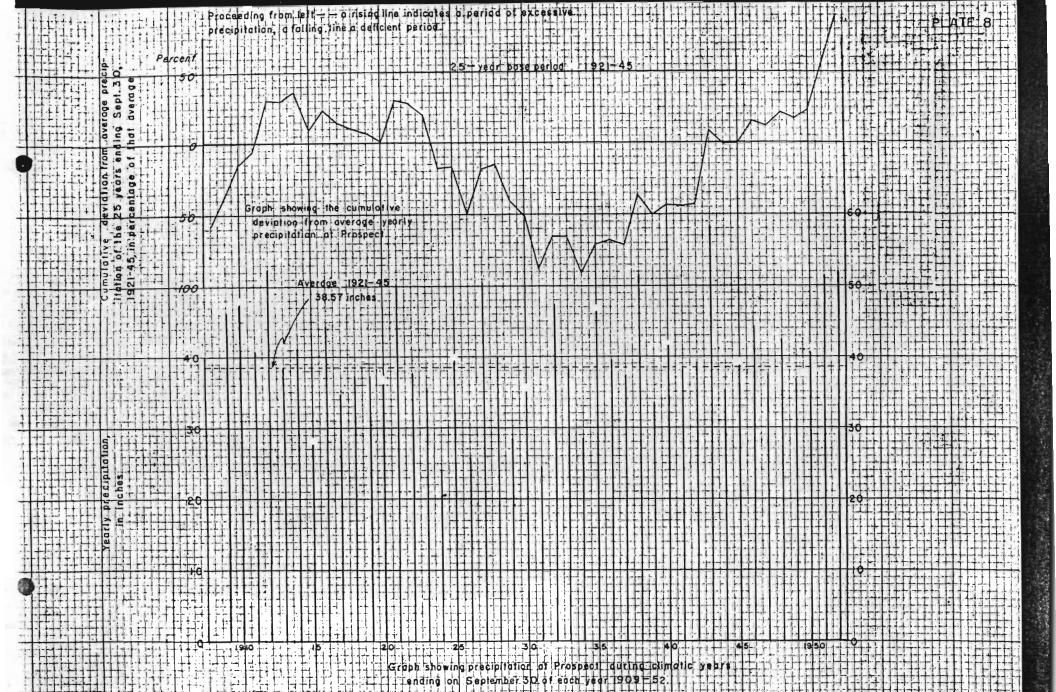
The average monthly precipitation for July and August for the above seven stations are as follows:

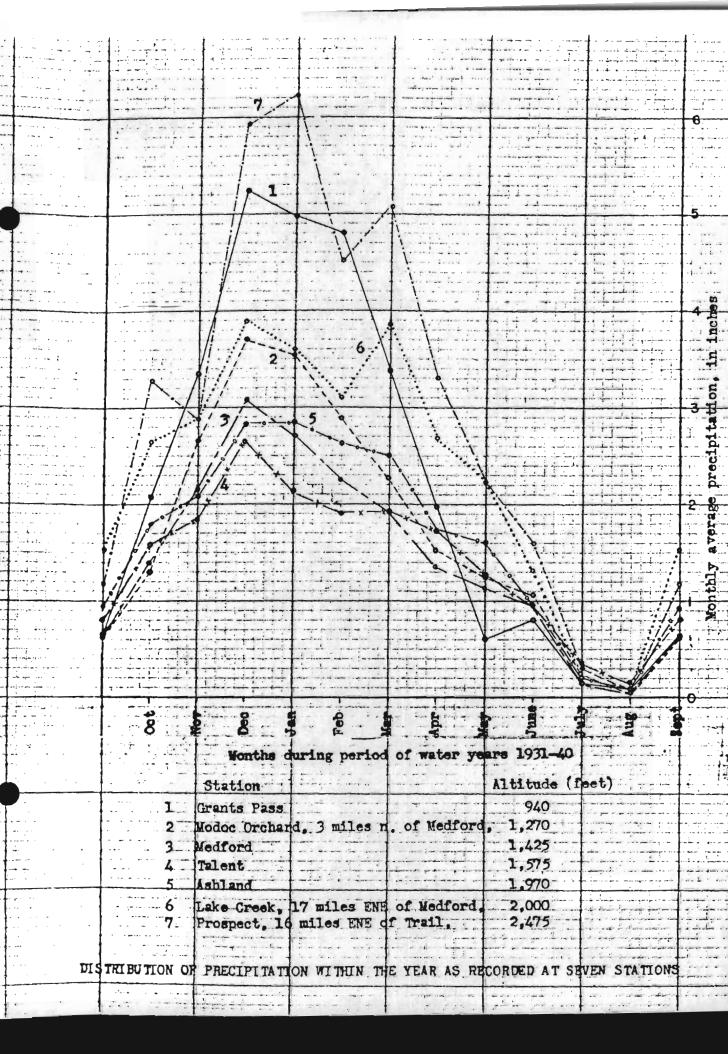
Station	July	August	December	
Ashland	0.21	0.11	2.85	
Grants Pass	.16	.11	5.23	
Lake Creck	.19	.09	3.87	
Medford	.18	.05	3.08	×.
Modoc Orchard	.25	.05	3.70	
Prospect	.28	.04	5.94	1
Telent	.37	.10	7.66	- and -


The average total annual precipitation for the calendar years 1939-51 at Illahe was 87.60 inches. December is commonly the month of the greatest precipitation, although in 1950 (1951 water year) October was by far the wettest month, owing largely to a heavy storm on the 28th and 29th of that month.


Below 2,500 feet altitude most of the precipitation falls as rain. The only stations above 2,500 feet which record both rain and snowfall are Crater Lake and Fish Lake at 6,475 feet and 4,847 feet, respectively. Those stations report about half the precipitation falls as snow.


The precipitation recorded for Ashland, Grants Pass, Medford and Prospect is shown on plates 5, 6, 7, and 8. The upper graph on these plates has the accumulated deviation from average plotted so as to make a direct comparison with the average for the base period during the water years 1920-15 inclusive. That type of plotting gives a line that most nearly approximates the manner and direction in which the quantity of ground-water storage, and the water table itself, responds to long-term trends in the precipitation. The distribution of precipitation within the year is shown on plate 9.


The average annual lowest temperature reading for six stations for the period 1921-51 was lli⁰F, the average highest was 102⁰F.


Frost-free periods for the valley plain areas of the basin average 176 days. In favorable years the frost-free growing season may be as long as 250 days, but artificial aids, such as smudge pots, are necessary to prevent damage to soft fruit during some days of most years. Frost has occurred as late as June and as early as September--June 12, 1917 and September 13, 1921 being respectively the latest and earliest frosts on record at Medford.

The evaporation rate is moderate, the average annual rate of pan evaporation for five years at the Medford Experimental Station was 43.78 inches. December has the least evaporation, with an average of 0.54 inch, and July has the greatest amount, with an average of 8.59 inches for the years 1943 to 1952.

Characteristics of the Industries

Agriculture

A great variety of the crops common to a temperate climate and varied moisture conditions are grown in the Rogue River basin. Within some of the sub-basins, certain crops are grown predominantly. The Bear Creek valley is devoted principally to pears, the Applegate River valley to pasture, the Illinois River valley to forage grasses for seed and pasture, the valley of the main stem of the Rogue River below Grants Pass to hops, and the Louse Creek valley to cherries. Minor crops are strawberries, cane berries, peaches and grapes in most all the subvalleys. Specialty crops, like gladicla bulbs, are popular along the Rogue River near Grants Pass. Most of the farms are of small acreage and relatively intensive cropping. For the most part they are tended by the owner and his family, the exceptions being the larger pear orchards and the cattle ranches which are farmed with seasonal gmployes.

Most crops are dependent upon the supplies of irrigation water

obtained almost wholly from surface flow. In addition to the land the following table shows

adequately irrigated, the arable land in each sub-basin inadequately

irrigated and and dry-farmed.

	Acreage irrigable		
Sub-basin	Inadequately irrigated	Dry farmed	
Rogue River Unit (Bear Creek valley)	13,200	33,300	
Talent Unit (Bear Creek valley)	10,400	4,700	
Grave and Jump-Off Joe Creek valleys	800	7.500	
Illinois River valley	5,400	17,200	
Applegate River valley	9,500	7,000	
Main stem of the Rogue River			
and the second	40,300	1,500	

(Extracted from the table following page 37, "Alternative Plans for Development of the Water Resources of the Rogue River basin, Oregon" U. S. Bureau of Reclamation, Region I, 1948.)

Cattle raising, both dairy and beef types, utilizes a large part of the valley area. Dairying is the principal occupation in the Applegate River valley and is important in the rest of the basin. Most herds range from 10 to 150 head. Grass and clover combinations are grown for pasture. The larger heads of beef cattle are located in the Bear Creek valley or in the Cascade foothills district to the east. Many of the ranchers on the higher slopes drive their cattle to the plateau along the summit of the Cascade Range or to the Klamath basin for summer pasture. Beef herds are also located in the Illinois River valley.

Lumbering and Mining

The principal industries of the basin include lumbering and mining. Fir, Douglas fir, pine, codar, hemlock, and spruce grow in the uplands, and although small private timber stands have been depleted rapidly, much timber still remains in the larger holdings and in the forest reserves. Some of the larger interests are cutting under the "sustained yield" plan. Harvesting of mature trees is being done in the National Forests and in Federal lands under the control of the Bureau of Land Management.

Chrome ore is the main product of the mines in and adjacent to the Rogue River basin. Copper, gold, platinum, and tungsten are produced in small amounts. The major paying mineral products are sand and gravel used for concrete and road metal, and limestone used for the cement and lime products.

Enough limestone is mined from the lenses in the Applegate group to supply a cement plant at Gold Hill. Much of the limestone of those lenses is too impure to be an economic source of agricultural lime.

Low grade coal, which occurs in seems from a fraction of an inch to 2 feet in thickness, occurs in the Umpqua formation. That coal is extremely high in ash and bone and is of little or no economic value at present.

Carbon dioxide is obtained from mineral waters taken from wells near Ashland (see well 39/2-7Nll, table 1) and is used to make dry ice.

Unpublished records subject to revision

Tourist Trade

One fifth of the income in retail trade and service establishments in the basin is derived from tourist trade, according to the Bureau of the Census. Particular points of tourist attraction are Crater Lake National Park and the Oregon Gaves National Monument. Sport fishing, principally for salmon and trout, on the world-famous Rogue River and its tributaries, and the scenic grandeur of nearby Crater Lake, account for a large share of the tourist interest.

Transportation

A branch line of the Southern Pacific Railroad running from Eugene, Oregon to Weed, California traverses the basin and serves the main cities---Grants Pass, Medford, and Ashland. Towns serviced by the railroad are Ashland, Wolf Creek, Leland, Hugo, Merlin, Rogue Hiver, Gold Hill, Central Point, / Phoenix and Talent. The rest of the area depends upon commercial truck Lines for freight service. Passenger service is supplied by two motor bus lines and two airlines.

Five state and federal highways cross through or originate in the basin. Highway 99 parallels the railroad and connects the larger cities of the basin with the Willamette Valley to the north and with California to the south. Highway 199 passes southwest from Grants Pass to Crescent City, California, and Highway 66 extends southeast from Ashland to the Klamath River valley. Highways 234 from Gold Hill and 62 from Medford lead northeastward to Crater Lake National Park and other highways.

GEOLOGY

Description of the Rocks

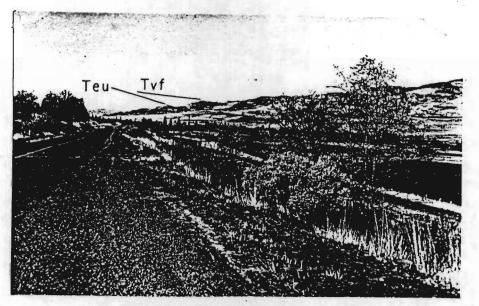
Sedimentary Rocks

<u>Bocks of Mesozoic age</u>. - A large part of the Rogue River basin is underlain by metamorphic rocks of Triassic age, which are called the Applegate group (Wells, 1951). These rocks comprise a great thickness of metamorphosed velcanic rocks, originally mainly andesitic lavas, containing interbedded argillites, quartzites, cherts and lenses of limestones. In general, the stratification dips from 45° to 85° to the southeast. The area in which they crop out is approximately 35 miles wide extending from the quartz diorite mass near Ashland northwestward to the mouth of the Applegate Rivor (see pls. 1-A and 1-B). How much duplication in beds exists, due to faulting and close folding, is not known, but the true thickness may be estimated in tens of thousands Unpublished records subject to revision of fest. Wells (1951) states that the younger beds of the Applegate group lie to the southeast which position indicates overturning, as the younger beds of Jurassic age lie to the northwest. Presumably the orogenic movements, which first deformed the rocks of the Applegate group, occurred near the end of the Triassic period. Though some small supplies of ground water occur in fractures, a low degree of permeability characterizes the rocks of this group.

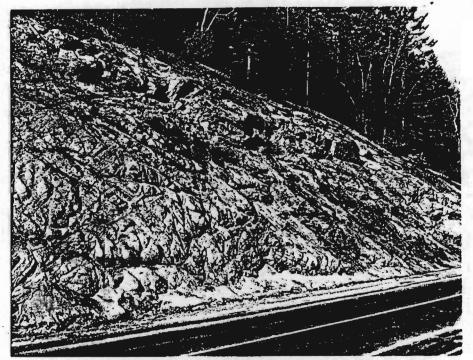
A series of shaly slates, grits, and conglomerates that occur at the mouth of Galice Creek on the Rogue River were named the Galice formation. Along with these rocks Wells (1951) has included in one map unit, a group that contains volcanic rocks of rhyolitic and andesitic composition as well as interlaminated tuffaceous strata of corresponding types. The Galice formation is considered to be upper Jurassic in age (Diller, 1907), (Taliaferro, 1942), emi(Wells, 1949). These rocks were deposited unconformably over the highly deformed rocks of the Applegate group. For the two parts of the Galice formation, Wells (1949) places the thickness of the volcanic lava rocks and tuffs at about 10,000 feet and the thickness of the sedimentary rocks at 15,000 feet. Cementation of the conglomerates and sandstones by siliceous material has rendered most of the formation impermeable, making it an unlikely source of any but the smallest supplies of ground water.

Unconformably overlying the Triassic and Jurassic formations are marine sedimentary beds of the Horsetown and Chico formations of Cretaceous age. Beds of the Horsetown formation occur in the south central part of the Kerby quadrangle (see pl. 1-A) where approximately 5,000 feet of

Unpublished records subject to revision


sandstones and conglomerates overlie the Galice formation and where their general strike is N 30°W and the dip 30°NE. Farther east they are in fault contact with serpentine. The Chico formation crops out along the western border of Bear Creek valley (pl. 1-C), where there are two small areas shown in the eastern part of the Grants Pass quadrangle (pl. 1-B) ,and also crops out in an area of about six square miles on upper Grave Creek in the Riddle quadrangle (pl. 1-D). In the Medford area the Chico beds dip from 10° to 45° to the northeast, and the dips become steeper toward the southern end of the Bear Creek valley. In the exposures shown on the Grants Pass quadrangle map the dips are about 10° in a northward direction. Dips ranging from 13° (to the northeast) to 90° have been observed in the outcrop area on Grave Creek. These beds are mainly sandstones and sandy shales with lenses of conglomerates near the base. In the Rogue basin, the Chico formation contains the oldest beds known to have numerous and well preserved fossils-fossils indicative of middle and upper Cretaceous age. Wells (1951) states the maximum thickness of the Chico formation to be about 600 feet. Although these rocks are well cemented, some ground water may be produced from the poorly cemented beds and from the joints and crevices. No large yields of water have been obtained from wells in the formation. The Chico formation may be the source of some saline water that is derived from wells near Phoenix and Talent (see section on quality of water).

Rocks of Cenozoic age. - Disconformably overlying the Chico formation is the Umpqua formation whose age is middle. Eccene. The Umpqua formation consists mostly of an alternating succession of beds of shale and sandstone. The thickness of the individual beds ranges from an inch to Unpublished records subject to revision

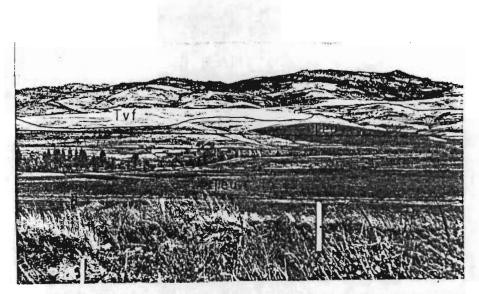

several feet. In the few beds of conglomerate the larger particles range in size from pebbles to boulders. With the exception of fragmental plant material, the Umpqua formation contains very few fossils. The carbonaceous plant material, together with numerous seams of impure subbituminous coal, indicate at least a partial freshwater origin for the formation in the Bear Creek valley area. A total thickness of 8,000 feet for the Umpqua formation was estimated by Wells (1939). A zone of massive sandstone, estimated to be 400 feet thick, underlies a series of low hills that continue longitudinally in the upper Bear Greek valley from Medford to near Ashland. As the sandstone members of the formation are formed of poorly sorted grains and contain little open pore space, the formation does not afford good yields of water to wells. There are numerous wells in the Umpqua formation but very few have total capacities of more than five gallons of water per minute. At depth within the Uspqua formation the ground water is saline and of inferior quality as described in the section on quality of water.

Overlying the Umpqua formation with slight angular unconformity is a series of waterlaid tuff beds and thin lava flows called by Wells (1939) See pl. 10-A. "waterlaid volcanic sedimentary rocks." / Fossil plant leaves collected by the writer from a fine gray tuff bed about 150 feet in thickness in sec. 13, T. 35 S., R. 1 W. (see pl. 1-E), approximately 500 to 600 feet above the top of the Umpqua formation, were examined by R. W. Brown of the Geological Survey. Hr. Brown in his report states:

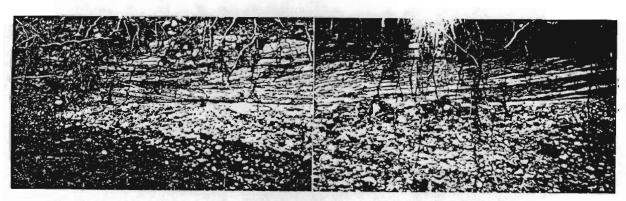
Unpublished records subject to revision

A. View north along Highway 99 south of Ashland showing, in skyline, the difference in dip between the Umpoua formation (Teu) and the overlying lavas of the Western Cascades (Tvf).

B. Inclined strata of Chico formation overlying granodiorite in cut of Highway 99 in the SW₄¹NW₄¹ sec. 21, T. 40 S., R. 2 E. "Locality, 35/1W-13-14. South half of center line between secs. 13 and 14, T. 35 S., R. 1 W. On hillside above railroad, 3.3 miles due east Dodge Bridge, in ashy gray and buff tuffs, Trail quadrangle. Pinus sp. (cone, seeds, and needles of a white pine) Metasequoia occidentalis (Newberry) Chaney Thuites sp. Alnus sp. Liquidamber sp. Fragments of other dicotyledonous leaves.


Age: Late Eccene or early Oligocene."

The thickness is stated by Wells to be about 2,000 feet. The lava rocks are dense and tight and generally of low permeability. A small amount of ground water occurs in the joints and in some outcroppings shows up as seepage along the top of underlying tuffaceous beds. The included tuffs are impermeable for the most part.


The larger valleys of the Rogue River basin are underlain by alluvial deposits of clay, silt, sand, gravel, and boulders, unsorted or rudely sorted. These deposits in some places extend to considerable depth and have been divided into five formations by previous investigators. Four of these formations lie above the elevation of the present main the streams. From the degree of their surficial weathering and the depth of cementation they all appear to be Pleistocene in age and are herein referred to generally as older alluvium.

Along the present stream channels, within the reach of the flood waters, the older gravels have been reworked and other material incorporated to comprise gravelly and bouldery deposits covered in some instances by thin soil. The alluvial deposits now within the range of floods are designated as younger alluvium in this report.

Unpublished records subject to revision

A. View eastward across Bear Creek valley north of Ashland showing parts of the valley underlain by eastwarddipping strata of the lavas of the Western Cascades (Tvf) and the Umpqua formation (Teu).

B. Close-up of an exposure of Agate Desert gravels showing bedding features, silt bed and the caliche lenses. Section in photo about L feet high.

The older alluvium includes the Agate Desert gravels that underlie the Bear Creek valley plain and benchlands north of Medford. They elso include the bench gravels near Grants Paes, in the Illinois Valley, in Louse Creek valley, and the auriferous gravels and the Llano do Oro formation underlying the terraces south of Cave Junction. Their permeability is generally low but differs greatly both horizontally and vertically. The degree of permeability seems to be determined largely by the type and quantity of interstitial filling present at each place (pl. II-E) The older alluvium may in places be as much as 300 feet thick; the Agate Desert gravels and Llano de Oro formation both have a maximum thickness of about 100 feet (see table 3). Where they occur below the level of the water table, the gravels of the older alluvium are probably the most productive aquifers within the valley areas of the bacin. At other levels, or where they contain excessive interstitial filling, they supply only small quantities of water to wells.

In general, the younger alluvium is surficial and is important as an aquifer only in the few places where it extends below the level of the water table.

Igneous Rocks

Intrusive rocks of Mesozoic age. - Throughout the area underlain by formations of Mesozoic and earlier ages, there are many intrusive igneous rocks ranging in petrographic types from ultrabasic to granitic. Some, such as the granitic mass west of Ashland and the granitic body in the Grants Pass area, are of batholithic proportions. Others, that are smaller, may be only the upper parts of large deeply seated intrusions.

Unpublished records subject to revision

22

The long axes of the intrusive masses all trend northeast-Southwest, and all cut across formations that are known to be older than the Cretaceous. In petrographic types, the ultrabasic rocks range from dunite and saxonite to serpentine, and the granitic rocks range from tonalite through diorite to granite. In the areas south of Grants Pass and east of Gold Hill are several masses of hornblende gabbro that apparently originated as differentiations from the granitic magma.

The top of the granitic mass in the Grants Pass area and of that west of Central Point are deeply weathered and the granular weathered materials constitute fairly permeable aquifers.

Intrusive rocks of Tertiary or Quaternary(?) age. - Many small igneous dikes, sills, and plugs of Tertiary age cut the Umpqua formation and the volcanic formations of Tertiary age (pls. 1 and 10). Most of these dikes are composed of tight and dense rock which has a low permeability. In general they do not serve as aquifers.

Extrusive igneous rocks of Tertiary and Quaternary age. - The largescale occurrences of mainly extrusive igneous rocks in the Rogue River ! basin are the rocks grouped and termed the "lavas of the western Cascades" (Wells, 1939) and "volcanic rocks of high Cascades" (Callaghan and Buddington, 1938, pl. 1). These rocks form most of the west slope and the crest of the Cascade Range. Their outcrop area extends eastward generally from the Bear Creek valley, Sams Valley and upper Evans Creek (pls. 1c and le).

Wells (1939) used some of the general terms and groups of Callaghan and Buddington (1938) but mapped the rock groups and their divisions more extensively in the Rogue River basin. The lavas of the western Cascades Unpublished records subject to revision

(Wells, 1939) overlie the "waterlaid volcanic sedimentary rocks" referred to above under "Rooks of Cenozoic age." The lava rocks consist of lava flows, breccias, and agglomerates of andesite, basalt, and rhyolite interbedded with waterlaid tuffs and beds of pumice. The lower flows lie essentially level, or show but a slight dip to the east (pl. 9-A). The total thickness was estimated by Wells to be between 3,000 and 5,000 feet. The rocks of this accumulation of volcanic flows are tight and compact, and offer little space for ground water transportation or storage.

For the most part the "volcanic rocks of high Cascades" (Callaghan and Buddington, 1938) are olivine basalt and are of Pliocene and Cuaternary age. They consist of flows of blocky lava rock and have a generally horizontal attitude in the Rogue River basin or dip at low angles generally to the east. The earlier sequences of these volcanic rocks have been mildly displaced in block-faulting structures and the latest sequences posses many initial slopes and dips which were incident to their extrusion. They underlie the volcanic cones, plateaus, and ridges at the top of the Cascade Mountains. That they are highly conducive to the collection and storage of ground water is evidenced by the many strong springs which flow from their lower parts and by the more stable regimen of streams that originate in areas underlain by these rocks.

Metamorphic Rocks

All formations older than the Cretaceous period show extensive metamorphism. The m_{older} schists" of Silurian age, which occur in the headwaters areas of the Applegate River, are so altered as to make

Unpublished records subject to revision

difficult the full determination of the original rocks. The rocks of the "Applegate group" of Triassic age have undergone dynamic regional metamorphism plus contact alterations where they border the intrusive rocks. The Galice formation of Jurassic age, underwent regional metamorphism, especially affecting the former shale beds which are now sendy slate, as well as contact alterations along the margins of the granitic body that underlies the Grants Pass area. Compaction and metamorphism have destroyed whatever effective porosity and permeability that may have originally existed in these formations and they now possess water-bearing capabilities only near the surface where partly opened joint planes afford a low degree of permeability.

Low-grade metamorphism in the deposits of Tertiary age is confined to the immediate vicinity of intrusive dikes and sills and to the materials between lava flows. Apparently it is of too limited extent to have an important bearing on the water-bearing capacities of the rocks.

Structure

Folding

All the formations older than the Cretacecus have been subjected to strong northwest-southeast compression resulting in folding with some overturning and thrust-faulting. Inclinations of bedding in the "Applegate group" very from 10° to vertical with the strike in most places trending northeast.

The Galice formation has been deformed by similar northwest-southeast compression. Presumably the Triassic "Applegate group" received folding and overturning before the Jurassic Galice formation was deposited.

Unpublished records subject to revision

Subsequently the "Applegate group" was in places overthrust onto the Galice formation but has been eroded off except for one remnant just west of the Oregon Caves National Monument (pl. 1-b).

The main bodies of the Chico and the Umpqua formations have a monoclinal tilt to the east, but are free from the intense folding which marks the pre-Chico rocks.

Faulting

Several systems of faults cut the formations of the Rogue River basin. Along the west side of the Illinois River valley, the contact between the Galice formation and the serpentine is a thrust fault with the serpentime everyiding the Galice. Similarly, the contact between the Jurassic Galice formation and the Triassic "Applegate group" is a thrust fault, giving the Galice formation the position of a depressed block.

A system of faults cuts across the Umpque formation and the lavas of the western Cascades in the Bear Creek valley. One shear some trends north-northwest from Buckhorn Springs at least as far north as Walker Creek. Its presence is indicated by a linear depression that crosses the foothills and by the highly silicified nature of the rock in the fault trace. Near Buckhorn Springs the fault is intersected by a generally east-west fault, shown by Wells (1939), which separates the lavas of the western Cascades and the isolated patches of Umpque formation from the Ashland granodiorite at the head of the valley above Steinman (pl. 1-c). This cross fault divides near Colestin and one fork crosses the granodiorite to Beaver Creek on the California border.

Unpublished records subject to revision

Another fault was mapped by Wilkinson and party (Wilkinson, et al., 1941) along the east fork of Evans Creek (pl. 1-d). Movement along the fault has caused the uplift of the Applegate group to a position abutting against the Umpqua formation. Many other faults of lesser displacement are known to occur in the Applegate group and in the volcanic rocks of the Cascades and are shown on plate 1. The block-faulting system prominent in the Klamath Basin to the east also cuts the rocks of the Cascades and in lesser intensity displaces the lava rocks of the high Cascades and the lava rocks of the western Cascades in the Rogue River basin.

Summary of Geologic History

The area that is now the Rogue River basin was, during Triassic time, a part of a subsiding basin on the north flank of an old upland from which it received much sediment. These sedimentary deposits and intermingled volcanic materials, which were deposited under both subaerial and submarine conditions, formed the sequence known as the "Applegate group." Between the Triassic and middle Jurassic times sufficient crustal. movement took place to fold the rocks of the Applegate group.

During the middle and upper Jurassic period parts of the area subsided enough to allow the deposition of many thousands of feet of sedimentary and volcanic rocks now known as the Galice formation. Later these, in turn, ^{were} deformed. After the Jurassic beds were deposited, but before the later part of lower Cretaceous time, the intrusion of basic and granitic rocks occurred and these intrusions were bared by erosion. Subsidence in the Cretaceous period allowed the deposition of the marine

Unpublished records subject to revision

Horsetown and Chico formations. That parts of the Chico formation were derived directly from the Ashland granodiorite is shown by the lithology of the pebble conglomerate at the contact exposed in a cut on Highway 99 in sec. 21, T. 40 S., R. 2 E. (pl. 10-b). The basal bed in that outcrop of the Chico formation is composed almost entirely of debris from the granodiorite.

The thinness of the Chico formation indicates that it was uplifted and eroded before the deposition of the overlying Umpqua formation of middle Eccene age. The disconformity between the Chico and the Umpqua formations is evident largely by the lack of any known deposits of lower Eccene age between the two formations. The presence of mumerous thin seams of coal in the Umpqua formation indicates an estuarine or lagoonal type environment where subsidence did not entirely keep pace with deposition.

Conglomerates with well rounded quartitie pebbles and boulders in the upper parts of the Umpqua formation are evidence of accelerated erosion and reworking of the outcropping rocks of the Applegate group and the Chico formation.

Toward the end of Eccene time increased volcanic activity produced the effusive volcanic ejects and clastic materials that formed the waterlaid volcanic sedimentary rocks. A progressively increasing number of lava flows were being deposited in the eastern part of the Rogue River basin. Both the waterlaid volcanic sedimentary rocks and the lava flows were deposited lapping up against the eastwardly inclined slope of the Umpqua formation.

By the end of the Plicocene epoch or soon thereafter, the Rogue River had probably acquired its present general watershed, although it channel Unpublished records subject to revision

was still at least 600 feet above its present bed in the part above the mouth of Bear Creek. If the basalt tablelands known as Upper and Lower Table Rock north of the present river are intracanyon flows, as they are assumed to be, then the Rogue River had not yet cut entirely through the waterlaid volcanic sedimentary rocks at this point, as shown by the presence of these volcanic sedimentary rocks directly under the Quaternary caprock lavas at the southernmost extension of Lower Table Rock.

After glaciers of the Pleistocene epoch had cut the volcanic upland and entrenched the streams of the Cascade Mountains, renewed volcanic activity sent narrow trains of basaltic lavas coursing down the main valleys toward the Bear Creek valley and down the headwater streams of the Rogue River. Presumably one of those streams of lava was the source of the lavas which cap the Table Rocks. Several of these trains of lava followed the valleys as far as Prospect and other places well down on the lower slopes of the Cascade Range. They now underlie flattich floor segments of the valleys and have been trenched by youthful stream canyons. Important amounts of ground water flow from springs, like Big Butte Springs, at their lower end. During Pleistocene(?) time there was apparently some resurgence of mountain building deformation. The belt of Rogue older rocks crossed by the/River below Grants Pass must have been uplifted several hundred feet and the drainage ponded, or at least slowed, in the Grants Pass and Illinois Valley areas. Alluvium accumulated in these valleys and has been only partially removed since the river carved its canyon headward to drain those valley areas.

Unpublished records subject to revision

MATER RESOURCES

Surface Water

Headwaters of the River

The North and South Forks gather the runoff of a number of creeks which drain the western slope and upland of the Cascade Bange. The North Fork is commonly termed the continuation of the main stem of the river. The Middle Fork flows into the South Fork which, in turn, joins the North Fork below Prospect. Below that confluence the Big and Little Butte Creeks enter from the southeast. These four streams constitute the principal headwater sources of the Rogue River and deliver essentially all the runoff that comes from the Cascade Range. Elk Creek and Trail Creek from the north and Bear Creek from the south enter below the confluence of the North and South Forks. Bear Creek also receives runoff from a small part of the Cascade slope but much of that flow is impounded and used for irrigation.

The North Fork alone and the combined flow of all the upper branches--where those discharges are measured at Prospect and Dodge Bridge, respectively--show similar annual runoff characteristics. The highest rate of runoff comes during the snowmelt period from March to May and continues high into June. Early winter, the snow-storage months, November to January, produce a lesser proportional runoff than occurs on the more southern tributaries, Butte and Little Butte Creeks.

Of the headwater drainage areas, the North Fork, the Rogue River proper, at the gaging station below Prospect has the most uniform within the water year. Records of the monthly discharge discharge/for the water years 1946-50 show the rate of flow during the three months of greatest discharge (February to April) and during the three months of least discharge (July to September) differ by the ratio of only Unpublished records subject to revision

3.2 to 1. The water yield of the headwater streams, in cubic feet per second per square mile of drainage area, when computed as an annual average discharge for the water years 1946-50, ranges from 2.9 for the Rogue River near Prospect, through 2.1 for the Rogue River at Dodge Bridge, 1.5 for Elk Creek near Trail, 1.2 for Big Butte Creek at McLeod, and 0.72 for Little Butte Creek at Eagle Point.

Though storage as ground water in the permeable materials of the volcanic rocks of the high Cascades has an equalizing effect on the runoff of the North and South Forks, its additions to stream runoff are partly masked by the storage effect of the snow accumulations in the headwaters areas of these northern and higher tributaries of the Rogue River. Undoubtedly, the less permeable volcanic rocks of the western Cascades, which form the entire drainage basin of Elk Greek, and a large part of the basins of Little and Big Butte Greeks, account for some of the flashy, rupid character of the runoff from these tributaries, but the present data do not permit more than a qualitative and comparative evaluation of any ground-water storage effects of the volcanic rocks of the high Cascades.

The bread band of relatively soft and poorly permeable sedimentary rocks, which underlie the north-northwest-trending lowland at the western foot of the Cascade Range (Bear Greek valles and Sans Valley) is drained northward to the Rogue River by Bear Greek and southward to the Rogue River by Snider and other small creeks. These streams are partially regulated for irrigation, the bedrocks and the soils (both residual and alluvial) discharge only small quantities of ground water, and the stream runoff lacks any significant ground-water contribution.

Unpublished records subject to revision

The combined flow from the main river and these valley tributaries is measured at the gaging station at Ray Gold and the runoff above the canyon through which the Rogue River leaves the Bear Creek Valley is commonly termed the headwaters of the river.

Middle Course of the River

The 15-mile-wide north-south-trending band of metamorphic, sedimentary and igneous rocks, which is crossed by the river in a terraced gorge (Exaction) below Ray Gold, has a medial strip of granitic rock on which relatively gentle topography is drained southward to the Rogue River by Evans Creek and northward by Williams Creek. The latter is a tributary of the Applegate River which enters the Rogue at the west edge of the Grants Pass lowland, also underlain by granitic rock.

The upper tributaries of the Applegate River gather drainage off the north slope of the Siskiyou Mountains at the south side of the Rogue River basin. Other tributaries drain a dissected, mountainous topography whose principal valley area is formed on granitic rock and extends northward along the Williams Creek valley across the Applegate to the Evans Creek valley farther north. The annual runoff of Applegate River has characteristics similar to that of the lower streams of the Rogue River headwaters. The annual high rates of discharge come in the period December to April and the ratio of the discharge in the three months of highest flow (January to March) to that in the three months of lowest flow (July to September) is in the order of 8 to 1 at Ruch and 15 to 1 at Wilderville. The annual average water yields, in cubic feet

Unpublished records subject to revision

per second per square mile, were similar to those of Big Butte Creek basin--1.3 at Ruch and 1.05 at Wilderville during the years 1946-50. The average annual discharge at Wilderville for those years was 728 cubic feet per second, which is about 75 percent as large as the same discharge for the Rogue River at Prospect.

After turning northward along the west side of the granitic lowland of the Grants Pass area, the Rogue River receives the discharge of Jump Off Jos Creek, which drains the north part of the lowland. Near the mouth of this creek and 13 miles northwest of Grants Pass the river enters a gorge through mountainous terrain in which it continues for 50 miles to the mouth of the Illinois River at Agness. In this reach Grave Creek is the largest tributary. It drains the northern central part of the basin, north of the Grants Pass lowland, and joins the River below Galice.

The Illinois River is formed by the two forks (East and West) which receive the creeks draining into the lowland Illinois valley south of Kerby. About 2 miles north of Kerby the Illinois River leaves the valley area, underlain by rocks of the Galice formation, and crosses through a canyon traversing mountainous terrain for 52 miles to its junction with the Rogue River. Near Kerby is the point farthest downstream at which measurements of the Illinois River are made.

The 364 square miles of drainage basin above that gage had an average water yield of 3.8 cubic frot per second per square mile during the water years 1946-50. This is a greater yield than the corresponding figures of 2.1 for Rogue River at Dodge Bridge and 1.05 for the Applegate

Unpublished records subject to revision

River at Wilderville and illustrates the greater precipitation, which falls largely as rain, on the mountains nearer the coast. The annual peak discharge of the Illinois River occurs relatively early in the water year, usually in January or February, and the ratio between the total average runoff during the three months of high (January to March) and the low three months (July to September) was 33 to 1 during 1946-50-much higher than for any of the headwater streams of the Cascade Range. The moderately permeable alluvium of the valley area south of Kerby contains ground water which However, this ground-water body drains to the Illinois River during late summer and fall. /. does not have discharge volume sufficient to increase materially the low flow of the river during that period when little ground-water inflow is coming from the peorly permeable rocks of the rest of the basin.

Lowest Course of the River

For all except the last few of the 28 miles to the ocean at Gold Beach, the Rogue River traverses a narrow canyon similar to much of that above Agness, but especially characterised by a sharp inner canyon, 400 to 500 feet deep.

The discharge of the Rogue River in its lowest reach has not been measured. The probable total amount of the basin's average runoff can be roughly approximated by proportional comparison with the part of the basin for which river discharge has been measured. The average combined flow at the lowest gaging stations on the principal streams, Rogue River at Grants Pass, Applegate River at Wilderville, and Illinois River at Kerby, was 4,730 cfs--or about 3,343,000 acre-feet per year-for the 10-year period 1939 to 1949. The combined drainage area above Unpublished records subject to revision

these stations, as shown in unpublished records of the Geological Survey, is approximately 3,460 square miles and indicates the average yield for the period is 1.36 cfs per square mile. If a similar yield is postulated for the additional 1,600 square miles below these three gaging stations, an average annual discharge of 6,890 cfs in the Rogue River at it mouth would have been indicated for the 10-year period.

A gross estimate from the base flow, or low flow, stage of the streams, would suggest something in the order of 10 percent of this annual discharge would have been effluent from ground water.

Uses of the Surface Water

<u>Municipal and domestic water</u>.- Grants Pass, Gold Hill, Hedford, Central Point, Eagle Point, Jacksonville, and Ashland take their municipal water supplies from surface water sources. Grants Pass and Gold Hill take water from the Rogue River, and Ashland from Ashland Creek. The other towns get water from the Big Butte Springs, the source ! of the Medford distribution system. These springs flow into Big Butte Creek from ground water stored in the volcanic rocks of the high Cascades. Though the water flows from springs and is in part intercepted before it reaches the surface, such spring discharge is commonly administered legally as surface water.

Irrigation.- All of the present irrigation districts draw their supplies from surface water. The Talent Irrigation District takes water from Emigrant Reservoir on Emigrant Creek; the Rogue River Irrigation District and the Eagle Point Irrigation District from Little Butte Creek; Modoc Orchard and vicinity from the Rogue River; the Evans Creek District from Evans Creek; the Lower Rogue River District from several ditches on Unpublished records subject to revision

the Rogue River; the Williams Creek, the Applegate River, and the Deer Creek areas from their respective streams, and the Illinois River valley districts from Sucker Creek and Rough-and-Ready Creek. A large number of small private ditches draw water from local streams so that almost all available surface water is drawn upon to its maximum seasonal capacity. Approximately 64,000 acres are irrigated at present, though much of it receives an inadequate supply (U. S. Bur. of Reclamation, 1948, p. 4).

Industrial. - Seven hydroelectric plants located along the Rogue River from above Prospect to the Savage Rapids dam near Rogue River city, constitute the principal industrial nonconsumptional use of surface water in the basin. These plants have an aggregate generation capacity of 47,260 kilowatts, with an average annual output of 329 million kilowatt hours (U. S. Bur. of Reclamation, 1946). Little water is lost in the maintenance of ponds for lumber mills and in the limited placer mining operations.

<u>Recreational</u>.- The propagation of game fish and the utilization of stream edges for fishing and recreation are other nonconsumptive uses of surface water.

Ground Water

Source

The low permeability of the rocks forming most of the drainage divides, the eastward dip of the lava rocks in the slope of the Cascade Range and the lack of significant springs near the drainage divide, all indicate that little, if any, ground water reaches the Rogue River basin by underground diversion from other watersheds. Likewise, little, if

Unpublished records subject to revision

36

ł

any, leaves the basin by underground diversion to other drainage basins. The saline content of some ground water from the Applegate group, Galice, Chico, and Umpqua formations indicates the possibility that a small amount of connate water may rise from deeper formations. However, infiltration of precipitation is essentially the sole source of the fresh ground water in the basin.

Hydrostatic Conditions

<u>Perched ground water.</u>- Water which has infiltrated into pore spaces in the rocks below the land surface and produced a permanent local saturated condition of the earth materials above the true regional water table is called perched ground water. It occurs most commonly in porous materials which receive recharge from the surface and overlie materials of such relative impermeability that the water cannot descend to the level of the regional water table at a rate equal to the rate of recharge.

<u>Unconfined conditions</u>.- The ground water tapped by most of the shallow wells in the basin occurs under unconfined, or water-table conconditions. In this type of occurrence the water does not rise substantially above the points at which it is first encountered by a well. The water table, at which level the water stands in the wells, is at or slightly above the lovel of the nearby drainage and elopes upward beneath the valley sides. The rate of its rise outward from the level of its surface drain is commonly determined by the permeability of the by materials through which it must move to the drain and/the amount of water being recharged to the ground-water body. Nearly all the wells in the alluvium and the shallower wells in the Umpqua formation, the waterlaid Unpublished records subject to revision

volcanic rocks and lavas, the Chico formation, and the Applegate group draw from unconfined ground water which does not rise substantially above the point at which it is first encountered by a well.

<u>Confined (artesian) conditions</u>.- Some of the deeper wells in the Umpqua formation, several deep wells in the Applegate group, and many wells in the granitic masses obtain water with a relatively high static level due to local confining conditions. Artesian, or confined ground water, occurs where the water in a permeable stratum passes laterally under a less permeable and sloping layer which prevents the ready escape of the water upward. Under such conditions the ground water will be confined and will occur under hydrostatic pressure which in places may be sufficient to cause it to stand high in a well or even to flow from a well. In many of these wells the pressure is not sufficient to cause the wells to flow at the surface. A few flowing wells are present; most of these discharge less than 5 gallons of water per minute and do not yield substantially more water when they are pumped.

Mater-Bearing Characteristics of the Rocks

<u>Consolidated rocks</u>.- The schistose rocks of Silurian age and the metamorphic rocks of Triassic age have low permeability due to the mineral realinement and crystallization that has marked several stages of their metamorphism. In such altered rock porosity sufficient for the transmittal of even small amounts of water is commonly present only in joints, cleavages, and cracks opened by weathering processes near the surface. The consolidated and partly metamorphosed rocks of the

unpublished records subject to revision

Gelice formation are likewise of low permeability due to closure of the pore space by compaction and cementation and by some mineral realinement. Rocks of this group likewise yield small amounts of water only to wells which penetrate the near-surface rock.

Many of the domestic wells which tap small supplies of water in the Umpqua, and older formations, obtain the ground water from joint cracks and weather openings in the shales or partly cemented sandstones. Shale beds in the Chico formation are thin and umproductive of water. In the Applegate group and in the Galice formation beds dip steeply, vertically, or almost vertically, and wells started in shale somes commonly continue in the same lithologic some for some depth. As these shales are very tight, such wells commonly result in dry holes or, at best, in wells of very small yield. Wells 39/7W-26N1 and -26Q1 are examples of such wells drilled in shale of the Galice formation to depths of 200 and 290 feet, respectively. Neither hole furnished enough water for the needs of its own drilling.

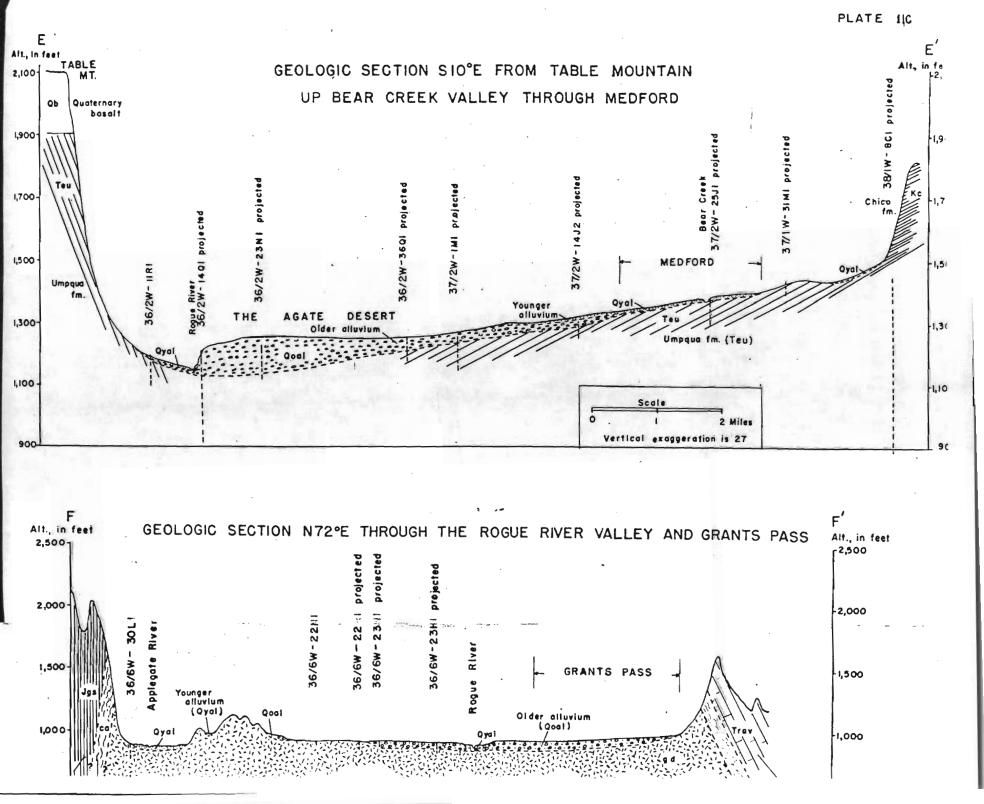
With the exception of the sendstones of the Chico formation, the sandstones of most of the formations in the basin are rich in feldspar amphibole, pyrene, or other minerals that break down to clayey minerals. Most all the sandstones have their interstices filled with clayey material and cemented with iron or calcium carbonate. The sandstones of the Chico formation are well cemented, mainly with calcium carbonate. These sandstones are poor aquifers and what water is obtained from them by wells comes largely from fractures. As the sandstones of the Chico and Umpqua formations have been only slightly deformed, the joints are

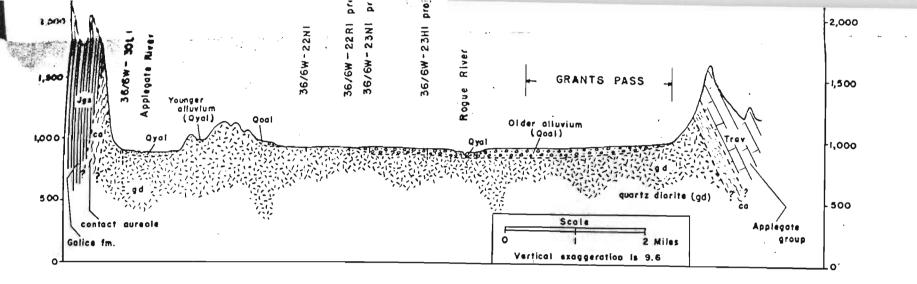
Unpublished records subject to revision

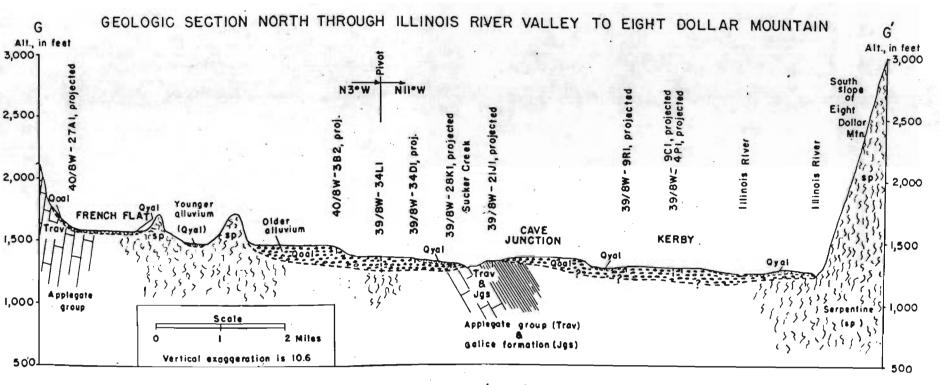
relatively few, are tight below the surface sone, and yield little water. The sandstones of the Applegate group and of the Galice formation, while well fractured, are of low permeability and dip so steeply that they have a small area of outcrop and limited opportunity for recharge by precipitation.

Several wells produce mineralized waters from a conglomerate in the upper part of the Umpqua formation and are being utilized for the extraction of carbon dioxide and the subsequent manufacture of dry ice. The water from this zone is potable, but too saline for ordinary domestic use. The basal conglomerate of the Chico formation may, in places, contain small amounts of water, but no wells are definitely known to penetrate this member or to substantiate this implied capacity to transmit water which might be potable in the near-surface zone.

Semiconsolidated and unconsolidated rocks. - The unconsolidated rocks of the valley consist of alluvial deposits which are described above as the older and younger alluvium. They consist of moderately well sorted and poorly sorted sands, silts, clays, cobbles, and gravels. In outcrop the coarser-grained materials exhibit conspicuous cross bedding (pl. 11). Many of the deposits have so much clayey material as to fill the interstices and give the otherwise coarse-grained beds a low degree of permeability. Other coarse-grained beds are compacted and commented by calcium carbonate, silics, and iron compounds. In many of their occurrences these alluvial deposits are in positions to receive and retain infiltrating water, and the water table stands close to the surface. Areas such as the Agate Desert are underlain by older alluvium which will afford small to moderate supplies of ground water to properly constructed Unpublished records subject to revision


wells. The younger alluvium occurs principally along the stream channels, and although its basal part is commonly saturated, in many places it is too thin to accommodate wells other than very shallow wells or the open pits called "sumps."


Mater-Bearing Formations


with the exception of some of the shales in the Umpqua and Galice formations and in the Applegate Group, all the rock units of the Rogue River basin yield ground water at least in very small amounts. Generally wells obtain enough water for most domestic needs in all but a few small areas of the basin.

The only rock units that yield sufficient water for irrigation are the older and younger alluvial materials in the lower levels of two of the subvalleys and the more deeply weathered granitic rocks and associated alluvium in two other valley areas. See pl. 110.

Liano de Oro formation.- This formation is a part of the older alluvium and underlies about 42 square miles of the Illinois River valley upstream from Eight Dollar Mountain. Three distinct terrace levels are cut across these deposits. In sec. 34, T. 38 S., R. 9 W., where an exploratory well (38/9-3441) was drilled by the Geological Survey, the Liano de Oro formation was 108 feet thick and some water entered the well throughout its bore from a depth of 10 feet downward to the bedrock base with the exception of the 12-foot bed of clay occurring at 14 to 26 feet of depth (see log in table 2). The well of 6-inch diameter, was drilled to test the water-bearing capacity of the formation. It was subjected to an aquifer-performance test by pumping 46 gallons of water per minute Dupublished records subject to revision

See plates IC and 3C, 1B and 3B, 1A and 3A for location of sections E-E', F-F', and G-G', respectively.

continuously for 19 hours. At the end of the test the pumping level of the static water level the water in the well was 10.74 feet lower than/at the start of pumping. This is a yield of about 4.25 gpm per foot of drawdown and indicates a possible normal capacity on the order of 200 gpm. Such a water yield should be adequate for the irrigation of 20 to 40 mores of land. While the test is directly applicable only to the area immediately surrounding the pumped well, the character and extent of the formation and the data on other wells, less adequately constructed, indicate that much of that valley area is underlain by materials having similar capacity for groundwater withdrawals.

The Agate Desert gravels.- About 14 square miles in the lower part of Bear Creek walley are underlain by a particular phase of the older alluvium, an alluvial fan deposit called the Agate Desert gravels. The deposit tapers to a feather edge just north of Medford and thickens to about 100 feet just south of the Rogue River. These gravels overlie an eroded surface on the Umpqua formation and consist of pebble and cobble gravels, bouldery gravels, sands, silts and elays. The materials are rudely sorted, cross bedded, and in places censuited and compacted. Fart of the strate yield water in moderate amounts. An 8-inch exploratory well (36/2W-23N1) drilled as a part of this investigation to test the water-yielding qualities of the deposits, penetrated 104 feet of the Agate Desert gravels before reaching the Umpqua formation (see table 2). The static water level stood 6.5 feet below the land surface.

A deep well turbine was installed with the intake at 95 feet depth and the well was pumped at the rate of 42 gpm for 11 hours and 40 minutes after which time the pump broke suction. A three-step drawdown test was made also. The pump-test data indicate part of the resistance to the Unpublished records subject to revision

entrance of water into the well may have been due to inadequate perforation and development of the well itself, a construction defect which could have been corrected if time and funds had permitted. The pumping test data indicated the well is capable of a sustained yield of 25 gpm, sufficient water to irrigate 4 or 5 acres.

A short pumping test was run on the C. M. Graves well (36/1W-30L1) 2¹/₂ miles southeast of well 36/2W-30L1, to test the yield of the 20 feet of Agate Desert gravels that are saturated in the upper 2h feet of this well. The well yielded 50 gpm with a steady 18 feet of drawdown after 4 hours pumping. This yield is sufficient to irrigate about 5 to 10 acres of land. The tests on these two wells indicate that properly constructed wells in the Agate Desert gravels should obtain sufficient water for irrigating small tracts.

The extent of other alluvial deposits along the Applegate and Rogue Rivers and along Evans Creek, Fleasant Creek, Louse Creek, Deer Creek, and Williams Oreek are shown on plate 1. These deposits yield water to wells at various rates. In these deposits wells that are but tens of feet apart in some places have vastly different capacities because of variations in the permeability of the deposits and because of differences in the effectiveness of the well construction and development. An example of the different water capacities in nearby wells in this alluvium is given by well 37/5W-20M2 and an adjacent better well in the Applegate River valley. This well (-20M2) was drilled to 90 feet in comented gravel and opened up so little water it was not completed The driller then moved about 75 feet away and finished another 61-foot well that yields ample water for the household. Both wells are of the same

Unpublished records subject to revision

diameter, were drilled by the same driller, and penetrated the same alluvial deposit. Apparently the gravel beds encountered by the second well were less compacted and cemented.

The coefficients of transmissibility-determined for these older

/ The coefficient of transmissibility may be defined as the number of gallons that will move in one day through a section of the aquifer 1 foot wide under a hydraulic gradient of 100 percent. It is equivalent to the permeability, for like units of measure, times the saturated thickness of the aquifer.

formations differ from 4,000 gallons per day per foot of aquifer in the Llano de Oro formation (well 39/8W-34LL) to almost zero in some other wells, such as well 36/6W-32D2 in some of the older alluvium of the Applegate River valley.

Granitic rocks.- The top part of many of the granitic batholiths and stocks, which are exposed in the Bogue River valley, is deeply weathered. The weathered some of most of these granitic rocks commonly affords wells with sufficient water for domestic uses, and in places enough water for limited irrigation. The weathering has apparently progressed fastest along joint planes, some of which lie horisontally, so that in drilling it is commonly found that hard, unweathered layers are interspersed with sheetlike soft layers of granular, permeable material. The soft, or sand-and-gravel-like layers yield water readily to wells. The principal areas where water is obtained from weathered granite are the low hilly lands aroung Grants Pass and to the west, northwest and southwest thereof (shown as qd on pl. 1B) and lesser areas west of Central Point and Tolo (shown as qd on pls. 1C and 1B).

Unpublished records subject to revision

The weathered granitic rock near Grants Pass is also overlain by some sandy alluvial deposits from which water is obtained by wells. Some of these alluvial sand layers are composed of reworked granitic materials and in drilling samples are difficult to distinguish from weathered granitic material still in place.

Hydrologic Features

<u>Recharge</u>.- The rise and decline of the water levels in most wells in response to infiltration from precipitation or from surface runoff attests to the primary influence of precipitation in the recharge of the ground water (pls. 13 to 31). Most of the records of water level in wells show a rise after the start of the rainy season in November and show a decline starting as the rains lessen in the spring months. In most wells the annual low water levels are reached in late summer and early fall. The water levels in wells, which show ground-water recharge by late enounelt and by the infiltration of the surface runoff from higher levels, have some variations from characteristic annual water-level fluctuations that are due entirely to direct infiltration of local precipitation.

Infiltration by water used for land irrigation causes a summer rise in the level of the water of some wells in areas such as Bear Creek valley and the terrace lands along the main stem of the Rogue River. No artificial recharge has been practiced as in other water-deficient areas. The lack of development and use of ground water in the few areas where ground water occurs in important quantities and the absence of sizable aquifers has so far precluded interest in using artificial recharge to Unpublished records subject to revision

augment the ground-water supplies that are present.

<u>Discharge.</u> - Under natural conditions the ground water which is not withdrawn by evaporation or transpiration percolates down gradient in the aquifers until it emerges on the surface in the streams or elsewhere as spring seepages onto the land surface. The largest springs discharge from the most permeable rocks which are the volcanic rocks of Pliocene and Quaternary age, known as "volcanic rocks of high Cascades." The largest single spring area is Big Butte Springs, with an average discharge of 53 cfs. Similar and smaller springs feed the North Fork ... and other headwater tributaries, particularly those rising in the area of the young volcanic rocks on the norther part of the slope of the Cascade Range. The rest of the basin has such fewer and smaller springs. Table 2 gives data on some representative springs. Many more springs occur; the water from some of them is utilized, but from the majority of the springs the water only helps maintain stream flows or is consumed by evapotranspiration.

<u>Fluctuations of water level</u>.- Changes in the static level of water in wells are direct indications. Af the amounts of water in storage and in transit in the aquifer. As such the changes show many significant hydrologic features of the ground water. Commonly, natural changes in water levels include long-term fluctuations due to draining and filling of the aquifer which may be related to long-term climatic conditions. They may include shorter fluctuations owing to seasonal changes in the infiltration during the dry and wet seasons of the year, as well as diurnal or other short-term fluctuations due to changes in barometric pressure.

Unpublished records subject to revision

R. A. Work of the Soil Conservation Service maintained a record of water-level measurements on a number of wells in the Bear Creek valley in 1929-30. A few of the wells on which records of water level were recorded by Work were relocated during this survey (see table 1). Three wells used by Work for observation wells also were utilized as observation wells during this investigation. Of these three wells (39/1-1402, -1501, and 37/2W-4B1) only one (39/1-1501) shows a lower water level in 1952 than for comparable months in 1929. This well was occasionally used to irrigate about half an acre of home garden in 1952 and this greater use may have been responsible for the lower water level in 1952. Well 39/1-1402 shows a 6- to 20-foot higher level at present than during 1929. The reason for this higher water level in 1952 probably lies in the fact that the well was being used in 1929 and was unused in 1952. Well 37/2W-hBl shows approximately the same levels during comparable periods -- indicating much the same use and about the same emount of water stored in the aquifer in 1952 as in 1929-30. A comparison of the 1929 and 1952 water levels in these wells indicates that there is little grounds for the belief of many long-term residents that the water table is declining. A more likely explanation for lower water levels in some domestic wells would be the present increasing withdrawal of water from each well for greater domestic uses. The graphs of the long-term precipitation (pls. 5-A, B, and 6 and 7) show that the decline in the average annual precipitation was great and was basinwide during the dry years from about 1926 to 1940. Since 1940 the precipitation (and by inference, the ground-water storage) rose to an average or above

Unpublished records subject to revision

average condition in the period 1950-52.

Seasonal fluctuations wary in magnitude in different aquifers but are similar in general pattern, showing high levels of the ground water in December, January, or February, owing to infiltration of the heavy winter rains, and in May or June, owing to infiltration of water from snowmelt or a secondary rainy season.

During 1952 the water levels in many of the wells in the upper Bear Creek valley near Ashland had declined from February intil May, at which time infiltration from irrigation and from greater runoff from melting snows in the upper parts of the water shed contributed to a high level of the water table early in June. The water levels then continued to drop, wherever they were not raised by deep percolation from irrigation, until the end of the observations in August 1952. Levels of the ground water in other parts of the Rogue River basin where they have been measured since August 1952, show that this drop continued into the month of December as the winter rains did not start in 1952 until the middle of December. With the onset of the winter rains, the level of the ground water took an upsurge and reached an annual high in February 1953. Comparable water levels in 1953 averaged about one foot higher than in 1952.

In well 36/2W-23N1 in the Agate Desert gravels, an automatic waterlevel recorder was operated for nine months. Fluctuations of the water level occurred in response to differences in the barometric pressure. Because the barometric efficiency of the well was about 60 percent, the average daily water level variation amounted to about 0.06 foot during the month of August 1953. As reflected by the water level in the well, the times of the daily high barometric pressure effect generally occurred Unpublished records subject to revision

between midnight and 10:00 a.m. and the low barometric pressure effect between 3:00 p.m. and 8:00 p.m.

Present Development of the Ground-Water Resources

Springs.- Most of the utilised springs have been improved by excavation and the construction of concrete tanks which furnish a reservoir for water storage and a cover for the spring orifice. Thirty-four springs were inspected in the Rogue River basin. Of these, 13 apparently were flowing from unconfined ground water at the level of the water table, 10 were flowing from perched sones of ground water, and 9 were flowing from confined or artesian ground water. The amount of flow from the individual springs differed greatly---from one with a yield of 1,200 gpm to one with a yield of but 0.1 gpm. The average yield of the springs was about 10 gpm.

Big Butte Springs, which lie outside the mapped area, and which supply water for Medferd's manicipal water system, yield about 22,440 gpm from a number of openings in the lower part of the lavas of the higher Cascades. Springs, such as Pompadour Spring (39/2-7N13) and Buckhorn Spring (40/2-1201) yielding water with carbon dioxide, unusually high temperatures, and other aberrant characteristics. They occur along the lines of faults where some of the water could have risen from great depths.

<u>Wells.-</u> The drilling of water wells in the Rogue River basin is exclusively by percussion methods (cable-tool drills). As the majority of the wells are in consolidated rock, the holes are despend until joint

* Located near quarter-corner Ur of Secs. 20 + 21, T.355, R.3E. On Rustler Peak quad.

+ 21, T.35.5, R.3 E. Ch. Peak avad

planes or permeable granular materials are encountered and provide the needed amount of water--which for a domestic supply is usually a shortterm pumping capacity of 5 to 10 gpm. As most of the wells in bedrock have rock walls which will stand without support, casing is commonly driven only to bedrock. Certain wells, such as those in the weathered zone of the granitic rocks or in the alluvium, are cased to the bottom. Only a few wells have casings perforated to develop water from several separate squifers in order to obtain water from more than one wateryielding layer. Generally, the wells are cleaned and developed only by bailing with a dart-valve type of bailer. Most wells are tested for capacity only by bailer tests. Very few pumping tests have been run to evaluate the productiveness of wells. Recently detergents, such as sodium metahexaphosphate, have come into very limited use to assist in the removal of clay from the aquifer and enable a better cleaning of the aquifer materials adjacent to the well. The test well (39/8W-34L1) drilled by the Geological Survey south of Cave Junction was developed by perforating the casing opposite several water bearing layers, by extensive surging and bailing, and by cleaning with metahexaphosphate washes. It has one of the highest rates of water yield among the wells in the Rogue River basin. Its successful testing furnished data for the planning of the still larger well (39/8-28K1) of the town of Cave Junction.

Inspection of the wells which draw water from the unconsolidated materials impresses one with the obvious need for better perforation of the casing, Emplacement of well screens in some instances, and better cleaning and development of the wells so as to obtain more efficient and effective results from well construction.

Unpublished records subject to revision

Host domestic wells are equipped with centrifugal water-jet pumps run by electric power. A few deep-well submersible turbine-type centrifugal pumps are in use. Most pump motors average 1/4 to 1/2 horsepower with 7.5 horsepower motors used for pumps on the largest of the wells in the basin. Some of the shallow open wells (sumps) are pumped for irrigation by centrifugal pumps powered by gasoline engines.

Sumps, or shallow open wells, are used extensively as sources of water for irrigation in places where the water table is within about 15 feet of the land surface. Such open wells--or sumps, as they commonly are called--are an effective means of securing ground water from a thin layer of permeable alluvium which overlies less permeable bedrock, but are not an efficient method of obtaining water from formations like the blane de Ore south of Cave Junction where the most productive gravel layers occur from 26 to 100 feet below the surface.

Use of ground water in the basin. - Of the 1,035 wells visited, 43 were used exclusively for irrigation, 25 primarily for stock, 42 for industrial purposes, 4 for public supply, and 13 for observation of water levels. The remaining 908 wells either were used primarily for domestic purposes, many of these were also used for the irrigation of lawns and gardens, small industrial supplies, livestock, or were unused.

The h3 wells (table 1) and one spring (table 3) listed as exclusively used for irrigation supplied most of the ground water used for irrigation in the Rogus River basin. All but a few of the irrigation wells are of small yield; water from over half of them is used only to irrigate gardens or lawns of less than 1 acre. Ground water was used to irrigate a total of about 250 acres in 1952, and, except for lawn and garden watering

Unpublished records subject to revision

incident to domestic uses, probably no more than 400 acre-feet of water was withdrawn from wells for this purpose. A small part of the water was withdrawn at scattered localities and from various types of rock through a number of walls of small capacity. About one-half of the 400 acre-feet of water was withdrawn from the shallow open wells, called sumps, in the alluvial deposits of the Applegate, Illinois, and Deer Creek valleys; about one-third was withdrawn from the sumps and shallow dug wells in the alluvium of the lower part of Bear Creek valley, and about one-sixth was pumped from drilled wells in the alluvium and weathered granite near Grants Pass and Tolo.

Using the average of 300 gallons per day for domestic and associated uses of water in suburban and rural homes, for an estimated total of 5,000 domestic wells and 150 springs in use in the basin, an estimate of 1,536,000 gallons per day, or 1,670 acre-feet of water per year, is derived as the average annual withdrawal for domestic, stock, and associated purposes.

Exclusive of the strong Butte Creek spring supply which is utilized by the Medford city water system to supply the Medford area and the towns of Jacksonville, Phoenix, Central Point, the Camp White Installation of the U. S. Veterans Administration, and other outlying places, the use of ground water for public supply is largely confined to the towns of Talent and Cave Junction. Their four wells withdraw about 1,000 acre-feet per year from the alluvial deposits in the Bear Creek and Illinois River valleys, respectively.

The wells listed for industrial use afford supplies of water for air conditioning, fire protection, filling mill ponds, cooling, and the Unpublished records subject to revision

production of carbon dioxide. On the basis that the 12 industrial wells visited (table 1) are using about 1,900 acre-feet of ground water per year and comprise about 75 percent of the industrial wells in use, it is estimated that 2,500 acre-feet of ground water is withdrawn by industry each year in the basin. Most of this withdrawal for industrial use occurs in the Boar Creek valley near Medford and Ashland and along the Rogue River near Grants Pass. The principal squifers are the alluvial deposits of the Bear Creek valley, the Unpqua formation, and the alluviam and weathered granitic rocks near Grants Pass.

In summary tabulation, the estimated withdrawal of ground water in 1952 in the Rogue River basin was approximately 4,600 acre-feet as follows:

Domestic and	stock an	d associated uses	•	1,670
Irrigation .			٠	400
Industrial .	Total	acre-feet,	٠	• <u>2,500</u> <u>4,570</u>

Unpublished records subject to revision

QUALITY OF THE GROUND WATER

Samples were taken and 32 comprehensive analyses made by the Geological Survey on water from 30 wells and 1 spring. Eighteen analyses of water from 14 other wells and 2 springs were obtained from other agencies (table 4). In addition, 173 samples of water from wells were analyzed for hardness and 171 for chloride content by field methods (table 1) and samples of water from 14 springs were analyzed by field methods (table 4).

In general the chemical quality of the ground water differs in the various geological units in which it occurs. The ground water in the alluvial deposits, the younger lava rocks, the weathered granitic rocks, and the more crystalline metamorphic rocks is of general good quality. The ground water at depth within the Umpqua and Chico formations in most places is of poor quality, and that from the serpentine rocks and the "volcanic rocks of western Cascades" in places is of inferior quality.

Except for the water occurring at depth in the Umpqua and Chico formations beneath the Bear Creek valley and Sams Valley to the north, the chemical quality of the ground water is satisfactory in most places for ordinary uses. This deeper water in the Umpqua and Chico formations is the principal occurrence of water unsuitable for most uses. Much of it is hard, saline, high in dissolved solids, and contains detrimental amounts of minor constituents such as boron and fluoride.

Hardness

The hardness of a water is usually expressed as the amount, in parts per million, of calcium carbonate equivalent to all the calcium, magnesium, Unpublished records subject to revision

and other hardness-forming chemicals. It is approximately a measure of the scap-consuming character of the water. The following scale gives the description commonly applied to the ranges of hardness:

Hardn	1955	range	Degree of hardness
0	to	60	Soft
61	to	120	Moderately hard
121	to	200	Hard
201	and	over	Very hard

Most of the ground waters of the basin fall in the moderately hard and hard ranges. Of the hardness determinations in 537 analyses of both comprehensive and field types, the hardness ranged from 4 to 1,500 ppp and averaged 122 ppm. Of the 49 waters for which comprehensive analyses were obtained the average carbonate hardness was 282 ppm. However, this is not representative as many of these waters were selected for comprehensive analysis because they were unusually high in dissolved mineral matter.

Carbonate hardness is sometimes referred to as temporary hardness in that it may be removed by boiling. Hardness that is called permanent is noncarbonate hardness due most commonly to calcium sulfate and chloride. Of the 17 water analyses having noncarbonate hardness the average noncarbonate hardness was 353 ppm. These ground waters are mostly from the deep saline waters in the Umpqua and Chico formations of the Bear Creek valley.

Suitability of Water for Irrigation

According to the Department of Agriculture (Richards, 1954), the characteristics of a water that show its chemical suitability as an Unpublished records subject to revision

irrigation water are: (1) the total concentration of soluble salts, (2) the relative proportion of sodium to other cations, and (3) the concentration of boron.

Electrical conductivity, because of the accuracy and ease of its determination, is the simplest means to approximate the concentration of soluble salts in water. It is generally called the specific conductance and is expressed in micromhos per centimeter at 25° C. It is a measure of the salinity hazard present in an irrigation water.

The sodium (alkali) hazard of an irrigation water is the proportion of sodium to that of the other principal cations, calcium and magnesium. Before the sodium adsorption ratio was developed, the relative proportion of sodium to other cations in an irrigation water was expressed in terms of the soluble-sodium percentage (percent sodium). The sodium-adsorption ratio of a soil solution is simply related to the adsorption of sodium by the soil; consequently, this ratio is advantageous as an index of the sodium, or alkali, hazard of a water. The ratio may be determined by the following formula where all cations are expressed in equivalents per million:

SAR

Na+

If the proportion of sodium to calcium and magnesium is high, the alkali hazard is great.

The plotting of the sodium-adsorption ratio against the electrical conductivity provides a graphical basis for assigning irrigation suitability classes to different waters (pl. 12). This diagram classified Unpublished records subject to revision

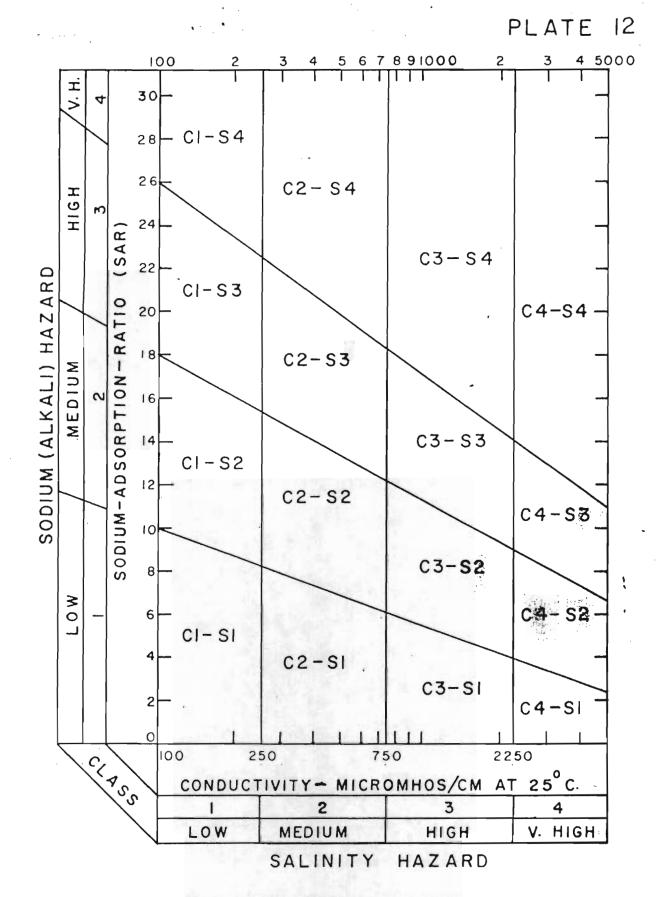


DIAGRAM FOR THE CLASSIFICATION OF IRRIGATION WATERS (Taken from U.S. Dept. of Agri, Handbook no. 60, issued Feb. 1954)

and the second secon

irrigation waters from low salinity (C^1) and low sodium (S^1) to very high salinity (C^{l_1}) and very high sodium (S^{l_2}) . A water classified as $C^{1}-S^{1}$ is an excellent irrigation water and can be used on practically all soils and crops with little danger of damage. However, a water classified as $C^{l_1}-S^{l_1}$ is, in general, unsuitable for irrigation except under special conditions. The irrigation suitability of waters which fall into one of the other ll classifications depends on the permeability of the soil, the drainage conditions, the type of crops to be grown, and other factors.

Of the 49 samples on which comprehensive analyses were obtained (omitting the anonymous analysis of the Lithia spring) the sodium adsorption ratio ranged from 0.08 on a water sample from the alluvial material of the Illinois River valley to 49 for a water sample from the Chico formation in the Bear River valley. The sodium adsorption ratios of the comprehensive analyses show the following averages for the different formations from which the water samples were derived:

Aquifer	Number of samples	Sodium Ad. ratio	Dissolved solids-ppm	Class from diagram
Recent alluvium	5	.114	1110	C ² -Sl
Colluvium	1	3.9.	250	C ¹ -Sl
Older alluvium	1	.36	180	C ¹ -S ¹
Llano de Oro formation	2	.17	123	c1_s1
Agate Desert gravels	5	2.15	455	c2_s1
Lavas of Western Cascades	4	5.93	1,235	c351
Umpqua formation	18	13.5	2,430	сц_54
Chico formation	6	16.3	1,080	03_63
Gabbro intrusive	1	.15	355	02_51
Galice formation	1	.50	400	C2_S1
Applegate group	4	10.9	2.865	Unrated

The table indicates that the ground waters from the alluvial deposits, the intrusive igneous rock and the Galice formation were of good quality and those from Applegate group and the Umpqua and Chico formations were Unpublished records

- -- Bubject to i evision

of poorer quality for irrigation, so far as dissolved solids and sodium adsorption hazards are concerned.

Salinity

The average chloride content of the 471 samples analyzed by field methods was 11 ppm. In the 49 comprehensive analyzes the average chloride content plainly differs with the formations from which the water is withdrawn. From the alluvial deposits, 12 samples had chloride content that ranged from 2 to 32 ppm, while one sample from colluvium had 155 ppm. The samples from the consolidated rock formations show a variety of chloride concentrations and range from 4 to 3,320, but on the whole, are considerably higher in chlorides than the water from the alluvial deposits. The samples from the Unput formation show the most uniformly high chloride content but range from 6 to 2,740 ppm and average 662 ppm for 17 samples. Eight of these contain more than the 250 ppm recommended (Fublic Health Service standards, 1946) as the limit for good drinking water.

Most of the waters are relatively low in dissolved sulfates but h wells, one each from the Applegate group, Chico and Umpqua formations, and the lavas of the western Cascades, yield water containing over 150 ppm sulfates. Two of these (36/5W-33E1 and 38/1W-6F1) contain more than the 250 ppm recommended for good drinking water.

The nitrate content is exceptionally high in water from 6 wells (35/1-3001, 36/2W-21R1, 37/2W-15P1, 38/1-30E1, 38/1W-16B3, -2601). Of these six waters, three are from shallow dug wells in the valley alluvium

and three are from drilled wells in the alluvium, Umpqua shale and lavas of the western Cascades.

Hydrogen-ion Potential

The acidity, or its counterpart, the basicity, of a solution is expressed in terms of hydrogen-ion concentration called pH. On the common scale, a pH of 7 is taken as a condition which is neither acid nor alkaline; figures over 7 express an alkaline condition, those under 7 express an acid condition. A water with a pH of 6.8 would be slightly acid; one with a pH of 9.5, strongly basic. The pH of the 49 waters for which comprehensive analyses were obtained, ranges from 6.5 to 9.3 with only three having a pH of less than 7. Thus, the analyses indicate the ground waters have a general alkaline, or basic, reaction.

Important Minor Chemical and Physical Characteristics Of the Ground Water

Boron

In very minor amounts, boron is a necessary constituent to any soil. In ground waters from certain types of rock, boron exists in such large amounts as to be detrimental to many field plants. The Department of Agriculture gives 3.75 ppm as the top limit for boron in water for irrigating even tolerant plants (wilcox, 1948). Thirteen of the water samples show boron in amounts far above the upper permissible limits. None of these waters are now used for irrigation. Twenty-nine other samples contain boron in amounts from 0.01 to 2.5 ppm.

A number of theories have been propounded to explain the primary source of boron occurring in the ground waters. The following are among the most commonly postulated sources: (1) Buried salts high in borste; (2) concentration of borstes in connate waters; (3) concentration from

the weathering of minerals such as borosilicates or the minerals biotite and hornblende, which may accommodate boron in their crystal lattice; (4) decay of certain swamp plants which may be high in boron; and (5) contamination by rising juvenile or magnatic waters.

Of the 13 ground-water samples containing excess boron in the Rogue River basin, five were from sources in the Umpqua formation, three were from wells started in the Umpqua but probably finished in the underlying Chico formation, three were from the Chico formation, one was from the Applegate group just below the contact with the Chico formation, and one was from a shallow well in colluvium overlying the Umpque formation. The highest concentration (95ppm) was from the Ashland "Lithia" spring (39/2-7N13) which water apparently rises along a fault cutting the Umpqua formation. The one boron-high well (38/1W-27E2) in the Applegate group penetrates rock which is topographically above but near to outcrops of the Chico formation. Possibly its water could come from the Chico through fractures, or the boron might be derived from the greenstone of the Applegate group. The well in the colluvium overlying the Umpqua formation is close to the fault some near the Ashland "Lithia" spring and in part may have a similar source as the "Lithia" spring water.

Unpublished records subject to revision

[/] Water in which sedimentary rocks were originally deposited becomes incorporated in the intergranular spaces and some remains in the rock--this water is called connate.

water with a boron

The majority of the wells having / concentration higher than 3.75 ppm are located along the western side of Bear Creek valley.

Fluoride

In domestic water supplies fluoride in amount of about 1.0 ppm is considered beneficial for the proper growth and health of teeth, but concentrations much in excess of 1.5 ppm may have detrimental effects. In waters used for spraying fruit trees, an excess may, through reaction with arsenate sprays, result in "burning" of the foliage./. All the // Oral communication from F. C. Heimer, retired superintendent of Southern Oregon Agriculture Experimental Station, Talent, Oreg. high-boron ground waterslisted in table 4 also have excess of fluoride, with the exception of wells 35/2W-33DI, 39/2-7NI3, and -32D2. It seems apparent that high fluoride and high boron contents commonly go together in the ground waters of the Rogue River basin, leading one to suspect that the source is the same. Of the 10 water samples containing high fluoride centent, 3 came from the Umpqua formation, 5 from the Chico formation, and 2 are samples taken 17 years apart from the same well which penetrates rocks of the Applegate group.

Several methods of removing excess fluoride from a domestic water supply are listed in water-engineering literature (Smith and Smith, 1938; Fink and Lindsay, 1936). The method used by Smith and Smith is performed by passing the water through beds of specially prepared bone material. Some removal of excess fluoride may be necessary to make some high-fluoride ground waters from the Umpqua and Chico formations satisfactory for domestic and other uses.

Iron

It is commonly accepted that iron, in encess of about 0.2 ppm, may be undesirable in a domestic water supply. Above that concentration it may stain laundry and plumbing fixtures. It may also be detrimental to such industrial uses as the manufacture of some types of paper and dye materials. Manganese has a similar effect, so that in a manganesebearing water the iron and manganese are commonly grouped in assessing the degree of this hazard. Their dual content should be under 0.2 ppm in waters used, without iron-removal treatment, for domestic and some industrial purposes.

water of 10 of the samples analysed comprehensively was found to carry over 0.2 ppm of iron; 4 of these also contain manganese. Two of the 4 wells, 36/2-19J1 and 37/2W-1M1, are used for domestic water supply and their waters have an iron-manganese content of 0.89 and 0.46 ppm respectively. Waters from the other 2 wells, 36/2W-20P2 and 37/8W-3501, have iron-manganese contents of 10.3 and 2.44 ppm, respectively, but are used for mill-pond maintenance and for fire protection.

Many waters containing iron may be rendered suitable for most uses by treatment in a commercial or improvised iron-removal system. Many pamphlets and bulletins are available in the libraries for guidance on the iron-removal problem.

Gaseous Constituents

A number of the wells and springs in the basin emit air, hydrogen sulfide, carbon dioxide, and possibly other gases. Such gas-emitting wells include 36/1-11cl, 37/2W-3L1, -3N2, 38/1W-8Cl, -22Q1, -22W2, -27E2, Unpublished records subject to revision

and 39/2-7N11. Gas was noticed to emanate from many other wells in the area.

Well 39/2-7Nll is one of 16 wells drilled for water in order to extract carbon-dioxido for the supply of a dry-ice plant. The 16 wells were drilled in the vicinity of the former Ashland "Lithia" spring E (39/2E-7Nl3) which no longer flows. From about 1940 to the present time those wells have produced a carbon-dioxide-bearing water which enters the wells from a conglomerate of the Umpqua formation. They are located near the plane of a fault which cuts the Umpqua formation and at intervals along which are located small linear bodies of intrusive igneous rocks. The wells also give off a slight amount of hydrogen sulfide. Carbon dioxide is present also in the water flowing from springs in sec. 28, T. 39 S., R. 2 E., and in sec. 12, T. 40 S., R. 2 E. These three spring areas are alined along a fault shown on plate 1.

Temperatures of the Ground Water

The observed temperatures of the ground water range from 19° to 95°F. The mean annual temperature recorded at Medford for the years 1910 to 1953 was 51°F.

Generally, an overall average increase in rock temperatures of 1.8°F occurs for each 100 feet below the first 100 feet. Such temperature increase with depth is not sufficient to explain the difference between the mean annual temperature and the inferred rock temperatures where some ground water occurs within the Rogue River basin.

The temperature of warmer ground waters is not related directly to the depth at which the water enters the well. The two warmest spring waters (from springs 38/1-31K1, 39/2-7N13) possessed temperatures of 95°F Unpublished records subject to revision

and 86°F, respectively. The water of each spring rises along the line of inferred fault zones. The first spring, 38/1-3KL, rises along an inferred fault at the contact of the Chico formation with the Ashland granodiorite and the latter one formerly flowed along a fault zone in the Umpqua formation. An igneous intrusion (Ti on pl. 1C) also occurs near spring 39/2-7NL3 in that fault zone. As the granodiorite is of Mesozoic age and the intrusion into the Umpqua formation is presumably of early Tertiary age, it seems improbably that residual igneous heat would be present to heat the water of these two springs. It seems more likely that the heat of the rocks through which the water passed would be due either to the mechanical heat of rupture along the faults or to the great depth from which the waters might rise.

Of the four wells in which the water was observed to be cooler (19° to 52°F) than the above mean annual temperature, three were shallow wells on which temperature observations were made in the spring months when these water temperatures may have reflected the recent infiltration of cool water. The fourth is located in the Illinois valley where the mean annual temperature may be lower than that given for Medford. Of the remaining 31 water-temperature observations in wells, most of which are in the Bear Grock valley, 14 readings ranging from 58° to 65°F were too high to be accountable by the above-mentioned normal average earth temperature increase with depth. Possibly the earth temperature gradient at places in the Bear Grock valley is greater than the common average.

SUMMARY

The rocks which underlie most of the Rogue River basin are metamorphic, igneous, or old sedimentary and volcanic rocks which have a low permeability and yield very small quantities of water to wells. Only the younger lava rocks, known as "volcanic rocks of the high Cascades" lying at the headwaters of the river in the Cascade Range, the deeply weathered sones of the granitic rocks near Grants Pass and Tolo, and the thicker sections of the alluvial deposits in part of the Rogue River valley at Grants Pass, in the Illinois River, Applepate River, Deer Creek, and Bear Creek valleys are sufficiently permeable to afford moderate yields of water to wells. Ground water sufficient for domestic uses may be obtained from wells located in the lower parts of all the valleys, but moderate amounts of ground water for irrigation and most industrial purposes can be obtained only in the alluvial deposits of the Bear Creek valley north of Medford, the alluvium and the weathered granite near Grants Pass, and the alluvial fill of the Illinois valley above Cave Junction. The ground water beneath the valley floor south of Cave Junction offers the greatest opportunity for use in the irrigation of land. The ground water in the Agate Desert gravels north of Medford affords yields in sufficient quantities for the irrigation of 2- to 10acre tracts from each of the better wells. The ground water in the young lavas high in the Cascade Range is important largely for the reservoir effect by which it sustains stream flows during the dry months of the year.

In general, the quality of the ground water is good in the alluvial deposits and in the weathered zone of granitic rocks but is of inferior quality in some of the older rocks. The Chico and Umpqua formations

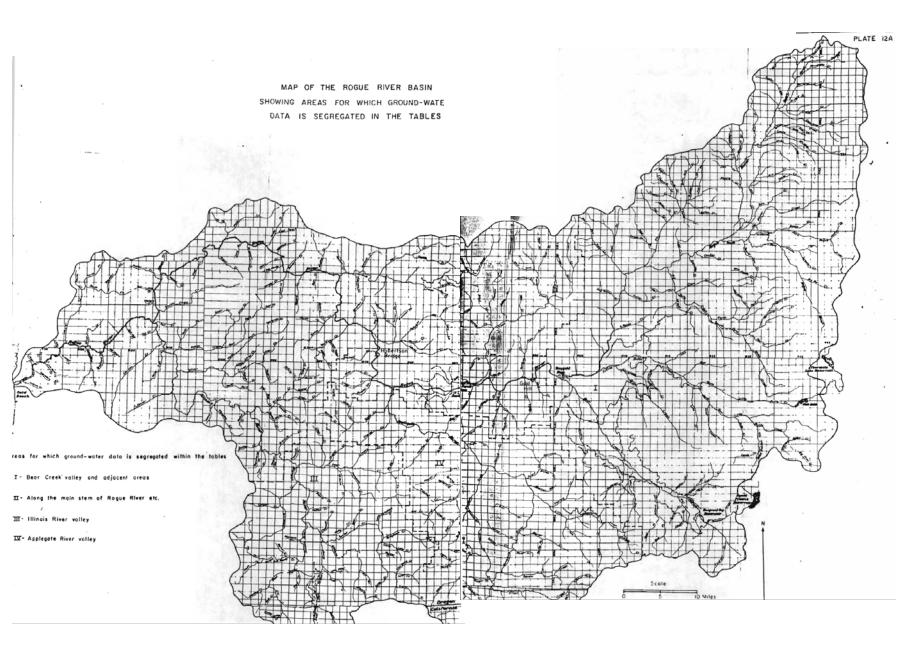
Unpublished records subject to revision

beneath Bear Creek valley contain small quantities of ground water which at depth in most places is too saline and contains so much detrimental chemical that it is unfit for some uses.

Beyond, in this report, the tables give the characteristics of representative wells and springs, drillers' logs of wells, and chemical analyses of the sampled waters.

DESCRIPTION OF THE TABLES

For each well visited, the basic data is condensed in table 1. These wells were selected as representative of the wells in each locality. Most all the really deep wells were included in order to obtain the maximum amount of information on therroc.'s and ground water at depth beneath the basin. The headings on the first page of the table give the features of the wells on which information was collected or measurements secured. The last column contains references to other tables and plates where additional information is given on some of the wells or on the water they contain.


In tables 1 and 2 the wells and springs are arranged by subdivisions On table 1 these subunits are listed as follows: of the Rogue River basint/ Bear Creek valley, pages 68 to 98; the lands along the main stem of the Rogue River, pages 99 toll; Illinois River valley, pages 112 toll9; and Applegate River valley pages 120tol28.

The basic data for each spring visited is condensed in table 2. As with the wells in table 1, the springs are listed in order by townships, range, and section within each sub-basin unit. In the Bear Creek valley sub-basin the townships having ranges east of the Willamette meridian follow at the end of the townships located west of the meridian.

Table 3 contains the few reliable drillers' logs that could be obtained. They are listed in the same order of township and ranges within sub-basins as is used in tables 1 and 2. Stratigraphic designations have been inserted by the writer.

Table 4 lists the comprehensive analyses secured on samples of the ground water of various wells and springs. The samples are listed by the number of the source well or spring in the same order as tables 1 and 2--by townships which have west ranges in the Bear Creek valley followed by the townships with east ranges in that valley, and in turn, the analyses from wells and springs along the main stem of the Rogue River, the Illinois Valley, and the Applegate Valley are similarly arranged.

Plate12A shows the location and extent of each sub-basin unit within which the well, spring, and water-analysis data are listed numerically.

Graphs showing water level fluctuations in wells

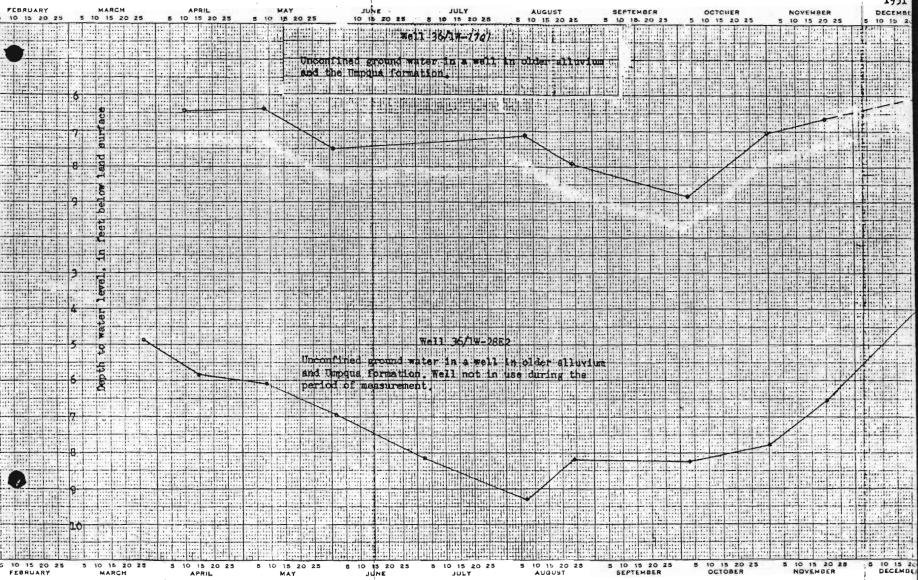
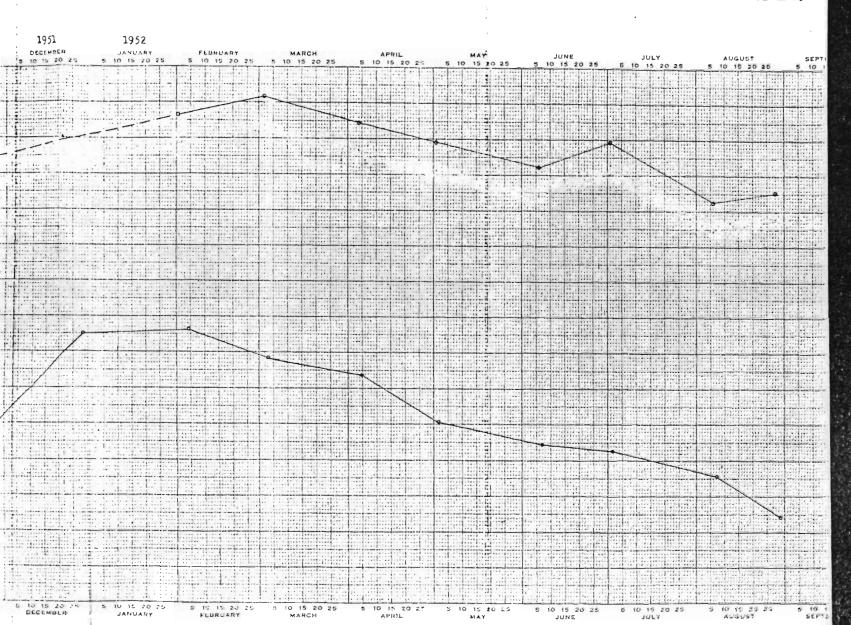



PLATE 13

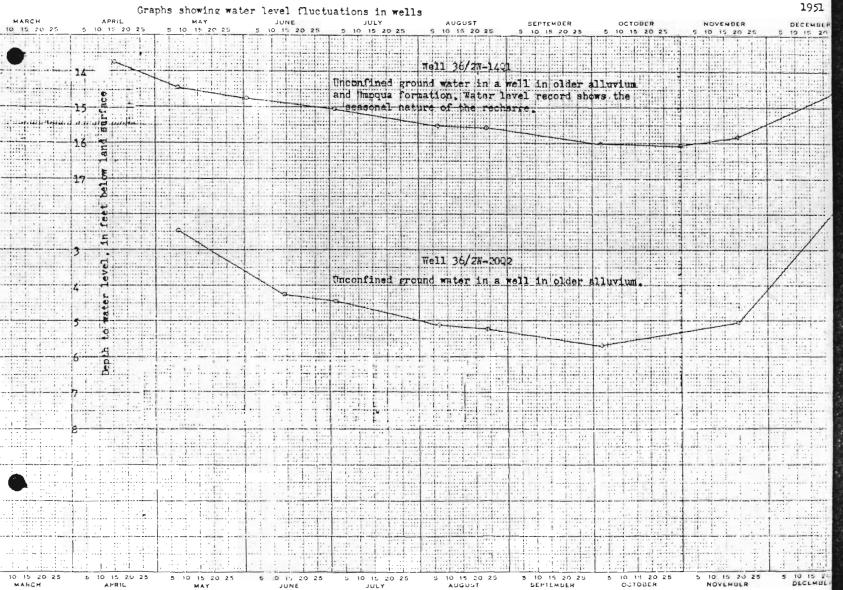
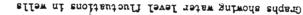
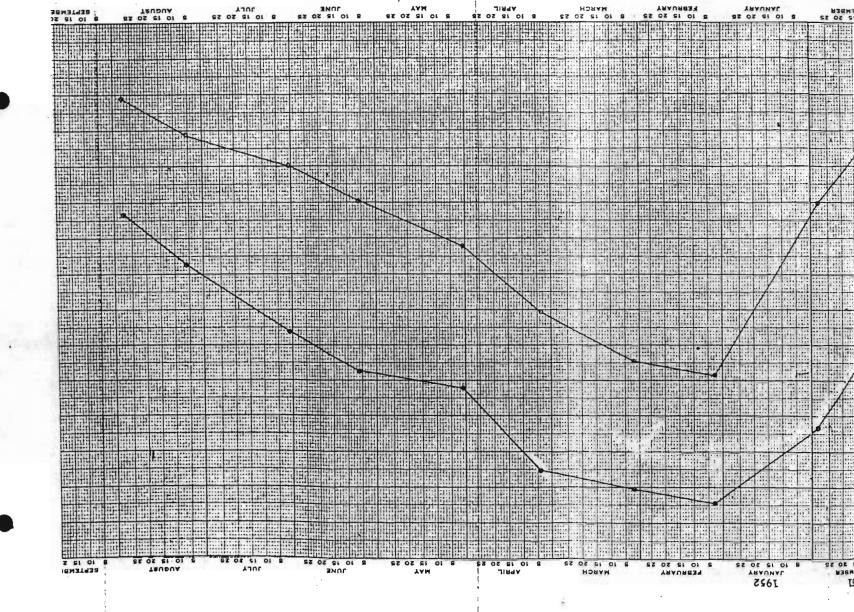




PLATE 14

		.1952							
	5	JANUARY		5 10 15 20 25					
			and the second states.						
			A REPART AND AND A REPART OF A REPART OF A		1				1
									······································
	-								
									·
				and down in the second second second second	2				
							V		
							4		
	· ···								
		· · · · · · · · · · · · · · · · · · ·		L					
					The second se			tallacation of the second	
					1				
b i	1.1	6 10 15 20 25	5 10 15 20 25		5 10 15 20 25	5 10 15 20 25	5 10 15 20 25 JUNE		5 10 15 20 25 5 10

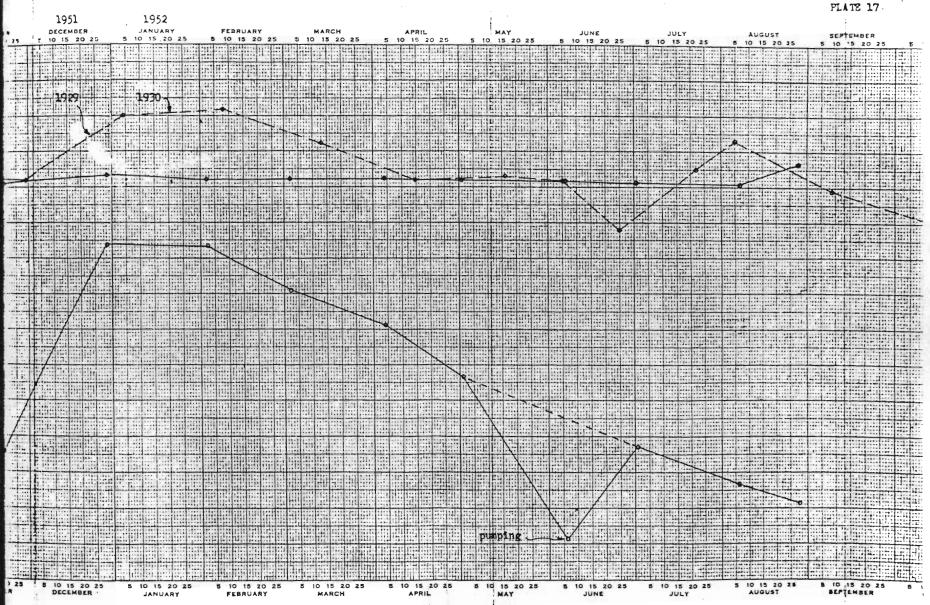
FI SIVIA

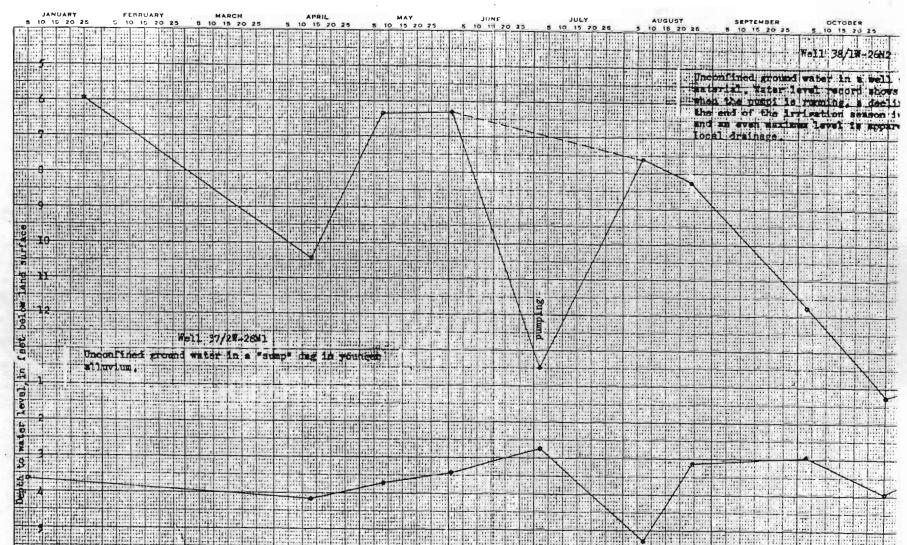
PLATE 16

952	FEBRUARY 5 10 15 20 25	MARCH 5 10 15 20 25	APRIL 5 10 15 20 25	MAY 5 10 15 20 25	JUNE	JULY	AUGUST	SLPT MULT	OCTONER	NOVENS
20 25				5 10 15 20 25	5 10 15 20 23	5 10 15 20 25	5 10 15 20 25	5 10 11 20	* 10 15 20 25	5 10 15
-										
1										
N										
7			\mathbf{x}		, ^					
- hereisel		/								
								-		
1.1		\sim								
/		/								-
			\times							
			N							
				X						
					Non					
						\mathbf{X}				
						N				
										
20 25	5 10 15 20 25 FEDRUARY	5 10 15 20 25 MARCH	5 10 15 20 25 APRIL	5 10 15 20 25 MAY	6 10 15 20 25 JUNE	5 10 15 20 25	5 10 15 20 25 AUGUST	5 10 15 20 25 SEFTEMBER	5 10 15 20 25 OCTOBER	5 10 15 NOVEN

10 15 20 25	5 10 15 20 25	MARCH 5 10 15 20	APRIL	MAY 5 10 15 20 25	JUNE 5 10 10 20 25	JULY	AUGUST 5 10 15 20 25	SEPTEMBER B 10 15 20 25	OCTOBER 5 10 15 20 25
					Well 39/1-1501				
			The low in the w	Water in a wel	1 dag in college	the overlying	the Unico format	Lon.	11112 14
				Invela in 1951	and 1952 mare 1	arealy control	1ed by local dr	ainage.	
			Tater leels of a		Hole Measured by	R. A. TOTK 1	1929-30		
							~		
•									
		<u> </u>							
4						W-11 37/2W-1	492		
				Unco	nfined ground wa	ter in a well	dug in younger	alluvium.	
5				Nate the	r levels show ac	me: effects of	withrewel	ater from	
				1/					
6				/					
7									
							-0		
8									
				line (new states books app) (new states) The states in the states of the					
10 15 20 25 JANUARY	5 10 15 20 25 FEBRUARY	5 10 15 20 . MARCH	25 5 10 15 20 25 APRIL	5 10 15 20 25 MAY	5 10 15 20 25 JUNE	8 10 15 20 25 JULY	5 10 15 20 25 AUGUST	6 10 15 20 25 SEPTEMBER	5 10 15 20 25
						3027	100031	SPLIEWDER	OCTOBER

CODEX BOOK COMMANY, INC. NORWOOD, MASBACHUSETT


•


OME TEAN DT DATE X 150 DIVISIONS.

12.

÷.

۰

Graphs showing water level fluctuations in wells

0

5 10 15 20 25 JANUARY

1.....

5 10 15 20 25 FEBRUARY

5 10 15 20 25 5 APRIL

MARCH

10 15 20 25

8 10 15 20 25

MAY

5 10 15 20 25 JUNE

10 15 20 25 JULY

5

5 10 15 20 25 AUGUST

SEPTEMBER

5 10 15 20 25

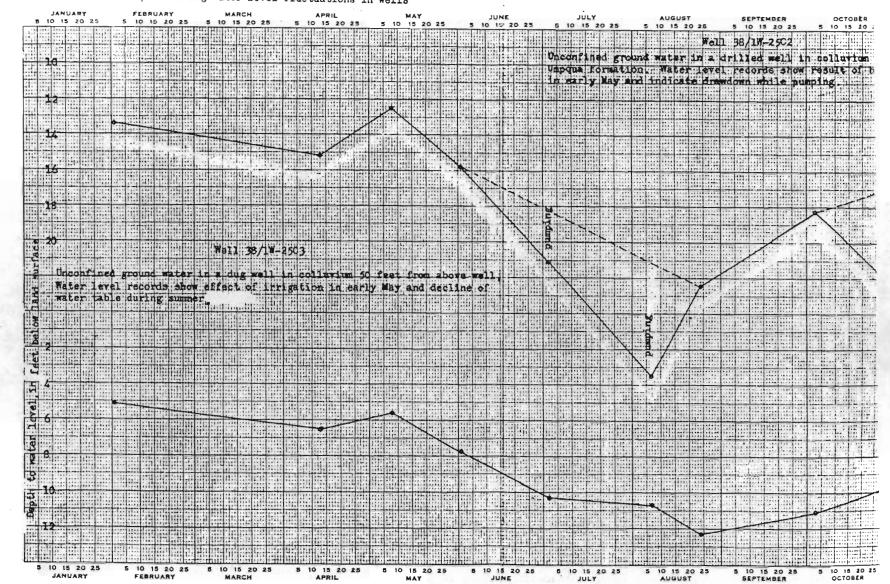
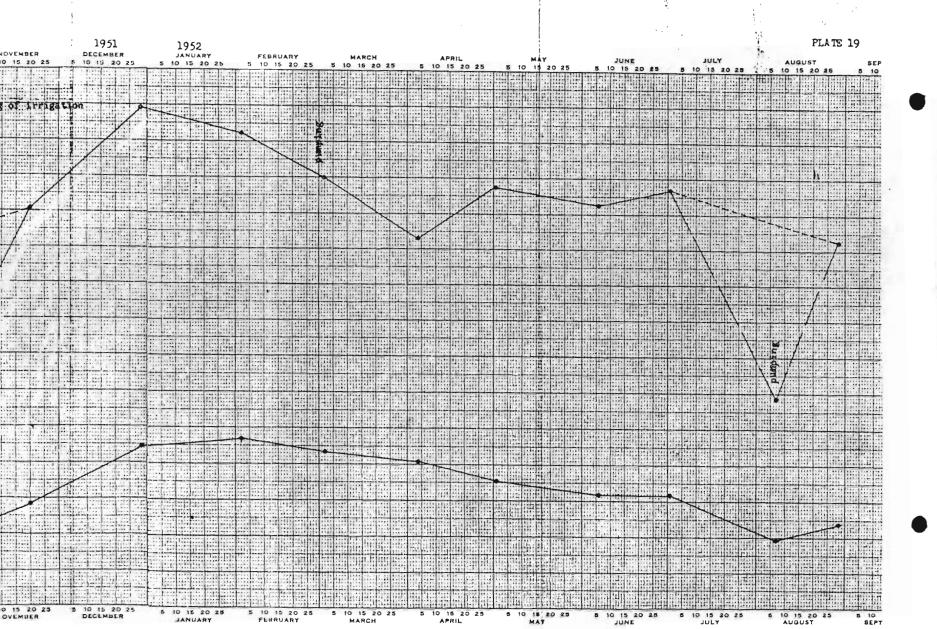

OCTOBER

PLATE 18

ER	1951 DECEMBER 5 10 15 20 25	7 - 1952 JANUARY 5 10 15 20 25	FEBRUARY 5 10 15 20 25	MARCH 5 10 15 20 25	APRIL 5 10 15 20 25 5 10	MAY 15 20 25	JUNE 5 10 15 20 25	JULY 3 10 15 20 25 5	AUGUST SEF 10 15 20 25 5 10
0 25									
	bifan ering beewaa								
COLL & COL		P							
6			•						
20 25 MUER	B ID 15 20 25 DECEMBER	5 10 15 20 26 JANUARY	5 10 15 20 25 FLURUARY	5 10 15 20 25 MARCH	B 10 15 20 25 B APRIL	10 15 20 25 MAY	5 10 15 20 25 JUNE	5 0 15 20 25 JULY	5 10 15 20 25 5 10 AUGUST SEPT

e.....

:..**.**



Graphs showing water level fluctuations in wells

ING . NORWOO

Anta

ö.

1. -

Graphs showing water level fluctuations in wells JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVE 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 19 20 25 5 10 15 20 25 6 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 Win1 39 Incontined ground ester in a artitled well in coll Irrigation several May to August uvium, tt eifer echarge during in the second aug:11 H. 0 1.11.11 111 11111 411: 11:1.11.1. 1111:11:11:10.EU. 11111 11 13 :11: 1111111 11:40 -. HILL H -11.::: -11 Well 99/1-542 H 11: -Theosefined ground water in a well drilled in the Impaus formation :::1::::: finding ted dura no the size water on Some recharge Season to Anons 111 111 Delow -111: 111111111 1711-1111 **A** det. 7 -60 To 13 a. E. Water 80 2 1 1eg 5 10 15 20 25 SEPTEMBER 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 10 15 20 25 5 5 10 1 5 10 15 20 25 в 10 15 20 25 5 10 13 20 25 5 10 15 20 25 5 OCTOBER NOVE. JANUARY FEDRUARY APRIL AUGUST MARCH JULY MAY JUNE

1 1 · · ·

PLATE 20

R 25 (1951 DECEMBER 10 15 20 25	1952 JANUARY 5 10 15 20 25	FEBRUARY 5 10 15 20 25	MARCH 5 10 15 20 25	APRIL 5 10 15 20 25	MAY 5 10 15 20 25	JUNE 5 10 15 20 25	JULY AUGUST 5 10 15 20 25 5 10 15 20 25	5 10 15
					×				
		×							
$\langle \cdot \rangle$									
•									
0 25 3 R	8 10 15 20 25 DECEMUER	3 10 15 20 25 JANUAHY	5 10 15 20 25 FEURUARY	5 10 15 20 28 MARCH	5 10 15 20 25 AFRIL	5 10 15 20 25 MAY	5 10 15 20 25 JUNE	8 10 15 20 25 5 10 15 20 25 JULY AUGUST	5 10 13 SEPTLS

Graphs showing water level fluctuations in wells

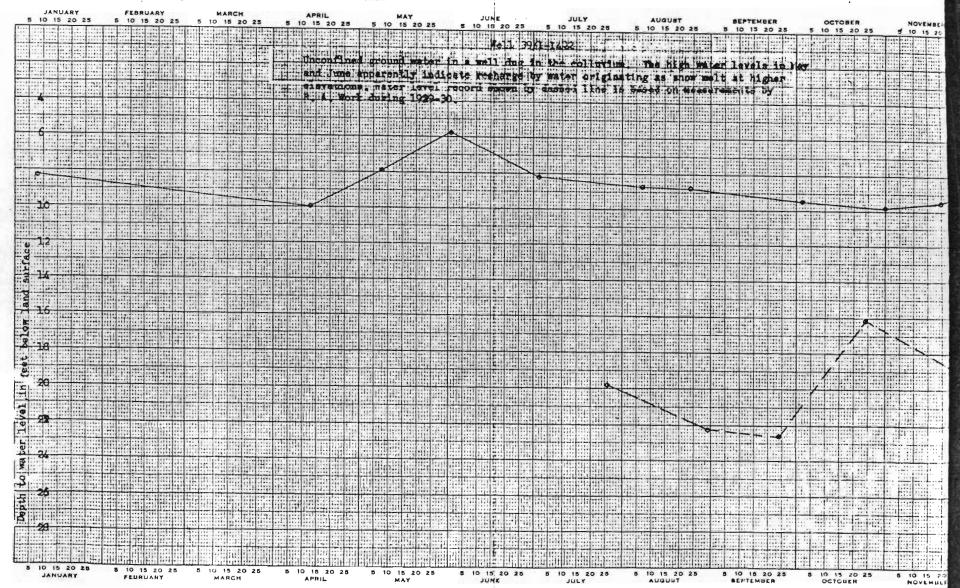


PLATE 2 1952 OCTOBER JULY AUGUST SERTEMBER MAY JUNE JANUARY FEBRUARY MARCH APRIL 10 15 20 25 5 10 15 20 25 10 15 20 25 5 10 15 20 25 5 10 15 20 25 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 10 15 20 25 5 б ul it Little a -:111 in:E:iII: 1111111 111 1 H

-HIN Jac. 11.111 TIS 1930 1020 h41.11] 117 N 1,1 ······ 11211 1 - - - - -57 · . 241 -1

1.12.2 the states of th 15 * 711 al: 1.... 141-1.

5 10 15 20 25 OCTOBER

4

5 10 15 20 25 5 10 15 20 25 JANUARY

FEBRUARY

8 10 15 20 25 DECEMBER

1951

····

dint. -

::1:5:4

......

.....

.....

1

1.....

.....

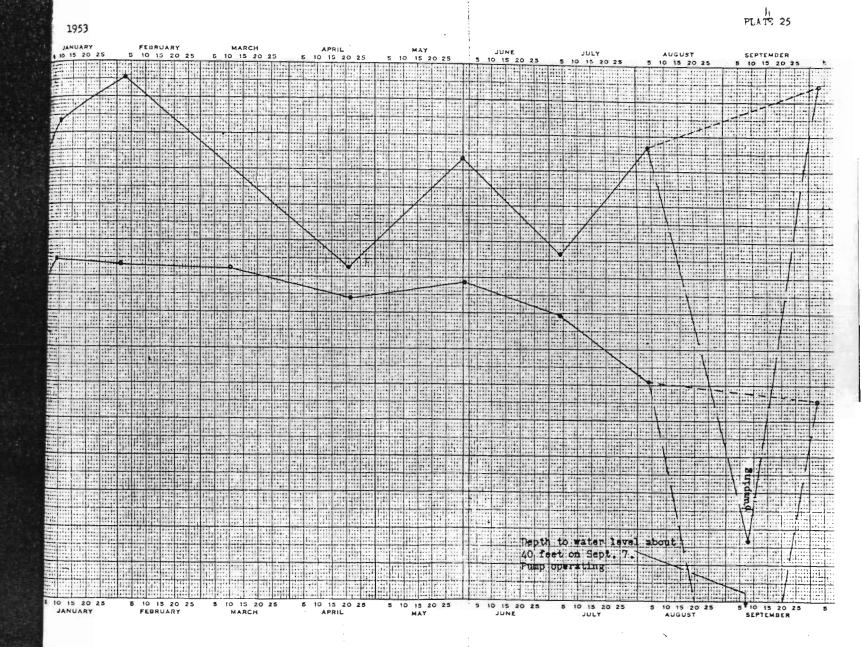
..... HE F

DECEMBER

5 10 15 20 25

Graphs showing water level fluctuations in wells

11


JANUARY . FEBRU 10 15 20 25 5 10 15		APRIL 5 10 15 20 25	MAY 5 10 15 20 25	JUNE 5 10 19 20 25	JULY		UGUST 15 20 25	SEPTEMBER 5 10 15 20 2	OCTO 5 5 10 15	20 25	NOV	VEMD 15 2
				#011 40 /	list and the season bling							
			the the	d ground sater	Tater lavel	1 Panorda	Ahow Hea	THE REAL FRANK				
			In Water	level during the	de dire tion the	e and a c	aick reco	1-7				
2												
\$					χ							
				C. C. C. C. C.								
9												1
											1	
							<u> </u>		1			
							1.					
							u Xuuu					
							1					
	and an	Well 39/2-1902						1		-		
	Unconfined ground a Umpous formation. The	te rise in the wa	ter level in	the angine			er					
	months seems to be melt at higher eler	due to recharge	by ranoff fro	I SION								
				2								
2												1
								1				
10 15 20 25 5 10 15 JANUARY FEBRU	20 25 5 10 15 20 25 ARY MARCH	5 10 15 20 25 APRIL	5 10 15 20 25 MAY	5 10 15 20 25 JUNE	5 10 15 20 2	25 5 10	0 15 20 25	5 10 15 20 2 BEPTEMBER	5 5 10 15 OCTO	20 25	5 10	13

.)

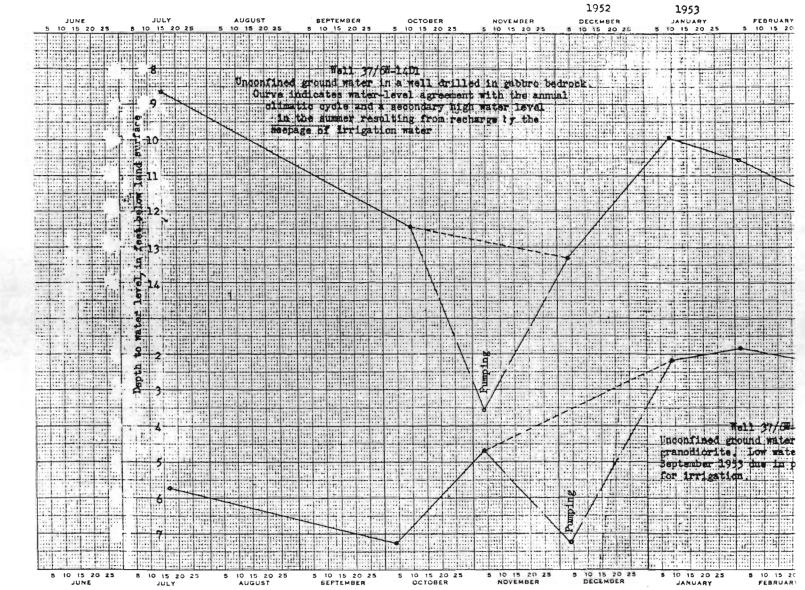
•**1 -

		1-41						
1951 December	1952 JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	PLA TE	22
					3 10 15 20 28		10 15 20 25 5	

i The



							1952	1953			
MAY 5 10 15 20 25	JUNE 5 10 15 20 25	JULY 5 10 15 20 25	AUGUST 5 10 15 20 26	6EPTEMBER 5 10 15 20 25	OCTOBER 5 10 15 20 25	NOVEMBER 5 10 15 20 25	DECEMBER 5 10 15 20 25	JANUARY 5 10 15 20 25	FEBRUARY 5 10 15 20 25	MARCH 5 10 15 20 25	APRIL 5 10-15 :
			Weill	37/51-1981				$\neq \rightarrow$			
	6 4	Unconfir	ied ground water how response to			iter					
				alulua <u>Dr</u> oci Di	LAUIOI CYELEI						
	balow land										
	6										
	and a second sec										
	8						- /				
	5 8				1 171 272 284 284 284 284 284 284 284 284 284 28		1	-/		<u> </u>	
							X				
	ри 9-							/			
	10										
	a					/					
	12					_/	<u> </u>				
							///				
					1	init in fine statistics In film of the statistics					
							/				
							1 / /				
						5					
	15										
	16						/				
				W611 37/58-81							
	17	The state of the state	ned ground water	TANK MATOWAL AS	Inta Ponta sud						
1		grand		Nater levela	ior response to						
5 10 15 20 25	5 10 15 20 2	5 5 10 15 20 25			1 11 12 24 23	5 25	5 10 15 20 25	b 10 16 20 25	F 10 15 20 25	5 10 15 20 23	5 10 15
MAY	JUNE	JULY	AUGUS	· · ULPILMUER !	UCTOBER	NUVEMILER	DECEMBER	JANUARY	FEBRUARY	MARCH	APRIL

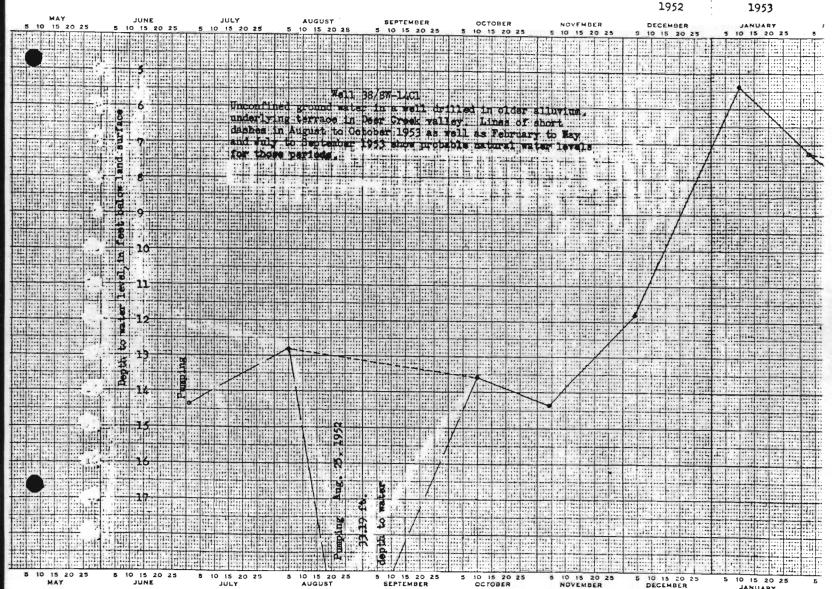

			•		
		:	5 8	TT 1 000 06	
				PLATE 26	
MAY 5 10 15 20	JUNE 25 5 10 15 20 25	JULY	AUGUST 5 10 15 20 25	SEPTEMBER 5 10 15 20 25	OCTOBE 5 10 15 2
		γ			
		χ			
•		The last X			
			Y		
			1		•
B 10 15 4	20 25 5 10 15 20 25	5 10 15 20 25	5 10 15 20 25	5 10 15 20 25	5 10 15 5

-

·

.

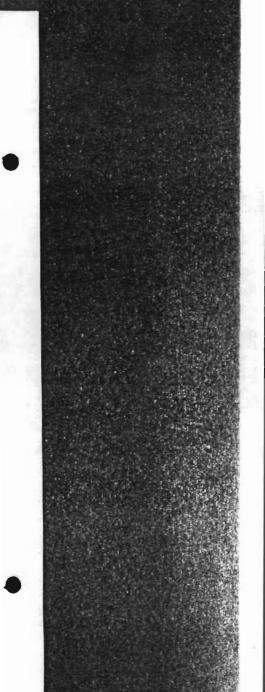
MARCH 10 15 20 25 5	APRIL 10 15 20 25	MAY 5 10 15 20 25	JUNE 5 10 15 20 25	JULY	AUGUST	SEPTEMBER 5 10 15 20 25	OCTOBE
		1 III III					
							11
		*					
			X				
wall drilled in 1 in July to							
sater siticras							
5 10 15 20 25	3 10 15 20 25	S 10 15 20 25	5 10 15 20 25	5 10 15 20 25	5 10 13 20 25 AUGUST	5 10 15 20 25 SEFTEMBER	5 10 15 2 OCTOBE


PLATE 27

MARCH 5 10 15 20 25	APRIL 5 10 15 20 25	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVENDER	1952 DECEMBER
The part of the		5 10 15 20 25	5 10 13 20 25	5 10 15 20 25	5 10 15 20 25	5 10 19 20 25	5 10 15 20 25	5 10 15 20 25	5 10 15 20 25 5
		land the land track the seat frame	and the local state of the second state of the						
	+								
	11								
	*								
	-12-				-				
	ेट्रे ¹ 2		Wall 38/9						
	pu	Unconfined gr	ound water in a	well drilled	in older alluvi	1100			
	R 13	Curve shows a	slight respons	is to annual c					
	re K :								
	7 14				1 - 1 1 - 1 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 - 2 - 2				
			res ere ere som						
	8								
	5 1								
	- 6						Hilfe Helen Hilfe		
	£ 1								
	1							- •	
	33. 10								
	S 8							λ	
			Well 38/5	-1241				N N	
	2 opt	Unconfined gr	ound water in a	wall drilled	In older alluvi	un .		\sim	
	91.1	offert of per	esponse to annu	AL CLIMACIO C	cle plus draina level maintained	80			
		recharge from	irrigation see	Dage		-0Y		X	
	10		Ψ						
	11								
	1.1.1.1.1.								
5 10 15 20 25 MARCH	5 10 15 20 25 AFRIL	5 10 15 20 25 MAY	5 10 15 20 25 JUNE	6 10 15 20 25 JULY	5 10 15 20 25 AUGUST	5 10 15 20 25 SEPTEMBER	5 10 15 20 25 OCTOBER	5 10 15 20 25 NOVEMBER	5 10 15 20 25 5 DECEMBER

ŀ

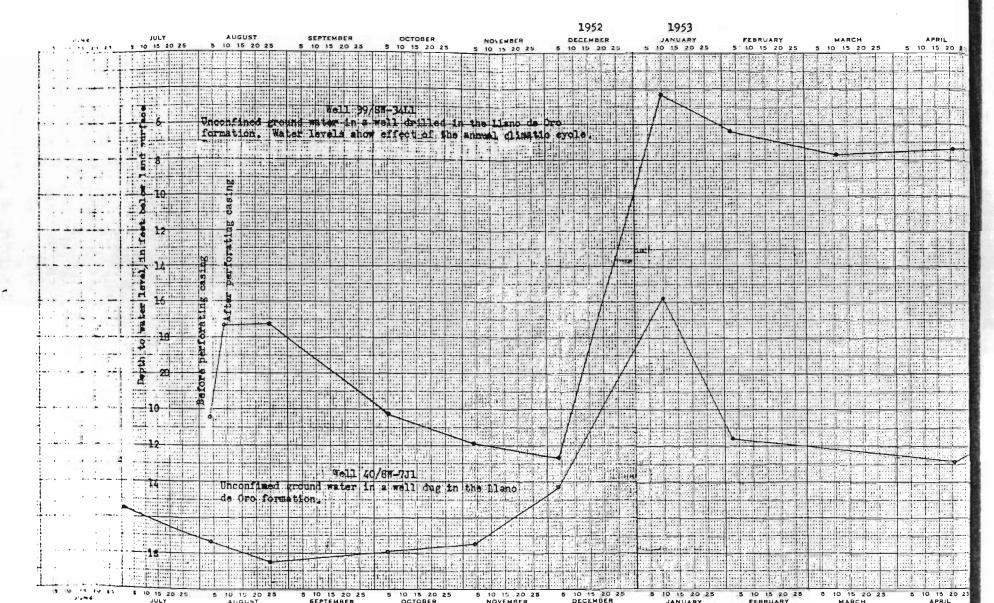
53	:							PLATE 28
20 25	FEDRUARY 5 10 15 20 25	MARCH 5 10 15 20 25	APRIL 5 10 16 20 25	MAY 5 10 15 20 25	JUNE 3 10 15 20 25	JULY 5 10 15 20 25	AUGUST 5 10 15 20 25	SEPTEMBER 5 10 15 20 25
1.1.1.				100				
	······································							
							•	
	A.							
1				1				
1								
		X		1				
		twee and the second second second		1				
				1-				
			\searrow					
			V					
1.11.1								
1				c; C. In fu fille f				


Graphs showing water-level fluctuations in wells

JANUARY

PLATE 29

	MARCH	APRIL	MAY	JUNE 5 10 15 20 25	JULY 5 10 15 20 25	AUGUST	SEPTEMBER 5 10 15 20 25	0CT
25	5 10 15 20 25	ale ale the statement of	5 10 15 20 25			perfect of the	(Internetional and	
		<u></u>						
					a fait parate la trafe jet levene en			
1+			1					
V		1 1 m m m						
	X							
	X							
1.1.				7				
1.		b	/	\sim				
1:1:			/	<u> </u>				
		Pumpting		λ			····	
				\				
					Statistica (More)			
-1-1-				<u>}</u>			-1	
		in the second						
				{			- 4	
				N N				
					2		$\int dx = \int dx = \int dx$	
					8			
					1			
					Aug.	3.1.1		
						it.		<u></u>
12								
						F 20		
			the state of the second of the			20 / /		
		1			1 M	F		$\langle \cdot \cdot \rangle$
								2
		1				f		
				a tabalar baganga	6 10 15 20 25	3 10 15 20 25	5 10 15 20 25	5 10
.) 25	5 10 15 20 25 MARCH	5 10 15 20 25 APRIL	5 10 15 20 25 MAY	2 10 15 20 25 JUNE	5 10 15 20 25 JULY	AUGUST	GEPTEMBER	cc


uraphs of water-level linctuations in wells

MAY 5 10 15 20 25	JUNE 5 10 15 20 25	JULY 5 10 15 20 25	AUGUST 5 10 15 20 25	BEPTEMBER 3 10 13 20 25	OCTOBER 5 10 15 20 25	NOVEMBER 5 10 15 20 25 5	1952 DECEMBER 10 15 20 25	1953 JANUARY 5 10 15 20 25	FEBRU 5 10 15
		Unconfine	d ground water	39/BWC2201	led in the Gali	e Cormation		/	
	14	February	anort cashes s	now procaole gi	ound water leve o September 195 o cycle and the	L (natural) from		1	
	16		CHUY STORIGIC STORING	LOG SUBMAR And	rall of 1952 and nuary 1953, art	d how was and the			<u>s.</u>
	18 5								
	at bellow								
	22 8 1 1 24								
	26								
	\$ <u>4</u> 28								
	41 28 41 30						1		
				. //					
	38						/		
	38						et et		
B 10 15 20 25 MAY	8 10 15 20 25 JUNE	5 10 15 20 25 JULY	5 10 15 20 25 AUGUST	5 10 15 20 25 SEPTEMBER	5 10 15 20 25 OCTOBER	5 10 10 20 25 NOVEMBER	DECEMBER	6 10 15 20 25 JANUARY	5 10 1: FEBRI

PLATE 30

s :		5 20	23				11		::.:			111		11:1	ity:		1111	1111		5 20			5	10	15			ur!	5			20			5	10	15	20 3	25		5
																		44																			-	1			L
		1111						1			41-															-												<u>: :::</u>			1
		74	-	_	-			_			1 41 4 1 1		1				ΞĽ			ii ii						Ľ.										a					1
						7					111			915	÷.																										
	15										1																														
			4				1	ļili.	1112		1		1	1	++			1																							
									Bin						7		1																								E
						X			Ì		21		1					X																							
			1					1																																	
										1													-1,																-		1
			1					141		Hi			i ti					11.			X				ji:									1							-
				F.::	-		iF.	111			31			11		1711		-	74			1			1										1						1
							11:						1	12									V													1.1.					
																								17									1								
																								X		5															-
in in					ŧ.																	1111			X		4	~		÷											-
				1					1		d.	11.							1:11	1				1.11		1			2												
						11,1																																			
	1.11								140		1.					::::1:								iir:	111			1	1		-									1	
																												-	2									-			
																							1111						Y.			114L			-	111	·:: .:				
									11					11.	:1:: 1,																			-+	-	-					
	111					111					11			1111					1.1	1																	1	1			-
				1.4.1	1						11	-11																											1		1
					1		1		F		127	1																					1					-1-			-1
littii			· · ·				11	1	111		Ē	iil								1.1														35			J.				-
	1	<u>.</u>				1:41					-							1.51																1	1. 1	Π	ľ				1
													14,							12			1			1									1.1						
		1.1																	1.5.			1															1				-1
				•									1					1																					ii.		-1
																					1					1.															
5		15 2 RCH		5	Pol.	5 1		RIL		25	d'ai	5		5 2 AY	10 2	5	-	5 1		15 2 UNE		25		5 1	10	5 20	2 2 5	5	3		15	20	25	-	5	10	15	20	25	-	5

Graphs showing water-level fluctuations in wells.

.

																					•					PI	AT	8	31		
5	10		AY 5 2	0 2	5		5 1	JUL	NE 5 2	0 2	3		10	JU 1		0 21	5	5		AUG			5	5	SE 10	PTE		R 25	5	5	10
	-1																					H									
							1								Hi		inu.			111	G.	II!									
			1					.: 7	1					11	11		1.11.				511					nr.		4			14
											Щ			m		1					ihi										
														-11		1					11									11-	
			1				1	1						1						1		itit				1					
	E										/	111	41	11								ili,						i fi			
			: 1											111		,										H					iHi
	+==										1		1								1							11			
												111		f	1	: r						Lin			i.			1		1.1	
			1.,				,						5	1.,1	N												1:11	<u>'</u>			14
	:1:							1.11						11							ili	hi	Ê							***	Γ.
				H		1						iir	in:			1							TC Pt								
							14					IT		un		1	X			1.11	Ŀ.,		TT S		i ii					::H	
1.1	r.t											1			1		1:1	1										1			nt:
												H.	ī.		in!			N				1.1					111				
											111									1	-	-								TI.	
											1				1												ti		in		
	:1::									H						H		- 1	1			П					H	h	T		
	ti.			1	T		X																		ni:						
	/				-		1	X				iH			1.										H	Ш,	lr.				
	111					1		11	N	1															11			11.			
											X					1											1,	1			
																											1				
. 2.				-			1					1				-		-	-						-	1			11		
		11	1											ittij														1	1		1.1
1			1								1.		•					1													
		1	-					-																						lili	
					1	i i										1															
1	5 -	10	15	20	25		.5	10	15	20	25		5	10	15	20	25		5	10	15		25		5 5	10	EMI	20	25		8

1

TOT & TTC 23

•

Table 1 .- Records of representative wells in the Rogue River basin (Bear Creek Valley and Adjacent areas)

/ T. terrace; U. upland; Vf. valley floor; Vs. valley slope. 2/ Bd., bored; Dg., dug; Dn., driven; Dr., drilled.

Depths and water levels expressed in feet and decimals were measured by the Geological Survey; those in whole feet are reported by one a filer size and size signs are approximations reported by the owners. Where static water level of flowing wells is not known, designation is "F" (Flowing) C. centrifugal; J. jet; P. piston; T. turbine. 5/ D. domestic; Ind, industrial; Irr, irrigation; O, observation; PS, public supply 1, then.

Bardness and chloride content determined by field analysis; hardness expressed as CaCO_; composition given by weight.

		tude Level)		1			Wates	r-bear	ing zone or zon		Wat	ter level	4 mute)		wa tear		1	
Yell number	Owner or occupant of property	27	Type 3	Depth F. feet	Mameter of well (inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of material	Ground-water occurrence	Feet below land-surface datum 3/	Date	Type of purp 4/ and yield gallons per minu	UBe 2/	Temperature of w		chierte (m) (p	Newto
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	Q16)	27)	(1.5)	(19)
,	T. 34 S., R.	<u>1 w</u> .	-		1					-			1			18 19		1
511	Joe W. Walty	Vf 1,390	Dr	65	6		55?	5	Volcanic flows	σ	17.19	July 10, 1951	16	D			and and	Wilder Li on by
512	C. M. Baungardner	¥£ 1,390	Dr.	85	6	35	80	.5.	do	σ	20	April 1951	J. 6	D		A. W.		Supplies water for 2 houses.
-	E. B. Straight	Vf 1,380	Dr	21	6		0		Alluvium	σ	16.6	July 10. 1951	J	D				Depth to unter nonsecred after 5 pumping at unknown rate.
LHOL	Torrance	Vf 1,375	Dg	16	36	16	0	16	do .	σ			J	D		14	1 C	Goes dry in summer when river 1 drops.
ın	N.H. Williams	Vf 1,370	Dr	'n	6	35?	55	15	Volcanie flows	U	12	1946	J, 30	D .		20	15	
IJ2	do.	Vf 1,370	Dr.	5 9	6		551	41	de.	ΰ	12	1951	J. 25	D	•			
IRI	J. F. Johnson	Vf 1,370	Dg	14			12	2	Alluvium	ບ			J, 10	D				
8 J1	Ragadale	Va 1,425	Dr.	169	6	1	165	4	Volcanie flows	υ			J. 10	D		-		· ·
101	الكر بالمجادي	Vs 1,550	- Dr	124	6	5.6	1 G21		do.	υ :	12.08	July 30, 1951					1. 1	Manager and the second second second
211	Dan Krots	Vs 1,370	Dr.	41	6	67	2	39	do.	0	5.37	do.	J	D.	:	55	5	
481	W. B. Koshly	Vs 1,485	Dr.	125	6	40	115-	5	ి	U .			3	D. S. Irr				Seption & farmines.

	Tabl	• 1 Reck	ords of Terre	ientative wo	Le in the se	ce Rive	r basin	(Peer Creek w	uly a	of adjacen	A LANCE LAND	
(1) (2)	(3)	(4) (5)	(6) (7)	(8) (9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	ຕ່າງ ແມງ (ນາ)
1. 34 5 3452 1. C. Silver	A CARACTER STATE	Dr 90	6 30		olounic figur	U	30		4	D, 117		Prope dry in 30 classes, second
3411. 7. W. Posell	V# 1,440	Dr 90	6		do. }	. .				D, 8		econteine much disselved
3412 A. Polle	Vs 1,450	Dr 153	6 407	1,90 3	do.		54	1967	6 6 m 9	D. Irr		chloride test situlest.
1. 35 B							1		A.			
3CL Bart Commer	V# 1,490	Dg 20		0 20 0	olluvium	σ			P	D, S. Irr		Invation just biller irrigation
MR Kirty Tant	Va 1,510	Dr 52.	6 17	50 2 7	oleanic flows	U	18	1950	1.00	D. 8		
311 E. Ventle	Ts 1,470	d	6		do.	υ	7.04	July 6, 1951	P	D. 8		
3.3 E. W. McKee	¥s 1,500		6	adjeri. Prest	do.	σ			1, 2	D. Irr	in side a	
301 V. 7. Lampke	¥s 1,500	P 134	6 16	130 4	do.	J	93.98		di la	D GALA		25 3.5 Reportedly yields but 156 gall per day.
JPI J. H. Hitchell	Te 1,470	Dr 62	6		do.	0			1.7	D. Irr		Can be pusped at espacity for hours without failing.
1071. W. S. Ramel	¥s 1,450	Dr 271	6 16	270 1	do.		251	1945	3	D		Insdegaste for 1 household.
1011 J. Tom	¥a 1,490	Dr 100	6. 15		do.	· . ·			1	D. Irr		Supplies 3 households,
1011 Matley	Ve 1,350	Dr 56.5	6 9	\$6 0.5	do.	C	+1.4	July 5, 1951	7. 3	D	15 174	55 37 Has flowed for 3 years miter
1082 H. J. Sanks	TT 1,30	B r 70	6		do.	•			•	D, 8		Tisla 2 40-1-4 short 20 ga
1521 C. A. Reeley	Ta 1,475	Dr. 200	6 45		6.	T	36	1949	3, 15	0 D, Ind		50 . 29 . Supply for a to courty drawton to be 4 ft after 1 hour par
16AL Flannery	TT 1,405	Dr 60	6		linvine	•				D	10	Pape Ary to 45 states.
16m Clean	TT 1,400	Dr 89	6.200	A PARA	oleanie fice	U		行。海道	30	D. ITT	CL2	15 10.3

	M. A.		.12			1				No.		a di	14 X		List.	-	ى يۇ غۇلايىتى ز	Anterio		d da	
					1								1					2.			
		Tab	ale 1.	- Reco	rds ef	repre	sentat	ive w	ils in th	. Rogu	e Rive	r basin	(Bear	Creek v	alley ar	d adjace	it areas) -	Conti	med		
a)*	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		(11)	(12)	ł	(13)	(14)	(15)	(16): (17)	(18)		for to take	(19)
-	T. 35 S. R	1 W Ce	ontim	ed		1.34	14	er d		1	×			- 34			· Base			11.4	
201	Atthese	Va 1,380	De	15.4	-48	15	0	15	Alluvium			11.38	July	5. 1951	•	D	Sr.		Adequate	for be	use use only.
211	Ted Tucers	Ta 1,375	Dg	30	13		. 0	30	·	100	ฮ	11.70		de.		D. 5	125	24		14.1	
2251 0	. D. Kelley	To 1,450	hr	35	6		49.4		Volcanio	flows	"U	1.1	3		P 195	D. Int	95	4.4	3.5		
2201		¥# 1.375	Dr	26,4	6	26		13-1	Alluvium	:	U	9.78	July	5, 1951	a	D. S.	210	16.			
221 1	toe Bork	Ts 1,370	De	17	48		0	17	do.	1	U	14	July	1951	P	D A	90	50	Indegu	te for	1 household.
2210	laddell	V# 1,440			24		0	.3	do.		U	.5	July	3, 1951	c. 5.	D. S.	45	1. 47	all and a second	1222	ng ares.
	Sec. Sugar								1. A.							Irr			13	180	
÷ 111	. I. Thinks	Vs 1,410		65								8		1951		D. ITT		• •			
· · · ·	R. Mood.	VE 1,400		1	96	12	0	±15	do. Tuff	1		7.50		3, 1951	J. 14	D. IFT	es de la		1.14	1.2	
270. 1	Survey Alight In	Ys 1,390		C					do.	31		• • 1144		1941	3, 14		140	4.7			ase, garden,
1.3					1.1										i den	D. S. Irr	1. 5		A dela	and the second sec	tes, faroati,
2771	. D. Robinson	Va 1,395	Tr	79	6	4.2.5	70	±9	do.	N.	T	1	July	1951	•	D, Irr	્યુક	45	LISE	drandow;	at purchased ty
3401	. Slacaresko	- Ye 1,390	1 Cr	75	6	30						8t		1950	J. 33	D. Irr	5. 85.	5-			
3481 1	Boggs	Vs 1,390	S	··· .	6		110	3				4			P. 3	D, 8	90	1.		2	
	. Regester	¥= 1,375	1.2		6	152		1.5				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3		4:5		13	22.5			
122.01	Matrix and Franklin		S		6					12		23.09	July	3, 1951	ar s terioù Maren	D. S	S	6.3			
3411 0	South S. S. Span	Vs 1,350	1.1.5		6		113	2	Tuff	1	1				3. 50	D. 8				1	
- 35.7	Baford Clark	¥s 1,370	Dr	96		12	90		do.,							D. Irr	120	8	Reporte	ity will	over 24 hours
3471	R. B. Berrysen	Ta 1,350	Dr	82	6				.		50					D, 8	2745	6			
3501 H	2146e11	VE 1,405	. Dr		6					in the second	5. 4. L					D	125	14	1 A	10	
350	Linson Vargin	¥f 1,325	all Dr	65	8							10	April	1951		D, 8	20	6.1	Not men	urable,	

北 波的小			A CONTRACTOR	- Sector States - Alter Market - States	
	Table 1. Reco	rds of representativ	wells in the bogs	ne River basin (Bear Creek walley and adjacent gread) - Continued	
(1) (2)	(3) (4) (5)	(5) (7) (8)	(9) (10)	(11) (12) (13) (14) (15) (16) (17) (18)	(19)
T. 35 8.	R. 1 W Continued	1000			
IGAL S. R. HOOTEN	VI 1,450 Dr 107	6 100 103	4 Tuff	T 8 April 1951 J. 33 D. 8	
T. 35 8.	R. 2 T.				
2211 Frank Balson	TE 1,300 Dr 55	6 22	Oravel	U 22 May 1951 P. 8 D. 8 45 5	
7771 Earl L. Bigham	VI 1,275 Dr 36	6 20	Shale	T 9-10	
27KL Elwood Abbott	Tf 1,250 Dr . 77	6 24 73	4 do.	T 12 January 1952 T, 40 Drr See table	A for shemical analy
28.JL Joe Mayfield	Te 1,290 Dr 105		do.	D. B 95 4	
2811 R. R. Carley	Va 1,300 Dr 67	6 10 30	do .	J.S. D.S. Penetrate	A th most face midt be
281.2 de .	To 1,300 Dr 83	6 10 20	da. do.	U 10 Angust 1945 3. 50 Irr 190 14	
		73	do .		
2911 C. V. McDonough	Ts 1.455 Dr 252	6	do .	8 40 May 1951 8, 1.5 D, 8 40 3.7 Reported	y mater contains some
2981 Fish	Ta 1,350 Dr 150	6 6 150	Coal seam in shale		gon for about 1 week
				game.	
2971 0. 1. Koellner	Vs 1,295 . Dr 101	6 12 67	Shale?		is use; water tastes r salty.
2901 C. L. Hichael	Vs 1,300 Dr 65	6	Shale	U 3, 10 D. Irr 75 19 Can be p	mped dry in 1} hours.
2992 I. L. Lanb	Te 1,300 Dr 228	6 38	de. 1	8 42 May 1951 8, 1 D. 8 . 90 6 Mas devel	loped by the dry-loe :
2982. Dunting	Ta 1,310 Tr 100	5 524	b .	W 23 do. 8 B	dry in about an hour
30Al Chies McDoncagh	Vs 1,350 Dg 20	60.20	Colluvium	D. S 105 S. Till support of patt	bly water for 100 head
SORI G. C. Senderson	vs 1,300 bg 16	36	Talley fill		sovers in 4 hours,
JONI - Bual Schuls	Va 1,290 Dr 75	6 24	Shale 1	T . S 90 10	1. 1.1
30P1 Bourton	Vs 1,300 Dg 26	72. 54 1.	Valley fills		ral dream down 6 ft by
などのないの			STATISTICS S		She all all

		Tuble	1	Record	s of	renrosa	itative	wells in the	Witte River	e basin	(Rear	Creek val	ley and	adjacent	area) – Conti	med	
(1)	(2)	(3)	(4)	(5)	(6)	(7) ((8) (9) (10)	(11)	(12)	264 - 1	(13)	(14)	(15)	(16)	(17) (18)		(19)
140.0	T. 35 S., R	2 H Cont	inued		4			(20)	1.2.	(2-)		(2)	(14)	(27)	1 15	(4/) (10)	1.	(19).
.H .C.C.	. S. Eskridge	¥s 1,280	Dr .	162	6	12		Shale	U	61 .50	¥ay	14, 1951	3.5	D, Irr		35 16	Water leve	1 sessured after
0R2 L	oyd Dasenberry	Vs 1,310	Dr	154	-6			do.	a a	27.68	Hay	15, 1951	S. A	D		25 8	pure cas	
DR3 Q.	. Botsford	V£ 1,250	Dg	11.8	36	11.8	0 11	8 Walley ft	U T	4.57		de.	C. FLAR	D. Ind			Supplies)	the and service
BI B.	. S . Nusson	75 1,240	Dg -	20.4	1	A. B.	0 21	• . do.	U	2.13		de.	C, 10	D. Irr		125 3	14.11	Mila in
1C1	A. Davidson	¥f 1,230	Dg :	22 ;	18				T	4.77		do.	PA	D. S. Irr				
	. Crottogini	¥a 1,290	rg	22.2	1			do.	σ	6.00		do.	P	.				
JI #.	. Sanderson	V£ 1,230	Dg	13	1.15			do.	0	5.35	May	10. 1951	P. 8	Irt	1			
131	And the set	Vf 1,220	Dg	27.1	24	27		do.		4.08	-	do.	5	D. S. Irr		1	3.44	
LN2 4	Straus	71 1,220	Dr	77.2	6			Sbale	σ	2.9	May	15. 1951		D		125 17	Not adogan	te for 1 bousehol.
	2005	Vs 1,290	Dr	78	6			do.	U		18-11		4	D		135 12		
TOL Ke	allner	Vf 1,260	Dg	32.9	72		1 Alt	do.	v ,	13.64	itty	15, 1951	C	D		1. 1. 1. 1. 1.	Pat	
Pl 3.	. H. Korner	Vf 1,230	Dr	100	6			60.	e					D. S. Lr			Flows in wi	inter and spring
#1 J1	rshele	Vf 1,250	Dg :	20			1.	Talley fil	ut				J			Lugar	Not in une	
191	Do.	Vf 1,260	Dr	60	6	12		Shale	σ				3.7	D. 8		105 - 15	2.13	
311L Le	rster Janes	¥s 1,290		243	6	20.5		do.	σ	28±	Mary	1951	9.4	n. S	65		dry losy y 28 ft / 91 dom 207 s	thed will with 19 mean havel rose i ild to about 4 gm after 11 hours 4 for chemical a
	일상 않는											2.5	Arr. St.				af mater.	
1	. C. Dugçan	Vf 1,250	Ĩ.r	83	6			් 0 .	υ	20 <u>±</u>	June	1951	3	D. Irr				
F1	čo.	Vf 1,250	Ŋβ	32	: .	14	14 1.8	+ ðo.	U		· ·		3	D, S, Irr		24 - 11 - 12 - 14 24 - 14		

	X.				-1	
	Table 1 Recor	de of representative	The second se		lley and adjacent areas) - Con	attimued
(1) (2) (3)	(4) (5)	(6) (7) (8) (9)) (12) (13)	(14) (15) (16) (17) (1	
1.358 R. 3V.		Ch. Write St.		(13)		(19)
2451 Adolf Angal	350 Dr 260	9	Shale	F Jan. 25. 1952	1.30 12	See table 4 for chemical snaly
36m Roy Stegall Vf 1,:	250 Dg 20	48	Gravel			of mter.
1. 365. R. 1 W.			UTRYEL U	4 June 1951	J D	
171 N.A. Manseon 78 1,4	180 br 30	6.1.	Volcanis firs U	18 60.	J. 12 D. DT	
LJL C. W. Atkins Ye 1.4	40 Dr 98	6 Carlington	do. T		J D. 8 90 9	
181 Martin Aikens Ve 1,4	180 Dr 75	6 17	J. J. J.		J. 22 D. 8 130	
111 R. C. Gregg TE 1,4	80 Dg 29	48 0 2	Slope wash	11.11 May 29, 1951	5	
111 1. E. Mareroft	195 Dr 81	6			P D 95 5	
172 J. W. Marlette Ys 1.4	40 Dr 69	6			J D. 8 45	
211 Joe T. Andrens Ta 2.4	85 Dr. 65	6 11 5 63+		6.13 Way 29, 1951	6, 15 D, Irr 130 13	
211 Ion Bray 78 1.4	90 Dr 49	6 36 482 1		18 Nev 1951	3. 40 D. Drr 40 9	
	05 Dr 100	6 854	Taff		a _ o	
"301 C. B. Rughes Vs 1.3	180 Dr 144	6	y do. T	34.94 YRT 29. 1951	J. 12 D. Irr 55	Pump operating when water lev
30. Ray Bornish Ta 1,2	90 Dg 24	36 -24			J B. Int	in a manageral .
	90 Dr 9 40	19-16-3月26日,日本学校、自	Valley fill U	9.11 June 6, 1951		
	80 Ir 100	5		2	J D. 8 155 11	
941 R. H. Jenks 78 1,3	00 Dr 90	6		11. 19		The second second second
931 Clare Young Yr 1,2	90 Dr 36	6 352	Talley fill 5		F do	
911 W. A. White	70 Ir	6	. Tuff U		P D. S	
971 0. 0. Wilson	75 Ir 96.5	and the second second	.5 do. 0	10 June	J, 60 D, Irr 110 18	See table 3 for driller's log
1091 William Spats Ya 1,3	20 Dr 80	6	U			Inadequate for 1 household.
1071 Hittlestaedt	40 Dr 99.5	6	đơ. V	63.50 ADP. 4. 1951		Rot in use.


	Table	1 Reco	rds of repre	centative wells in	the more River	r basin (1	Sear Creak vall	ley and adjacent	aread) - Contin	
(1) (2)	(3)	(4) (5)	(6) (7)	(8) (9) (1	10) (11)	(1.2((13)	(14) (15)	(16) (17) (18)	(19)
T. 36 8 R.	1 W Con	timed	Same ler Street	Sala - Ale	at we have				1 Acht	مجانية . المجانية المراجع المراج
1052 Wittelstadt	V# 1.340	Tr 150	6 150	Taff	γ.,			P D		B See table 4 for chemical a
1011 B. H. Bigham	Ys 1,375	Dr 198	6 16	16 182 do.	S I D	60	lay 1951	3 D. S	150 1	4
1081 C. F. Davies	Ye 1.340	Dr - 146	6	.	T.	agi in		1	155	5
1001 J. W. Bigham	TH 1,345	Dr 27	48	27+ Valley	rm. T	17	1935	J D, S, D	T 140	80
1261 D. Albini	Ts 1,400	Dr. 285		Taff	T T	20	June 1951	T. 55 D. Irr	20	50 Was pumped at rate of 2,0 per hour for 8 days with
										drevdom; recovered to 2
121 Poster Beigert	75 1,405	Dr 32	6 32	de .	The T	15	May 1951	J D. 8	1.60	9
1201	Ve 1,415	br 90	6	de.	U			1 D		Adequate only for demonth
1381 Pete Aust	YE 1,435	Dr 80	6	de.		6	1979	J		Adequate for domestic use
						Sec.			110	And A Decore
1381 C. A. VenDerHellen	the main of a	Mr. Martin	36. 6		alimius U	1	Bay 1951		27.43	
141 Marper	Ve 1,370		6 27	157 1 mff	U	D	3mm 1951	J. 6 D. Irr	50	
1442 E. Higday	Vs. 1,405	in the second	1 S.Y. (do.	ter and			J D. S. I	rr A	Deepened 50 feet in 1951
1421 A. T. Wattenberg	Ve 1,395	12	6	۵.	0			J do.		Inadequate far 1 househo
1451. 3. 8. Deen	Va 1,395	Dr 60	6 12	do.	U	18	Sume 1951		1	Interesting the later a mountain
1511 K. K. Hayes	VI 1,350	Dr 81	6	e do.		(PAT)		JD	10	
1701 Ted Bornoeker	Vf 1,929	Dr 96	6: 57	Shale	Trans U	6.46	Apr. 10, 1951	J	6	5 See plate 13 for water-1 and table 3 for driller
2001 White City Lamber	VI 1,320	Dr 162	6 58	do.	U.	IJ	November 1950	T (P	45	16 Supplies 25 houses; see # driller's log.
2031 Ross Lunber Co.	Vf 1,305	Tar 80	6 47	Gravel		40	October 1950	7, 100 Ind	63	See table 4 for obscical of water and table 3 fo log.

201 D. R. Saith ... Vf 1,305 Dr

h PLATE 29

. .

25	MARCH 5 10 15 20 25	APRIL 5 10 15 20 25	MAY	JUNE 5 10 15 20 25	JULY 5 10 15 20 25	AUGUST 5 10 15 20 25	SEPTEMBER 5 10 15 20 25	OCT 5 10 1
			N.					
- 1: 11								
1. F								

	1-1-					-		

	\sum		7	\				
	\sim	S.						
	×	Pumpling		<u> </u>				
		A A		<u> </u>				
		Y		<u> </u>				
				X	-		-1	
				<u> </u>				
				L. Alternation			-/	
				Contractor to the second second second		1	/	
					195		/X	
					-\	<u>.</u>	X	inn <u>trasia</u> Laita de
						7		
18.5 - 19.5					· · · · · · · · · · · · · · · · · · ·	5		
						\$9	χ.	
						um.		
						¥/		X
								2
						/		
25	5 10 15 20 25 MARCH	5 10 15 20 25 APRIL	5 10 15 20 25 MAY	5 10 15 20 25 JUNE	5 10 15 20 25 JULY	5 10 15 20 25 AUGUST	5 10 15 20 25 SEPTEMBER	5 10 CC

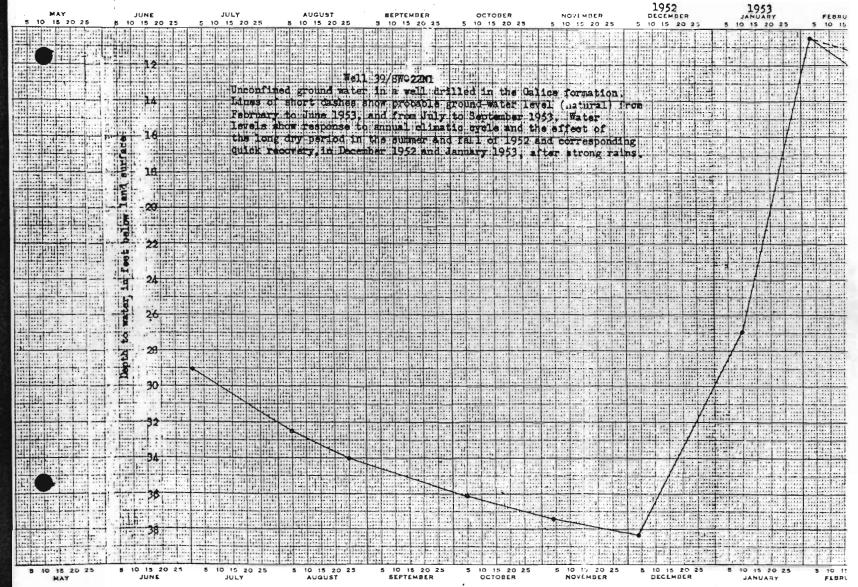
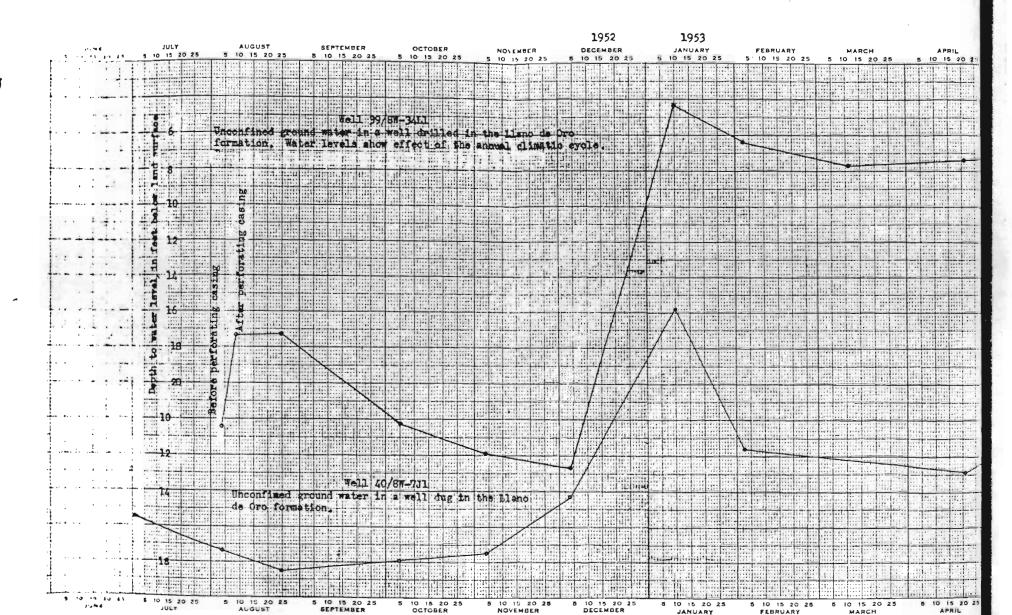



PLATE 30

MARCH 5 10 15 20 25	APRIL 5 10 15 20 25	5 10 15 20 25	JUNE 5 10 13 20 25	5 10 15 20 25	AUGUST 5 10 15 20 25	SEPTEMBER 5 10 15 20 25 8
	n fan in de staar de					
	the state in the brand which is the	The Party states and street to be				
	8		XIIIIIIIIIIIIIIII			1
			X			
			\mathbf{X}			
			X			
					p \	
					Store Store	
					Y	
						,
		T				
			12 that start free has been			
		in an the reference of a				
5 10 15 20 25 MARCH	5 10 15 20 25 APRIL	5 10 15 20 25 MAY	5 10 15 20 23 JUNE	6 10 15 20 25 JULY	5 10 15 20 25 AUGUST	5 10 15 20 25 5 SEPTEMBER

Graphs showing water-level fluctuations in wells.

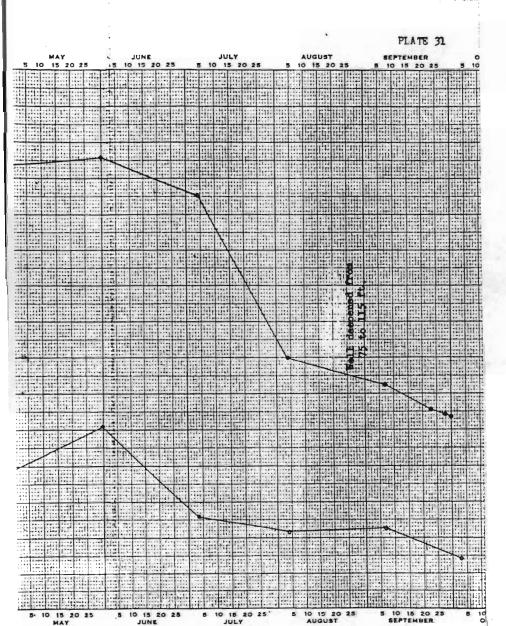


Table 1 .- Records of representative walls in the Rogue River basin (Bear Creek Valley and Adjacent areas)

1/ T, terrace; U, upland; Vf, valley floor; Vs, valley slope. 2/ Bd, bared; Dg, dug; Dn, driven; Dr, drilled.

2/ Depths and water levels expressed in feet and decimals were measured by the Geological Survey; those in whole feet are reported by one of film; were with plus and minusing are approximations reported by the owners. Where static water level of flowing wells is not known, designation is "F" (Flowing); 4/ C, centrifugal; J, jet; P, piston; T, turbine. 5/ D, domestic; Ind, industrial; Irr, irrigation; O, observation; PS, public supply; S, then, 6/ Bardness and chloride content determined by field analysis; hardness expressed as CaCO₃; composition given by weight.

	-	tude Level)	-	1			Water	r-bear	ring some or some		Wat	ter level	4 minute)		1	
Tell number	Owner or occupant of property		Type 2		Mameter of well (inches)	Lincues) Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of material	Ground-wa ter occurrence	Feet below land-surface datum 3/	Date	Type of purp 4 and yield gallons per minu	Use 2/	Temperature of " (° F.) Feat (F.) Calanta (C1) (F	Samirta
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)		(15)	(16) (17) (15)	(19)
1	T. 34 S., R.	11.		-	1	1	1	-	1				-			
1511	Joe W. Walty	vr 1,390	Dr	65	6		557	5. 1	Volcanic flows	σ	17.19 J	July 10, 1951	16	D		Line 16 gas ty
1582	C. M. Baumgardner	Vf 1,390	Dr.	85	6	35	80	.5.	do	σ	20 A	April 1951	J. 6	D	Trapp	Line water for 2 houses.
2141	E. B. Straight	Vf 1,380	Dr	21	6	1.50	0	1	Alluvium	υ	16.6 3	July 10. 1951	3	D	Dupth	to mater assessed after 5 sping at minumin rate.
21.111	Tourance	Vf 1,375	Dg	16	36	16	0	16	do.	σ			3	D		dry in summer when river 1
21,71	M.H. Williams	Vf 1,370	Dr	71	6	35?	55	15 1	Volcanie flows	U	12	1946	J, 30	D .	10 8.5	
21.12	a ĉo.	Vf 1,370	Dr.	59	6		551	41	de.	ΰ	12	1951	J. 25	מ		
21.F1	J. F. Johnson	¥£ 1,370	Dg	14		ala a	12	2	Alluvium	ບົ		• • • • • • • •	J, 10	. מ		
28J1	Ragadale	Va 1,425	Dr.	169	6	R.	165	4	Volcanic flows	σ			J, 10	D		
31.01		Va 1,550	Dr.	124	6	States	1. 620	-	do.	U .	12.08	July 30, 1951			100 miles	
3251	Dan Krots	Va 1,370	Dr.	41	6	67	2	39	do.	ប	5.37	đo.	. 3	ַ ב	55 5	
3481	W. B. Koshly	Va 1,485	Dr.	125	6	40	115	5	do.	U -			3	D. 5.	Dupy	Lies & Serentends.

	(طر	Le 1 Reco	rds of represent	ative velle	in the perce	River besig	(Seer Creek w	alley an	ad adjust		
(1) (2)	(3)	(4) (5)	(6) (7) (8)	5/01	(10) 18 (11) (12)	(12)		· · · ·		
A. 1. 34 8.	A. 1987 S			The support			(13)	. (14)	(15)	(16) 07 0.0	(12)
3452 A. C. Silver	Ta 1,470	Dr 90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			J 30	July 1951	1	D. Int		Sector Sector
A CARAGE STREET											ere beine meh disselved
34X1 T. W. Formall	7: 1,40	UF 90	6. 		60.	0 			D, 8	95	atter / sineral; as escalarive
3432 A. Pelle	Vs 1,450	Dr 153	6 407 150	3	do.	8	1947 -		D. Irr		
T. 35 8	R. 1. W.							有部门			
3CL , Durt Commer	VE 1,490	Dg 20	0	20: Celli	wium	σ		P	D. 8.	12 B 1	Inested just below irrigation :
31 Kirty Dat	Ve 1,510	Dr 52.	6 17 50	2 Tolo	anie flows	U 18	1950		D. 8		
311 E. Tentle	Ts 1,470	Dr 68	6		do.	0 7.04	July 6, 1951	P	D, 8		
3.3 . H. H. Metter	¥s 1,500	Dr. 143	6		do	U		3. 2	D. 117	1. 1	
311 V. Y. Lempko	Ts 1,500	Dr. 134	6 16 130	1	do.	93.98			. D	2 3.	S Reportedly yields but 156 gall
371 J. H. Mitchell	Te 1,470	Dr 62			do.			1.7	D, Irr		Can be pumped at espacity for
											hours without failing.
1071, W. K. Kamel	Ts 1,450	1994 A	6 16 270	1	do.	251	1945		D		Inadequate for 1 household.
1081 J. Turns	Ta 1,490	and a second second	6		do.	s			D, Irr	。 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Supplies 3 households,
1011 Inter	Ve 1,350	Dr 56.5	6 9 56	0.5	de.	c +1.4	July 5, 1951	P. 3	D	55 J	Bis flowed for 3 years; miter milfures game.
1082-1, J. Banks	TT 1.10	Ber 70	6.4		60.	•		•	D, S		Tiele 2 41.3 of short 20 gal
15KL C. A. Rentey	Ta 1,475	De. 200	6 13		60.	V 36	1949	3. 19	90 D, Ind	80, 29	Supply for m to searth dramton to be 4 ft after 1 hour pur;
1641 Flammery	TT 1,405		6		vine .	Φ	N				Preps dry/11 45 minutes.
1611 - Fleon	TT 1,400	Dr 89	6	Tole	mie flore	V	138 15 201	1. n	D. Irr	State of the owner	

			-129			1.75		1.32	horates	-		AN.	64 X	4				Sec.		entert.		
14													*					2				
1		Tat	1.1.	- Reco	de ef	repres	entati	-	ils in th	Logu	Rive	r basin	(Bear	Créek v	alley an	d adjace	at areas)	- Cont	limed			ł
	Alder A Mar The Araba	an Carlon	33		1. K. 1.	14. C. A		114		29.2		9. C. 19. 1			2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	e te series Altre de la compositione	1. 180	1.1	1			
<u>(a)</u>	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		(11)	(12)		(13)	(14)	(15)	(16).(1	(18)			(19)	
	T. 35 S., R.	1 W Co	ontima	ed .	14.2		14	13		100	6 . A						E.			The sea		
2101	Patthers	Vs 1,390	De	15.4	48	15	0	15	Alluvine	C.C.	U .	11.38	July	5, 1951	•	D		4	Adeque	te for be	use use only	,
21,71	Ted Rucers	Ta 1,375	Dg	30	11	5	0	30	e	Ser.	U	11.70		de,		D. 5	12	3 24				
2251	C. D. Kelley	To 1,450	hr	35	6		146 A		Volcanic :	1.000	ีข				P	D. 111	9	5 - 4.5				
2211		¥# 1,375	Dr	26,4	6	26		11 1	Alluvium		σ	9.78	July	5, 1951	C ARA	D. S.	2	16.				
1. 1.											1		-	Ne lead		Irr			1.1	and the	3. M. (19	
2271	Joe Hork	¥: 1,370	Dg	17	48		0	17	do.		U	14	July	1951	P	D	1 18 9	5	Insde	mate for	1 household.	
2231	Waddell	Vs 1,440	Dg	3	24		• •	-3	do.		U	.5	July	3, 1951	C, S	D. S.	4	5 6.4	Looste	d in spr	ing area.	
270	T. L. Theses	Vs 1.410	Dr	65	6			· .			π			1951	1	D. Int			1			
	R. Batthens	VE 1,400	11.	1	06	13		+15	do.			7.50	-	3, 1951	1.1	D. ITT		1.	1.			
	T. Wood	¥s 1,420	×	51				100	Tuff	2				1947	1.11		1. A.		. int	1.1.2.		
1.1.1	and the second second								-			•		1941	4, 14							
2/11	Potter	¥s 1,390			.1.				do.		U E			State.		D. S. Irr	14	0 .		dry	buse, garden,	
2771	H. D. Robinson	Te 1,395	Tr	79	6	1	70	19	do.	K.		1	July	1951	30.30	D, Irr	124	5 40	LINE	drandow	a at pushi .	
3401	P. Slacaretto	78 1,390	Dr	75	6	D				5		8±	142	1950	1,3	D. Irr		5 5			capacity	
3481	Boggs	Vs 1,380	Tr	113	6		110	3							P. 3	D, 8	9					
302	H. Regester	Ye 1,375	Dr	152	6	152					11 1		4		1.5	D. S	in in	i ni				
3481	Watron and Franklin	Ts 1.410	Dr	85	6						3.3	23.09	July	3. 1951		D. 8	A PROPERTY	6.5				
	Grab	Va 1,350		* .	6		w	1	Taff	1				1	1417	D. 8.						
1. 20	Bafurd Clark	Va 1,370	E IN				90		40	144	T	NA.			they me	112.		0 8	Barriel		I seeply pass	
1.35	2.09 1301 24							23	S. Sec.							D. Irr		1.6	and the second s	eity for		
3471	R. B. Berryman	Ta 1,350	Dr	82	6	3	AN A		do.,	8	σ	2011		7. (sm. ¹⁴ 7. t		D, B	254	5 5	1	1		
3501	Riddell	¥£ 1,405	. Dr		6						1.1					D	1	5-14	A NIT	2.6		
3522	Tinson Vaught	Tf 1,325	Dr	65			Nr.al	1.			ak Cuo	10	April	1951		D, 8		6.	Not an	Asumble		
	A LEAST AND A LEAST AND A	26 4 5 6 9	the state		14 3 24	1. A.M. 1.	特别问题。		Con Call	a state	77-2	1.18.14/5	the lot of the	1. 1. 1.	Part 100	1 1 1 1	G & CAR	1.1	the second	The start of		_

There is a post of a strate by some is the standard

a later hands i war also get the state of the state

	Table 1 - Reco	tde of representat	ive wells in the here	e River basis (Bear Greek	t valley and adjacent	t areas) - Continued
A			<u> </u>			
(1) (2)	(3) (4) (5)	(5) (7) (8)	(9) (10)	(11) (12) (13)	(14) (15)	(16) (17) (18) (19)
T. 35 8.	R. 1 W Continued	Manager		and the state		
3641 B. R. HOOTSW	VI 1,450 Dr 107	6 100 103	4 Tuff	T S April	1951 J. 33 D. S	165 18
T. 35 8	<u>R. 2 T</u> .					
2211 Frank Halson	VI 1,300 Dr 55	6 22	Oravel	U 22 May.	1951 P. 8 D. 8	45 5
2771 Earl L. Bigham	VI 1,275 Dr 36	6 20	Shale	T 9-10 do.	J, 60 D, S	
27K1 Kiwood Abbots	V£ 1,250 Dr 77	6 24 73	4 do.	U 12 January	1952 T, 40 ITT	See table & for ehenical analy
28J1 . Joe Mayfield	Ve 1,290 Dr. 105	6		U	D. 8	95 4
26L1 R. E. Carley	Va 1,300 Dr 67	6 10 30	do.	U	J. 5 D. 8	Punetrated this coal com at 4
281.2	To 1,300 Dr 83	6 10 20	do. do.	U 10 August	1946 J. 50 Irr	190 14
		73	do.	U	1. S	
29DL C. T. McDonough	Vs 1.455 Dr 252	6	60.	0 40 May	1951 J. 1.5 D. 8	40 3.5 Reportedly water contains some
2981 Tim	Va 1,350 Dr 150	6 6 150	Coal seam in shale	C by 16,	1951	25 31 Flowed 1 gon for about 1 weak drilled; water contains sulf:
				k in the start of		and a second
29F1 G. A. Koellner	V: 1,295 Dr 101	6 12 67	Shale?	J 24.68 117 14.	1951	95 46 Not yet in use; water tastes slightly salty.
2901 W. L. Michael	7: 1,300 Dr 65	8	Shale	υ.	J. 10 D. Irr	75 19 Oun be pumped dry in 1} hours.
2981 I. L. Lanb	Ts 1,300 Dr 228	6 38+	de.	0 42. May	1951 J. 1 . D. S	90 6 Was developed by the dry-ice :
29R2, Dunting	To 1,310 Tr 100	5 52+	do.	V 23 de.	.	Will pump dry in about an hour
30A1 Chlos Helonough	Vs 1,350 Dg 20	60 20	Colluvium		P D. S	155 .5.5 Till supply water for 100 head of sattle.
SEL C. C. Senderson		36	Talley fill	. I . 6 Jan 3	1951 3 B. 8. Drr	Can be purped dry in 2 hours; level recovers in 4 hours.
2011 - Paul Schuls	Va 1,290 Dr 75	6 24	Shale	•	J D. 5	90 10
30Pl Houston	Vs 1.300 Dg 26	72	Valley fill		1951 D. 5 D. 8.	125 2 Water Level drawn down 6 ft by 30 heurs of running at 5 orm.
1. 8					ITT	

	And the second se	Table		Recor	te ef	re n r e s	sentat	ive we	lls in the p	orus River	basin	(Bear	Creek val	Lley and	adjacent	area		Contin	ned
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	<i>yt</i>	(13)	(14)	(15)	(16)	(17)	(18)	(19).
	<u>T. 35 5</u>	<u>R 2 W</u> - Cont	tinue	đ	12.1		a	A cá		AL.					an Alighta		1		
3051	H. B. Eskridge	Ys 1,280	Dr	1.62	6	12		a.	Shale	U	61 .50	Vay	14, 1951	J. 5	D, Irr		35	16	Water level mesered after }
30R2	Loyd Dasenberry	Vs 1,310	Dr	154	6				do.	all a	27.68	May	15, 1951	5	D	14.14 • • • • • •	25	8	pumping.
30R3	G. Botsford	Vf 1,250	Dg	11.8	36	11.8	. 0	11.8	Talley fill	T	4.57		do.	C ANT	D. Ind				Supplies house and service st
nm	E. S. Nusson	Vf 1,240	Dg	- 20.4			0	21+	a do.	U	2.13		de.	C. 10	D. ITT		125	3 1	Martin .
na	H. A. Davidson	¥f 1,230	Dg	. 22 ;	i ji				do.	2 / U	4.77		do.	P	D, S, Ir	r 1			
na	E. Crottogini	¥s 1,290	Dg	. 22.2					do.	U	6.00		do.	P	. do.	1			
лл	W. Sanderson	Tf 1,230	Dg	13					đo	σ	5.35	May	10. 1951	P. 8	Irr		3		
UM		¥f 1,220	Dg	27.1		27			do		4.08	2.1	do.		D. S. IT	T	1		
31.12	A. Straus	7£ 1,220	Dr	77.2	6	$\mathbb{R} \leq \mathbb{R}$			Shale	U	2.9	May	15. 1951		D	. 4	125	17	Not adoquate for 1 household.
3201	Tumos	Va 1,290	Dr	78	6	240.7			do.	U	1. S. A.	(1)		1	D	- 14	135	17-1	
3201	Kcellner	Vf 1,260	Dg	32.9	72				do.	U	13.64	. Ney	15, 1951	C	D	E.		一社	
32P1	J. H. Korner	Vf 1,230	Dr	100	6				do .	C					D. S. 1	a (1		Flows in winter and spring un about May 1.
3341	Jirshele	Vf 1,250	Dg	20	ц. С.			1.4	Talley fill	T MAND				J	1.				Not in use.
3381	Do .	Vf 1,260	Dr	60	6	12	1		Shale	σ				8.7	D. 8		105	-13	
3311	Lester James	Vs 1,290	Dr	243	6	20.5			to.	U	28±	Yay	1951	7. 6	D. 5	65	it j	30.	Tielded about 1 gas when dril enner tranted wall with 190
				162								1							dry loss miss level ross fr 28 ft//Tald to about 4 gpm; down 207 ft after 11 hours p
																			one table 4 for chemical ana of water.
3 311	J. C. Duggan	Vf 1,250	T r	83	6				đ o .	υ	20±	June	1951	3	D. Irr			1	
33F1	രം.	Vf 1,250	Dg	32		14	14	1.8+	đo.	. U				3	D, S, Ir	T			

Table 1.- Records of representative wells in the heas River basin (Boar Creek valley and adjacent areas) - Continued LAN THE

		IN THE MORE STATE DESIT (DOST CITER	Valley and aujacene areas) - Continued	
(1) (2) (3) (4) (5)	(6) (7) (8) (9)	(10) (11) (12) (13)	(14) - (15) (16) (17) (18) (19)	
1. 35 S R. 3 T. 2481 Adolf hugal Vf 1.350 Dr 260	9 Shal	le C F Jan. 25. 19	52 J. 30 JE	
3650 Roy Stegall Vf 1,250 Dg 20	48 Gran	vel U 4 June 19	51 J D	
171 R.A. Managon Vs 1,480 Dr 30 131 C. W. Atkins Vs 1,440 Dr 98 181 Martin Aikens Vs 1,480 Dr 75	· · · · · · · · · · · · · · · · · · ·	panie figns U 18 do. do. U	J. 12 D. Irr J D. 8 90 9	
111 Martin Aikens Val.480 Dr 75 111 R. C. Gregg Vsl.480 Dg 29 111 L. E. Gregg Vsl.480 Dg 29 111 L. E. Margroft Vsl.495 Dr 81	6 17 4 ² 0 9 Slop	U • wash U 11.11 May 29, 19;	J, 22 D. 8 130 4 1 5 9 D 95 5	
172 J. W. Marlette Vs 1,440 Dr 69 201 Joe K. Andrews Vs 2,485 Dr 65	6 6 11 532	6.13 May 29, 19	J D. S 145 3 A C. 15 D. Irr 130 13	
2x1 Tom Bray Ys 1,490 Dr 49 3F1 N. O. Harley Yf 1,905 Dr 100 3J1 O. H. Hughes Ys 1,320 Dr 144	6 36 48± 1 6 85± Taff		1 J. 40 D. Trr 40 9	
341 Day Bornish 7s 1,280 Dg 24	36 24	σ	J J. 12 D. Trr 55 & Pomp operating who measured. J B. Irr 210 9	en water lev
ARL MoCasilin Vf 1,290 Thr 0 40 5M1 Willowroom Vs 1,280 Dr 100 9A1 R. H. Jenkes Vs 1,300 Dr 90	tr6 40 5 Talle 5 Taff 6		51 J D, Irr 51 J D, B 155 11 J D. S.Irr	
931 Clare Young Vf 1,290 Dr 36 911 W. A. White Vs 1,270 Dr		v m	P D. S	
951 0.0. Wilson Yf 1,275 Ir 96.5 1091 William Spats Ys 1,320 Dr 80 1007 Mittlestadt Ys 1,200 Dr 80	6	o. J	51 J, 60 D, Irr 110 18 See table 3 for dr J D 156 10 Inadequate for 1 b	19
1071 Mittlestmodt Ve 1.340 Dr 99.5	0	0. T 63.50 Apr. 4. 19	51 110 16 Fot in use.	

	able 1 Records of 1	opresentative wells in the set	a River basin (Bear Creek valley	and adjacent areas) - Continu	ed and a second s
(1) (2) (3)	(4) (5) (6)	7) (8) (9) (10)	(11) (12((1)) (1)	(15) (16) (17) (18)	(19)
T. 36 8., R. 1 W		ALL MARKED STREET			
LOE2 Mittelstadt Vs 1.34	40 Tr 150 6 1	50 Tuff	U. P.	D	See table 4 for obsaical a of water.
1071 B. M. Bigham Ys 1, 37	75 Dr 198 6	16 16 182 do.	y 60 may 1951 2	D: 8 150 14	
1081 C. F. Devies	10 Dr - 146 6	6.	.	155	
1001 J. W. Bighen	45 Dr 27 48	27+ Valley fill'	t 17 1935 J	D, S, ITT 140 2	. The states in
120 D. Albini To 1.40	90 Dr. 285	1) Tuff	U 20 June 1951 T.	55 D, ITT 20 5) Was pumped at rate of 2,00 per hour for 8 days with
					dreadown; recovered in 20
1211 Poster Suigert	05 R 32 6	32	0 15 May 1951 J	D. 8 160	
1201	15 Dr 90 6	do.	8	D	Adequate only for demostic
1381 Pete Auer	35 Dr 80 6	4.	T 6 1939 J	D. 8	Adequate for domestic use :
			m II 1 Hay 1951 C	D. Irr 110	Arrive Arriver
1381 C. A. YenDerHellen VI 1.44		6 Valley alluvi		8 D. Irr 50	0
101 Marpar Vs 1,7		27 157 1 Talf	1 2) June 1951 J	D. S. Irr	
THE REPORT OF THE PROPERTY OF	405 Dr 100 6	de .		do.	Deepened 50 feet in 1951.
- 二方式教室の記録の構成のなどう 単位の	95 Dr 208 6	b .	T 16 June 1951 J	p	Insdequate for 1 household
	90 Dr 60 6		1 78 Anno 1997 4	70 4	o 13 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
A MARKET HAR AND A MARKET AND A MARKET	50 Dr 81 6	do.	U 6.46 Apr. 10. 1951 J	B	5 See plate 13 for water-lev
1701 Ted Bornoeker	20 Dr 96 6	57 Shale	U 0.40 APE. 10. 1774		and table 3 for driller's
2001 White City Lumber VI 1,3 Company	120 Dr 162 6		U 11 November 1950 1		6 Supplies 25 houses; see th fx driller's log.
2031 Ross Lumber Co. Vf 1,3	605 Dr 80 6	47 Gravel end shale	U 40 October 1950 1	, 100 Ind 63	See table 4 for chemical e of water and table 3 for log.
2011 D. R. Snith Vf 1,3	105 Dr 6	62	U	Ind	1
			105	n s 145 1	体。自己的时候的机会

Table 1.- Records of representative wells in the Rogue River basin (Bear Creek valley and adjacent areas) - Continued

(1)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(1)	3)	(14)	(15)	(16) (17)	(18)	(19)
	T. 36 5.,	R. 1 W Co:	ntique	d														
	Claude Hoover	Vf 1,340	Dr	50	6				Gravel	σ	20	March 1	1951		D	190	15	Hot in acs.
12	do.	Vf 1,340	Dr	124	8				Shale	U	4.7	War. 26,	1951			70	4.5	for miter-level record
	R. Steward	Vf 1,360	Dr	120	6				do.	U				3	D, Irr	175	11	Will supply 2 laws spr:
	Lloyd Timmons	vf 1,340	Dr	52	6	22			do.	υ	6	July	1950	J, 17	D, 8	195	19	
	S. S. Reanes	¥f 1,300	Dg	35	48				Gravel	υ				J	D. S. I	r		
1000	¥111#	Vf 1,340	Dg	22	48				Shale	υ	2	March	1951	c	dO.	215	n	
	C. M. Graves	Vf 1,290	Dr	98	6		10	14	Gravel	σ	4.37	Aug. 15.	1952	C 井。50	Irr	60 6 5	. 4	See table 3 for driller
	Poerl Humphrey	Vf 1,295	Dr	79	6			11	do.	U	12	Jamuary	1951	J, 15	D. S	90	3	
	Brown	Vf 1,340	Dr	36	6				do.	υ				3	D. 8	195	6	
۵.	D. Adams	Vf 1,330	Dr	25	6				do.	σ				3	D	195	12	4
1	Barl Tucker	¥£ 1,340	Dg	30	60				Alluvium	σ				J	D	180	5	
	T. 36 S.,	R. 2 W.																
A.	D. Theeler	Vf 1,240	Tr	80	6				Shale	U				J	D. S	125	6	
D		Vf 1.195	Dg	12.6	5 48		0	12	Valley fill	ΰ	1,89	Vay 15,	1951					Not the Associate
n	E. H. Daylor	Vf 1,190	Da	30					do.	σ				J	D. Irr	60	2	
EI,	Id Pierce	Vs 1,210	Dr	24	6	24			do.	υ	6,16	May 10.	1951	P	D	35	2	Reportedly has high yiel
A STAR	L. D. Pall	Vf 1,290	Dg	17	36	17			do.	υ	10	April	1951	J, 280	- פכ	130	4	Reported to have yielded with drawdown of 3 ft a 4 hours pumping.
LT1	T. R. Myers	Vf 1,210	Dg	16	36				do.	σ	2	May	1951	J	D. S. I	rr		
111	L. D. Rall	Vf 1,195	i Da	14	1,	.5 14			do.	<u>ש</u>				P	D, S			
in	R. B. Mealon	Vf 1,195	Dr	160	6	30			Shale	υ	7.9	Kay 10,	1951					
1. 18	-										-							

		Date:	le 1.	- Reca	rds o	f repr	esenta	tive 1	wlls in the R	logue Riv	er basi	n (Beau	r C rook va	illey an	d adjacent	. art	1) - Ca	nt.Long	4
(a)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		(13)	(14)	(15)	(16)	(17)	(1.6)	(19)
1	T. 36 5., P.	2 W Co	atim	lod												- Lawrence			14
nn.	Ray Wyatt	Ve 1,200	Dr	102	6	18			Shale	σ	12	July	1943	J, 250	D, Ind		80	18	Supplies bousehold and small water testes of sulfur an talms some gas.
C	Joseph Hausler	vs 1,195	Dg	25	18	25			Valley fill	σ	5-6	Hay	1951	J. 13	D. S. Irr	-	to	1	Will supply 7 irrigation s
1401	City of Nedford	Vf 1,715	Tr	300	10			•	Shale	U	13.77	Apr.	16, 1951	J, 2.	5 Irr				Inadequate; see plate 15 f level resord; water irri level as garden at some p plant.
1511	Thospeon	Vf 1,205	Dg		60			,	Valley fill	υ				c	8, Im.	-			Pasps dry in 12 hours.
20F1	Paul 1. Scherer	vf 1,190	Dg	20.4	48				do.	σ	9.59	Apr.	25, 1951	P	D. Irr		135	,9	
2011	Stirling Price	Vf 1,285	Dg	24					do.	σ				P	D. 8		190	12	
2071	Paul Quackenbush	¥# 1,180	Dr	48.5	6	48	0	48.	5 do.	IJ	8	Hay	1948	3	D. Ind		80	7	Supplies home and tavern; only bailed 23 gpm.
20P2	Double D Lumber Co.	Vf 1,170	Dr	40	6				do.	U				3	Ind	59	28	HE.	Supplies water for mill po water bod maline for drin see table 4 for chemical of water.
20P3	ðo .	Vf 1,170	Dr	40	6				do.	ΰ				3	Ind	55	141	Ŧ	Also used for mill pend; 4 frach; see table 4 for el analysis of water.
20P4	do.	¥f 1,170	Dr		6				do.	U				Ĵ	Ind				Initial well on property supply all pond.
20P5	do.	Vf 1,170	Dg	65+	120	65+	0	65+	do.	σ	10	Kova	aber 1951	C	Ind				Supplies water for mill p see table 3 for log.
2001	å e .	Vf 1,170	Tar	48	6				do.	υ	ı			J	Inđ				Supplies water for mill p water is saline.
2092	do.	Vf 1,170	Ĭ r	72.8	3 6	43			do.	υ	2.93	λpr.	20, 1951		Ind				Not used; see plate 15 fo level record; water too for drinking.
	Firklen d Farms	Vf 1,190	Dg	27.	38	26			đo.	υ	9.50		do.						Mat-Lauran
1-11-																			and the second first and second and the size of the

ich in the state Contraction and the second Table 1 .- Records of representative wells in the Rogue River basin (Bear Greek valley and adjacent areas) Continued (3) (4) (5) (6) (7) (8) (9) (11) (12) (13) (14) (15) (16) 07) (10) (2) (10)(19) T. 36 5 .. P. 2 T. - Continued Supplies mater for 3 househ Robert Warrick Vf 1,205 30 1 3 Dr 10 3 Valley fill April. 1951 Vf 1,180 18 TT. 10 1.8 100 R. J. Savage Dg 8 Sas table & for chemical an: 68 13 1948 1. 70 D. 8. 160.5.5 Paul Williams Vf 1.205 68 8 do. U Dr ITT of miter.

....

(1)

5. 4

2111

21.01

2111

21.82

2311

Same in

2411

....

2511

2501

280

2601

27EL

2751

2751

2611

2871

28P1

17:19

Yax Burd

Dopp

Charley

Howard

Roy Compitte

28P2 Paget Timber Co.

Vf 1.230 Dr 103.7

-6

Shale

Vf 1,205 30 48 10 11 18 April. 1951 TTT do. De do. Not used often. V. S Geological Vf 1.230 110 106 12 92 do. 6.52 July 13. 1953 M Drilled as an emploratory " Tr 8 Π 0 7 Survey ESGS: mes table 3 for log table 4 for chemical analy agaifer evaluation test gi in text. Apr. 16, 1951 Vf 1,260 U. S. Government Dr 18.6 60 do. U 11.85 Mat. used. (originally Agate School) D. A. Derman Vf 1.250 47 do. U J. 8 D 130 6 do. U 25 Anril. 1951 J. 12 D. S 185 M. A. Gruber Vf 1.240 30 36-10

Reportedly yields 16 gpm. Vf 1,230 28 26 do. U J. 16 D. S. Dr 6 ITT υ Vf 1.230 22.6 36 do. 15.74 Apr. 17, 1951 J D Dg do. IJ April 1951 J. 10 D Barvey W. Bawkins Vf 1.235 40 40 6 Dr 6 Vf 1.230 28 6 28 do. ΰ D. Irr Dr Vf 1,230 48 U D Dg 16 do. 10.85 Apr. 17, 1951 C Vf 1,190 Dg 14.4 ά. U Apr. 23. 1951 P D. 5 4.5 Paul Omackenbush Vf 1.295 Tr 22.5 6 80. υ 4.06 do. С D ðo., Π 4.72 D. S. Vf 1,200 Dg 26 35 do. 1 Irr

6.16 June 14. 1951 J

Ind

π

Used for fire protection; too seline to drink.

(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(13)	(12)	(13)	(14)	(15)	(16)	(11)	(18)	(19)
<u>T, 36 S., T</u>	. <u>2 W</u> Cor	timuo	1													141		
Oulf Red Cedar Co.	Vf 1,230	Dr	42	6				Valley fill	τ				J	Ind)		Supplies water for saw mil reportedly is good well.
do.	Vf 1,230	Dr	47	6	47			do.	υ				J	Ind		15	6	Supplies water for office and fire protection.
Ed Kann	Vs 1,250	Tr	34	6	32		·	Clay	σ	5	April	1951	P, 8	D				
R. J. Weiss	Vs 1,295	Dr	50	6				1.		30	do.		J	D, Irr	•			
do.	Vs 1,300	Dr	93	6				Greenstone					J, 3	Irr		1		
8 tevenson	Vs 1,300	Dg	26	60	6			do.		5	Winter s	und	P	D. S				
S. Toung	Vf 1,300	Dg	15	45				Coarse gravel	5	5	April	1951	J	D. Im			-	
do.	Vf 1,300	Dg	25	48				do.		20+	đ		P					. handaller
Potter	Vs 1,290	Dg	25.9	48	5			Oreenstone		14.90	Apr. 19	1951	P	D		105	u	
Discond	Vf 1,290	Dr	65	6	30			Shale		30	April	1951	4, 5	D		105	25	
Roy Michols	Vf 1,210	Dg	12.6	48				Valley fill		4.44	Apr. 23	1951	C	Irr				
Muller	Vf 1,260	Dr	38.4	6				do .		3.3	Apr. 19	. 1951	P	D				
John Bohnert	Vf 1,220	Dg	13.2	48	:			do,		7.56	Apr. 23	, 1951						zeletenzat.
R. H. Field	Vf 1,210	Dg	12	48				Gravel	υ	5	Summe	er	J, 60	D, 5				
Adame	Vf 1,220	Dg	27	48				do .	υ	8	April	1951	T	D, S				
Berzog	vf 1,230	Ū r		6								•	1	D. 5		95	20	
John Theeler	Vf 1,230	Dg	50 <u>+</u>					Gravel	U				J	D. Ir	r			
do.	Vf 1,230	Dr	103	6									J, 1.	58				
L. J. Freeman	Vf 1,230	Dg	30	36- 8	12			():avel					J	D. S. Irr				
R. Borch	Vf 1,240	Dr	60	6	46			do.	υ	6-8	April	1951		D				Bailed at rate of 8 to 10

1 Million Market 19, 18 States

-

is the state of the

19	64 * *					•.		• 			•				6- ⁰ Cana		Str.	ر المناطقة الم	and the state of the state of the
			Tabl	• 1 <i>.</i>	Record	is of	repre	sentat	ive we	alls in the Rogue	Rive	r basin	(Bear Greek val	ley and	l adjacent	t arei	• Cos	Linued	
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (1	16)	m	(16)	(19)
,		T. 36 S., R	<u>, 2 ¥</u> Con	ntinuo	d												1		and the second second
	R. B.	. Spear	Vf 1,225	Da	18	17				Sand	ਹ			J	D. S. Irr				
3510	R. 8.	. Saith	Vf 1,250	Dg	23					Cemented gravel	υ	15-18	April 1951	J	D, ITT		1. Contraction		Participation of the second second second
3681	C. R.	. Cumins	Vf 1,250	Dg	29.3	48				Gravel	σ	4.35	Apr. 17, 1951	C	D, Irr		15	5	Has 2 contribugal pumps; see 15 for mater-level record.
36P)	Barl	Toakley	Vf 1,250	Dg	30	60	6			de.	υ	12	1950	3	D. Ind		155	19	Supplies home and service st
3601	State of I	Department Forestry	Vf 1,250	Dr	68	6				do.	U			3	D		135	u	Supplies forestry station
		7. 36 5 7	.3 7.											•				:	
11	. B. G	. Fartman	Vf 1,210	Dg	19.2	•				Alluvium	σ	5.44	Nay 15, 1951	J	Irr		1		
		T. 37 S., R	.1.														1		
430	. Taon	oll and Perry	Vf 1,390	Dg	20.1	60				Valley fill	σ	12.00	Mar. 27, 1951	3	D, S				See plate 18 for mater-level record.
2PJ	. K. X	. Lytle	Vf 1,400	Dr	43	6				Shale .	U		Ner. 14, 1951	J	D, S	59	155	5	See table 4 for chemical and of water.
SE	. K. P	. Vilas	Vf 1,350	Dg	15	120	15			Valley fill	Ū	0-1	June 1951	٩	D, S. Irr		1.		flows 9 months of year.
x	l Payn	A	⊽a 1,5 00	Dr	60	6				Shale	σ		,	c, 1.5	5 D, Irr		115	2	Inadequate; use to be discon
51	1 01ut	3	Vs 1,450	Dr	160	6	160							P, 3	D. S		200	9.	Insdequate.
.71:	1 Tom	Ganoway	Vf 1,340	Dr	158	6				Shale	υ	3,16	Apr. 5, 1951				115	10	Material man See plate 17 Material record.
7 8	l Johr	Tilley	vf 1,340) Tar	105.3	36	35			do.	U	4.2	ċo.						Bailed at rate of 3.2 gpm, 300
80	1 101	L	Va 1,470) Tr	165	6	20			•				P, 16	D, I rr		1\$5	5	
87	1 Luce	19	Vf 1,350	Dr						•				3	D		175	24	-Pe
86	10.1	(illians	V£ 1,375	n Dr		6								3	D, S		200	54	Goes dry in winter.

. .

							24.2	• •				5 ¹		Amerika an	42.0	e aikiat	
		Tabl	e 1	Record	ta of	repros	entat	lve me	lls in the bogo	e River	basin (Boar Creek val)	ley and	adjacent ar	ess Deal:	ano i	95
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (16)		(11)	(19) .
	T. 37 S. R	<u>, 1 17</u> , - Co	ntim	ıed													
	Beránoore	Vs 1,500	Dr	125.5	6	20	109	16	Sandstone	c			C, S	D. 5	4	3	
1601	John Dunlap	Vs 1,550	Dr	350 <u>+</u>	6		190	5					J	D	3	19	
10	R. A. Stokes	Vs 1,525	Dr		6								J	D		6	
1701	H. T. Padgham	vf 1,370	Dr	120	6				•				1, 22	P. S. Irr		16	Techolas canada
	T. E. Verit	Vf 1,360	Dg	11.9	60	11.9					1.6	War. 14. 1951				7	New Concession
1703	do.	Vf 1,360	n	60	6								J, 21	D. 5		17	
170	C. C. Hoover	vf 1,400	Dg	24.5							4.3	War. 14. 1951	3	D	3	7	
1782	Agnes Moorehead	78 1,450	Dr	85	6								3	D. 5		•	
177	H. P. McCullough	Vf 1,390	Tr	110	6					C	7	Mar. 14, 1951	3	D, Irr		13.	
1772	đo.	¥f 1,390	Dr	116	6						2.7	do.			R	IJ	Indecknowning.
1723	Knight	Vf 1,390	Dr	108	6	109			Shale	σ	9.10	Apr. 23. 1953		D			
1701	Molen F. Biehler	Vf 1,395	Dr	80	6							· .	3	ם	20	18	
1792	Charles Matejka	Vf 1,390	Tr	100	6					C	P	Var. 14, 1951	J	D. IFT	30	11.	
1851	Patton	vf 1,315	13r	49.9	6				Shale	υ	3.25	Apr. 7, 1951			5		
1871	Oottfried	Vf 1,350	Tr	250	6	14			do.	σ	7.76	Nov. 19, 1951	•				Not used because inadequate
2010	J. M. Kenney	Vs 1,490	Dr	86	6								J	ם	140	5	
2012	Don Asher	Vs 1,495	Dar	96	6						20	1949	J. 9	D			
2013	Y. N. Saunders	Vs 1,490	Dr	409	6						10	Harch 1951	J, 2	Irr	:		
7.4	Claud Hanson	¥s 1,570	Dr	127	6	120			Sandstone	υ	20	do.	J, 9	ם	185	4.	
2182	R.W. Hart	V# 1,550	De	100	6								J, 30	D. 3	190	u	
20	Luchterband	V: 1,460	. Dr	162	6	10					15	Nerch 1951	J. 15	a di s	235	10	
21.02	William Grubbs	Vs 1.460	Dr	180	_6								3,5	D			

(1)	(2)	(3)	(4)	(5)	(1)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(15)	(h)	(18)	(19)	64.99
	T. 37 S., R.	<u>. 1 7.</u> - Co	ntinu	led															Sec.
2151	Jane Loses	Vs 1,450	Dr	82	6								J. 18	D, Irr		10	7		
2152	do.	Vs 1,450	Dr	40.7	6						7.55	Mar. 13, 1951							47 98
211	Charles E. Rose	Vs 1,500	Dr	73.6	,		30 76				16.24	do.					1	ert <u>metj pel</u> tek	4.0
71M	Bollinger	78 1,580	The	100	4	90							J	D. Irr		to	1.1		
21P1	William Robinson	Vs 1,500	Dr	201	6						16	March 1951	3	D, Irr		ab.	3.4		
2751	E. A. Stama	Va 1,590	Tr		6								J	D		25	4		
277.1	Ralph Cook	Vs 1,610	Dr	150	6	10							T. 5	D. S		1			
2711	B. L. Dodge	Vs 1,590	n		6						1.01	Fob. 15, 1951	J	D		125	34		
27791	Balph Cook	Vs 1,620	Dg	25	52						10	February 1951	3	D, 3		135	7		1.3
211	P. J. Spaulding	Va 1,590	Dr	120	6				Shale	σ			J	D		155	32.1		21
2801	Frank Westcott	Vf 1,515	Dr	42.8	6				do.	υ	17.34	Feb. 27, 1951	3	D, S		145	10		4
2871	Widner	Vf 1,550	Dr	46	6				do.	ប			3	D, S		125	22		
30P1	California-Oregon Power Co.	Vf 1,380	Dg	16		16	•	16	Alluvium	Ţ			°, 2,000	Ind	55			Deed as water at pump is air eos wardboose.	titioning
31.0	P. E. Simmons	Vf 1,440	Dr	44.8	6		40	4	Shale	υ	6	February 1951	J .	D, S		120	4.5		19
33721	M. J. Tattie	Vf 1,510	Dr	67	6		87		Flue "clay"	υ	16	do.	J. 17	D. 8		165	20.4		
33R2	Sheets	Vf 1,530	Dr	120	6				Shale	U			c	D	58	12	20	See table & for of union.	sbenical an
3411	A. Schroeder	Vf 1,650	Dr	165	6									D. 8		115	21		
3411	G. H. Drake	Vf 1,590	Dg	17	72	17			Shale		1.8	Feb, 15. 1951	J	٥					
3411	Harris	Vf 1,575	Dr	ഗ	6				do.				J	D		185	44		a star
3442	Ralph Cook	V£ 1,575	De	140	6						40	August 1951	J, 3	D				Supplies in bor	-
1					,						,					500			1.8

Table 1 .- Records of representative wells in the Segue River basin (Boar Creek valley and adjacent areas Continue)

																10		- Carrier
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(a)	(14)	(19)
	T. 37 S., R	1 ₩ Co	ntim	ed												1		
21F1	Jane Losee	Vs 1,450	Dr	82	6								J. 18	D, Irr			7	
21E2	do.	Vs 1,450	Dr	40.7	6						7.55	Mar. 13, 1951						an to the
21/1	Charles E. Rose	V# 1,500	Dr	73.6			30 76				16.24	de .						Pet westy petbolat from stills
an	Bollinger	Va 1,580	Dr	100	4	90							3	D. Irr		10	4.4	
2111	William Robinson	¥s 1,500	Dr	201	6						16	March 1951	3	D, Irr		ø	3.4	,
2751	E. A. Stama	Vs 1,590	Tr		6								J	D		35	4	in the second
2711	Ralph Cook	Vs 1,610	Dr	150	6	10							T. 5	D. S		:*		
271	B. L. Dodge	Vs 1,590	Tr		6						1.01	Fob. 15, 1951	3	D		125	34	
27121	Ralph Cook	Vs 1,620	Dg	25	52						10	February 1951	3	D. 5		135	7	
28A1	F. J. Spaulding	Vs 1,590	Dr	120	6				Shale	U			J	D		155	32.4	
2801	Frank Westcott	Vf 1,515	Dr	42.8	6				do.	υ	17.34	Feb. 27, 1951	a	D. S		145	10	
2831	Widner	Vf 1,550	Dr	46	6				do.	υ			3	D. 5		125	22	The lot in the second
30P1	California-Oregon Power Co.	vf 1,330	Dg	16		16	•	16	Alluvium	υ			2,00	Ind	55			Used as water source for be pupp is air conditioning wardouse.
3130	P. E. Simmons	Vf 1,440	Dr	44.8	3 6		40	4	Shale	U	6	February 1951	J-	D, S		120	4.5	and the second se
3381	N. J. Iattie	Vf 1,510	D r	57	6		87		Blue "clay"	υ	16	de,	J. 17	D, 8		165	10.1	
33R2	Sheats	vf 1,530	Dr	120	6				Shale	U			c	ũ	58	12	20	See table 6 for ebenical an of union.
3451	A. Schroeder	7f 1,650	Dr	165	6								•	D. S		115	71	1 4 F
3413	G. H. Drake	vf 1,590	Dg	17	72	17			Shale		1.8	Feb. 15. 1951	J	Ū			,	- Marine Provide
340	Harris	Vf 1,575	, Dr	60	6				do.	•			J	D		185	44	
3411	Ralph Cook	Vf 1,575	Der	140	6						40	August 1951	J. 3	D		(Supplies haber ener.

Table 1 .- Records of representative wells in the Begue River basin (Boar Creek valley and adjacent areas fontinue)

1.1

CLASS AV		1 =1-1	• 7	Pana	de of	-	tents +	78 94	lls in the Rogu	a River	້າງອຸດ	(Nogra C	roel -	- 11-	** ****	•	-4			
althing																				
1)	(2)	(3)		(5)	(5)	(7)	(8)	(9)	(10)	(11)	(12)		(13)	(14)	(15)	(16)	(17)	(18)	(19)
en F	T. 37 S., P.		ntinu	ed														ì		
EL F	red Lofland	Vf 1,230	Dg.	18	42	18			Valley fill	IJ	4	April	195	n c	, 20	n, s				
n c	. H. Taylor	Vs 1,300	12	240	6	220					20	üarch	195	กง	, 10	D, ITT				
12	do.	Vs 1,300	Dg	30	60	30					10		do.	J		D				
13	do.	Vs 1,300	Dr	150	6	40			Sandstone	σ	4.5	Har. 1	8, 19	51						Tht used.
	. Speare	Vs 1,400	Dr	129	6	40	129		Decomposed granite					1	, 8	D. S. Irr		9		
12	do.	Vs 1,410	Dg	26.9	,				do.	υ	18.00	Apr. 1	18, 19	51 0		Irr				
3	do.	Vs 1,410	r	40	6				do.	υ		1		3		i.				lot-uset.
.*	anouch	Vs 1,400	Dg	29.2	2 36						17.16	Apr. 1	18, 19	51 3	. 14	D, 3		95	. 9	
30	forman Holmes	Vs 1,415	Dr	41	6				"Bock"	σ					. 8	n		115	5	
nı	. P. Wilcox	Vs 1,520	Dr	285	6	10									, 25	D		190	2	
H2	do.	¥# 1,550	Dr	135	6	20					40	July	19	50 3	, 2.5	Irr				
0	J. L. Williamson	Va 1,590	The	98	6						F				1, 50	D, Ira		130	3.	Flows 2 to 3 gpm.
	. C. Higgenbothan	Vf 1,285		105	6	100			Blue send	σ					1	D. S				Tell to be abandoned.
12	do.	Vf 1,285		275	6															Try hole; casing pull
43	do.	Vf 1,285			6		40	20	"Clay"	σ	11.20	Mar. 1	18, 19	ภ.		D, 5				Bailed at the rate of
	đo .	Vf 1,285	Dr	44	6						39	March	19	51	J	D				
	Barold H. Brown	Vs 1,350			48					с	7	War.	6, 19	ภ.	3	D		150	4.1	Flows at rate of 3 gr
1	Nefasky	Vs 1,350			4 244	8				-	1.95		do.		J	D. Ir	r	175	u	
20	A. J. Radley	Vf 1,350			 6					.,					C	D				Filled in around 6-1
3		vf 1,350													J	P, In	đ	170	14.	Supplies home and st
PLL.	Ooodsan	¥1 1,500	2	807	0	91									•	.,	-	214		

		14014	· · ·	NACOLO	18 01	1.001.0	2611 Gar 6 1	140 MG	lls in the Rogu	e Kraet	oapin	Constr. (LAGE ANT	Tel and	aujaco			1.111460	
)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		(13)	(14)	(15)	(16)	(17)	(14)	(19)
	T. 37 S., P.		_		(0)	((67	<u></u>		(/			(+))	(14)	(1)	(10)		(10)	(47)
l Fr	red Lofland	V£ 1,230		18	42	18			Valley fill	υ	4	April	1951	c, 20	n. s				
	H. Taylor	Va 1,300	The second	240	6	220					20	Karch		J, 10					
2	do.	Va 1,300	Dg	30	60	30					10		do.	J	ס				
3	đo.	Vs 1,300	Dr	150	6	40			Sandstone	σ	4.5	Mar. 1	18, 1951						Det used.
W.	. Speare	Vs 1,400	Dr	129	6	40	129		Decomposed granite					J. 8	D. S. Irr				
?	do.	Va 1,410	Dg	26.9					đo.	υ	18.00	Apr. 3	18, 1951	C	ITT				
3	do.	Vs 1,410	Dr	40	6				do.	U	1			J	1				101-1888.
L Ja	anouch	Vs 1,400	Dg	29.2	36						17.16	Apr. 1	18, 1951	J, 14	D, S		95	' 9	
	orman Holmes	Vs 1,415	Dr	41	6				"Rock"	σ				J, 8	D		115	5	
LL	. P. Wilcox	Vs 1,520	Dr	285	6	10								J, 25	D		190	2.	
2	do.	Vs 1,550	Dr	135	6	20					40	July	1950	J, 2.5	ITT				
J	. L. Williamson	Ve 1,590	Tr	98	6						7			J, 50	D, Im	-	130	3.	Flows 2 to 3 gpm.
	. C. Higgenbothan	V£ 1,285	Tr	105	6	100			Blue sand	σ				J	P, S				Well to be abandone
2	do.	Vf 1,285	Dr	275	6														Try hole; casing pu
2	do.	Vf 1,285	٦r	6 6	6		40	20	"Clay"	υ	11.20	War.	18, 1951	-	D, S				Bailed at the rate
1	do .	Vf 1,285	[]ar	44	6						39	March	1951	J	D				
	arold H. Brown	Vs 1,350	Dg	20	48					С	7	War .	6, 1951	J	D		150	4	Flows at rate of 3
(1 1	lefusky	Vs 1,350	Dg	25.4	144	8					1.95		do.	.1	D. Ir	r	175	n	
i ,	. J. Hadley	vf 1,350	Dz	21	6	21								C	D				Filled in around 6
a (Coodean	vf 1,350	Tr	80 <u>+</u>	6	87					-			J	D, In	đ	170	14.	Supplies home and a

Table 1 Records of	representative	wells in	the Rogu	e River	basin	(Bear	Creek	valley	and adjacont	areas - Continues	
								•		1	

Sec.

										-	· · · · · · · · · · · · · · · · · · ·			19		
(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (16)	b	(16)	(19)
<u>1. 37 S., 1</u>	<u>. २ ज</u> Con	time	đ													1.7
LP2 7. Cullen	Vf 1,335	Dg	21.4	60						1.61	Mar. 12, 1951	C	Irr	1		Lee place DF for water-level
1473 U.S. Bureau of Meclamation	Vf 1,335	Dn	7.9	1						1.17	do .		0			Planeter tube no. 8 of Bur Reol.
150 Ed Leach	Vf 1,320	Dg	29.2	2				Alluvium	υ	2.9	Mar. 8, 1951	J	D	55	16	
1571 Tom Whittle	Vf 1,325	Dg	20							2.41	do.	с	D. S	tro	8.5	Suplies 3 houses and stock
1511 Drawond	Vf 1,360	Dg	30	48						6	Varch 1951	C	D. Irr	15	15.\$	
1512 do.	Vf 1,360	Dg	30	48						6	do.	с	D	1		Nator level in well is low i
1571 V.F. Birdseye	Vf 1,350	Pg	60					Alluvium	U			c	D, S. 55. Irr	5 #	13	of mterioped with 2 m
1571 V.S. Bureau of Reclamation	Vf 1,327	Dn	7.	4 2	7.4			do .	U	2.42	Mar. 12, 1951		0			centrifugal pumps. Piesometer tube no. 9 of Bu Reol.
1601 R Conner	V∎ 1,370	Dg	14	48				Sandstone	с	F	do.	J	D. S. Irr	115	4	
1671: Carlton	Vs 1,410	Dg	39.	5 48						18.4	Mar. 6, 1951	J	D	20	8	
1671 S. Olson	Vs 1,410	Dg	16	60						10	March 1951	J	D. S	155	11	Papartedly a good well.
16P2 H.S. Conger	Vf 1,380	Dg	15					Valley fill and sandstone	v	9	do.	C, 250	Irr			Cran sump-well 50 ft by
1601 H. E. Conger	Vf 1,380	Dg	24	72				Valley fill	U	15	do.	J_	D	115	4	Produces good supply of wat
1621 G. S. Lewis	Vf 1,360	Tæ	1 10	6	28	Å	0 70	1		8	åo.	J, 54	D, S, Irr	215	289	
1741 TO Forton	Ve 1,750	Dr	247	6	,							J.	D			Kill pump dry in 20 minute
17H1 . do.	Vs 1,700	Dr	150	8								J .	D, Irr	125	;	3 for -
1731 . 6. 8. De'has	Vs 1,640	Dr	130	6	8			Decomposed granite	c	F	Kar. 6, 1951		D, Irr	130) :	Stops flowing about 6 week
1701. 7. J. Hight	Vs 1.680	Dar	133	6	79		7	do.				J. 6	D	15	5	3.
1792 do.	Vs 1.700		231	6				do				T, 20	D			
1742 2.100.	¥8 1,700		231													

8

Table 1 .- Records of representative wells in the pogue River basin (Bear Creek valley and adjacent area - Continues

arit	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	((13)	(14)	(15) (16)	m	(16)	(19)
	<u>7, 37 5,, 7</u>		tinne													they a		17
14P2 T. C.	illen	Vf 1,335	Dg	21.4	60						1.61	Mar. 1	2, 1951	С	Irr	r.		tee plate 19 for water-level
	Bureau of Lasation	vf 1,335	Dn	7.9	1						1.17	d	bo.		0	and the second		Peol.
1502 - 14 La	ach	Vf 1,320	Dg	29.2					Alluvium	υ	2.9	Mar.	8, 1951	3	D	55	16	
1571 Tom 1	hittle	Vf 1,325	Dg	20							2.41	ć	so.	C	D. S	10	s.\$	Supplies 3 houses and stock
1581 Draw	mond	Vf 1,360	Dg	30	48						6	Uarch	1951	C	D. Irr	15	15.	
1512	do.	Vf 1,360	ng	3 0	48				·		6		do.	c	D	-		Mater level in well is low i
1591 V.F	. Birdseye	Vf 1,350	Dg	60					Alluvium	υ				c	D. S. 55.5	#2	73	of miteriognipped with 2 mm
1510, Y, B	. Bureau of Lamation	Vf 1,327	Dn	7.4	2	7.4			do.	υ	2.42	War. 1	12, 1951		0			Contrifugal pumps. Piescastar tube no. 9 of Bui Hecl.
1601 R. C	omer	₹8 1,370	Dg	14	48				Sandstone	с		3.	do.	J	D. S. Irr	115	4	
1671- Carl	ton	Vs 1,410	Dg	39.5	48						18.4	Max.	6, 1951	J	ט	20	8	
1671		Vs 1,410	Dg	16	60						10	March	1951	J	D. S	155	11	Peportedly a good wall.
1672 1.3	. Conger	vf 1,380	Dg	15					Valley fill and sandstone	U	9	¢	do.	C, 250	Irr			Com sump-well 50 ft by
1601 K. F	. Conger	Vf 1,380	Dg	24	72				Valley fill	U	15	(đo.	J_	D	115	4	Froduces good supply of wat
1681 0. 5	. Lewis	vf 1,360	Γ r	110	6	28	40	70			B		ćo.	J, 54	D. S. Irr	275	289	
1741 0.4	orton	Ve 1,750	Dr	247	6									J	D			Till pump dry in 20 minute.
1711	do.	Vs 1,700	Dr	150	8									J	D, Irr	125	3	for
1771 0.1	Deluss	Va 1,640	Dr	130	6	8			Decomposed granite	c	P	¥ar .	6, 1951		D. Irr	130	2	Stops flowing about 6 week
No.	. Hight	Vs 1,680	- De	138	6	79	57		do.	12	5 e			J, 6	σ	155	3	
	do.	Ve 1,700	Dr	231	6	50			do					T, 20	D			

Table 1 .- Records of representative wells in the Rogue River hasin (Bear Creek valley and adjacent areas) - Continued

(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (16)	(17)	(18)	(19)
T. 37 5	R. 2 H Co	mtim	ed													
ML. C. E. Bellows	Vf 1,415	Dr	20	6								J	ס	150	11	
The D. D. Day	Vf 1,415	Bđ	18	8	16	15	3	Sand and gravel	σ	3.4	February 1951	J, 85	D. S	165	10	
7711 N. T. Fjarli	Vf 1,440	Dr	19	6	18			do.	σ		November 1950	3	D .	155	21	Water level rises 1 ft ab surface.
131 . Miederneyer	Vf 1,410	Dg	42	48-6		0	42	Red "clay"	U	5	Warch 1951	P	D, Irr	145	3	Dug to 32 ft, bored to 42
Mil Jackson Creek	Vf 1,480	rg	10	240x 360		0	28	Alluvium	σ	0.10	Jan. 5, 1951	c	Ind			Tields 100 gpm for 12 hou 12 hours to recover; see for water-lavel record.
Mg Alice Vincent	Vf 1,480	Dg	8	120X 180		0	8	do.	a	2.5	do.		D	160	. 9	
981. I. Hiederneyer	Vs 1,520	Dr	63	6								c	D	150	4	
901. 0. Heckert	Vs 1,520	Tr	84	6	84							C	ŋ	155	4,8	Fur: ishes good supply of for ? houses.
OAL R. Livingston	Va 1,750	Tr	276	6								P. 13	D. IFT			Cannot be pumped dry.
201 E. L. March	V# 1,600	Dg	36.5	60				Colluvium	υ	15.7	Feb. 21, 1951			95	3.5	Not upor,
BHL L N. Mamilton	Va 1,590	Dr	138	6		·						J	D	10	7	Poor supply; sulfurous was unfit for drinking.
311 E. Renors	Va 1,690	Dr	75	6						6,1	Feb. 20, 1951	P	D ====	175	2	Inadequate in summer.
31.2 do.	Va 1,680	Dr	140	6								J, 3	Π			To.
34AL O. W. Lofland	Vf 1,450	Dg	14	48	6					6	February 1951	c	D, Irr	110	5,8	Part of water percolates irrigation ditch; water draws down 14 ft after 8
3442 W.A. Craner	. Vf 1,450) Dr		6								J	ס	125	4	purping.
34H1 J. L. Vanpelt	Vf 1,465	i Tr		6								3	D	45	4,8	· .
34KL Arthur Martin	Vf 1,470) Dg	12.4	48						23.6	Feb. 21, 1951	J	D	185	10	Water is cloudy.
34ML L. J. Hamilton	Vs 1,590	م <u>تر</u> (100	5	50	90	10	Greenstone	π	18	1949	J. 30	D, Š	45	14	
3407	Va 1.530	Da	8.3	L						0	Feb, 20, 1951	J	Ŋ	75	11	

Table 1 - Records of representative wells in the Rogue River basin (Bear Cree	(valley and adjacent areas) - Continued
---	--

(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
T. 37 S., R	2 W Co	ntina	bed														-
ML. C. B. Ballows	Vf 1,415	Dr	20	6	•							J	σ		150	11	
ALL O. D. DRY	Vf 1,415	Bđ	18	8	16	15	3	Sand and gravel	û	3-4	February 1951	J, 85	D. S		165	10	
NL X. T. Pjarli	Vf 1,440	Dr	19	6	18			do.	σ	7	November 1950	3	D	X	155	21	Water level rises 1 ft ab surface.
N. Kiederneyer	¥f 1,410	ng	42	48-6		0	42	Red "clay"	σ	5	March 1951	P	D, Irr		145	3	Dag to 32 ft, bored to 42
Lamber Co.	Vf 1,480	Dg	10	240x 360		0	28	Alluvium	U	0.10	Jan. 5. 1951	c	Ind				Yields 100 gpm for 12 hou 12 hours to recover; see for water-lavel record.
12 Alice Vincent	Vf 1,480	Dg	8	120X 180		0	8	do.	σ	2.5	do.		D		160	, 9	
HL . Hiederneyer	Ve 1,520	Dr	63	6								C	D		150	4	
0. O. Beckert	¥s 1,520	Tr	84	6	84							C	ח		155	4,8	Furrishes good supply of for 2 houses.
R. Livingston	Va 1,750	Dr	276	6								P, 13	D. Irr				Cannot be pusped dry.
CL. L. March	¥s 1,600	Dg	36.5	60				Colluvium	U	15.7	Feb. 21, 1951				95	3.5	Not used,
H. J. M. Hamilton	Va 1,590	Dr	138	6								J	n		10	7	Poor supply: sulfurous wa unfit for drinking.
LI I S. Rienars	Vs 1,690	Dr	75	6						6,1	Feb. 20, 1951	P	D	¥77	175	2	Inadequate in summer.
do.	Vs 1,680	Dr	140	5								J, 3	σ				Do.
AL . V. Lofland	Vf 1,450	Dg	14	48	6					6	February 1951	c	D, Irr	•	110	5,8	Part of water percolates irrigation ditch; water draws down 14 ft after 8
IC TAL. Craser	¥f 1,450	Dr		6								J	D		13	4	pusping.
a Vanpelt	Vf 1,465	Ter		6								3	Ū		45	4,8	
an Arthur Martin	Vf 1,470	Dg	12.4	49						23.6	Feb. 21, 1951	J	n		185	10	Mater is cloudy.
an I. I. Hamilton	¥s 1,590	2	100	6	50	90	10	Greenstone	π	18	1949	J, 30	D, S		45	14	
	Ve 1.520	Da	8.1							0	Feb. 20, 1951	J	ŋ		75	11	

the second of the second of

Table 1.- Records of representative wells in the Rogue River basin (Bear Creek valley and adjacent areas beatimed

(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (16)		(18)	(19)
7. 37 3R												· · · · · · ·			(/	
111 Sander	Vf 1,450	Dr	180	6	70	86	?	Elue sandstone	U	12	February 1951	1 3 4	~		••	
			100	1	10	-	1000		u	14 ·	Idoruary 1991			1	1.6	
Sol J.R. Vinn	V£ 1,470	Dg	16	60		0	16	Alluvium				P	D		6,2	Adequate for house use.
SIL- R. S. Hiller	Vf 1,480	Dr	65	6	60	65		Black sand	U	3	February 1951	J, 17	D, Ind	10	1	
3511 William Fugere	Vf 1,510	Dg	42							18	do.	J	D	5	15	
751 Y. Bodenstab	¥f 1,500	Dg	12	48				Alluvium	σ	4	do.	J	D. 8	15	14,5	
3523 do.	Vf 1,500	· Dg	15	84		5	10	do.	υ	2.8	Feb. 26. 1951	c	Irr			Vell shaft is 7 ft square 5-foot adits to west and used for lawn and garden.
3510 L. L. Rentz	Vf 1,500	Dg	29					do.	σ	4-5	February 1951	c	D. 5	190	is	neually adequate.
T. 38 S., 3	<u>, 1 ¥</u> .															
Ma J. T. Arnold	Vf 1,520	Dr	100	6	Ð	32	?			3	do.	J, 2	DS	125	6	
SIL Lamen	¥: 1,620	Dr	180							1.8	Feb. 15, 1951					Kot used.
211 Sehnick Bros	Vs 1,670	Dr	40	6						7	do.			1		
JEL S. I. Banson	Tf 1,520	Dr	182	6	45			Gravel	7	30	February 1951	P. 9	D. S	155	6	
671 Soll Conservation	Vf 1,450					0	36	Shale	Ū			C	מ	6		See table 4 for chealcal : of water.
det do.	71 1,450	De	150,4	6				do.	σ	9.94	0at. 30, 1951		σ			Not used.
611 Keystons Orchards	V£ 1,475	Dg	39.9	72X 96				Alluvium	υ	5.57	Feb. 19, 1951	J	Ind	235	5	Water used for mining spr:
741 F. R. Frink	Vs 1,570	28	22.2	,						0	700. 14, 1951		1	1		Hot used; Mork's well no.
The Bar Jock	¥s 1.590	Dr		6				· · · · · ·				J	D. S	265	10	Pumps dry in summer.
	Vf 1,450		1,200	16					C	.7	¥ay 16, 1951	-		13	- 2	Water said to cause boron to plants; see table 4 f chamical analysis of wat for suraying Work's wel

Thyision of Agro. Engineering. U. 5. Dept. of Agri., Dec. 1930.

Urpublished records subject to re

Table 1 Records of representative	wells in the Rogue	River basin (Bear Greek	valley and adjacent areas)	- Conta
	• *			1.1

54. A. 1.						•									Alarta -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	7# 61	. 1 Reco	rds o	of repr	esent	ative	Wells	in th	e Rogue River b	asin (B	ear Cre	ek valley and a	djacent	areas) - Co	atin		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (16)		(11)	(19)
	T. 38 S., R.	<u>1 H.</u> - Co	ntim	red													
81.1	Three Oaks Orchard	Vf 1,540	Dg	13.6	•						5.1	Jan. 22, 1951	P		1		hater weed for mixing spray.
SER.2	Warren Loffer	Vf 1,550	Dg	25.2							1.95	Yeb. 14, 1951	P, 8	D. 5		บ	
In	R. Dabs	Vf 1,485	Dg	22	72				Alluvium	σ	6	February 1951	J	D, Ind		1.6	
9H1	Luman Koat Company	Vf 1,480	Dg	20			0	20	Valley fill	υ			3	D, Ind	15	14	bug in spring area.
YOT?	H. W. Schewistert	Vs 1,510	Tr	45	6				Shale	σ	3	Sumer 1949	J	D	İs	6	Paralates good supply of mate
1001	C. B. Harrison	Va 1.570	Dg	28	60	5	2		do.	U			P	G	1	4	
1011	Curtis Barner	¥a 1,660	Dg	40.9	6				do.	ΰ	6.9	Jan. 30. 1951	J	D	85	,	filled in around casing.
1082	W. J. Parns	¥s 1,590	Tg	18	48	12	18		do.	· 0	6.7	do.	T	D. 5	15	9.	
toa	E. R. Cox	Vs 1,485	Dr.	18.1	8				do.	υ	6.93	do.	3	D. 5	15		idequate supply.
	Cartis Barnes	¥s 1,620	Dr	90	6				do.	υ		12 32 4	3. 4	D	175	5	Insternate.
1152	do.	¥s 1,620	Dr	96	6		87	9	do.	υ	10+	January 1951	J. 5	Irr	- 1		
1113	C. T. Higdon	Vs 1,620	Dr	84	6		84		do.	υ			J	σ	705	3	Furme dry in 15 minutes.
1184	E. E. Fasnussen	Vs 1,660	Tr	60	6						20	Winter	J. 5	D, S			way yield 10 gpm.
TIOL	Alford	Vs 1,675	Dg	45					:				J	D. S			Bork's well no. 71.
110	A. J. Terns	Vf 1,625	Dg	19.5			19		Sandstone	υ	9.0	Jan. 31. 1951	J	D	190	6	Work's well no. 70.
11 m	C. C. Swingold	Vs 1,750	Dr	55	6	55							3	D. S	170	7	Adequate supply.
1951	J. M. Branna	¥s 1,890	Dr	152	6								P	Ð	90		محمد (
	L. H. Hughes	Vs 1,860	Dr	100	6		24	76	Sandstone	υ	25	Jamary 1951	P		100	, 4	A mit work's well no.
1301	Oardner	Vs 1,860	Dg	26	54				Shale	ΰ			J	D, S			
230	Cardner I. Willer Kantor	Ve 1,790	Dg	41.9					ćo,	a	31	1929	P				Adequate supply; see table log; Fork's well mo. 39.
101	Kanter	Vs 1,710	Dr	101	6	6					20	February 1951	,	7 , 8	16	<i>в</i> 1	1 Easily pumped dry.
	J. W. Bernett	V# 1.720	Bd	22,6							1.85	Feb. 12, 1951					Not report,

																		a section of the section of the
		Tabl	• 1	Record	s of	repres	entati	lve w	ills in the Roga	a River	basin	(Bear Creek val	ley and	l adjace	nt are	LS) - C o	mtinned	
(1)°	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
	T. 32 S R.	<u>] W</u> Con	tinuo	đ														
1512	Walterpeier	Va 1,520	Dr	200	6				Sandstone	τ			J	D		5	34 2	See table 4 for chemical of water.
150	Andrew Stavens	Vf 1,510	Dr	225	8		40	85	Shale						58		15	Do.
160	H. W. Thompson	Va 1,550	Dg	24					Alluvium		3.52	Potr 14, 1951	11	D	\$7	14	10=	Do.
183	Barnbardt	Vf 1,589	Dg	30	48	12					9	January 1951	P	D		145	13	Water level drops in wint well no. 52.
	C. Hinter	Vf 1,627	Dg	39		20					10.2	Jan. 25, 1951	×	-				Sall 505 Linux
160	Walker	Vf 1,645	Dg	27.4							4.81	Fab. 12, 1951	P			80	20	Work's well no. 44.
1691	F. W. Rouston	Vf 1,630	Dg	43					Sandstone	1	13.3	Jan. 25, 1951	J	D, S		170	21	Work's well no. 45.
1672	C. Runter	Vf 1,622	Dg	38									3					Work's well no. 46
1601	C. Cingcade	Vf 1,602	Dg	60					Sandstone		6.15	Jan. 25. 1951	P	D, S		205	18	Work's wall no. 42.
1681	T. Fish	Vf 1,576	Dg	28														Work's well no. 47; destr
1741	Louis Batton	vf 1,610	Dr	80	6		60	20	Hlack shale	ΰ	8	February 1951	3, 4	D, S		190	14	
1781	Lind	Vf 1,610	Dg	46.5							14.4	Feb. 14, 1951	3	D		25	14,8	Good supply.
178	D. J. Calhoun	Vf 1,620	Dg	25,1							11.5	do.	J	ם		190	8 \$	
1731	C. D. Vrasen	Vf 1,694	Dg	20,1	60	4					12.9	do.	P	Ũ		200	9,#	Adequate supply; Work's w
170	G. L. Whitmore	Vs 1,730	Dg	35	36				Rock	σ	10	February 1951	P	D, S		105	2,8	
2201	Agricultural Ex- perimental Station	¥f 1,645	Dr	1000	6				Shale	c	21	May 16, 1951			59	μ.	Ħ	Water unfit for domestic (gation use; water lavel above surface; see tabel chemical analysis of wate
2292	1	vr 1,645	Dr	800	8				čo.	c	P		25	D I	66	1	25,	Do.
2341	ivan Olson	Vs 1,620	Dg	15.6	,						2.2	Feb. 1, 1951	J, 8	D				Never goes dry.
2381	Vin Hart	vf 1,530	Dg	35	54		27		Sbale	σ	12-15	February 1951	P, 3.	5 D		195	6	Adequate for house use.
2301	Joe Fenton	Vf 1,650	D	100	6	•							P				<u>.</u>	Dry in sumer.

Table 1 .- Records of representative wells in the Rome River basin (Bear Creek welley and adjacent areas) - Continued

The second se

Table 1 Records of representative wells in the Rogue River basin (Bear Creek valley and adjacent areas of	a River basin (Bear Creek valley and adjacent areas a Continued	tsin (a River	Rogue	the	ils in	representative wel	1 Records of	Table
---	---	--------	---------	-------	-----	--------	--------------------	--------------	-------

														•		ł		
- (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	hn	(1.8)	(19)
	T. 38 S. R.	1 W Con	time	đ												-		
2 3:1	Agricultural Exper- permental Station	vr 1,640	Dr	80	6	60							J, 10	D		195	4	Bork's wall no. 1.
2501	H. Defoung	Va 1,630	Dg	22			18	2	Sandstone				J	D. S				•••
2502	7. A. Steiger	¥s 1,610	Dr	67.1							13.3	Feb. 1, 1951	J, 12	D, 5		and the second second		Bee plate at for water-leve
2503	do.	V: 1,610	Dg	. 12.7	60						4.97	do.	J	D		1		Do .
2601	City of Balent	Vf 1,635	Dg	15	36				Yallay fill	υ	4	January 1951	T, 300	PS	54		4:	Shaft with adits all backfi see table 4 for chemical a of water.
2682	W. J. Kounz	7f 1,740	Dg	26.7	60				do.	IJ	5.93	Jan. 25, 1951	J	Trr		115	4	See plate 27 for miter-leve
2683	do.	V£ 1,740	Dg	23.1					do.	υ	7.15	do.		br				Interconnected with -2682 at balow surface.
2782	Holmes Brothers	Va 1,750	Dr	1000	8				Netavoloanio rocks	C	7		2		59.5	7	*	See table 4 for shemical an of water.
2751	City of Talent	Vf 1,715	Dg	30	144				Valley fill	ប	8	January 1951	T. 400	P3	55	105-	-	This well and 2601 supplies new table 4 for shemical a of water.
3511	E. L. Crain	vf 1,780	ng	23.3	1						7.2	Jan. 25, 1951	С	Ð		140	11	1 2 4 C
	T. 38 5 R	<u>, 2 ¶</u> .							1	•								
142	J. J. McCandliss	Vf 1,470	Dg	2							4	February 1951	3-	D, 5		85	7,5	Brt west for drithing.
181	Hary-Mac Orchard	Vf 1,490	Dr	45	6	10							J	D		35 0	11 🧳	10.00
111	Barold Breedlove	¥s 1,520	Dg	27.5	60	10					916	Feb. 19, 1951	P	D		275	15	Dry in winter; not much for -drinking;
111	J. Wallow	vf 1,500	Dr		6				Alluvium	υ			3	D, S		140	4	·
191	7. R. Pairwoather	Vs 1,600	Tr	19.1	. 6				Metavolcanic rocks	Ŭ	6.2	7 eb. 19, 1951	P	đ				
192	do.	¥# 1,600	Tæ	40	6					G	7		3.4	D	56		10-	See table 4 for sheatlosl as of mater; flowing about y
1 121	W D Defetar	Te 1.580	Der	- 71 /							0 177	Peb 10 1051	2			:		May 1951.

		100			0.0000					V .,		100 (100 (100 (100 (100 (100 (100 (100		66	•	~ .* .			la Ar	F	1
	Table 1	- Red	cords d	f re	p rose at	ta ti v e	well:	s in th fr	e Rog con Gol	ne River bagin (a ld Hill to Robert	lon son	g the mai Bridge)	n ste - Con	a of the i tinued	Rogue Ri	ver and a	north		i jei	me River	
1)	{2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11) (12)		(13)	(14)	(15)	(16) (17)	(15)	(19)	
	T. 36 S R.	6 1	- Cont	time	đ													1			
501	Jim Collins	Vs,	980	Dg	9.5	48		0	9	Dacomp dsed granite rock	σ				C	D, IFF		75	3	Easily pumped drys to recovers in about	a bours.
an I	C. B. Cook	vr,	870	Ta	13	3				Gravel	U				C, 35	\$		i			
680	E. Theobald	vr,	870	na	20	1}				do.	U			,	C	D, 8				Adequate.	
701	Fort Vannoy Hop Yard	vf,	900	Dr	42	6				do.	U				T	D, Irr		14		Supplies 7 families	1. 72
712	do.	Us,	900		45	6				Quarts diorite	U	34.88	Aug.	15, 1952	P					Insdequate.	
.911	L. T. Wooddy & Sons	vr.	930	Dg	60	36	60			do.	U	37.27	July	21, 1952	3	D				Supplies 4 families	• <u>1</u>
121	N. D. Price	vr,	870	Tr	32	8		20	12			6		1947	c	D				Tield has lessened	sime drilli
121	Ed Rich	vr.	870	Dg	30	36				Oravel and sand	U			- 197	C	D, S					
280.	Fred Wyss	vf.	870	Dr	60	6	60	40	20	Sand and gravel	U	12	Usurd	ib 1952	J, 8	D. S. Irr		60		2	
282	S. T. Ruber	vr,	880	Tr	64	6	55	55	10	Cemented gravel	U	10-15		1939	J	D. ITT					1
201	B. C. and D. A. Offins	Vſ,	920	Dg	30	10	30	0	30	Decomposed quarts diorite	U	10		1922	J	D. S. LTT		i		Adequate; owner re short of water.	ports it is n
292	R. R. Roley	₹2.	920	De	70	6				do.	U				3	D, Irr				Water shows high i	ros content.
381.	Neil Mesman	Ψf,	920	Dr	80	6									J .	D, S. Irr					
3161	R. L. Smith	٧f,	920	- The	56	6	46	46	10	Sand?	σ	9.36	July	20, 1952	3	D					
557	A. W Land	Ŧ,	950		90	4									3	D				Inadequate.	
732	S. W. Pyle	Va,	1,050	ħ r	79	6	73			Decomposed quarts diorite					J, 25	D. Irr					-91
331	A. R. Hay	vr,	, 950	Dg	45	24									c	D, Irr					14
381	J. G. Wright	Ţ٥,	1,000	Dr	100	6									3	D. S				Inadequate.	1.
31	B. H. Olsen	Vs.	1,075	De	68	4	68	60	8	Decomposed quarts diorite	U				J	Ø				Easily pumped dry reported to reca	y unter level

	Table 1	L 94	ecords	of r	eores.	entat	ive we	lls in		ogue River basin Gold Hill to Robe					Rogue	River and	l north	ef ti	ne B	D.T.S. River
1)	(2)	(3)		(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)		(14)	(15)	(16)	(17)	(18)	(19)
	1. 36 S., R.	5 .	- Cont	inne	8															
U	Club	¥8, 1	1,100	Dr	300	8-6				Quarts diorite					T	α		ł		
11	B. L. Huston	Vs,	,000	Dg	17	30	6-7	0	17+	Alluvium	υ	13.07	June 24, 1	952	C	D				Reported inade juste for 1 house.
HI	E. J. Evans	¥s, 3	1,100	Dr	42	6				Quarts diorite	υ				C	Irr				Supplies mater for lawn and gard
R2	Frank Jones	¥8. 3	1,100	Dr	69	6	69					4	1949		J	D		30	19	Probably drilled in shale.
51	Morens Brietasyer	¥8, 1	1,100	Dr	285 -	8	125					14.45	Apr. 22, 1	.953						Abandoned because of saline water see table 4 for chemical analys: of water.
3 0 .	Kermit Moliter	¥8,	1,200	Dr	32	6					U	10.78	June 24, 1	952	c	D, Irr				
	7. 36 5 R.	6 .																		
EL.	Houser Pearson	٧.,	1,020	Dr	58	6									P	D. S. Irr		1		At times
л	E. D. Hildebrand	π, 1	,000	Dg	55	48		15			U	25	July 1	1952	P	D		Company of		Ander shows indication of iron.
21	Mae Ripley	۲s,	1,100	Dr	58	6	30	30	28	Quarts diorite	U	34.94	Aug. 19, 1	1952	P	D				Inadequate.
11	farry Tannehill	¥s,	1,000	Dr	80	6				Peconosed rock					J	D, Irr				Will supply 2 lawh sprinklers all day in addition to household.
qı	John Bastian	ΰ,	970	Tr	21.0 -	6	137	201	9	Quarts diorite	IJ	100+	August 1	1952	7	D, S. Irr		105	4	Water level originally at 60 ft; several months, water level dro to present level.
131	G. R. Wilson	٧f,	950	Dr	40	6				Sand and gravel	.7				C	D				Reported to be a good well.
FL	William Dierks	₹ſ,	950	Dr	54	6	54			Quarts diorite		-	·		3	α				
A1	Ray Johnson	₹8,	950	Dr	17 9 \	/ 6				đo.					J	ŋ				Supplies 4 houses and a dairy ba
n	Weston Rop Tards	Vſ.	900	Dn	20	ų	20			Alluvium	υ				P	D. Irr				for hor
331	L. J. Tork	¥s,	970	Bg	27	18	9	0	27	Decomposed quarts diorite	σ				c	D. Irr	<u> </u>	۰. ــــــــــــــــــــــــــــــــــــ		In the summer yield is addequate

1

۰.

1(

in.

Table 1 .- Records of representative wells in the Rogue River basin (along the mian stem of the Rogue River and north # the more liver from Gold Hill to Robertson Bridge) - Continued 0) (2) (4) (5) (6) (7) (15) (16) 17 (18) (19) (3) (8) (9) (10) (11) (12) (13) (14) T. 36 S., R. 4 W .- Continued D. Ind 2101 B. F. Garber VI: 1,020 36 15 15+ Alluvium 0 U 10 August 1952 9.4 De 設 Supplies with for house and ba 48 201 G. I. Peoples Vf. 1.030 Dz 21 13 1952 P August D Vf. 1.030 Dr 6 Sita Otis Fuller 55 14 D do. Well being pumped when water le 2571 Otto N. Jones Vf. 1.030 Dg Aug. 22, 1952 C 36 10 Alluvium 25 T 10.20 2 D. S. secored: furnishes water for Irr see plate 90 for miter-level r Vf. 1,020 2601 L. H. Crouch 52 6 C D. Irr Dr 2 Supplies 2 farmsteads. 2771 B. F. Martin Vf. 1,000 Dr C D. S. 55 6 Irr In use since 1856; supplies dai 2781 Effie Birdseye 36 Alluvium August 1952 C D. S. Vf. 1.010 Dg 18 Irr 3511 Trank Dalay Vf. 1.030 Dr 54 6 "Black sond" C D. 5 D. S. Vs. 1,060 Tr 68 6 351 Treeburger Sand? 1 ITT Water contains iron. 43 26.29 July 23, 1952 P D 350 J. R. Barnes Vf. 1.080 Dr 38.1 Gravel T. 36 S., R. 5 W. Flows 2 gra. Vf. 1,180 Dr D. ITT SO H. H. Evers 103 69 Quarts diorite Aug. 21. 1952 C. 20 6 C overflows casing/3 to 21 gua win SEL V. W. Stichan - : 1084 ... Vf. 1.150 Tr 100 6 100 88 +1.18 D. ITT 12 do. C yan is off. 2 SE2 X. Adams Flows 1 to 2 mm; well reporte R C P Ð Vf. 1,150 Dr do. 350 do. drilled for oil test. £ Reported to be a gravel-packed 61 Fred Barvey 1949 1. 50 D. S. Vs. 1,180 Dr 60 6 60 50 5 do. C 20 casing perfornted. Irr (2)analysis of T

200 C. C. King Vs. 1.000 Dr 52 6 47 Gravel? 18 Spring 1952 D T. E. Pearson July 20. \mathbf{m} 195 Greenstone 1945 79 Quarts diorite Vf. 1,000 Dr BÔ 2981 .B. L. Ruston 60 40 35 3.66 June 24, 1952 T. 30 Irr C

faline water; not table 4 for c Supplies water to irrigate 4 a per plate I for water-level

and the second start and

will star			-	-								<u> </u>			-24-		
136	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(15) (17)	(18)	(19)
Cer the	T. 36 5 R	. 3 T Cont	ime	d													
T. Terme	th Lamb	Vf, 1,310	Dg	26	48	14							J	D, IFF			
1. I. B.	Fisher	Vs, 1,450	Dr	76	6	. 46			Conglosorate	υ			J. 5	D. ITT	150	4	
a Dale	lncent	¥f, 1,390	Dg	11.2	60	3			Alluvius	υ	3.58	July 22, 1952	3	D. S.			
	T. 36 S R	<u>. 4 T</u> .									•			Irr			
1. with	Peck	Vs, 1,250	Dr	65	6								3	D, Irr			
1 1. 1.	Reid	Vs, 1,120	De	53	6	53	45	8	Quarts diorite	c	7.60	Aug. 4, 1952	J. 12	D, Irr			Mischarges into a sump; owner
																	well has produced 12 gpm for continuously; casing perform
																	lowest 20 ft. See table 4 f analysis of the water.
C. 1. L.	Bennett	vf, 1,150	Dg	25	36	25			Alluvium	U			c	D, 8			Supplies dairy; inadequate in summer months.
E Balph	Kulisser	¥s, 1,090	Tr	150	6		100	50	Rock				J	D, S			Supplies turkey ranch.
1.1.1.	Luebcke	Vf, 1,050	Dr	125	6								3	D, S,			Supplies dairy adequately.
									1.5					Irr			
1 Clen	A. Black	Vf. 1,050	Dg	13	6				Alluvium	σ			3	D. S. Irr			
	an Larson	Vs. 1,090	Dr	76	6				Rock		2	December 1951	3	D, Irr			
201	Condray	¥s. 1,150		96	6	96	80	16	Quarts diorite	U	17	June 1952	J. 28	D. ITT	55	3	
		7, 1,100	Dr	85	6		75	10	do.	σ	10	1948 or 49	3	D. S.	50	2	Wall has good yield.
a series	1.72													IT			
	hy and June	¥f, 1,050	Dr	30	6	30			Alluvium	υ	4.72	Aug. 4, 1952	3	D, 9			Do.
		7. 1.100	Dr	50	6								J	D			
		Vf, 990			36				Alluvium	. U	6.76	Aug. 1, 1952	-	D. Irr	•		Supplies water for 2 fasilies
A.5 00	. Partei		Dg		48		0	164		υ. υ	9	August 1951		•			Supplies irrigation water for
		Vf, 980		70		10		1 17			,			<u>. </u>			

Table 1.- Pecords of representative wells in the Rogue River basin (along the main stem of the Rogue River and north of the Rogue River from Cold Hill to Robertson Bridge) - Continued

AP.A		esentative wells in the Rogue River basin (along the main stem of the Rogue		
	Table 1 Records of repu	esentative wells in the Rogue River basin (along the main stem of the Rogue	River and north of the Re	gue River

1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
1	T. 35.5 R.	7 .																	
1	T. H. Trompson	¥s,	900	Dr	187	6				Decomposed quarts dicrite	υ	48.77	Aug. 14. 1952	J	σ		120	3	
11	Hrs. Hockenyos	Vs,	1,100	Dg	16	36	8			Alluvium	υ	10.81	Aug. 20, 1952	۳	D				Can be pumped dry in sum
n	Earold Throwbridge	¥s,	900	Bđ	23.5	6		7	13	de .	ប	5.24	đo.	P	D				Easily pumped dry.
1	A. A. Seanten	٧f,	870	Dr	83	8	83							J	D. 8, Irr				Adequate for farmstead bu limited irrigation.
0	F. N. Roberson	Vs.	900	Dg	42	36	3.4			Alluvium	υ	30,45	Aug. 23, 1952	J	D, Irr				Adequate for lawn and gar
たいの	T. 36 5., R	3 1																	
n	William Rockford	vr.	1,050	Dr	39	6	39			Oreenstone	σ	11,28	Aug. 22, 1952	1	D, Ind		55.	2	Supplies house and garage sulfurous oder and iron stronger in summer.
	. C. Parker	vr.	1,060	Dg	11.5	48	7.6	0	12+	Alluvian	υ	4.43	July 23, 1952	P	D. S				Adequate at present.
	W. F. Romaine	vf,	1.070	Tr	40	6								c	D				Adequate for domestic use
1	5. T Pust	Vf.	1,150	Dr							υ	7.49	July 23, 1952	J	D				
	Louise Wisner	Vs.	1,200	Dr	47							13	1951	J, 30	D. S. Irr		160	3	
71	Robert Dale	Vs.	1,200	Tr	65	6			•		υ	30	1950	J	D, ITT				
	Ruby Quackenbush	TE,	1,090	Tr	45	6	43			Alluvium	υ	11.65	July 22, 1952	J	D, Irr				Adequate for lasm and gard
a	Poley Bros.	₹f.	1,150	Dg	20+	36				Sand?	U	10.66	do.	P C	מ				See plate 7 for mater-les
۵	B. C. Cuoninghan	¥s,	1,280	Dg	42	60	5			Alluvium	σ	12	July 1952	P	D, ITT				
D.	Welvin Lewis	Vf,	1,090	Tr	53	6								J	D, Irr		115	4	
7.	Cecil Van Horne	₹s,	1,360	Dæ	68	6	18			Rock		18	1950	3	D, Irr				
n	Terry Clement	₹8,	1,300	Dr	56	6	22	30	26	do.				J	D		170	4	
1.5	Phil Stonbridge	٧s,	1,200	Dr		6								3	D				Inadequate; mater reporte
	J. H. Cornutt	Ve	1.270	De	22	36	22			Alluvium	π	11.97	July 22. 1952	7	P. 5				

Table 1.- Records of representative wells in the Rogue River basin (along the main stem of the Rogue River and morth of the Rogue River from Gold Hill to Robertson Bridge) - Continued

1. 4. 1.

174

· (1)	(2)	(3)	(4)) (5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16) (17) (18)	(19)
	T. 35 S., R	<u>6 Ħ</u> .														
- 21	Anchor Natchery	V . 1, 150	Dr	235	8	120			Decomposed quarts diorite	υ			J, 20	D. Ind		Perforated at 40-45 ft and
222	do.	0, 1,150	Dr	130	6	120			do.	υ.	20	April 1947	J, 10	D, Ind		14
31	Al McDow	¥s, 1,200	Dr	60	6				Alluvium	σ			J	D, Irr		25. 27. 27.
342	John H. Brazille	¥s, 1,200	Dg	18.	5 36	8			do.	υ	9.92	Aug. 14. 1952	c	D, Irr		Inadequate.
511	F. A. Tubandt	Vs, 1,120	Dr	140	8	91			Quarts diorite	C	21	July 1952	J. 35	D		Intended for irrigation as
51	W. E. Thatoher	¥s, 1,080	Dr	42	6	30			Crevice in granite	c	16	1947	3.7	D, ITT		
\$P 1	A. F. Beynolds	vf, 1,030	Dg	21	42	21	0	21	Alluvium	U	8.33	Aug. 12, 1952	P	D	34.2	
P1	M. S. Mack	¥f. 970) ng	25	30				do.	σ	16	August 1952	P	D		
901	Rey Norton	.0, 1,100) Dar	90	6		. 8		Tecomposed quarts diorite	σ	56.86	Aug. 14, 1952	P. 5	D	14.00	
1011	Potts Lumber Mill	Vf, 1,000	Dg	28	48	28			Alluvium		18		C	Ind		Used for drinking water an protection.
1012	do.	¥f, 1,000	D Dg	16	48				do.	U	12		P	D, Ind		Do.
1081	do.	Vf. 98		108	106	106			Decomposed quarts diorite	c	+1	Aug. 13, 1952	P, 60	Ind	55 3	Flows 2 gpm; dramdown was 4 to 5 hours pumping 80 g
1111	A. L. Irwin	Vf, 1,05	D Dr	110	. 6	105	74	36	+ do.	C	2	1948	J, 10	D. S. ITT	60 3	
1411	L. F. Mune	Vs, 1,10	0 n	105	6	99	90	15	+ do.	υ	45.29	Aug. 21, 1952	30	D		Not yo: in new Perforated
16 11	R. T. Ridley	¥s, 1,19	D Tr	137	6	137	58	22	do.	C	23	1947	J. 30	Irr	45 3	Furnishes water for 12 acr casing is perforated 58 t pump runs 15 to 19 hours summer.
1510	E. Sherwin	Ve, 1,10	0 13	69	6								J	σ		
1691	J. R. Cartor	Vf, 95	0 13	- 25.	56	35	35		Pecomposed quartz diorite	U	6.79	Aug. 14, 1952	c	D, Irr		

Unpublished records subject

Table	1 Records o	f rej	01°851812	tativ	e mella	in ti fi	he Rog rom Go	ne River basis Id Hill to Rol	a (along cortson B	the main the main the main the main the main the main term of ter	n ster - Cont	s of the R Linued	logue R	iver and a	no rt h	of the Roga	. Piver	
(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		(13)	(14)	(15)	(16)	(17) (18)		(19)
T. 35 S.	R. 4 N Cont	ima	đ													\ \		
Schugurt	Vs. 1,200	Ter	72	6						21.09	Aug.	5, 1952	J	D, ITT				
Roy Ransburg	Vs, 1,200	0g	17.5	24	17.5	0	17+	Decomposed	υ	3.90		do.	P	D. S				,
H. S. Stone	Vf. 1,260	Dg	31 .0	36	15			Alluvium	σ	22.56	Aug.	11, 1952	P	D, S		٦	ater contains	iron and s for water-1

		L Records o	,				î	en (o)	ld Hill to Robert	aon I	ridge) -	- Cont	inued	-			i		-
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		(13)	(14)	(15)	(16)	(17)	(18)	(19)
	T. 35 S 1	R. 4 W Cont	ima	đ															
	Schugurt	Vs. 1,200	Dr	72	6						21.09	Aug.	5, 1952	J	D, ITT				· .
51	Roy Ransburg	¥s, 1,200	D 8	17.5	24	17.5	0	17+	Decomposed	ΰ	3.90		do.	P	D, S				,
i in	H. S. Stone	Vf. 1,260	Dg	31.0	36	15			Alluvium	ΰ	22,56	Aug.	11, 1952	P	D, S				Water contains iron and s see plate 25 for water-lo 23
ien.	Noel DeRobona	Vf, 1,170	Dg	22-25	48				de.	υ	15.05		do.	P	D. 5				
81	Leroy Buck	vr, 1,160	Dr	105	6	65	64	41	Decomposed quarts diorite	C	16	July	1946	J. 2	9. I rr		65	3	Now produces more than the reported by driller.
2191	H. I. Wehren	¥f, 1,150	Dr	40.5	6					υ	13.70	Aug.	5. 1952	J	D, S				
TB 2	do.	vf, 1,150	Dr	44.8	8					U	2.70		đo.						The same .
200	do.	V; 1,100	Dr	90	6	•				υ				J	D		95		Insdequate,
an	W. T. Cran	Vs, 1,200	Dg	35						U	21,14	Aug.	2, 1952	J	ם				
231	C. L. Dyar	Vf, 1,120	Dg	4.9	24	7	0	5	Alluvium	U	3.45	Aug.	5, 1952	C	D, Irr		50	6	
220	Joe Deckelman	Vf. 1,100	Dr	63	6	63	60	3	Gravelly sand?	C	+.25		1950	C	D. S. Irr				Eas excellent yield.
2251	S. B. Smith	7, 1,130	Dr	47	6	47	40	7+	Decomposed quarts diorite	C	30		1949	J, 15	D, 5, Irr		55	3	Tosted by bailer.
2751	Ralph Tork	Vs, 1,150	Tr	94	56	94	50	4	do.	C	20	Apri	1 1953	2 J	D				
2801	J. 0. 001dt	T, 1,100	Ľ ≭		6									J	D, S. Irr				Supplies 2 families.
2671	F. H. Helson	V£, 1,150	94	24	4				Alluvium	ឋ	14.12	Aug.	2, 1952	P	D				Adequate for present use
3371	Klochaus	¥ s, 1, 150	Ţ	90	6	89			Decomposed quarts diorite	c	۴	Lu	do.	3	D		70	2	2
33P1	Al Bringmann	Vf, 1,050	Γ τ	140	6				· ·	U	27.98		đo.	J	D, Irr				
3401	N. B. Motharter	Vf, 1,35 0	Tr.	71	6	71	51	20	ർഠ .	υ	10	Sept	1952	J	D, Irr				Owner has sump 55 ft lon and 10 ft Heep that will only 1/2 acre.

States and	Dable 1								10 River bagin (s					ver and r	north e	ia Ing	le tiver
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(11)	(19)
m	7, 35.5	R. 3 W Con	ntim	bet													
	R. M. Supran	Vf, 1,350	Dr	27	6	.25			Alluvium	U	14,20	Aug. 6, 1952					Imdequate water yield.
	T. 35 3.	. R. 4 M.															
101	Ed Hillis	Va. 1,270	1r	49	6	49			Red *clay* (?)	U			J	D. I rr			
381	C. W. Ceidburg	vr, 1,250	Dg	35					Alluvium	U			C	D			bursly adopts to for one house.
A	W. J. Vojkuvka	Vf, 1.250	Tr	68	6	66	60	8	Decomposed quarts diorite	U	5	When drilled	3,5	S. Irr			Furnishes water for one acre of berries; enter uses a dog well bound .
41	Pleasant Creek Quard Station	Vf. 1,250	Dr	70	6								1	D, PS			Upod by fire areas.
\$1	Fred Canterbury	U, 1,300	Dr	45	6		25	204	Decomposed quarts diorite	υ	12	do.	3	D. S. Irr			Tator La soft.
871.	C. L. May	Vf, 1,270	Dr	82	6	70	70	124	ferondousd	۵	17	1951	3	D		-	Nator reportedly contains iron.
9E1	C. J. Chaneler	¥f, 1,270	Dr	80	6	80	60	204	Decosposed rock		20	May 1952	3, 30	D, Irr		55	3 Tield determined by bailer test ensing performted lower 20 ft.
901	Leris Horthrup	¥f, 1,230	Tr	79	6	80					15	1948	3.7	P, Irr			Deted for yield by bailer.
1011	George Johnston	Vs. 1,210	Dg	27	48	2					21.44	Aug. 6, 1952	3	D, S		1	Indequate during summer.
1071	R. Holmes	¥s, 1,200	ī.	60- 65	6								J	D. S. Irr			idequate; water soft.
บท	E. I. Howell	vf, 1,180	De	48	6								J	D. S			Supplies dairy.
1172	C. H. Rhotan	Vf, 1,18 0	Dg		36				Alluvium				с	D, S		\$ 0	3
1281	Lee Hillis	Vf, 1,200	Dg	24	48	.4			do.	σ			C	D, Irr			Bottoms on bedrock.
	Vimer Cocaunity Church	vf, 1,150			6	51	50	1	Decomposed quarts diorite		13.92	Aug. 5, 1952	J	D			Not used enough to determine y
1501	W. B. McKnight	Vf. 1,150	Ţæ.	80	6								J	D. S. Irr			
<u>151</u>	J. H. Martin	Vs. 1,200	Ţ.	189	6	135	1.87	2	Crevice in roci	k C	29		J, 40	S. Irr		80	28

	Table 1	Records o	f re	p rese n	tative	well	s in th	ne Rog	ne River basin (a old Hill to Robe	long rtson	the mai Bridge	n stem of the	Rogue Ri	ver and m	orth of the he	gas River
(1)	(2)	(3)	(4)(5)	(6))	(7)	(8)	(9)	(2) (10)	(11)	(12)	(13)	(14)	(15)	(16) (17)(18)	(19)
,	T. 33 S., R	. 6 .											C. Access		ł	
1501	(2) T. 33 S R G. W Hopper Katheyn Hoore <u>T. 34 S F</u>	v£, 1,295	Tr	80	6	16	. 70	10	Greenstone	C .	5.61	July 23, 195	2 P	D. Ind		Plate of for water-le
2281	Katheyn Hoors	Vf, 1,290	Tg	20	22	20	10 16	· 6 4+	Alluvium Greenstone	υ			J	D, Ind		On bank of Wolf Creek; for metal; flows in t
	T. 34 S., F	4 .							m ***						_	
	W. D. and S. C. Hitson	Vf. 1,350		35	60		0		Alluvius	U		Aug. 11, 195				hetere.
3301	F. K. Balch	¥f, 1,280	Dg	14	48	13	9	5	do.	σ	9	1952	3	D, Irr	1.1	How for house and ge
	T. 34 S., F	<u>1.6₩</u> .													6	
201	Ray Clark	¥s. 1,350	Dg	15			0	15	do.	U	10	1949	P	D		Near a day 25-foot de
21	C. A. VoFarland	¥s, 1;280	Dr	55	6		38	17+	Greenstone	U				D	1	Pump breaks excilen a operation in summer.
2101	Frank Price	Vs, 1,250	Tr	40	6				do.	U			3, 55	ק		Capable of watering 1 without pueping dry
201	R. H. Morris	Vs, 1,357	Tr	190	6				do.	U			a	D		Vill youp dry in about
1151	H. O. Rown	Vs, 1,290	Tr	58	6				do.	σ			3	D. Ind		Furnishes water for a and 5 houses.
2710	L. O. Thiting	Vs, 1,380	Dr	84	7			•	Decomposed quarts diorite	σ			J	D, Irr	75	free to irrigate 2 a
27R1	W. L. Frederick	¥ø, 1,480	tar.	87	8	67			do.	C	2	Aug. 1952	J, 10	0 I rr	60	4 Irrigates 3 acres an perforated 32-40 f water level drams 24 hours pumping a
3391	George Bartwig	Vs, 1,220	Dr	65	6	60	59	61	đo.				J	D, Irr		Mater Meed to irrigate las
3381	Leo Wyatt	Vs, 1, 100) Ir	84	6	75	0	841	do.	υ			J	D. ITT		Do.
	T. 35 S.	<u>R. 3 M</u> .														
701	Mary Noore	Vf. 1,350	ŪΖ	14	42				Alluvina	U			P	D		Contains "abundant" irrigation season

1.1.1

<u>(1)</u>	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		(13)	(,4)	(15)	(16)	17)	(18)	(19)
	T. 39 8. R	<u>. 23</u> Co	ntim	bei															
51	Les Hamilton	Vs 2,310	Tr	300	6				Shale					J	D, S		10	4	
m	Eckerdt	Vs 2.280	n	140	6				do .					J	Ð				The second s
-1	C. A. Wilson	¥s 2.150	Dg	8	40				Valley fill	σ	F	Jan.	6. 1951	J	Π		120	4	In strong gravel on creak.
C1	L. R. Haselwood	Vs 2,200	Dr	101	6	11			Shal .	σ	28.2	Oct.	31. 1951		D				
m	A. A. Rollins	Vf 2,190	Dg	16	48				Clayey gravel	υ	7.5	Jan.	6, 1951	3	D		12		Adequate for 2 house
202	dio.	¥f 2,190	Dg	6					Shale	υ				P	202	51	X 7	155	samiou a siyels o
71	Austie Barron	Vs 2,230	Dr	209	6				do.	υ				3. 0.	3 D		10	30	Drilled in 1935.
252	do.	¥s 2,230	Dr	100	6				do.	υ	5.85	Jan.	6, 1951		D				Recently drilled.
2P1	do.	Vs 2,197	Dr	134.8	6				do.	U	2.22	Det.	31, 1951		8	58			
ある	T. 40 S., R	. 2 %.																	3. F. T. F. S. S.
501	H. F. Barron	¥# 2,335	Dr	155.6	9	7			do.	U	2.1	Jan.	6. 1951		Irr		100	ນ	See plate 26 for wall record; new wall dr irrigation.
501	Aisemore	Vs 2,630	Dr	251	6			:	Sandstone	U	12.44	Nov.	8, 1951			57			Try when drilled.
511	Austie Barron	Vf 2,475	Tar	133	6				do.	U				J	D				

1 8 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			S	· date	1 - 11-	· · · ·	Nake .	A true		in di-	To unsel	1. 1.1.			April .		and the second
								wells in the Rogue						-				
(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(19)	(11)	(12)		(13)	(14)	(15)	(16)	(17)	(18)	(19)
T. 37 S., R.	<u>15</u> Car	ntinu	ieđ															ſ
1501 0. E. Cole	Vs 2,056	Dg	11.9	1				Gravel	U	3.8	Jan. 1	11, 1951	P, 7	Irr				Bottomed in "bardpan"; s. /7 for water-Bevel reco: well no. 18.
1581 Floyd Sanford	¥# 2,161	Dg	29			4	25	Sandstone	υ	1.0	đ	də .	J	σ				Can be pumped dry; see t log; Work's well no. 11
201-8, W. Smift	Vs 2,200	Dg	24	48						0	Jan.	5. 1951	1	D				Taps percolating water b of an intermittent stream well no. 6.
	Va 2,150	Dg	8	60		4	4+	Rubble	σ	4	Januar	ry 1951		5				
785 Our Ice Corporation	Contract of the second	Tr	396	8				Sandstone and conglomerate					7	Ind				See table 3 for log of 4. a battery of 14 wells.
78.	Vf 1,930	Dr	621	8				do.					T	Ind				So.
7100 do.	¥f 1,930	Dr	418					Sands tone	σ				T	Ind	66	## 3		See table 4 for chemical of water and table 3 fc. well.
1911 Clarence Taylor	Vf 2,090	Dg	18	48		8	10	White sand	υ	8.05	Jan.	6, 1951	D. 5	D. S				Bottomed on shale at 18
1941 Kameth Lisrude	Ts 2,110	Dr	91	6	18	80	11+	Gravel	C,	F	¢	do.	J	D, Irr	r	20	38	Flowing 3 to 5 gpa; sce for driller's log.
1991 0. 1. Bullan	Vf 2,120	Dr	125	6	30 <u>+</u>			Shale	U	2	Deceat	ber 1950	ə, 5	Ð	54	£	圬	See table 4 for chemical of water.
1902 do.	¥f 2,150	Dr	23	6				do.	υ	9.1	Jan.	6, 1951	J	ŋ		70	4	plate 35 for water-level
	Vf 2,200	Dg	9	72		0	9+	Valley fill, gravel and sand	d đ	5.79	Jan.	4. 1951	P	Ind		160	7	Source of supply for slat house.
2701. Virginia Coke	vr 2,190	Dr	180	6				"Gravel" (prob- ably conglom- wrate.					J	ĨĦ				A"lithia" well.

Valley fill

U 15.3 Jan. 6, 1951

Vf 2,185 Dg 23.5 60

Located 30 ft east of ch burned house.

150

D

The second se

Table 1 .- Records of representative wells in the Rogue River basin (Bear Creck valley and adjacent areas) - Intimed

(2)	(3)	(4)	(5)	(6) (7)	(8) (4	9) (10)	(11)	(12)		(13)	(14)	(15)	(16)	(1)	(11)	(19)
Ĩ.	9 S., R. 1 Z C	ontinue	đ														
L B. M. Grime	os Vsl,89	O Dr	164	6					52 <u>4</u>	Jan.	10, 1951	3	D, S			16	Water level lowers enough pump breaks sustion aft pumping.
George Beck	vs 1,97	O Dg	31.6						16.98		do.	J	S, Irr		ſ		Rater unfit for domestic
Rassell	Vs 1,91	8 Dg	13.2	60			Shale	σ	1.00		do.	3	D		-		
Jones	Ve 1,99	2 Dz	39.7						5.78	Jan.	11, 1951	J	D. S		2,0	6	Work's well no. 15.
T. H. Maria	on Vs 1,95	io Dr	150	6									D		1		mater is hard.
C. R. Fost	ar Vs 1,93	2 Dg						ALC:	9.06	Jan.	6. 1951		D		120		Nork's well no. 1.
. Fred Holmer	s Vs 1,99	6 Dr		6											1		Nork's well no. 2; now a and filled.
0. M. Byrd	Vs 2,08	6 Dg	46.6				Shale	U	13.12	Jan,	8, 1951	3	D		10	6	Usually adequate; Mork's
L R. E. Black	k ¥s 2,01	0 Dr	100	8			do.	c	7	Jan.	10, 1951	3	D		210	12	Said to flow all year at gos.
John Miller	r ¥s 2,01	o Dr	80	6	1		do.	C	7		do.	J	D		230	14	Do.
Dan Malin	¥s 2.04	to Dg	12	48			do,	c	7		do.	3	D. S				Flowing 2 gpm.
Don Wegger	. Vs 2,0	20 11-	62	6				с			do.	J, 3	D. 5		200	6	Flowed at surface when
S. B. Low	Va 2,0	50 Dr	118	6								٩	D, S		200	9	
Dan Farmer	Vs 2,11	13 Dg	25		8				10,98	Jan.	8, 1951	D	D				Work's well no. 7.
Williamson	¥s 2,1	53 Dg	20.7	84					1.3	Jan .	11. 1951				٠,		Work's well no. 8; not
? Sherman	¥s 2,10	06 Dg	10,5		Ŋ	0	10+ Valley fi	11 U	0.0	Jan.	9, 1951	P	S				Work's well no. 9; well creek which is damaed well full.
3 Arch Kincs	1d Vs 2,19	95 Da	27.7	72	1		dø.	. U	1.65	Jan.	11, 1951	J	D, S				
1. Youre	Ys 2,1	65 Dr	44.6	6	36 W.	32	12+ Bedrock 1	σ	11.2	Jan.	8. 1951				90	4	Rot in une: Secolate : Ieral record.
																~	The start fort a wall

(19)	(18)	(17)	(15) (16)	4)	((13)	(12)	(11))10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)
				•										ed	ntim	<u>1 8</u> Cor	T. 38 S., P.	
			0		J			υ	Shale				6	84	Dr	¥s 1,830	C. L. Mitchell	970
Work's well no. 25.	-24	· 50	, Irr	,	3			U	do.				6	72	Dr	Vs 1,855	H. H. Bollingmorth	041
			D, 5		1		12	ប	do.				12	34	Dg	Vs 1,770	R.L. Witt	081
See table 4 for chemics of water.	2-	12	D , Irr 55	10				σ	å : .				6	343	Ter	Vs 1,750	Tom Villa	051
			D	3			30	σ	do.	10	80		6	147	Dr	Vs 1,780	James Foster	271
	4	170	0, I rr	10				ប	do.				6	70	Dr	¥s 1,760	D. S. Delap	มา
			D. S		951 1	Jan, 19, 19	13.1	υ	do.	35	90	12	6	125	1er	¥s 1,990	D. C. Abraca	391
読み																18.	T. 37 S., R.	
Mater level fluctuates 25 ft to north.	14	120	Ø			do.	7.45	υ	do.	35+	0		6	35	Dr	Vs 1,930	7. 5. Decker	381
· ···································	. 3	175	D, S										8	50	Dr	Vs 1,890	V. D. Lowe	301
	3.5	155	Ø					υ	Shale	4			8	82	De	Vs 1,945	M. P. O'Harra	301
	9	150	D, S					U	do.				6	80	Ter	Va 1,960	William Davidson	302
Well yield is 53 milos day.			Ø					υ	Shale and sandstone				6	200	Dr	Vs 2,950	L. F. Conner	381
See plate 2 for water	9	105	D. 9		951	Jan. 16. 19	40.25	σ	do.			45	8	216	Dr	Vs 2,010	do.	382
Child from			Ind					σ	do.			45	6	112	Dr	¥s 1,980	Ashland Most Co.	001
Work's well no. 21.			D, Ir r					σ	do.					19.6	Dg	Vs 1,938	000 dhae	DC1
Work's well no. 22.			ם	•.	1951	Jan. 16, 19	2.27	σ	Shale				48	11.4	Dg	Va 1,916	Q. O. Hinkson	8E2
Hork's well no. 23.			D					υ	do.		24			24	Dg	Vs 1,911	J. R. Maxedon	CK 3
Used for irrighting is garden.	7 18	150	Irr		1951	Jan. 10, 19	3,2	τ	Valley fill	12+	0		60	12.6	Dg	Vs 2,100	W. H. Vellie	181
Barely adequate for do	10	12	ס					C	Elue "clay"		21	20	6	165	Dr	Vs 1,850	A. L. Wallis	л

do. U 2 D 110 5

in were shine and the second second been all for the second to shine the state where the second s

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(1	3)	(14)	(15)	(16)	17)	(11)	(19)
	T. 35 S R	1 K Co	ontinu	ad													1		in the second
3282	R. C. Parcell	¥s 1,450	ſ.	190	6										ם				
	F. Johns M. Culbertson	Vs 1,545 Vs 1,690	Tr Tr	32 109±	3	29	32		Tuff	U	25	April	1951	P, 7 P	D. S		710	7	2
	T. 36 S., R	18.															a la		
341	R. D. Shoemaker	¥s 1,650	Dg	34.8	24	34.7			Volcanic flows	σ	25.4	Apr.	3, 1951	P	D. S. Irr		145	•	haported good supply a
37.1	Tavidson	Vf 1,430	Tr	105		6			do.	U	15			J	D. 1.		125		Sec.
451	J. D. Arens	Vf 1,430	Dr			6			do.	υ				3, 13	D		115	7	
401	Bartling	Vs 1,470	Dr	55	6		55		đo.	σ				J. 10	D	- ini-	95	• 5	
451	Woolfolk	Vs 1,460	Tr	165					do.	σ				3	D. 8		75	ນ	
51	Willard Cave	¥f 1,440	Dg	35		20			Valley fill	ŋ	4	April	1951	c	D. Ind	1	155	5	Good supply for store station.
681	Hubert Saith	Vf 1,425	Tr	240	6	30					6	May	1951	J. 6	D. 5		70	5	1
ma	Postan	Va 1,430	Dr	110	6						13.5	June	4. 1951	J. 12	D. 5				Nator hard, has sodal
1001	R. E. Watts	¥f 1,500	Tr	33	6				Volcanic flow					J	D. S		125	1	
171	L. Bradshaw	Va 1,560	Tr	100+	6						19.75	Apr.	3. 1951	3	8				
371	M. Marsters	Tf 1,560	Dr	70	6		68				10	April	1951	3,5	D		155	7	100
41	J. K. Owen	¥s 1,530	Dg	35.6	72				τ.		19.7	Apr.	3. 1951	J	D, S		190	14	
1401	Nora Bradshaw	Vf 1,520	Dr	162	6				•					J	D. 5	57	,117 .	. 490	See table 4 for she of mater.
2011	Marion	Vs 1,560	Dr	57	6	47.5			Volcanic flows		27	May	1951	P, 10	D, Ir	T	175	4	1
2011	E.W. Veach	7: 1,550	Dr	60	12				de.					J	D		155	43	raps dry saladly.
20112	L. W. Rodgers	¥s 1,530	Dg	10	48	10	5	5	Alluvium		5	Hay	1951	P	D. 5		150		Reported good supply
2910	Victor Cardner.	. Vs 1,630	Dr	132	6									J, 16	D, Ir	r 60.5		r "B	S. See table 4 for the

and there is a to get

																	1		G S
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)		(13)	(14)	(15)	(16)	17)	(1.6)	(19)
	T. 38 S., R.	<u>2 W</u> Co	ntinu	ed											,		1.1		
201	Luana Farms	Vf 1,575	Dr	83.5	6.						5.7	Teb.	20, 1951	J	D, 8	4	15	13	
271	M. Schults	Vf 1,530	D r		6				Alluvium	υ	6.6	Feb.	19, 1951	J			175	6 0	loss dry quickly.
252		Vf 1,530	Dg	10.7	18				do.	C	+ 0,22		do.	C	D		185	12	•
251	J. B. Custard	vf 1,516	Dg	26 .7			7	12	Gravel and clay	ប់	2.8		do.		Ind				for legs supplies and and store.
2P1	H. A. Johnson	Vf 1,610	Dr	52	6	52									D		165	9	22
301	R. Minear	V# 1,580	Dr	100	6		75 98	31	Metavolcamic rocks		7	Feb.	20, 1951	т, 6	D		200	7	Eater enters from "fi bottom of wall.
302	D. Vinear	Vs 1,700	Dr	234	6		230	4	do.					T, 2	D	59.5	*	. 72	See table 4 for chemi of water.; yields at
411	Stagecoach Orchard	Vs 1,590	Dg	23.7					Colluvium	U	9.6	Feb.	20, 1951	J	D		1		Can be pumped dry.
481	Iverson	Vs 1,660	Tr	53.6	6						22.4		do.	3	D		235	16	
m	Viracle	Vf 1,660	Dg	36	72 x 120						13.5	Teb.	19, 1951	J	5. Im	500	20	7	Pumps dry in 5 hours
1F2	do.	Vf 1,660	Dg	24										3	D		175	6	Pumps dry in 45 minu
111	J. Boyle	Vs 1,750	Dr	238	6	30		\$	Elue shale	σ							140	4	Reported to yield 2
111	H. D. Walters	Vs 1,680	Dr	64.8	6	40			Black shale	U	8.4	Teb.	20, 1951	J, 25	D. 8		290	ЦS	• • •
1N1	Taite	Vf 1,690	Dg	3 5					Rock	U				J	D. S		240	12	Low in summer.
	T. 35 S., R.	<u>18</u> .															-		
991	Watson	Va 1,510	Dr	5 3	6				4		11	April	1 1951	្វ	D, S		150	7	
001	HeDonald	Vs 1,550	Dar	90	6	30	90		Volcanic flows	U	55		do.	J, 33	D	63	121-	2	See table 4 for the of water.
1 000	R. Stanley and Son	Vs 1,470	Dr	3 0	6	10			đo .	σ	3		đ o.	J	σ		165	6 , Ø	Can be pumped dry.
111	J. J. Watson	¥s 1,550	Dr	190	6	100			do.					P	D, S		30	4	

With the second state of t

Table 1 Records of representative wells in :	he Rogue River basin (along the main stem of from Cold Hill to Robertson Bridge) - Continu	the Rogue River and north of the Regue River
		5.

. .

						G WEALS		from (old Hill to Rober	tson	Bridge)	- Continued	a wagwa u	7405 0 07 1	oruic		San Kras
(1)	(2)	(3)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(2.1)	(2.6)	(2.1)		10
		R. 6 W Cont			(0)	(7)	(0)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(10)	17) (11	1) (19)
																	0
34.61	Kenneth Dewoody	Vf, 1,000	Dr	92	6	90			Decomposed quarts diorite	Ũ			J	D, Irr			Supplies 2 families.
35B1	H. Jezierny	Va, 1,050	Ω r	74	6	74			do .	IJ	14	June 195	2 J	σ			has perforated casing.
3501	S. C. Incas	VI, 980	Dr	81	6	70	70	11	đo.	C	6	July 195	2 3	D, Irr			Supplies 2 families; flows dar- wet season.
3511	Foyt	⊽f, 1,000	Dr	43	6				do.	U			3	D. 177			Fill pump dry in 5 or 6 hours running at full capacity of } KP pump.
3581	W. A. Puaries	vf, 1,000	n	45	6	44.5	30	15	do.	σ	15	1951	J. 19	D, ITT		40	4 Eater level reportedly draws d 30 ft at capacity of 1 EP pus
3681	H. A. Fahrman	Vs. 1,100	Dg	A	42	5			do.				3	D. S			Ponne dry with heavy use.
3611	William Berr	Vf, 1,050	Dr	5.6	6								3	D, Irr			: *
3691	0. L. Thetford	Vf, 1,050	Dr	120	6	120	92	28	do.	C	2-3	June 195	a T	D. S. Irr		95	4 Irrightes 2 acres; has pumped yield of 20 gpm for 10 hours; casing is perforated last 92
	T. 36 5	R. 7 T.															
291	Maud Kerr	¥s, 900	0 r	62	4	62			Sandatone	υ			c	D, S, Irr		50	2 Has run 15 hours without fails penetrates gravel to 45 ft as standstone 45 to 62 ft.
1580	R. Welch	∛s, 980	D a r	100	6	15			Pecomposed quarts diorite	ប	11	1950	3.7	D, 3.	: '	: \$ 0	7 7
1301	0. J. Klose	Vf, 960	Dr	80	6				Shale	υ			J	σ		95	3 Inadequate.
24C1	John Wilds	¥s, 1,020	Dr	64	6	59	40	19	do.	ΰ	36,26	July 21, 19	152 J	D		5 5	2 Pumps dry in } hour; pump had running prior to measurement water level.
4. 3	T. 37 5	<u>R. 3 W</u> .															
201	W. G. Adams	Vs, 1,680	D er	80	6	50	50	30	Wetasedimentary rock		1	1948	J, 3	D, I 			Furnishes water to irrigate 1: acres of berries.
2																	Unpublished records subject to re

197-4 197-4

1. . . .

Table 1.- Records of representative wells in the Rogue River basin (along the main stem of the Rogue River and north of the Rogue River from Gold Hill to Robertson Bridge) - Continued

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16) (17) (18)	(19)
	7. 37 5 1	R. 4 W.														
2 P1	R.S. Towns	Vs, 1,300	Dg	65	60	9	0	65	Netasedimentary rock	σ	37.62	Aug. 1, 1952	P	D, S	i I	family pumped dry during s
2P2	Paul Cobbles -	¥#, 1,250	Dr	48	6								J	D		
1121	V. C. Powell	Vs. 1,350	Dr	80	6								J	D, Irr		rusped dry in } hears.
ma	3. 0. Woolf	Vs, 1,350	Dr	60	6	55	55	5	•		20	1950	J	D. Irr	65 5	
	T. 37 S.,	R. 5.W.														
411	Arnold Kirkboff	¥s, 1,300	Dr	65	6					•			J	D. S		
591	W. S. McTonald	¥s, 1,400	Dg	15.7	48	16	0	16	Alluvium	σ	6.44	June 24. 1952	C	D. IFF	85 4	
532	do.	¥s, 1,400	Dg	15.9	48		0	16	do.	U	4.24	do.	P	5. Irr		
631	Stuart	Vs, 1,250	Dr	108	6	74	0	108	Oranodiorate	C	2.35	Apr. 22, 1953				-Not yat in they
601	Orants Pass Country Club	Vs. 1,000	Dr	246	8	149			Decomposed quarts diorite	U			T	Irr	70 6	Will yield 80 gam for 12
6F1	P. B. Collin	¥s, 1,300	Dr	110		60+			do.				1. 25	Irr	80 2	Casing perforated at 60 i
601	Grante Pass Provision Co.	V, 1,300	Dr	135				•					T	Ind		Buns continuously; pump : breaks suction.

-

and the state of the second
Table 1 .- Records of representative wells in the Rogae River basin (Illinois River valley)

	·									_							-	14 14 M 1
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13	(14)	(15)	(16)	(17)	P	(13)
	T. 37 S., R.	8 .																
3501	S. H. & W. Lumber Co.	Va 1,50 0	Ţ r	349	12				Shale	ΰ	15.72 May	20, 1952	T, 40	Inđ		170		This is mineralized; used for protections ase table & for ch amlysic of miter.
3502	do.	Ve 1,480	Dar	60	6				đo.	σ	8.18	do.	J	Ind				band for fire pretection.
35X1	W. S. Stire	Vs 1,470	Dg	11.1	48				"Clay" or shale	ឋ	9.04 Hay	22, 1952	2	מ				Indequate during sustary water rusty calor.
357.2	do.	Vf 1,470	Dr	77	6				Shale	U	8.40	do.	N			65	4	Int seed.
36P1	Minnie Pelle Spinas	Vs 1,430	ng	40	72		35	5	Alluvium	U	.25 May	195:	P	D				Sal St
	T. 38 S., R.	7 .													•			
7:0	A. Whitesell	Ve 1,475	Tr	70	6	69	0	47	Red "clay"	υ			c	D		40	1	water contains large shound t well pensirited red play O- blue elay 48-69 ft; blue shu
801	0. S. Smith	Vs 1,470	Dg	11,1	1.1		0	11.	5 Gravel	Ū	5.18 May	14, 195	2 C. 20	0 Irr			- Anna	Provides water for t sore of :
9B1	L. E. Riggan	Vf 1,475	Dg	12	360x 360		4	. 8	do.	υ	8 1643	195	2 C, 10	0 I 				A sump that provides water to 10 acres; provides 120 gpm f
9F1	do.	Vf 1,460	Dg	12	36	6	0	12	do.	U	9.78 Mag	15, 195	2 P	D		30	1	
9P1	Jack Rayburn	Vf 1,400	Dr	100	.6								2	D		65	1	Reportedly water has iron tas
1581	Mrs. Cohn	Vf 1,490	Dg	13.2	60		0	13	Oravel	σ	11.10 Mag	15,1952	с	D			1	Used only for landaring.
1741	William Cross	Vf 1,400	Dg	14.3	24	8	0	15	đo,	σ	5.69	do.	P -	D				. S. W.
1701	A. E. Sandall	T 1,380	n r	47	6	47	30	17	do.	υ	25 Va	1952	J	P. 1	irr	50	6	Inadequate during somer; ov of casing perforated.
1702	J. A. Buckles	7 1,380	Dr	124	6	8			Blue "clay	• U			J	D		125	14	Inadequate in late summer.
1770	J. E. Paquette	Vf 1,530	Dg	30	48				Gravel	ΰ			P	D				and the second se
1811	A. L. Wheeler	Vf 1,380	Dg	30	48		o	30	đo.	IJ			с	σ				Insdecoste in dry sesson.
	H. L. Gayette	Vf 1,530	Dg	9.6					do,	ΰ	7.09	y 16, 195	2 C	8, 1	Irr			Insdequate in September.
21 122	do.	Vf 1,530	Da		96 1.				do.				P	D				Adequate for bousehold;

Alternational Andrews

Table 1.- Records of representative wells in the Rogue River basin (Illinois River valley) - Continue

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (10	5) (17) (18)	(19)
	<u>T. 38 S., F</u>	. B W.																	
231	Pete Blue	¥s 1,370	Γg	36.1	60					ប	12.23	liay	22, 1952	3	D		;		Can be pumped dry.
201	Norman Guscetti	Vs 1,275	Dr	130	6				Rock?	·				ą	Irr		90	6	Mater contains iron and a porcelain fixtures.
໙າ	R. L. Smith	Vf 1,320	Dg	22.9	48				Oravel	σ	13.06	May	22, 1952	C	D, 5				
101	R. L. Hauner	Vf 1,200	Dg	25	36	25			do.	U				J	D, Irr				Easily pumped day.
151	L. P. Krauss	T 1,350	Dr	171	6	14			Blue shale					J	D	3	10	8	Pages dry in one-half hou
1,51	Barbara Tucker	Vf 1,325	nr	24	6	24			Alluvium	σ	6.57	yay	14, 1952	C, 40	D, Irr				Reportedly a good well.
271	R. A. Ross	Vs 1,350	ng	16.5	60	5	0	16	đo.	σ	11 .40		do.	c	D				Adequate for domestic use has second dog well for of marden.
2P1	Frank Breazeal	Vf 1,350	Dn	15	17	15			do.	U				c	D, Irr				Adequate for house and ge
371	Ray Frost	Vs 1,400	Dr	22	6				do.	υ	11.39	Kay	17, 1952	J	D, S				Adequate for bouse and be
302	do.	Vf 1,350	Dn	17	13	17			do.	IJ				c	S				1.3.4
401	E. Hatmaker	¥f 1,350	Dr	45	7	45			do.	υ	11.51	Uay	17, 1952	C	D		40	4	Eas casing performted lo well inadequate; see pl unter-level record.
481	Bruce Dobi	Vs. 1,350	Dg	42.0		3		:	Gravel	υ	A. N		do.	3	ם				Reportedly yields very e
432	Pine Haven Notel	Vf 1,360	Dg	20.0	60	12			do.	υ	12.08		do.	c	Ind				Supplies 4 eabins
4271	Mrs. McKenna	Vs 1,360	Dr	200	6				Rock	υ				J	Ind		80	4	Supplies 4 cabine and st invel in dug sell inven 7.0 It below worfame.
191	Dean Marren	T 1,400	Tæ	147	6	55			dø.	σ	6		1941	P	ס		15	85	Tields 42 gallons of wat
2641	P. Buckhaults	Va 1,525	Dg	17.3	36	3			Alluvium	υ	13.45	May	17, 1952	? P	S		20	4	Inadequate during dry se
3391	George Thrasher	¥s 1,240	Dg	29	8				do.	υ				c	D. Irr				
3301	C. C. Johnson	Vf 1.240	Dg	25	36	25			đo,					J	D				

Unpublished records subject to

Calification of the second
Table 1.- Records of representative wells in the Rogue River basin (Illinois River valley) - Continued

61	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13))	(14)	(15)	(16)	(17)	(18)	(19)
	T. 39 5 1	R, 7 ¥.																	
2011 K. K.	Nesly	Vs 1,580	Dr	200	6				Shale										Would not furnish enough wat drilling; abandoned.
2012	do.	Va 1,580	Dg	35	48				do.						D		6 5	4	
OQL - Wayne	Foster	Vs 1,650	Dr	290	8		0	290+	do.		1.70	Apr. 21.	1953						A dry hole; abandoned.
201 0.1.	Clayton	Vf 1,640	Dg	15.2	0	8	0	16	Gravel	σ	8.A	do.		L	Ind				Supplies motel.
THI Clyde	Voreland	Vs 1,680	Dg	12.6	72	÷.	0	12	do.	σ	11.18	do.		P					Not in use.
	ield	Vf 1,570	Dg	10	31.0x 620		0	10	do.	σ	Dry	do.	•	÷.	Irr				A sump; dry in April.
W. J. T.	Heald	Vf Vf 1,5	50	Dg	14	6	0	14	do.	σ				c	D		40	4.	
711 Fred	Loesch	T 1,550	Dr	78	6	78				U	59.58	May 24.	1952						Never used; yield estimated as 8 gpm.
Ott Benti		Vf 1,450	Dg	12					Oravel	U				P	D. S				Can be pumped dry in one-hall during dry season.
008 0.T.	Brink	Vs 1,500	Dr	101	6	101	30	71	Shale					J	D		40	3	Adequate for domestic use of
tan 0. 7.	Lee	Vf 1,470	Dr	119	4	119			"Oravel"				1	J	D		35	4	Drilled through 21 ft gravel clay, thin bed of shale, an (conglomerate).
	Brafford	Vf 1,450	Dg	14	96				Alluvium	υ	8	April	1952	P	D				Has been in use since 1858.
101 A. R.	S-	Vf 1,480	Da	10	1	10	0	10+	do,	υ	4	do	•	P '	ម				
artis tel in	Oma	Vf 1,460	Da	15	23	15	0	15+	do.	σ				P	σ				
	Smock	Vf 1,500	Dg	22	48				đo.		7.34	Apr. 17.	1952	P C	D, Ind	l			Adequately supplies general 3 houses.

Unpublished records subject to rev

an electronic side a second state of the second state of the second state of the second state of the second s

A Manual And La

i

and the second

してきたいます。そうとうないというないというなから、ないたちないというないないないないないで、いたなないとなるなのでなる

Sand the state

Table 1 .- Records of representative wells in the Rogue River basin (Illinois River valley) - Contend

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11) (12)	(13)	(14)	(15)	(16)	(17)	11)	(19)
	T. 39 S., R.	8 W.																1.60
4A1	Art Cribb	Vs 1,250	Tr	65	6	65							Ĵ	D, Irr			*	
4x1 4P1 9C1	C. C. Hoover B. R. Adams Cabax Lumber Co.	Vf 1,270 Vf 1,230 Vf 1,230	ng Dr Dr	20 44 74	36 6	20 44	40	4	Alluvium (Cemented (gravel	U U	8	Cetober 1951]]]	D, III D D			-	(tas drilled in gravel, 0-15 mented gravel 1946 fb; acco Supplies mill and 3 houses wi ing miter; insdequate in dry
911	Cecil Tessler	¥s 1,250	Dr	56	6	46	46	4+	Alluvium	σ	10-12	Nay 1952	J	D				Supplies 2 families; wall wat 6 fb into hard rook.
978	A. A. Johnson	Vf 1,240	Dr	41	6	39	41	1	do.	υ	20	do.	1.5	D, ITT		1		Tas drilled in soil. 0-10 ft
1511	Cora A. Barnes	¥s 1,340	ng	23.7					do.	U	21.22	May 23, 1952	c	D		-		Tater Ieral
2251	Howard Salvage	T 1,320	Dr	65-67	6					U	31.74	do.	•	D, Irr		40	4.	/n moured stile pamp was runn
221	C. A. Wilcox	Vf 1,320	Dr	42	6								3	D				Purps dry in } bour.
2211		Vf 1,320	Dr	71	6				Shale	σ	24.54	May 23, 1952	. J	D. Irr				in observation well; see pla mter-logal record.
2381	Ira Hall	Vs 1,380	Dr	103	6	20			đo.	σ			J	D		180	5	In shale entire depth.
	H. C. Drews	Vf 1,470	Tg	8	120	-			Gravel and "clay"	υ			c	Irr			ľ	Parnishes water for 32 sore
2501	R. O. Saith	Vf 1.470	Dr	63	6				do.	σ	16-18	Fall 1951	J, 15	D		25	5	Pumped 24 hours without fai
2512		Vf 1,410	Dg	7.8	300		0	8+	do.	. T	5,40	Apr. 18, 195:	2 3	Ind				Used to supply dairy.
26JI	E. L. Sowell	Vf 1,410	Da	33	1	33			do.	σ			J	a				
	Robert Wright	Vf 1,350			48				đo.	U	4.51	Apr. 17, 1953	2 C	ס				Well had been pumping for a when mater level was mean was about 1 ft from stati
281	loftyE Sowell	Vf 1,310	Dg	8	36				đó.	σ			P .	D. Irr			•	1
	Cave Junction City					12	0	12+	Alluvium (bouldery)	σ			с	PS				A horizontal tile 150 ft l desp. 24 inches in dismot mater from gravels in her fiver.
	•		~	10	74	40	14	25	Gravel	11	15	Auz. 1954	т	PS	50			See table 3 for log and tal

the standard and the

٣

12.4

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)	(11)	(12)	(13)	(14)	(15)	04)	(17)	11.01	(19)
(1)	T. 39 S., R.				(0)	(7)	(8)	(9)	(10)	(11)	(12)	(1)/	(14)	(1)	(10)	(17)	(18)	(277
2871		¥f 1,310		1 6	48				Gravel	ΰ			P	n				
	Raggerty	Vf 1,310	-	12-15					Alluvium	U	7.89	Apr. 15, 1952	J	D		25	5	
	A. V. Masoner	¥s 1,450	_	5	144x							•	-					
				2	360		0	5+	do.	υ	1.55	Way 26, 1952	C	D, IFF				A sump, planned for irrigation.
ามา	Earl Boyd	T 1,410	Dg	20.3	3 6	23.8	0	20+	d o .	a	8,70	đo.	J	D				
14.171	S. W. Wickey	1,330	Dg	21	218x 432		0	21+	.	ΰ	12	April 1952	P	D				
341.1	U. S. Geol. Survey	т 1,350	Dr	113.5		113.5	27 87	75) 107)	do .	σ	17.36	Aug. 9.1952	M	0	52	34	¥	USOE exploratory well; see table log; see plate 32 for mater-lev record. See table 4 for chemica
3501	C. C. Goodwin	T 1,350	Dg	35	48				đo.	υ	19.28	Apr. 17. 1952	J	D				ysis of the water. Insterus te during summer.
3511	Clyde Pays	T 1,400	Dr	67	6	66			do.	U			J	D, S		40	6	ti de la companya de
35H2	Jay Hays	T 1,400	Dr	33	6	33			do.	υ			J	D				Adoquate.
3571	Jack Eggers	¥f 1,360	Dr	30	6	30			do.	σ			J	D				ro.
39.1	E. Skeeters	Vf 1,360	Dg	12.9	36				do .	U	9.48	Apr. 17, 1952	c	D. Ind		40	5	Supplies store and home.
3583	R. O. Tycar	Vf 1,370	Da	20	2	20			do.	U			J	D				Adequate.
3541	J. E. Brennsr	∀f 1,440	Dr	69	6	·			:				J	D				Reported to have been pumped 24 without appreciable affect on a level.
1681	J. W. Payne	Vs 1,420	Da	21	1	i			Alluvium	υ	8	April 1952	J	ת				Adequate.
	T. 40 S. R	<u>, 7 ¥</u> .																
681	T. W. Rigel	Vf 1,440	Dg	7	60				do.	U	3	do.	С	D. Irr	,			Supplies water to irrighte 2 act
713	A. D. Rasmissen	Vs 1,490	Dr	59.8	36						14.86	Apr. 21, 1952	J	D. III		75	4	Furnishes water to irrighte lar
181	H. M. Estes	Vs 1.470	Dr	185,	5				"Rock"	υ	58.75	Apr. 5, 1952	N			50	4	Not Bast,

ASSESSED AND

Service and the service of

Unpublished records subject to revisi

12

17 . B.S.

(19	11)	(17) ((16)	(15)	(14)		(13)	(12)	(11)	(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	1)
															đ	itinue	<u>. 8 W</u> Con	T. 40 S., R	
ite handler states		1				1952	pr. 14,	9.43	U					6	67 .3	Dr	V£ 1,450	Carrie Froelic	1
	3	95		Ū	c		do.	3.36	U	Alluvium				60	9.0	Dg	¥f 1,410	D. E. Zimmerman	1
Adequate for domestic u				ס	J				υ	Vetasedimen- tary rocks				6	77	Dr	vf 1,390	D. O'Brien	1
Has casing perforated b ft; miler reported to in iron.	IJ	90		ם	J	1952	lpr. 14,	10.45	σ				93	6	93	Dr	V# 1,510	Mrs. D. Hanby	1
				D. S	J									60	15	Dg	Vf 1,510	H. K. Heningway	2
				σ	c	1952	lpr. 14,	6.80	U	Alluvium	13+	0	13.9	30	12.2	Cg.	Vf 1,520		1
				D	P	1952	Apr. 16,	5.48		Serpentine				60	19.6	Dg	Vs 1,580	J. L. Allen	1
Inadoquate in dry seas	4	35		D	J	1952	pr. 14.	31.45	υ	Alluvium?				8	59.0	Dr	T 1,580	P. Weiser	L
Do.				Irr	C		do.	6.02	υ	Alluvium	8+	3		60	10.4	ng	T 1,570	W. L. Sweeten	
													1					T. 40 S., R. 9 W.	
Shows indications of 1	3	15		D	P				σ	do.	25+	0	5	48	25	Dg	Vf 1,480	C. S. Burton	ι
Was dug to bedrock.				D	J				υ	do.				42	16	Dg	Vf 1,550	C. S. Downing	
Do .			r	D, Ir	P				υ	do.	:			48	18	Dg	Vs 1,465	Naue	L
Adequate.				D	J	1952	April	35	σ	Rock			71	6	75	Der	Vf 1,520	Jin Wilson	1
the bottom state						1952	Apr. 15.	8.92	υ				50	6	50	Dr	Vf 1,520	do.	2
Adequate.	2	30		D	J				σ	Alluvium?			65	36	65	Dg	¥f 1,420	H. R. Love	1
Adequate; casing perf lowest 18 ft.	2	30	T	D, Ir	J .	1952	April	13	υ	do.			63	6	63	Dr	Vf 1,420	L.E. George	2
Can be praped dry dur				D	с	1952	Apr. 15,	2.20	υ	Alluvium	17+	0		48	16.9	Dg	Vf 1,400	Waldo Store	n

- Charles and the second of the second se

is the states

THE AND AND A REAL PROPERTY OF

			R	Tabl	e 1)~	Recor	ds of	represe	mtati	ve wells in th	e Ro	gue Liv	er basin (Apple	igate Ri	ven valle	<u>y</u>)	Y.	W. W.	212
2					Sel.	<u> </u>	CDN Dry	ortige		isedicial your	منطق ترينان	Et Field	porte	1.0	Ne we		$\langle \cdot \rangle$	<u> </u>	(*
(1)	(2)	(3)		(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
Ę	T, 36 S	<u>R. 6 W</u> .	•											J.					
801	Arthur Egtvedt	Vs 1	,110	Dg	3 0	60	8	0	30	Decomposed quarts diorit	U ex	8.90	July 19, 1952	3	σ				
9P1	S. W. Pool	Ve 1	,050	Dr	50	6	50	0	50	đo.	σ	25	1934	C. 50	D. Irr				
901	0. C. Frank	ΰ	975	Dr	126	6	120	120	6	do.	U	20	1952	J, 6	D, Irr				Supplies two families ad
OL1	J. C. Rawls	٧s	890	Dr	125	6	55			do.				J	D				Inadequate.
lei ,	Mary Baum	Vſ	950	Tr	156	6	156	·		Alluvium	υ	16.00	July 18, 1952	1	D, S		35	3	Supplies 2 families and overflows when not bein
201	J. W. Langhead	σ	980	Dr	110	6					σ			J	D. Irr				Adequate for house and a Tater gives some iron s
201	0. P. Knight	78	970	Tr:	84	6	82	60	20	Alluvium	U	29.48	July 29, 1952	3	D		77952	3	at 60, 70, and 80 ft; a for chemical analysis plate 32 for water-leve
202	do.	Vs	970	Dr	182	6	182			Red "clay" and comented gravel		88.98	Apr. 21, 1953						Yield inadequate; Arage Keisgrabandoned.
281	John Walsh	¥:	960	Bđ	35	6	35			Alluvium	U	5.99	July 18, 1952	P	PS				Adequate.
1	Roy Chalenden	Vſ	960	nr	37	6	37	0	37+	Decomposed quartz diorite	C			J .	פ				Flows when not in use by pumped dry in 10 to 15
21	C. J. Marfeld	٧f	950	ng	27	36				Sand	Ω.			C	D, S				
	T. W. Keesecker	Vf	950	Bđ	25	6	25	14	บ	Decomposed quarts diorite	U	3,28	July 18, 1952	cÌ	D, ITT				Well penetrated 4 ft to blue clay, and 9 ft gr
	F. E. Pavis		,020	Dr	80	6	70			do.	C	2.02	Jul y 17, 1952	J	D.S, Irr				Formerly flowed over to
4111	George Farrar		,080	ng	16,8	66	7	0	17+	do.	υ	5.24	do.	C	D. S. Irr		60	2	
711	H.S. Thomas	Vs 1	,260	Dr	115	6	80	80	35+	do .	IJ			J	D. Irr		80	3	Has casing perforated a
1	L. M. Monstead		,220				80			Grayel?		12-15		J	D. 1rr				

15	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)) (12)	(13)	(14)	(15)	(15)	(17)	(18)	(19)
No.	T. 37 S., R	. 5 T Con	ntinue	d												1		
7701	Chas, Hoffman	Vs 1,200	Dg	14.7	48				Alluvium	υ	4.10	June 25, 1952	P	σ				
R2	John Anderson	Vs 1,200	T r	97	6				do.	υ	15	July 1951	C	D, ITT		85	4	Adequate.
n	Laurence Brown	∀s 1,400	Ŋg	14.4	48				"Clay and soft rock"	U	8.70	June 24, 1952	3	D, Irr				Fasily pumped dry; recovers q rock outcrop nearby is shaly probably of Triassic Applege
M	Alder Sage	Vs 1,300	Dæ	49.1	6					υ	13.56	June 25, 1952		- ,				level record.
U	Jake Hoen	Vs 1,200	n r	128	8	108			Rock	U	30	Fall 1951	J	D, S				Is perforated at 30, 45, and
	Frank VeClough	Vs 1,200	Tr	40	. 6					U			J	D				Adequate.
n	Sarah Snively	¥s 1,100	Dg	20	36				Alluvium	U			c	D, S				
2	I. E. Nayes	Vf 1,070	Dg	16					do.	σ	4	1951	1	ס				Filled in around casing with dirt; has never gone dry. Penatrated into
	L. E. Hayes	Vf 1,070	Dr	22	. 6				do.	σ	4	Then drilled	3	η				in loose gravel below hardpa
1	Waphets General Store	Vf 1,070	Dr	60	6				do.				J	D. Ind				Supplies store and service s
1	W. T. Perry	Vs 1,080	Dg	20		here.	12	8	Rock	U			J	D				Reported to be very good well is soft.
n	Co.	Vf 1,070	Dr.	86	6	86			Gravel	ឋ	15-16	•	J	Date		80	65	Supplies drinking water for
/61	Lowe	Vf 1,070	Dg	22	47				do.	ΰ	7.30	July 1, 1952	Pand C	D, Ind				Supplies store and service a see plate 35 for water-leve
	Bob Smith	Vf 1,070	Dr	91	6	80			Greenstone		80	1951	J, 5	D				Tested by bailing.
JI.	Murphy School	Va 1,080	Dr	98	6				do.		5.9	Oct. 16, 1951	. Р [.]	N,				the for the country
n	H. D. Blachard	Vs 1,080	$\mathbf{D}\mathbf{r}$	70	6	30			do.		20	1943	J	D				Mater reported to be soft.
151	Sun Valley Ranch	Vf 1,070	D r	90	6				Gravel?				J. 40	5, Irr	•			Supplied 4 sprinklers 48 hor failure.
071	Bischoff	Vf 1,070	Dn	20	1	Ļ.			đo.				C, 5	D.S.				Adequate.

Sin Lines States the Ship of the Ship was

)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)) (12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
	T. 37 3.	R. 5 W Con	itinue	d						-								
1	V. T. Wilson	Vf 1,070	Dg	20	11	20			Gravel?				J	D, S				Filled in around casing wit committed over.
?	do.	Vf 1,070	Dr	90	6				Commented gran	vel	6.36	Apr. 22. 1953						Not in use. Yield too small
	S. P. Hunter	Vs 1,090	nr	33-					Gravel				J	D, Irr				Supplies 2 families.
L	Floyd Smith	Vf 1,080	Da		11				do.		• •		J	D, S				Supplies dairy.
	do.	Vf 1,080	Dr	246	6	200			Gravel (?)		40	1947	J. 4	D				Inadequate.
	H. C. Williams	Vs 1,290	Dr	40	6								J	D. S				
L	Christjensen	Vs 1,100	Dg	25 2	48				Gravel	σ	18.30	Cot. 19, 1951	J	D, S, Irr				Adoquate.
	Powers	¥f 1,190	Dg	14	30				do.	U	10	1951	C	D, S				Was pumped 12 hours with 1 ugal pump "without lower: level."
L	F. R. Hyde	Vf 1,180	Dn	16	1}	16			do.	σ	3	do.	P	D. S				Driven through hardpan at
L	Ivan York	Vs 1,290	Dg	26	48				do.	σ	3-4		3	D, S				
L	do.	Vs 1,280	Ŋg	25	48				do,	σ			P	מ				Kas pumped with a 3-inch pump without enhausting
1	W. F. Willson	Vf 1,140	Dn	18	2				do.	U			3	D, Irr	•	100	2	
	Barney Jackson	Vf 1,140	Dr	60	6	56			do.	σ	10	1948	J, 3	Ď				Goes dry after XELLCISTICH 30 minutes of
*	E. E. Wilken	Vs 1,180	Dg	30	48		0	30	do.	ថ	15		J	D				
	T. 37 S., 1	R. 6 W.																
1	William Heiserman	n Vf 1,050	Bđ	29	6				Decomposed quarts diorit	U te			J	D				Nearby sump 4 x 17 ft has 8.76 ft below land surfa
2.	J. J. Summers	Vs 1,050	Dr	50	8	50	36	14	do.	U	13.36	June 30, 1952	J	D				Supplies water for 3 hou
2	0. D. Stout	Vs 1,100	Dar	49	6	47	47	2	đo.	Ċ	1.84	Jul y 7, 1952	J, İ8	D. Irr	•	80	2	Runs continuously during son without failure; fur for 8 acres,

Table 1 - Records of representative wells in the Bonne Siver heath, (innlegate Siver wells.) Conti mil Table 1 .- Records of representative wells in the Rogue River basin (Applegate River valley) - Contined

									_						4		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) (9) (10)	(11)) (12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
	T. 37 S.,	<u>. 6 .</u> - Con	ntinu	ned											ł		12
4F1	Ray Jordan	Vs 1,110	ī ar	52	6	50		Decomposed quartz diorite	υ	19.20	Jul y 17, 1952	J, 30	D. 3. Irr				Tested by bailer: owner bal: sufficient to irrigate 2 a
541	N. H. Sharrah	Va 1,030	Dr		6							J	D. S. Irr				A dequa to.
501	Wiley Venable	¥s 1,050	Dr	147	6			Decomposed quarts diorite	U	8.84	July 18, 1952	J	D. S. ITT		75	3	To.
681	Fred Kronebusch	VI 940	Dg	23	36	23		Sand	σ	7.84	do.	C	D				Adequate for domestie use.
781	David Browne	¥s 1,000	Tr	204	6	196			U	27.33	July 16, 1952	T, 30	D, S		50	2	Used for dairy; reported dri ft after 36 hours pumping
7J1	Jim Malong	Vf 980	Dg	12	36	12		Gravel	U			c	D. S				
801	Dale Rogers	VI 950	Dr	135	6							J	D				
8L1	Rod Robinson	VÍ 975	Dg	21	60	8		Gravel	υ			c	D		25	1.8	in the second
8L2	do.	Vr 975	Dg	20	72	8		do.	ប	12.69	July 16, 1952	c	Irr				1011年1月
1181	H. E. Lewis	Vf 1,090	Dr	112	8	100		Decomposed quarts diorite	Ū	6.88	July 17, 1952	J. 44	D. S. Irr		70	3	Casing perofrated between 4 ft; see plate 35 for water
11171	W. L. Wiant	Vf 1,050	Dr	45	4							J	Ð				Inadequate.
11R2	D. D. Nolan	¥s 1,090	Dr	91	6			Decomposed quarts diorite	U			3	D, Irr				Adequate.
11,11	O. A. Perry	¥f 1,050	Tr	44	6	38		do.	σ	10	1951	J	D, Irr				Do .
1101	Ray Capron	Vf 1,050	Γg	15.8	3 36	6				7.54	July 15, 1952	c	D, S				Pumps dry quickly.
1271	Cury Pennington	Vf 1,050	Dr	42	6	42				12.43	June 30, 1952	: J	D, Irr				Hold lan in the summer.
1361	William Houck	Vf 1,100	<u>D</u> r	147	6			Decomposed quarts diorite	c a		do.	ั้	D. S, Irr		90	3	Flows about 2 gpm when not
1311	C. Dennison	Vf 1,100	Dr	51	6	•	42	9 do.		6.80	đo.	J	D		90	3	
1381	Art Wessinger	Vf 1,050	Dg	12						4.17	đo.	P	D, S				Adequate.
1481	Thys Knitert	Vf 1,000	Ţ,	75	6	,		Decomposed	π	12.55	do.	J	3				Used for dairy.

And the second second second second second second second second second second second second second second second

ale of meansachtains will a la

Table 1

いたけたいという

いため、小学校ではないというないできた。

					• 1	Records	s of r	epreser	itative wells in th	e Rog	ue Rive	r basin (Apples	ate Riv	er valle	ny) - C	ontin	đ	
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9) (10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
		T. 37 S.	? <u>, 6 77</u> Con	time	d													New York Company
DI	N. Y.	Kontgome ry	Vs 1,060	Γ r	57	6			Cabbro		8.94	July 15, 1952	3	D, Irr		NSS!	Ŧ	See table 4 for chemical and water and plate 37 for water record.
л	I.J.	Reid	000 ÌV	Dr.	31	6	20	Ð	11 Decomposed quarta diorite	U	5.13	June 27, 1952	C	D, S		65	3	Water shows indications of :
J1	E. R	Pace .	vf 1,000	Dr	93	6	75						J	D				Perforated at 35 ft.
Fl	W. B.	Tetherow	Vf 960	Dr	79	6							J	D				Adoquate.
K1	R.I	Frasier	Ve 1,000	Dg	30	36	30		"Clay"	U	6.75	July 15, 1952	J	D				Pumpe dry easily; recovers
741	Faul	Robinson	Vf 1,000	Dg	17	48			Gravel		13	1952	c	D. S				Supplies 2 houses and dairy
7B1	Ed Ro	binson	Vs 990	Tr	79	6	50		Rock?		16	July 1952	J. 30	5		40	1 2	Eater shows indication of in
101	J.P	. Taft	¥f 1,050	Dr	145	. 6	145		Gravel		20	do.	J	D. S			1	Presidente and an and an angele development of a first hard out of an angele hit development
92		do.	vf 1,070	Dg	18	900x 1,920			Boulder cobble	89	8	do.	C, 12) Irr				Furnishes water to irrigate devatered } ft when pump a after 12 hours.
371	¢. ¥	DeArmond	Vf 1,050	Dr	86	8					8.94	July 16, 1952	Ť	Ind				Water used to fill mill por
101	B.B	Nard	Vf 1,025	The state	51	6	25	25	26 Ketavolganics		20	1947	3.16	D, 5				
		T. 37 S	R. 7 T.										•					
IJ1	Ivan	Cowdrey	₩ 1,000	Tr	90	6							J	D, S				Adequate.
		T. 38 S.,	R. 3 W.															
PI	E. L	. Womack	Vs 1,590	Dg	37	42	11	30	7 Rock	1	29	1951	P	D, Irr				Will produce about 600 gall
311		er and Best ber Co.	Vs 1,5 90	Γ r	64	6	43				24	do.	J, 35	Ind		125	3	Supplies trailer carp and (
711	McDo	nough	Vf 1,600	Dr	76	6	20	70	6 Rock		20	1940	J	D		100	4	Supplies 2 houses and store

22

4	(jiladina																			位教
		. ŧ	۱ بد-	Table	1 R	ncord	s of r	epresei	ntative	wells in th	e Rog	ue Rive	r basin ()	lopleg	ate Ri	ver valle	ery) – C	ontin		
)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(1.8)	(19)
	T, 38 S,	, R.	3 RCon	tinued	l															1. 编载的
1	R. L. Hughes		Va 1,540	Dr	83	6	83		R	xe k		51.6	Aug. 20,	1952	1	D. Ind		85	3	Estared bodrost at 90 feet; suppl store.
1	McDonough		Vs 1,650	Dar	91	6	45	85	6			20	1946		J	מ			-	Till furnish water for 3 sprinkle
1	Volly Wray		Vs 1,460	Dg	11	36	5	5	6 A1	luvium		6	1951		3	D		9 5	3	No. 4
2	do.		Vf 1,420	Dg	11	360x 720		7	4	do.	υ	7.86	Aug. 21.	1951	c	Irr			1	Supplies mater to irrights 20 sor
1	Ed Smith		Vf 1,480	Dg	30	36	20	15	15	do.	υ	15	August	1951	J	D. S			1	A to yas te.
2	0. Frago		¥: 1,480	Dg	16	1/20x		4	12	do.	υ	8	do.		J. 3	D. 5		90	9	Viside encurb for pertial irrigat
3	do.		Vf 1,480	Dg	12	360 360x 1.200		4	8	do.	σ	4	do.		C. 8	Irr				Motoschequentes: Pumping 500 gpm will in about 3 bours; recovers in al 45 hours.
1	V. Vessell		Vp 1,400	Dg	8.8	48		0	10	do.	U	8.5	Aug. 21.	1951	C	D				Tater level /m on purpling.
1	T. C. Schultz		Vs 1,400	Dg	27.8	60		22	3	đo,	: U	17.47	do.		J	D		105	6	Supplies house and barn inadequa
1	Robert Fibbs .		Vs 1,375	Dr	29	6	26	26	-	etavolcanic rocke	ប	10	Varch	1951	J. 10	מ		170	3	Adequate; water ednos from "flas
1	L. Offenbach		Vf 1,330	Dg	14	24	14	4	10 A	luvium	: ប				J, 5	D. Irr				Reportedly will pump 5 gpm.
ı	do.		Vf 1,340	Dg	18	24	18			đo.	IJ			i.	J, 5	D		115	2	14.5
1	I. Buckley		Vf 1,450	Dg	36					do.	ΰ	10	August	1951	P	Ď		125	3	
1	H. Cantrall		Vf 1,425	Dg	18	48	18		B	edrock	υ	8.1	Aug. 21,	1951	P	ימ		135	7	Pump at capacity does not produc "mach drawdown."
1	Nelson Pursel		Vf 1,425	Dg	18	36	18		A	lluvium	U	15	June	1951	P, 4	ת				St. May 24
1	Fred West		∀f 1,4 25	. Dg	21	36				đo.	ប	16	August	1951	J	D, S				Reported water level is lowest i January.
n	0. W. Mahfield		Vs 1,780) Dr	69	6	64	64	1 4	etavolcanics	U	43	June	1951	J.7	p				1.5 4.6
1	K. Buckley		Vs 1.525	Dg	30	48			?	do.	t	_20	August	1951	P	0				Name Oales

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11) (12)	(13)	(14)	(15)	(16)	(17)	(15)	(19)	
	T. 38 S., 1	P <u>. 3 77</u> Co	ntinu	ed												1			14.0 mg
34NI	Ed Pansey	Vs 1,550	Dg	15.6	16	5	5	10+ 1	etavolcanics	τ	13.77	Aug. 20, 1951	P, 2	D, S		135	7	Not adequate.	
34P1	Lena DeShaso	Vs 1,560	Dr	67	6				do.	σ			J	D, S. Irt		;	•	Not adequate to	irrigate 3 ac
	<u>T. 33 S., 5</u>	R. 4 7.																	
6F1	Cenetary	Vs 1,260	Dr	115	6	115	77 115		Decomposed granodiorite	C		Oct. 18, 1951	3	Irr		168	4	Flows about 1 gr 77 ft was cased ou'side of cast	l off but flow
	1																	ft is under an flows about } ; occurs in cl	tesian press
731	C. L. H111	Vf 1,180	Dg	15			4	11+ /	Alluvium	U	13	October 1951	3	D				Tater 4. river	
782	George Fields	Vf 1,200	Dg.	15					do.	a	3	do.	J	D			1.1	Carran (San	
711	Jack Young	Vf 1,190	Tr	96	6				do.	σ			3	n				Adequate .	
1731	Clegg 1. 2,253	Vf 1,250	Dr	125	6	118	120	5	do.	C	17	October 1951	3.7	D. S					
1781	B. N. Clute	¥s 1,260	D r	35	6	35			do.	υ	12-15	do.	J. 30	D					454
1711	I. L. Brown	Vf 1,250	Dar	60	6				do.	U	20	do.	J	D, 8				Adequate	
17/1	Clarence Gift	Vf 1,250	L7.	138	6	120	120	18	do.	υ	17	do.	J	D, S				Sumplies farmst outtle.	end with 40 h
1881	W. N. Carl	Vf 1,240	Dr	238	6	180	120 180	40 10	do . Greens tone	U U	15	do.	J,7 -	D, S				Has casing perf	orated at 120
1811	Whitsett	Vf 1,220	Tr	58	6		57		Alluvium	U	18	do.	J	D				Adequate.	
2101	C. G. Godlove	Vf 1,300	Dg	15.6	5 8				do.	U	9.16	Oct. 8, 1951	N					is boarded up.	
22B1	Karl Herriott	Va 1,300	Dr	60	6	58	58	2	Greenstone				J	D		145	10	Ahp. pump o	annot dewater
2211	Al Bird	Vf 1,275	Tæ	37	6				do.	Ŭ			J	D. Ind		155	2	Supplies water fountain, serv garden without	ice station,
2202	d o .	Vf 1,275	Dg	12.2	36	14	0	13+	Alluvium	π	8.75	Aug. 22, 1951						pumped dry wi	

[12] a l - Records of representative wells in the Rome River basin (and 5.82

pursped dry with a "2-inch"

1.

and the second and the second second and the second second second second second second second second second sec

Table 1.- Records of representative wells in the Rogue Rivar basin (Applagate River valley) - Continued

X. 4. 2

									4- 1							4			14
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	
	T. 33 S., R.	<u>4 ₩</u> Con	time	4															CAL.
Q	eorge Brown	Vf 1,230	T l e	40	6	38	38	2	Alluvina	υ	14	August 1951	J, 3	п				Will fail with continued	i pumpir
F	. Brass	Vf 1,250	Tg	20.7	36	10	10	11	do.	U	8.07	Aug. 22, 1951	J	ŋ		85	2	Adequate.	
1	. Buall	Vs 1,320	Dg	13	60	13				ŋ.	11	August 1951	3	D. Irr					
C	. C. Garbardt	vf 1,310	r.e.	24	36	24			Alluvium	Π	11.43	Aug. 22, 1951	J	π		135	3	Adequate.	
	T. 34 S. P.	<u></u>																	1.1-2
9	akraith .	Vf 1,150	Tn	17					do.	U	15	October 1951	3	D. 5				ν.	
	ćo.	Vf 1.150	ne	28	6	10			do.	Π	10	do.	3.6	D, 5				no.	28
:	lam Lattaken	vf 1,150	Tr	56.9	6	55	15	42	do.	U	13.95	Oct. 10, 1951	20)				water-level record.	t.• Ff 1
	Slery Stone	Vf 1,170	m	14	13	14			do.	υ			J	D, S				Adaquate.	
1	. O. Naylor	vf 1,160	Tr	80	6				đo.	σ			3	D. 3. Irr		95	2	٦٥.	
1	. K. Jones	Vf 1.150	Tr	112	6				do.	σ	14	Cetober 1951	J	D, S		65	5	10.	
:	Sakraida	Vf 1,190	m	20	1}	20			do.	ប	20	do.	J	D, 3					0
1	Provolt School	Vf 1,150	Tar	37.0	4?				ċ do .	IJ	8.05	Oct. 9, 1951	J	••				level record.	for wa
1	R.F. Lofland	Vf 1,350	Dg	22	60				ðo.	IJ	16	October 1951	J	- D, S				á dequa te .	ż
;	G. H. Collins	Vf 1,350	Tan.	16					do.	σ			P	đ				Adequate; a 20-ft-desp irrigation water for : try in 1951.	
1	lichards	v£ 1,3 50	Te	105	6				Greenstone	U			P	n. s				Not adequato.	
1	Bert Nahoney	Vf 1,360	۲r	270	6				do.	υ	25	Cotobor 1951	J. 2	σ				Adequate.	
	Anos Smith Lumber	Vf 1,390	[]r	400	6	199			Quarts diori	ta U	11.33	Oct. 8, 1951						Formerly furnished w stana sawnill.	ater fo
,	R. W. Porley	Vf 1,390	De	32	6						12	1949	3	D. Jr	r			Adequate,	19 4 M

in the second second have a state of the second second second second second second second second second second

_																			
l)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	
	T. 38 S., R.	<u>5 11 Cor</u>	ntinuo	ođ															
3	J.A. Mapeton	41 1,3 50	Γg	26	18				Alluvius	ប	16	1950	J	Ind				Furnishes water for locker plant; pump	a compresso runs contin
n	Melvin Teothman	Vf 1,390	Tr	24	6				đo.	υ			J	n, s				Adaquate.	
Ð.	Varner	Vf 1,400	Dg	20.					do.	ប			С	D. Ind				Supplies store, service.	vice station
1	T. 32 S., F.	37.																	19/20
1	J. H. Sandige	Vs 1,600	Tr	68	6				Greenstone	U			J, 6	D, Irr		135	1	Adequate.	
	1. 37 S., P.	<u>5 N</u> .																	14
1	Cardin	Vs 1,490	rđ	20	36				Gravel	σ	12	September1951	P	D				Supplies 2 families	•
a	C. E. and E. N. Vencill	75 1,410	rg.	14	677x 1,800				Alluvium	σ	4	Cotober 1951	C, 230) Irr				Reportedly has 2 ft days pumping; Susp east fork Williams	on level wi
1	L. S. Falther	Vf 1,520	Bd	17.3	3 6		0	18	do.	U	11.6	Oct. 5, 1951	J	p				Owner has 2 sumps, 1 not dry in 1951.	about 17 f
μ J	D. E Alden	Vf 1,500	Dg	25	48		0	25	đo.	a	11±	1944	J, 2	D, S					
32	C. S. Bittier	Vf 1,490	fr	60	6				do .	υ			J	D. S				Adequate.	
? 3	Vencill	Vf 1,480	D r	70					<u>م</u> .	U			J, 6	D	-			Sas pump pips inlet breaks suction occu	
11	Mrs. Somell	Vs 1.700	Tig	33Ľ					do	บ			3	a -				Adequate for domest	ic use.

Table .- Records of representative wells in the Rogue River basin (Applegate River valley) - Continued

Table 2.- Records of Representative Springs in the Rogue River Basin (Bear Creek and Adjacent Areas)

terrace; Vf, valley floor; Vs, valley slope. 2/ D, domestic; Irr. irrigation; S, stock. 3/ Mardness and chloride content deterained by field analysis.

23		1	· · ·		•			1107				
						Yi	eld			char	enical acter	
法になるの理論が	Owner or occupant of property	Name of spring	Topographyl/ and altitude (feet above sea level)	Water-bearing meterial	Occurrence	Callons per minute	Date	U38 2/	Temperature (°F)	Wate part part Caco3 caco3		Re
)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
1. 1. S.	T. 34 S	., R. 1 W.										
	A. Conover		Vs, 1,500	Volcanic flows	Perched water flowing from fractured lavas and tuff	0.1 (est.)	July 9, 1951	D, S				Spring walled concrete; suf for household
	J. Williams <u>T. 35 S</u>		Vs, 1,400	do.	Perched water flowing from joint opening	5	do.	D, Irr		185	6	Dug out and wa concrete.
なし、記得た	<u>T. 35 S</u> D. W. ¹ 'cCorkle <u>T. 36 S</u>	. <u></u>	Vs, 1,396	do.	Perched water flowing from joint cracks	3 (est.)	Apr. 2, 1951	D, S		145	5	Crifice enlarg ented in; pur bottom of ray
L	Ray Palm		Vs, 1,350	do.	Perched(?) water flowing from contact		June 6, 1951	D		100	3	
1	J. C. Duggan	÷ .	Vs, 1,300	Tuff	Perched water flowing from joint		do.	D, S, Irr	58	130	3	Squipped with tank 4 ft squ
1	William Coleman	5 <u>. R. 1 ₩</u> .	Vs, 1,410	do.	do.			D, S, Irr				Pas concrete s 8 x 8 x 8 ft.
\mathcal{L}	Rverett Carey	5R. 2 W.	Vs. 1,330	Sandstone	Unconfined water flowing from joints in sandstone			D				
41	A. P. Conger		Vs, 1,550	Granite	Confined water flowing along joint plane	2,5	Mar. 5, 1951	.D, S		155	3	

Unpublished records subject t

Table 2.- Necords of Representative Springs in the Rogue River Basin (Rear Creek and Adjacent Areas) - Continued

						Yield			chara		7964
Spring No.	Cwner or Name of occupant spring of property	Toporraphy and altitude (feot above sea level)	Water-bearing material	Occurrence	Gallons per minute	Date	Use	Tesperature (oF)	Liardness and i u o		n)
(1)	(2) (3)	(4)	(5)	(6)	(7)	(8)	(9)	10)	(11)	(12)	a ci
3J2	<u>T. 33 S., R. 1 W</u> . Schnack Drothers	Vs. 1,670	Shale	Perched water flowing from contact of shale over sandstone	15-20	Feb. 15, 1951	D, S		120	4	Supplies 2 h large stock
1311	H. B. Chapman	Vs. 1,825	do.	do,			D				
1571	Vrs. Colver	Vs , 1,500	Sandstone	Confined water rising along joint in sandstone	1	Aug. 16, 1951	D				See table 4 analysis of
	T. 35 S., R. 1 E.										analysis of
31.NI	Brunnett <u>T. 35 S., R. 1 E</u> .	Vs. 1,400	Volcanic flows	Perched water flowing along interflow layer	5	Apr. 3, 1951	ď, s		170	6	
31K1	Wootten and Jackson Hot Taylor- Springs <u>T. 39 S., R. L. E</u> .	∀f, 1,670	Sændstone	Confined water rising along contact between sandstone and granodiorito	10	Apr. 22, 1952	Irr	95			Used for bat 4 for chemi of water
3F1	Claude Moore	Vs, 1,900	Shale	Confined water rising along intrusive rock	6	Jan. 19, 1951	D, Irr				
3701	R. Applogate <u>T. 39 S., R. 2 E</u> .	Va. 1,850	do .	Unconfined water flowing along fissures in shale	2	Jan. 16, 1951	D, Irr				
7813	City of Ashland Pompadour Spring	vf, 1,930	Sandstone	Confined water rising along fissure in fault zone	N	Jan. 9.1951	И	86			Flow diverte drilled nes 4 for chemi
	T, 40 S. R. 2 E.										of water.
1201 	Buckhorn Spring	۷f	Volcanic rocks	Unconfined water rising in broken rock near fault zone	200 [±]	Apr. 18, 1957	ם				Sull amount ing at spa; gas which i carbon diox. cords subject

able 2.- Records of Representative Springs in the Rogue River Basin (valley of the main stem of the Rogue River and the small valleys not of the Rogue Hiver west of Cold Hil Oba-Topography and altitude (feet above sea level) Yield -(in * 3 40 Gallons Spring No. Owner or Name of spring Water-bearing per Use Remarks Occurrence Date occupant material of property Y hlert (1) (13) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 100 T. 34. R. 6 T. Source of Jap Cre 741 Carl Jensen Unconfined water flowing D Va. 1,500 Metamorphosed proved by constr shale from fissures in shale ----earth and rock d T. 35 S., P. 4 W. Improved by havin BLI Doris Burkett Vf. 1,080 Unconfined water flowing 3 1952 D 65 2 Gravel Aug. tile 3 ft deep s T. 36 S 911 J. A. Dennis <u>T. 36 S</u> from alluvium spring; has } h. pump. T. 36 S., R. 4 W. Eaci by 3 familic D 35 44 T. 1.100 Alluvium do. T. 36 S., R. 6 W. Has 6 ft of 36-ir D. S 40 2 OFL A. W. Crockett Perched(?) water flowing Τ. 900 Cravel in spring; has from terrace escarpment centrifugal pung a 19

TERROR AND A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A

and the states of the

STATES OF

	Compror Nam		4 (1)				Yield		-	chara	nical acter o	
• ON AUTAdo	Caner or occupant of property	Name of spring	Topography and altitude (feet above sea level)	Water-bearing material	Cccurrence	Gallons per minute	Date	Use	ture (°P)	parta milli	lon)	Re
- vda			Topor, al tit t abovo						Tompera	ardness s CaCO3	hloride	
)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	T. 38 S., R.	<u>7 w</u> .										14
L	R. F. Stevens	Vs, 1,700	Vs, 1,700	Colluvium overlyin Galice formation	g Unconfined water flowing from colluvium			מ				Furnishes suffi
	Lostor Frost		Vs. 1,500	Volcanic rocks	Unconfined water flowing from fissures in volcanic rocks	10	Ma y 1951	D. \$		30	4	Water is piped
L	Mrs. W. L. Tuttle		Vs, 1,700	Shales of Galice formation	Unconfined water flowing from fissures in shale	20	do.	D. S. Irr				Water used to 1 2 acres.
	T. 38 S., R.	8 7.										
L	F. J. Beruvais		Vs, 1,390	Gravel .	Unconfined water flowing from gravel			ŋ		13 5	2	Supplies 8 femi
	T. 39 S., R.	<u>. 7 ম</u> .		1								

50%

Leasan Surally

AL ADDAR

W.S.

ŝ,

14.

Dethisto

A

小学をたてあることで		Table 2	- Records of	Representative Sprin	ngs in the Rogue River Dasin (.	Applegate	River Valley) - Co	ontine	1		0	22
n de stategerer . Fr			t el)				Yield	-	(chara	ical ctor itor(in	
Spring No.	Owner or occupant of property	Name of spring	Topography and al titude (feet above sea level)	Water-bearing material	Occurrence	Callons per minute	Date	Us	Teacerature (°F)	parts milli fouro	per	Eemar)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(3)	(9)	(10)	(11)	-	(13)
	T. 37 S., R.	, 5 ¥.	1					-				a la
2051	Grant Powell		Vs, 1,030	Metavolcanic rocks	Unconfined water flowing from fissures in bedrock	10	Cct. 1951	D, 8				Tiled in; 25 h.p. reportedly no flu
35171	Woodcook		T. 1,140	Gravel	Unconfined water flowing from alluvium			D. 8				in flow. Enclosed in a come reservoir could n pumped out with a centrifugal pump; springs on the pr
•	T. 37. R. 6	<u>#</u> .										are undeveloped.
701	E. H. Ahlstrom <u>T. 38 S., R</u> ,	<u>3 17</u> .	V3, 1,300	Shalo	Unconfined water flowing from fissures in shale			D, \$		25	2	Flow fluctuates wi of the year.
9L 1	0'Brian		Vs, 1,950	Colluvium	Unconfined water flowing from colluvium along bedrock			D, S				Supplies 2 houses
ชฮา	V. Vessell		∀s, 1,400	Metavolcanic rock	Confined(?) water flowing from fissures in greenstone	2.5	`Aug. 1951	D, I	r 59	130	4	Enclosed in a 13 concrete tank; on no fluctuation in
?)A2	C. A. Smith		⊽f, 1,400	ರೆಂ	۵ .	25	ർം .	D. L	т	63	3	Flows into sump 11 30 ft; supplies 2
10071	N. Offenbacher		Vs, 1,450	do.	do.			D, II	r			Low in late summer
331	K. Buckley T. 38 S., S.		Vs, 1,470	ർ .	Unconfined water	1,200	۵o.	S, II	T	135	4	Flows into sump 1:
e1.1	Francis Krouse	<u>. 4</u> .	Vs, 1,490	do.	Confined(?) water flowing from contact botween metavolcanic rocks and granediorite	(est.) 10	Oct. 1951	D, S				ft. Flow fluctuates be and 25 gpm accord season of the year

- - -

Unpublished records subject to revis

10-16 1.6

Table 3.- Drillers' Logs of Representative Wells in the Rogue River Basin (Bear Creek Valley and Adjacent Areas)

Stratigraphic designations by R. A. Young7

36/1W-9K1. O. O. Wilson. Drilled by Deister and Cech, 1951

Materials	Thickness (feet)	Depth (feet)
Older alluvium (Agate Desert gravels):		
Gravel	18	18
Indifferentiated: Rock, green (indurated silt)	47	65
Shale, white, sticky (tuff?)	29	94
Lavas of Western Cascades:	23	96]
Rock, black, solid	25	903
		-
36/1W-17Q1. Ted Hornecker. Drilled by Rogue Valley	Drilling Co	., 1951
Older alluvium (Agate Desert gravels): Gravel	57	57
Impqua formation:	21	
Shale	39	96
1949 Dider alluvium (Agate Desert gravels):	1	
1949 Ider alluvium (Agate Desert gravels): Clay, yellow, and sand	Valley Dril	ling Co 57
1949 Ider alluvium (Agate Desert gravels): Clay, yellow, and sand	1	
1949 Ider alluvium (Agate Desert gravels): Clay, yellow, and sand	57	57
1949 Ider alluvium (Agate Desert gravels): Clay, yellow, and sand	57	57
1949 Ider alluvium (Agate Desert gravels): Clay, yellow, and sand	57 103	57 160
Older alluvium (Agate Desert gravels): Clay, yellow, and sand	57 103 7 Drilling Ca	57 160
1949 Older alluvium (Agate Desert gravels): Clay, yellow, and sand	57 103	57 160
1949 Ider alluvium (Agate Desert gravels): Clay, yellow, and sand	57 103 7 Drilling Ca	57 160

Table 3. - Drillers' Logs, etc. (Bear Creek Valley, etc.)

36/1W-30L1. C. M. Graves. Drilled by Virgil Gribble, 1952

Materials	Thickness (feet)	
Older alluvium (Agate Desert gravels): Clay, sandy . Gravel, sandy, with clay beds, water bearing .	10 14	10 24
Umpqua formation: Shale, blue, some water at 38 feet Shale with peat layers Shale, blue and gray	14 12 48	38 50 98

36/2W-20P5. D. D. Lumber Co. Dug by L. L. Bratcher and others, 1951

Younger alluvium:		ۇرۇ تىزىمىلەر مەلەرىي بول بۇ ئەتەر
Gravel	35	35
Older alluvium (Agate Desert gravels):		
Conglomerate, cemented with calcium carbonate	22	57
Siltstone, cemented with calcium carbonate	8	65

Table 3. - Drillers' Logs, etc. (Bear Creek valley, etc.)

37/2W-25R1. Medford Public Library. Drilled by Diester and Cech, 1951

			M	at	er	ia	LB										Thickness (feet)	
Younger alluvium:																		
Clay																	28	28
Gravel																	10	38
Clay		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	39
Umpqua formation:													•					
Rock and clay .																٠	2	41
Clay, yellow																	19	60
Rock and gravel																	8	68
Shale, blue																	20	88

Table 3 .- Drillers' Logs, etc. (Bear Creek Valley, etc.)

36/2W-23N1. U. S. Geological Survey. Drilled by Geo. Hartley and Son, 1953

Materials		Thickness (feet)	Depth (feet)
Older alluvium (Agate Desert gravels):			
Top soil, clay, yellow, with some gravel		4	4
Clay, yellow, and gravel		2	6
Sand, fine to coarse, and gravel, water bearing		2	9
Gravel, basaltic rock types, with cobbles up to			
6 inches in diameter cemented with calcium			
carbonate; pebbles have a slightly decomposed			
rind about 1/8 inch thick; water bearing;			
static water level 6 ft		22	31
	•		10
Gravel to 4 inches in dismeter, in		10	42
bluich-green clay			
Gravel, cemented with calcium carbonate		3	111
Gravel, with thin streaks of yellow clay		6	50
Gravel, with some bluish-green clay matrix	•	2	52
Gravel, to 2 inches in diameter, and sand,			
fine to coarse in yellow clay	•	4	56
Gravel, becoming more sandy downward, partially			
imbedded in greenish clay matrix containing			
iron pyrite	•		604
Silt, blue	•	4	60 1
Sand and gravel, in bluish clay, with		-	
streaks of blue silt	•	3 1	64
Sand and gravel, in yellow clay	•	7 2 1 2	71
Gravel, to 6 inches in diameter		28	733
Sand and gravel in yellow clay		15	75
Sand, grit, and gravel up to 4 inches in	-	- 4	
diameter in bluich clay; rock types			
changing from volcanic to granitic		22	97
Sand and gravel mainly of granitic rock types .		75	104
hogua formation:	•	12	1042
		51	110
Shale, blue	-	and the second from the second	the second second second second second second second second second second second second second second second se

Casing, 8-inch diameter, set to 100g ft; all jpints welded; perforated with 1 spiral string of 2-inch perforations from 20 to 100 ft depth. Static water level, July 25, 1953: 8.91 ft from top of casing which extends 2 ft above land surface.

Table 3.- Drillers' Logs, etc. (Bear Creek valley, etc.)

36/2-19R1. U. S. Bureau of Reclamation. Test well at Lake Creek Dam Site.

	M	ati	er:	ia	ls				Thickness (feet)	
Younger alluvium:					1					
Boulders and gravel									28	28
Lava rock									33	61
Lava rock, softer									4	65
Clay, sandy, red									9	74
Clay, sandy, light									6	80 '
Clay, sandy, light blue									20	100

Table 3. - Drillers' Logs, etc. (Bear Creek Valley, etc.)

39/2-7N5. Gas-Ice Corporation. Drilled in 1940

Materials	Thicknes	5 Depth
MAUGITALS	(feet)	(feet)
Younger alluvium;		
Soil and gravel	7	7
Boulders	7	14
Umpqua formation:	124	
"Slate," blue, and mud, talc	11	25
Sandstone	30	55
Conglomerate	25	80
Sandstone	5	85
Sandstone and "conglomerate streaks"	20	105
Sandstone, hard	22	127
Sandstone, soft	10	137
Conglomerate with quartzite pebbles	33	170
Sandstone	10	180
"Talc mud" (tuff?)	10	190
Sandstone, soft	68	158
Clay, blue (shale?)	6	264
Conglomerate	93	357
Shale, blue	7	364
sandstone	1	365
Shale, blue	9	374
Shale, brown	22	396

Table 3. - Drillers' Logs, etc. (Bear Creek Valley, etc.)

39/2-7N6. Gas-Ice Corporation. Drilled, 1946

Materials	Thickness (feet)	
Younger alluvium:		
Soil	 2	2
"Shale," brown, and gravel	 11	13
Gravel	 2	15
Umpqua formation:		
Sandstone	 55	70
Conglomerate	 13	83
Sandstone with quartz crystals (conglomerate)	37	120
Shale, brown	50	170
Shale, blue	10	180
Shale, brown	40	220
Shale, blue	15	235
Shale, brown	40	275
Sandstone	134	409
Shale, blue	2	411
Conglomerate and shale	24	435
Shale, brown and blue	52	487
Shale, green	3	490
Sandstone	15	505
Shale, brown	40	545
Sandstone	 5	550
Basalt, gray (sill?)	 555	555
Sandstone		560
Basalt (sill?)	 28	588
Sandstone	33	621

-

39/2-7N11. Gas-Ice Corporation. Drilled, 1947

Matorials		Thickness (feet)	
Younger alluvium:			
Soll		2	2
Boulders		13	15
Unpour formation:			
Rock (sandstone?)		13	28
Shale, blue		27	55
Shale, brown		5	60
Shale, blue		32	92
"Broken rock" (contact or fault breccia?)		1	93
Sandstone, water and carbon dioxide bearing) .	•	77	170
Conglomerate, carbon dioxide bearing at		,	
190-195 feet	•	30	200
Sandstone	•	20	220
Conglomerate	•	70	290
Sandstone		40	330
Conglomerate		45	375
Sandstone	•	32	407
Shale, blue		5	412
Shale, brown		6	418

39/2-19M. Kenneth Disrude. Drilled by Roy Powell, 1949

Colluvium, recent:	و د بر شد بر می باد برد.	
Soil	4	4
Unpons formation:		
Shale	80	84
Coal, water-bearing; water flows 3 to 5 gpm		
at surface	1	85
Gravel	6	91

Unpublished records subject to revision

Table 3. - Drillers' Logs, etc. (Illinois River Valley) - Cont'd.

39/8W-28K1. Town of Cave Junction. Drilled by E. E. Storey, 1954

					M	at	er	18	18									Thickness (feet)	Depth (feet)
Younger alluvium: Soil																	_	43	1,7
Clay, blue	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		1	■2 5支
Gravel and clay																	•	9월	15
Gravel and sand, Older alluvium (L1													•	•	•	•	•	3	18
Gravel, cemented													5				•	22	40

Table 3 .- Drillers' Logs, etc. (Illinois River Valley)-Cont'd.

39/8W-3411. U. S. Geological Survey. First 75 ft drilled by Virgle Gribble, 1952; deepened to 119 ft by Geo. Hartley and Son, 1953

Clay, sandy, with occasional boulders	Naterials	inickness (feet)	Depth (feet)
Soil, gravelly to bouldery, up to 8 inches in diameter 1 Gravel and boulders, to 8 or 10 inches, of mixed rock types, mostly metamorphic 2 Gravel and boulders, in yellow clay matrix 92 Clay, sendy, with occasional boulders 1 Clay, sendy, with occasional boulders 1 Clay, sendy, with occasional boulders 1 bearing at 20 feet 1 bearing at 20 feet 1 stand fine to coarse, heaves slightly 7 Sand, fine to coarse, heaves slightly 7 Sand and gravel in clay 1 Sand and gravel in clay 1 Sand and gravel in clay 1 static water level 16.62 feet 1 Clay, sandy, iron-stained, with some fine gravel 1 Sand and gravel, up to 3 inches in diameter 1 imbedded in yellow clay; static water 1 Clay, sandy, iron stained, imperious 1 and amall amount of elay 1 Sand and gravel, up to 3 inches in diameter 1 imbedded in yellow clay; static water 1 Sand and gravel, and bailed; static water level 72 Greet and h9 to 66 feet, 16 2-inch perfor- 1<	Older alluvium (Llano de Oro formation):		
Gravel and boulders, to 8 or 10 inches, of mixed rock types, mostly metamorphic			•
<pre>mixed rock types, mostly metamorphic</pre>		1	1
<pre>mixed rock types, mostly metamorphic</pre>	Gravel and boulders, to 8 or 10 inches, of		
Gravel and boulders, in yellow clay matrix	mixed rock types, mostly metamorphic	2	3
Clay, sendy, with occasional boulders		91	127
bearing at 20 feet	Clay, sendy, with occasional boulders		131
Sand and gravel, water-bearing; statif water level 12 feet	Clay, yellow-brown, stiff and sandy; water	· .	
Sand and gravel, water-bearing; statif water level 12 feet	bearing at 20 feet	12=	26
<pre>water level 12 feet</pre>	Sand and gravel, water-bearing; statif	÷	-
Sand and gravel in clay	water level 12 feet	5	31
Sand and gravel in clay	Sand, fine to coarse, heaves slightly	7	38
Sand and gravel, well packed, water bearing; 11/2 11/2 14/2 Static water level 16.82 feet 11/2 11/2 11/2 Sand, gravely, iron-stained, with some fine gravel 11/2 11/2 11/2 Sand, gravely 50-52 feet 5 52 Oravel, coarse, with sand, fine to coarse, 11/4 66 Sand and gravel, up to 3 inches in diameter 11/4 66 Sand and gravel, up to 3 inches in diameter 11/4 66 Sand and gravel, up to 3 inches in diameter 11/4 66 Sand and gravel, up to 3 inches in diameter 11/4 66 Sand and gravel, up to 5 inches in diameter 11/4 66 Sand and gravel, up to 6 inches in diameter 11/4 66 Sent and bailed; static water 12 14 66 Sand and gravel, up to 6 feet, 16 2-inch perfor- ations8 to a row-oper foot of casing; 12 12 well surged and bailed; static water level rose to 17.16 feet; tested at 38 gpm for 25 6 72 hours with 22.33 feet of drawdown 12 84 84 Gravel, sand, and boulders up to 6 inches in 12 84 Gr	Sand and gravel in clay	1	39
static water level 16.82 feet	Sand with large peobles 1 inch in diameter	2	10
static water level 16.82 feet	Send and gravel, well packed, water bearing;		
Gravel, coarse, with sand, fine to coarse, and small amount of elay		4금	45물
Gravel, coarse, with sand, fine to coarse, and small amount of elay	Clay, sandy, iron-stained, with some fine gravel .	17	
and small amount of elay		5	52
Sand and gravel, up to 3 inches in diameter imbedded in yellow clay; static water level 22.39 feet; well perforated 26 to 15 feet and 19 to 66 feet, 16 2-inch perfor- ations-8 to a row-per foot of casing; well surged and bailed; static water level rose to 17.16 feet; tested at 38 gpm for 25 hours with 22.33 feet of drawdown	Gravel, coarse, with sand, fine to coarse,		
<pre>imbedded in yellow clay; static water level 22.39 feet; well perforated 26 to 45 feet and 49 to 66 feet, 16 2-inch perfor- ations8 to a rowper foot of casing; well surged and bailed; static water level rose to 17.16 feet; tested at 38 gpm for 25 hours with 22.33 feet of drawdown 6 72 Clay, yellow, iron stained, impervious (2-foot cand layer at 62 feet)</pre>		14	66
<pre>level 22.39 feet; well perforated 26 to 15 feet and 19 to 66 feet, 16 2-inch perfor- ations-8 to a row-per foot of casing; well surged and bailed; static water level rose to 17.16 feet; tested at 38 gpm for 25 hours with 22.33 feet of drawdown 6 72 Clay, yellow, iron stained, impervious (1-foot cand layer at 82 feet)</pre>	Sand and gravel, up to 3 inches in diameter		
feet and h9 to 66 feet, 16 2-inch perfor- ations-8 to a row-per foot of casing; well surged and bailed; static water level rose to 17.16 feet; tested at 38 gpm for 25 hours with 22.33 feet of drawdown	imbedded in yellow clay; static water		
ations-8 to a row-per foot of casing; well surged and bailed; static water level rose to 17.16 feet; tested at 38 gpm for 25 hours with 22.33 feet of drawdown	level 22.39 feet; well perforated 26 to 45		
<pre>well surged and bailed; static water level rose to 17.16 feet; tested at 38 gpm for 25 hours with 22.33 feet of drawdown</pre>	feet and 49 to 66 feet, 16 2-inch perfor-		
rose to 17.16 feet; tested at 38 gpm for 25 hours with 22.33 feet of drawdown			
hours with 22.33 feet of drawdown	well surged and bailed; static water level		
Clay, yellow, iron stained, impervious (2-foot sand layer at 62 feet)	rose to 17.16 feet; tested at 38 gpm for 25		
<pre>(1-foot sand layer at 62 feet) 12 84 Gravel, sand, and boulders up to 6 inches in diameter; rocks are of prevailing types in valley; greenstone, hornblende diorite, chert, volcanic brecaiss 26 110 pplegate group: Clay, yellow, residual 9 119 Greenstone (static water level 18.01 below land surface) 119</pre>	hours with 22.33 feet of drawdown	6	72
Gravel, sand, and boulders up to 6 inches in diameter; rocks are of prevailing types in valley; greenstone, hornblende diorite, chert, volcanic breccies	Clay, yellow, iron stained, impervious		
diameter; rocks are of prevailing types in valley; greenstons, hornblende diorite, chert, volcanic breccias	(2-foot sand layer at 62 feet)	12	84
<pre>valley; greenstone, homblende diorite, chert, volcanic brecaiss</pre>	Gravel, sand, and boulders up to 6 inches in		
chert, volcanic breccies	diameter; rocks are of prevailing types in	1.	
pplegate group: Clay, yellow, residual	valley; greenstone, hornblende diorite,		
Clay, yellow, residual	chert, volcanic brecciss	26	110
Clay, yellow, residual	pplegate group:		
Greenstone (static water level 18.01 below land surface)	Clay, yellow, residual	9	119
	Greenstone (static water level 18.01 below land		
Casing, 6-inch. set to 74 ft; peeforated with 2-inch performations.	surface)		
to a row per foot of casing between 26 - 45 and 49-66 ft. When	Casing, 6-inch, set to 74 ft; peeforsted with 2-inc	performat:	ions,
	sepened, casing driven on to 115 ft; all joints weld	ed. A 5-ind	h liner

Well tested at 42 gpm for 49 hours with 10.74 ft of drawdown.

Well no. a/b/ Date of collection	√35/2W-27K1* 1/25/52	√35/2w-33D1 6/18/51	35/3W-24R1 1/25/52
Temperature (OF)	:.	65	No.
Silica (SiO ₂) Iron (Fe)	16	المله	30
In solution		.02	
Total Manganese (Mn)		.0	
Calcium (Ca)	46	4.3	7.81
Magnesium (Mg)	2.3	1.0	3.0
Sodium (Na) Potassium (K)	110.78	113 3.8	344 2.3 5
Bicarbonate (HCO3)	55	186	112
Carbonate (CO3)	and the second	28	10
Sulfate (Sol)	Tr	24	Tr
Chloride (Cl)	227	42	468
Fluoride (F)	-40	.6	10
Nitrate (NO3) Boron (B)	Tr 6.40	20	Tr 17 . 9
Total dissolved solids	478	338	978
Hardness as CaCO3	126	14	32
Voncarbonate hardness	81	0	0
Percent sodiume/	65	93	96
Bodium adsorption ratio (SAR)d/	4.3	12.9	26.4
(micrombos at 25%)	629	507	1,710
Analysis by U. S. Dept. of Ag	8.0	8.6	8.3

Table 4 .- Analyses of Waters From Representative Wells

a/ Source of analysis: U. S. Geological Survey unless otherwise shown by

In the columns below the analyst's results are given in parts per million,

Unpublished records subject to revision

143

5/

and Springs in the Rogue River Basin (Bear Creek Valley and Adjacent Area)

footnote.

by weight, except for first item and last four items. equivalents of all bases, expressed to the nearest whole percentages. of one-half the milligram equivalents of the calcium and magnesium. alkaline; over 7, an alkaline condition, under 7, an acid condition.

36/1W-10E2	1/36/1W-20E1	- 36/2W-20P2		- 36/2W-21R1
4/7/51	4/9/51	5/9/51		5/22/51
52	63	59	55	60.5
14	19	51	30	51
•07 •29	.01 .03 .00	.30 4.9 5.40	.04 .07 .00	.02 .04 .00
491	7.9	69	27	20
2.6	.70	21	16	7.3
635	47	154	9.3	11
1.2	1.9	3.2	2.6	.5
26 B	96	247	164	98
1.6 5 1,850 - .2 .1	3 32 .7 .2 1.25	1.1 282 .3 .6 .06	4.5 13 .0 2.0 .01	3.0 4.2 .1 16 .01
3,010	160	710	185	161
1,240	23	258	133	80
1,210	0	56	0	0
53	80	56	13	23
7.9	4.2	4.2	.24	.54
4,430	267	1,250	297	193
7.5	8.2	7.0	7.5	7.8

Unpublished records subject to revision

Sodium (Na) 30 26 143 Potassium (K) .8 1.3 **** Bicarbonate (HCO3) 144 296 371 Carbonate (CO3) 2.6 13 Tr Sulfate (SO4) 2.6 13 Tr Chloride (C1) 10 6.1 20 Fluoride (F) .2 .0 2.5 Nitrate (NO3) 2.0 8.5 .0	Well No. a/ b/ Date of collection	y 36/2w-23N1 9/21/53	1/237/1W-LP1 5/9/51	8/9/34
In solution .02 Total .22 .02 Manganese (Mn) .00 .00 Calcium (Ca) 23 52 3.61 Magnesium (Mg) 2.9 19 .85 Sodium (Na) 30 26 143 Potassium (K) .8 1.3 *** Bicarbonate (HCO3) 144 296 371 Carbonate (CO3) .8 1.3 *** Bicarbonate (HCO3) 144 296 371 Carbonate (CO3) .8 1.3 *** Sulfate (SO4) 2.6 13 Tr Chloride (C1) 10 6.1 20 Fluoride (F) .2 .0 2.5 Nitrate (NO3) 2.0 8.5 .0 Boron (B) .05 .01 1.66 Total dissolved solids 269 299 389 Total dissolved solids 269 299 389 Noncarbonate hardness as CaCO3 69 208 13 Noncarbonate hardness 0 0 0	Silica (SiO ₂)			
Magnesium (Mg) 2.9 19 .85 Sodium (Na) 30 26 143 Potassium (K) .8 1.3 **** Bicarbonate (HCO3) 144 296 371 Carbonate (CO3) 2.6 13 Tr Sulfate (SO4) 2.6 13 Tr Chloride (C1) 10 6.1 20 Fluoride (F) .2 .0 2.5 Nitrate (NO3) 2.0 8.5 .0 Boron (B) .05 .01 1.66 Total dissolved solids 269 299 389 Total hardness as CaCO3 69 208 13 Noncarbonate hardness 0 0 0 Percent sodium? 48 21 96 Sodium adsorption ratio (SAR)d 1.6 .79 17.7 Specific conductance 269 483 589 (micromijos at 25°C)	In solution Total		.02	
Carbonate (CO3)2.613TrSulfate (SO4)2.613TrChloride (C1)106.120Fluoride (F).2.02.5Nitrate (NO3)2.08.5.0Boron (B).05.011.66Total dissolved solids269299389Total dissolved solids26920813Noncarbonate hardness as CaCO36920813Noncarbonate hardness000Percent sodium482196Sodium adsorption ratio (SAR)1.6.7917.7Specific conductance269483589(micromijos at 25°C)269483589	Magnesium (Mg) Sodium (Na)	2.9 30	19 26	.85 143
Sulfate (SOL) 2.6 13 Tr Chloride (Cl) 10 6.1 20 Fluoride (F) .2 .0 2.5 Nitrate (NO3) 2.0 8.5 .0 Boron (B) .05 .01 1.66 Total dissolved solids 269 299 389 Total hardness as CaCO3 69 208 13 Noncarbonate hardness 0 0 0 Percent sodium 48 21 96 Sodium adsorption ratio (SAR) ^d 1.6 .79 17.7 Specific conductance 269 483 589 (micromijos at 25°C) 589 589	Bicarbonate (HCO3) Carbonate (CO3)	լիկ	296	371
Total hardness as CaCO36920813Noncarbonate hardness000Percent sodium?482196Sodium adsorption ratio (SAR)d1.6.7917.7Specific conductance269483589(micromitos at 25°C)589589	Sulfate (SOL) Chloride (Cl) Fluoride (F) Nitrate (NO3)	10 .2 2.0	6.1 .0 8.5	20 2.5
(micromgos at 25°C) 7.6 8.0 8.5	Total hardness as CaCO3 Noncarbonate hardness Percent sodium Sodium adsorption ratio (SAR) Specific conductance	69 0 48 1.6	208 0 21 .79	13 0 96 17 .7
	(micromhos at 25°C)	7.6	8.0	8.5

Table 4 .- Analyses of Waters From Representative Wells

* Analyses by U. S. Dept. of Agri., Rubidoux Lab., Riverside, Calif. ** Analyses by Charlton Lab., Portland, Oreg. *** Potassium included with sodium.

Unpublished records subject to revision

1).)	12	ν.		11
37/2w-1M1 6/17/51	37/2W-3L1* 6/ /34	37/2w-3n2** 6/ /45	37/2w-15P1 5/22/51	37/2W-21B1 6/ /50	38/1w-6F1* 10/15/36
63 17	56 13	48	55.5 35	5.6	
.05 .34 .12		.11	.02 .02 .00	2.4	.*
72 7.4 221 10	408 1.2 795 ***	52 14 59 ***	60 20 19 .3	349 1.3 1,009 ***	165 61 103 ***
131	24	118	218	34 15	383
1.7 419 .4	60 1,876 2.1	19 106 .1	52 7.9 .2	217 1,904	494 30
.2	.0 4.06	.26	41 .05	2.5	•0
813 210 102 68 6.6 1,530 7.5	3,518 1,024 1,004 62 10.8 5,920 8.2	190 42 41 1.9 7.8	343 232 53 15 .54 499 7.0	3,542 877 837 71 14.8 8.8	656 342 25 1.73 1,480

and Springs in the Rogue River Basin (Bear Creek, etc.) - Continued

a the second

Unpublished records subject to revision

.

	VÍ		Ver
Well no. Date of collection	38/1w-8C1# 8/9/34	38/1W-15D1#s 8/9/34	38/1w-15D2# 8/9/34
Temperature (^O F) Silica (SiO ₂) Iron (Fe) In solution Total Manganese (Mn)	58 17	26	17
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	4.40 Tr 171 *	18 4.86 286 *	21 2.67 259 *
Bicarbonate (HCO3) Carbonate (CO3) Sulfate (SO4) Chloride (Cl) Fluoride (F) Nitrate (NO3) Boron (B)	166 Tr 168 6.5 .0 11	214 ** 375 3.9 .0 11	184 ** 9.60 342 2.6 .0 11
Total Dissolved solids Total hardness as CaCO3 Noncarbonate hardness Percent sodiumc/ Sodium adsorption ratio (SAR)d/ Specific conductance (micromhos at 25°C) pH ^e	497 11 0 97 22.4 819 9.0	885 65 0 91 49 1,540 7.9	786 63 0 90 15.5 1,山山 8.0

Table 4. - Analyses of Waters From Representative Wells

* Included in Na. ** Carbonate included in bicarbonate. # Analysis by U. S. Dept. of Agri., Roubidoux Lab.

s Spring.

Unpublished records subject to revision

	11	~ ~	11	V V	المتحملة المتحملة
38/1W-15J1# 8/9/34	38/1W-16B3 5/21/51	38/1w-2201 10/4/51	38/1W-22Q2# 8/9/34	38/1 W-2601 5/21/51	38/1w-27E2# 8/9/34
13	57 54	59 16	66.2 18	54 30	59•5 29
	.02 .05 .0	.01		.05 .07 ,0	
5.61 .97 188 *	59 26 23 .3	3.3 2.1 140 6.9	7.61 5.11 130 *	85 18 14, 3.4	7.61 Tr 94 *
495 ** 14 18 3.0 1.86 12	252 *** 25 30 .2 29 .08	298 20 16 14 7.0 .1 8.5	338 ** 19 23 6.6 .0 12	334 23 9.0 .1 9.8 .04	208 ** Tr 20 12 .00 20
556 18 0 96 19.2 760	371 254 48 16 .63 561	372 16 0 92 14.5 582	40 0 88 8.9 597	357 286 12 10 .36 567	321 7 96 96 9.4 400
8.7	6.9	8.4	8.3	7.0	8.7

and Springs in the Rogue River Basin (Bear Creek, etc.) - Continued

VV	14	11	Vr	
35/1-3061	36/1-14C1	36/1-29H1	36/2-19J1	
6/17/51	6/17/51	6/17/51	6/17/51	
63	57	60.5	51	
51	30	42	38	
.02 .02 .0	.04 .50 .0	.08 .09	.23 .11 .18	
95	137	10	42	
22	45	5.7	9.8	
22	369	156	163	
5.1	6.0	50	8.8	
342	258	455	286	
13	161	3.7	13	
32	690	7.5	181	
.20	.0	.2	.2	
36	1.9	.2	.3	
.13	2.0	.48	.58	
445	1,570	454	598	
328	527	48	146	
48	316	0	0	
13	60	86	69	
.53	7	10.3	5.9	
507	2,750	677	1,010	
8.6	7.4	7.9	7.3	

and Springs in the Rogue River Basin (Bear Creek, etc.) - Continued

Well no. 35/1-30EL# 39/2-7N11 38/1-31KL6 Date of collection 10/15/36 4/22/52 4/20/51 95 65 Temperature (OF) 55 66 68 Silica (SiO2) Iron (Fe) .04 In solution .12 Total .07 2.1 .00 Manganese (Mn) Calcium (Ca) 132 25 2.8 . 74 Magnesium (Mg) 12 1.4 128 95 1,410 Sodium (Na) 1.2 Potassium (K) * 2,660 410 13 Bicarbonate (HCO3) Carbonate (CO3) 36 26 14 13 Sulfate (SOL) 1,140 80 27 Chloride (C1) 2 Fluoride (F) .0 43 .9 Nitrate (NO3) .2 2.14 2.9 .40 Boron (B) 318 4,210* Total dissolved solids 13 111 634 Total hardness as CaCO3 0 0 Noncarbonate hardness .0 81 94 72 Percent sodiumC/ Sodium adsorption ratio (SAR)d 24.4 11.5 5.27 S pecific conductance 702 460 6,490 (micromhos at 25°C) 9.3 6.5 pHe

Table 4 .- Analyses of Waters From Representative Wells

Analysis by U. S. Dept. of Agri., Roubidoux Lab., Riverside, Calif. * Includes 4 ppm Lithium.

** Includes 16 ppm Lithium.

*** Potassium included in sodium.

s Spring.

		$\sim \nabla$	<i>J J</i>	
39/2-7N13v s 1915	39/2-7N13#8 8/9/34	39/2-1901# 5/3/51	39/2-32D2 6/ /34	
95	86	54 9.9	51 37	
12		.03	21	
		.00		
347	289	1.2	69	
192 2,915 109	156 2,203	.3 149 3.7	18 487 ###	
3,857	4,353	273 52	1,357	
2.9 2,740	Tr 2,033	17 9.5	Tr 155	
2,140	.1	-9	.0 .22	
33	95	1.25	15	
7,895**	7,050	378	1,535 247	
1,654	1,360	4	0	
77	79	97	82	
31.2	32.5	16.5	13.5	
	10,830	578	2,280	
	7.2	2.9.9	. 8.3	

and Springs in the Rogue River Basin (Bear Creek, etc.) - Continued

	V.	V.	
Well no. Date of collection	36/4W-3F1 1/9/53	36/5W-33E1 4/22/53	
Temperature Silica (SiO ₂) Iron (Fe)	514 143	35	
In solution Total Manganese (Mn)	.03 .17 .00	.2	
Calcium (Ca)	26	694	
Magnesium (Mg) Sodium (Na) Potassium (K)	12 9.7 1.3	9.2 1,540 2.7	
Bicarbonate (HCO ₃) Carbonate (CO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	152 4.9 3.9 .3 .1	19 0 441 3,320 .0 4.2	
Boron (B)	.04	2.3	
Total dissolved solids Total hardness as CaCO3 Noncarbonate hardness Percent sodiumC/ Sodium adsorption ratio (SAR)d/ Specific conductance (micromhos at 25°C)	176 114 0 15 .39 251	6,060 1,770 1,750 65 15.9 9,970	
pH_	7.3	7.1	

Table 4.- Analyses of Waters from Representative Wells and Springs, etc. (Rogue River main stem, etc.) - Continued

Josephine County		VV	~~~
Well no. Date of collection	37/8W-3501 8/22/52	39/8W-28K1 12/19/56	39/8W-3411 3/18/53
Temperature ('F) Silica (SiO ₂) Iron (Fe)	21	50 25	49 20
In solution Total Manganese (Mn)	2.0 2.0 .44	•03 •00	.18
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	48 12 15 .8	6.4 7.8 5.8 .2	4.8 6.6 2.0 .1
Bicarbonate (HCO ₃) Carbonate (CO ₃) Sulfate (SO) ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Boron (B)	234 0 6.6 8.0 .1 .1	64 0 .8 5.5 .0 .7	48 .7 2.2 .1 .1 .02
Total dissolved solids Total hardness as CaCO3 Noncarbonate hardness Percent sodium Sodium adsorption ratio (SAR) ^d / Specific conductance	229 170 0 16 .50 400	83 48 0 21 .36 113	60 39 0 10 .14 81
(micromhos at 25°C)		6.5	7.7

Table 4.- Analyses of Waters from Wells and Springs in the Rogue River Basin (Illinois River valley) - Continued

Unpublished records subject to revision

etter .

11	11	
39/8w-3411	40/8w-7 J1	
52 31	149 11	
.24	.14 6.9	
8.7 14 3.8 .5	3.1 15 1.5 .4	
102	82	
.9 3 .0 .0 .02	1.1 3.2 .3 1.1 .0	
112 79 0 9 .19 165	77 69 2 4 135	
7.4	7.6	

Table 4.- Analyses of Waters from Wells and Springs, etc. (Illinois River valley) - Continued

Well no.	36/6w-32D1	37/6W-14D1
Date of collection	1/10/53	1/9/53
Temperature (°F) Silica (SiO ₂) Iron (Fe	54 43	60
In solution Total Manganese (Mn)	.13 18 .00	.17 4.1
Hanganese (hill)		
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	13 9.8 7.1 .4	38 22 4.8 .3
Bicarbonate (HCO3) Carbonate (CO3)	108	226
Sulfate (SO4) Chloride (C1)	.6 3.0	9.8 2.0
Fluoride (F) Nitrate (NO3) Boron (B)	.1 .8 .04	.3 .1 .06
Total dissolved solids Total hardness as CaCO3 Noncarbonate hardness	131 73 0	249 185 0
Percent sodiumC/ Sodium adsorption ratio (SAR)d/ Specific conductance	17 .36 180	0 5 .15 355
(micromhos at 25°C)	6.6	6.9

Table 4.- Analyses of Waters From Wells and Springs in the Rogue River Basin (Applegate River valley) - Continued

REFERENCES CITED

- Callaghan, Eugene, and Buddington, A. F., 1938, Hetaliferous mineral deposits of the Cascade Range in Oregon: U. S. Geol. Survey Bull 893.
- Diller, J. S., 1903, Description of the Port Orford quadrangle, Oregon: U. S. Geol. Survey, Geol. Atlas of U. S., Port Orford folio (no. 89); 6 p., 4 maps.
- Diller, J. S., 1907, The Mesozoic sediments of Southwestern Oregon: Am. J. Sci. (4) 23; p. 401-421.
- Diller, J. S., and Kay, G. F., 1924, Description of the Riddle quadrangle, Oregon: U. S. Geol. Survey Geol. Atlas of U. S., Riddle folio (no. 218); 8 p., 3 maps.
- Fenneman, N. M., 1931, Physiography of western United States, New York-McGraw-Hill Book Co., Inc.
- Fink, G. J., and Lindsay, F. K., 1936, Activated alumina for removing fluorides from drinking Pater: Jour. Ind. Eng. Chem., vol. 28, p. 947, August.
- Richards, L. A., and others, 1954, Disgnosis and improvement of saline and alkali soils: U. S. Dept. Agr., Agricultural Handbook no. 60.
- Smith, H. V., and Smith, M. C., 1937, Bone contact removes fluorine: Water Works Eng., Nov. 10, p. 1600.
- Taliaferro, N. L., 1942, Geologic history and correlation of the Jurassic of southwestern Oregon and California: Geol. Soc. America, Bull, vol. 53, no. 1, p. 71-112, 3 figs., index maps, Jan. 1.
- U. S. Bur. of Reclamation, 1948, Alternative plans for development of the water resources of the Rogue River basin, Oregon: Region 1, Boise, Idaho, March 5.
- U. S. Public Health Service, 1946, Drinking water standards: Reprint 2697 from Public Health Service reports, vol. 61, 11; p. 371-384, March 15.
- Wells, F. G., and others, 1939, Preliminary geologic map of the Medford quadrangle, Oregon: Oregon Dept. of Geol. and Min. Indst.
- Wells, F. G., and others, 1940, Preliminary geologic map of the Grants Pass quadrangle, Oregon: Oregon Dept. of Geol. and Hin. Indst.
- Wells, F. G., and others, 1949, Preliminary description of the geology of the Kerby quadrangle, Oregon: Oregon Dept. of Geol. and Min. Indst., Bull. 40, 23 p., map.

- Wells, F. G., and others, 1951, Preliminary stratigraphy of the northern Klamath Mountains, Oregon: Abstract, Geol. Soc. America, Bull., vol. 62, no. 12, pt. 2, p. 1514, December.
- Wells, F. G., and Walker, G. W., 1953, Geology of the Galice quadrangle, Oregon: U. S. Geol. Survey Quadrangle Map GQ 25, text.
- Wells, F. G., 1955, Preliminary geologic map of southwestern Oregon west of meridian 122°West and south of parallel h3°North: U. S. Geol. Survey, Mineral Inv. Field Studies Map MF 38.
- Wilcox, L. V., 1948, Explanation and interpretation of analyses of irrigation waters: U. S. Dept. Agr. Circ. 784, fig. 1, May.
- Wilkinson, W. D., and others, Reconnaissance geologic map of the Butte quadrangle, Oregon: Oregon Bept. of Geol. and Min. Indst.