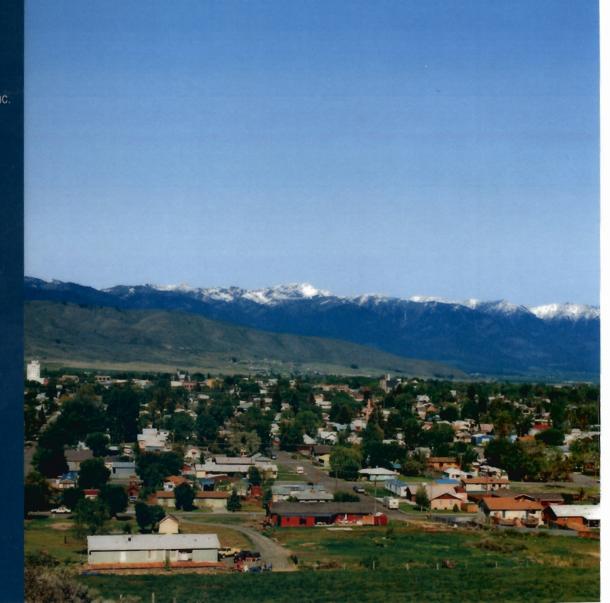
Baker City Year 2005 Aquifer Storage and Recovery Pilot Test Results - Limited License #009 April 2006 Prepared for Oregon Water Resources Department


Prepared by

Groundwater Solutions Inc. 55 SW Yamhill St., Suite 400 Portland, Oregon 97204 p: (503) 239-8799

In association with

Baker City

Year 2005

Aquifer Storage and Recovery Pilot Test Results – Limited License #009 April 2006

Prepared for

Oregon Water Resources Department

Prepared by:

Groundwater Solutions, Inc. 55 SW Yamhill Street, Suite 400 Portland, Oregon 97204

In association with: Anderson Perry and Associates, Inc. 1901 North Fir Street La Grande, Oregon 97850

Groundwater Solutions, Inc.

55 SW Yamhill Street, Suite 400Portland, Oregon 97204ph: 503.239.8799fx: 503.239.8940e: groundwatersolutions.com

Summary

This report presents documentation of work completed during 2005 and early 2006 associated with the aquifer storage and recovery (ASR) pilot testing performed at the Baker City (City) ASR well (Reservoir Well). A summary of the results of ASR testing activities conducted in accordance with the approved *Aquifer Storage and Recovery Limited License Application and Pilot Test Work Plan* (ASR Work Plan) (GSI and Anderson Perry, 2003b) include the following:

- Two ASR tests were conducted during 2005/2006: Cycle 1 and Cycle 2.
- Cycle 1 Short 2-day test to assess equipment performance and to assess initial water quality compatibility.
- Cycle 2 Full-scale ASR test lasting 265 days:
 - Volume Injected 160,500,000 gallons of mountain line water
 - Average Injection Rate 800 gallons per minute (gpm)
 - Volume Recovered (pumped) 122,200,000 gallons
 - Average Recovery Rate (pumping rate) 1,178 gpm
 - Maximum recovery rate 1,500 gpm
 - Water levels were monitored in the Reservoir Well and three observation wells to assess aquifer response to injection and pumping.
 - Periodically looked for springs and seeps in the area (none was found).
 - Source water turbidity was monitored continuously to ensure that turbid water did not enter the well. Reservoir Well performance was monitored to determine if clogging was a concern.
 - Samples of source water (mountain line) and stored water were collected periodically during the testing to assess water quality changes, compatibility, and compliance with water quality standards.
- Overall, the City's ASR system performed well and provided the City with more than 66 days of production, including 18 days of pumping at more than 1,500 gpm (2.2 million gallons per day [mgd]) from the Reservoir Well during high water demand periods in the summer and fall of 2005.
- ASR reduced the City's reliance on the watershed during the summer and fall and increased the amount of water available for other water users in the watershed.
- To our knowledge, there were no adverse impacts and no complaints were filed by senior or junior water rights holders during 2005. Additionally, there have been several positive articles written about the project in the local newspaper (see Appendix A).
- In our opinion, the testing results represent what we would expect to occur if the Reservoir Well were operated in a similar manner in the future. The ASR system

should be capable of storing up to 200 million gallons in the aquifer without adverse impacts to other groundwater users or surface water users in the watershed.

- Recovered water taste, odor, and color were significantly better than native groundwater. Recovered water quality met all drinking water standards.
- ASR provides the City with a reliable backup water source.
- ASR operation during 2006 should occur in the same manner as in 2005, except with a shorter storage period. Source water turbidity and Reservoir Well performance should be monitored on a regular basis to ensure that clogging does not occur. The well should be back flushed periodically (stop injection and turn on pump) if turbidity events occur or if injection efficiency drops off.

Based on the performance of the City's ASR system during 2005/2006, we recommend that the City apply for an ASR permit during 2006. The permit should allow for periodic injection throughout the year (up to 200 million gallons total) when water is available in the watershed to maintain high water levels in the Reservoir Well at all times. This will allow the well to maintain production at the higher rate (1,500 gpm) for an extended period of time, should it be needed for an emergency.

ASR Cycle 1 (February 1 and 2, 2005)

As outlined in the ASR Work Plan (GSI and Anderson Perry, 2003b), the City conducted a short-term ASR cycle test to verify the operation of all equipment and to provide assurance that source water and groundwater were compatible before long-term ASR testing was initiated. Beginning at approximately 10 a.m. on February 1, 2005, 399,661 gallons of water from the City's Mountain Line surface water source were injected at a rate of 827 gpm during an 8-hour period. The water was stored in the aquifer for approximately 13 hours and was fully recovered (recovery volume = 407,083 gallons) at an average rate of 1,784 gpm during a 4-hour period. See Table 1 for a summary of injection and recovery rates and volumes. Groundwater level response to ASR was monitored at the following monitoring wells: Reservoir Well, Ellingson Well, Paul Hill Well, and Briggs Well (see Figure 1). Monitoring was not conducted at the Golf Course Well because of access limitations (see *City of Baker City – Year 2005 ASR Activities* [GSI, 2005]).

Cycle Number	Start/ End of Injection	Start/End of Storage	Start/End of Recovery	ASR Volume Injected	ASR Volume Recovered	ASR Account Carryover ¹ to Next Year
CycIe 1	1-Feb-05 10 a.m. 1-Feb-05 6 p.m.	1-Feb-05 6 p.m. 2-Feb-05 7 a.m.	2-Feb-05 7 a.m. 2-Feb-05 11 a.m.	399,661 Gallons Avg. Rate 827 gpm	407,083 Gallons Avg. Rate 1,784 gpm	NA
Cycle 2	4-Feb-05 30-June-05	30-June-05 22-Aug-05	22-Aug-05 27-Oct-05	160.5 MG Avg. Rate 800 gpm	122.2 MG Avg. Rate 1,178 gpm	30.3 MG
Totals				160.9 MG	122.6 MG	30.3 MG

Table 1 – Summary o	of ASR Cycle Testing D	During 2005 (Cycle 1 and Cy	(cle 2)
---------------------	------------------------	-----------------------------	---------

Totals

Note: MG = million gallons

¹Carryover volume is the water volume injected multiplied by 0.95 minus the volume recovered per condition 11 (A) in ASR Limited License #009.

3

Changes in groundwater elevation measured during Cycle 1 are presented in Figure 2. The Static water level elevation before ASR testing was 3,457 feet mean sea level (ft msl). Maximum groundwater elevation at the Reservoir Well during injection was 3,478 ft msl, which represents a total increase in groundwater level during the injection cycle of approximately 21 feet. As we commonly see during ASR testing, groundwater levels declined during the storage period as a result of the aquifer re-establishing a new equilibrium after injection. This resulted in a groundwater elevation of 3,460 ft msl at the end of the storage period. During the recovery (pumping) period, maximum drawdown in the Reservoir Well was 64 feet with a final pumping level elevation of 3,396 ft msl. After pumping ceased, groundwater levels fully recovered to the pre-ASR testing static water elevation of 3,457 ft msl within approximately 2,700 minutes (1.9 days) after the end of pumping. Groundwater level response during Cycle 1 was monitored at the Ellingson, Briggs, and Paul Hill wells, but little response was noted in the wells (see Figure 2). Based on observations during Cycle 2 testing, it appears that the Ellingson and Briggs wells respond to ASR activities at the City's well, but Cycle 1 was not long enough to result in a substantial groundwater level change at the wells. Aquifer response to ASR at the Paul Hill Well is not readily observable during Cycle 1 or Cycle 2. The Paul Hill Well is completed in alluvium and not the same aquifer as the other wells.

Water quality results for source water and groundwater are presented in Table 2 (presented at the end of this report). Laboratory reports are in Appendix B. No exceedances of water quality standards were noted during any phase of ASR testing. Based on the lack of significant changes in general water chemistry at the end of the recovery period, it does not appear that any precipitation reactions or any significant chemical interactions occurred during Cycle 1. Figure 3 illustrates the difference in specific conductance between the source water and native groundwater, and shows a mixing trend between source water at the beginning of the recovery period compared to native groundwater at the end of recovery. This demonstrates that injected water quality did not change significantly during the 13-hour storage period and that the recovered water was a mixture of the source water and native groundwater, becoming more similar to native groundwater as the recovery progressed. This mixing commonly occurs in heterogeneous basalt/volcanic aquifers.

ASR Cycle 2 (February 4 to October 27, 2005)

Following Cycle 1, a lengthy ASR cycle test was initiated to evaluate the aquifer's response during a longer testing period and at larger injection and recovery water volumes. Injection was initiated on February 4, 2005, and continued until June 20, 2005. During this period, 160.6 million gallons were injected at an average rate of 800 gpm. The water was stored in the aquifer from June 30 to August 22, 2005. Recovery initially began August 1, 2005, but a malfunction with the pump motor required pumping to stop on August 2, 2005, after only 2.3 million gallons were recovered. Recovery was reinitiated after the motor was replaced on August 22, 2005, and the well was pumped at an average rate of approximately 1,500 gpm until September 9, 2005. As a result of higher than expected drawdown at the well, the pumping rate was reduced to an average of 1,020 gpm from September 9, 2005, until January 22, 2006, for a total recovery volume of 122.2 million gallons. See Table 1 for a summary of injection and recovery rates and volumes. The total volume recovered represents 76 percent of the injected volume. As required by the ASR Limited License #009, the volume of water to be carried over to 2006 was calculated by reducing the volume of

P:\145 - BAKER CITY\002\REPORTS\YEAR_2005_CYCLE_RPT_REVJMB.DOC

4

water injected by 5 percent and subtracting the volume of water recovered for a total of 30.3 million gallons, which will be available for recovery in 2006/2007.

These results show that ASR has significantly improved the pumping capacity of the Reservoir Well. Before ASR activities, the Reservoir Well could produce only approximately 800 gpm after 2 to 3 weeks of pumping. With ASR, the well can sustain an average pumping rate of approximately 1,200 gpm (1.7 mgd) for at least 10 weeks. If the storage period is reduced from the 53 days that occurred during this test, the well should be capable of sustaining rates as high as 1,500 gpm for extended periods of time.

Changes in groundwater elevation at the Reservoir Well during Cycle 2 are presented in Figure 4. Static water level elevation before injection was 3,456 ft msl. During injection from February 4 to June 30, 2005, groundwater levels in the Reservoir Well increased a total of 155 feet to a final groundwater elevation of 3,611 ft msl at the end of injection. Changes in water level at the nearest observation wells show that the water level in the aquifer rose approximately 100 feet during the injection period. It should be noted that injection was stopped two times, from May 6 to May 12, 2005, and from May 22 to May 23, 2005, as a precaution because of elevated turbidity in the source water as a result of precipitation events in the watershed. Groundwater levels declined during the storage period from June 30 to August 22, 2005, as a result of aquifer re-equilibration to the injection stress.

Pumping stopped on August 2, 2005, because of a pump motor malfunction and did not start again until August 22, 2005, extending the storage period to a total of 53 days. At the end of the storage period on August 22, 2005, the groundwater elevation was at 3,488 ft msl, representing 32 feet of residual head above the pre-injection static water level (3,488 ft - 3,456 ft = 32 ft). Maximum drawdown observed in the Reservoir Well during the recovery period was 241 feet and the final groundwater elevation was 3,247 ft msl on October 27, 2005, at the end of pumping.

Following the end of pumping, groundwater levels in the aquifer recovered to approximately 3,432 ft msl after 82 days (119 days after injection ended), which is approximately 24 feet lower than the pre-injection static water elevation. As shown on Figure 4, water levels would have likely recovered to at or above the pre-injection static water levels had the City not needed to pump the well to perform maintenance on its reservoir. In addition, Cycle 3 injection started on January 27, 2006, making it impossible to observe full recovery of the aquifer. Based on the recovery trend, it appears that given sufficient time (estimated additional 1.5 months), groundwater levels in the aquifer would have recovered to at or above the pre-injection static water level.

Monitoring Well Discussion

Figure 1 shows the location of each monitoring well used by the City during ASR cycle testing. Table 3 indicates maximum water level changes observed at the monitoring wells during Cycle 2.

kimum wdown w SWL ur 2005
et
t

Table 3 - Water Level Observations at ASR Monitoring Wells

The following discussion relates to changes in groundwater elevation at the three monitoring wells used during Cycle 2, as shown in Figure 4. Please note, the Golf Course Well (BAKE 1153) discussed in the ASR Work Plan (GSI and Anderson Perry, 2003b) could not be modified for monitoring and is not accessible because the vault is a confined space. For these reasons, the Golf Course Well was not monitored in 2005 and no longer will be included in the monitoring program (see GSI, 2005). During Cycle 2, groundwater elevation at Ellingson and Briggs wells changed in a manner consistent with observations at the Reservoir Well. The observed drawup and drawdown in Ellingson and Briggs wells associated with ASR testing did not cause any adverse impacts to the normal operation of these wells. In fact, it appears that higher pumping levels probably reduced pumping costs at the two wells.

Groundwater elevation changes at the Paul Hill Well during Cycle 2 could not be distinguished. Based on well log information, this well is completed in a different aquifer (alluvium rather than volcanic) that is not well connected to the ASR host aquifer.

ASR Cycle 2 Water Quality Analysis

Seven water samples were collected for water quality analysis during Cycle 2; three during injection, two during the storage period, and two during the recovery period. Table 4 (presented at the end this report) shows native groundwater quality results from sampling done for the *Baker City Aquifer Storage and Recovery (ASR) Feasibility Report* (GSI and Perry Anderson, 2003a) and the results of water quality analysis for all samples collected during Cycle 2. No exceedances of water quality standards were noted in any samples collected during Cycle 2 testing. Radon concentrations measured before ASR testing and during recovery (samples C2R-1 and C2R-2) were noted above the proposed U.S Environmental Protection Agency (EPA) maximum contaminant limit of 300 pCi/L. The proposed regulatory standard for radon in drinking water has been under consideration by the EPA for several years, but has not been enacted. This is a controversial standard and it is not known when or if this maximum contaminant level actually will be promulgated. Radon occurs naturally in the volcanic rocks of the aquifer and it easily diffuses into groundwater. It should be noted that water from the Reservoir Well is stored temporarily in a vented 4.5-

million-gallon reservoir before being distributed to customers. Aeration that occurs in the reservoir, along with mixing with mountain line water that contains no radon, likely reduces radon concentrations below the proposed EPA standard.

Laboratory reports for all analyzed samples collected during Cycle 2 are presented in Appendix B. Several field-acquired water quality parameters (temperature, specific conductance, pH, and oxidation reduction potential [ORP]) were measured an additional 27 times by Baker City staff members during Cycle 2. Results of additional field parameter measurements can be found in Table 5 (presented at the end of this report). A time series plot for specific conductance measured during injection and recovery is presented in Figure 5. While there is some variability in the source water specific conductance, this plot demonstrates the same mixing trend observed during Cycle 1. This indicates that little if any water chemistry changes occurred during Cycle 2 and only mixing between the source water and the native groundwater was evident. Overall, the quality of the water produced during recovery was excellent. There were no customer complaints, and informal taste testing performed by the City indicated that the taste of the recovered water throughout the test period was good. This is a significant improvement compared to periods in the past when City residents would complain about taste, odor, and color after only 2 weeks of pumping the well.

Year 2006 (ASR Cycle 3) Monitoring and Operation

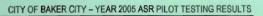
The City began its third ASR cycle at the Reservoir Well on January 27, 2006. Rick Lusk, Oregon Water Resources Department (OWRD) Water Master, was notified at least 15 days before initiating ASR startup. The City plans to continue injection until June 30, 2006.

The City is targeting 175 million gallons of stored water for Cycle 3 during an approximate 150-day injection period. The City may elect to inject up to 200 million gallons until June 30, 2005, if there is an adequate volume of water available for ASR. Recovery is expected to begin in July and will continue through the fall until 95 percent of the stored water volume and carryover water volume from 2005 has been recovered. The City may continue pumping under its existing groundwater certificate (51748) after 95 percent of the stored ASR water is recovered, if water demand exceeds the supply from the Mountain Line.

Monitoring wells listed in the ASR Work Plan (GSI and Anderson Perry, 2003b) will be monitored during cycle testing in 2006, except for the Golf Course Well (BAKE 1153). As previously mentioned, the Golf Course Well could not be modified for monitoring and no longer will be included in the monitoring program. Water levels will be monitored at the Paul Hill Well (BAKE 1136), Ellingson Well (BAKE 1780), and Briggs Well (BAKE 1145) in accordance with the approved work plan. The Reservoir Well and Ellingson Well will be monitored with a pressure transducer and data logger. The Paul Hill and Briggs wells will be monitored with a manual water level meter on a weekly basis.

Water quality samples will be collected as indicated in Table 6 (presented at the end of this report), consistent with the sampling schedule presented in the approved ASR Work Plan (GSI and Anderson Perry, 2003b). All results of water quality analysis and water level monitoring will be presented in the 2006 ASR Report to be completed in February 2007.

ASR Permit Application


It is anticipated that the City will apply for an ASR permit during 2006 and will be preparing the permit application in the coming months. This report and the previously submitted ASR feasibility study report (GSI and Anderson Perry, 2003a) will provide the technical basis of the permit application. In our opinion, the testing results represent what we would expect to occur if the Reservoir well is operated in a similar manner in the future under an ASR permit. Based on the testing results, the ASR system should be capable of storing up to 200 million gallons in the aquifer without adverse impacts to other groundwater users and surface water users in the watershed. The ASR permit should allow for periodic injection throughout the year (up to 200 million gallons total) when water is available in the watershed to maintain high water levels in the Reservoir Well at all times. This will allow the well to maintain production at the higher rate (1,500 gpm) for an extended period of time, should it be needed for an emergency.

References

Groundwater Solutions, Inc. (GSI), and Anderson Perry & Associates. 2003a. Baker City Aquifer Storage and Recovery (ASR) Feasibility Report, for the City of Baker City. June 2003

Groundwater Solutions, Inc. (GSI), and Anderson Perry & Associates. 2003b. *Aquifer Storage and Recovery Limited License Application and Pilot Test Work Plan,* for the City of Baker City. September 2003.

Groundwater Solutions, Inc. (GSI). 2005. *City of Baker City – Year 2005 ASR Activities*, for the City of Baker City. April 2005

P:\145 - BAKER CITY\002\REPORTS\YEAR_2005_CYCLE_RPT_REVJMB.DOC

L

L

L

L

1

L

L

L

Tables

Table 2

Water Quality Results - ASR Cycle 1 Test City of Baker City ASR Program

	Analyte	Lowest Regulatory Standard	Units	Regulatory Criteria	MDL	Native Groundwater	Source Water (Mountain Line) BCRW-C1SW-1	Recovery Sample 1 BCRW-C1R-1	Recovery Sample 2 BCRW-C1R-2	Recovery Sample 3 BCRW-C1R-3
					Date	7-Jan-05	1-Feb-05 17:00	2-Feb-05 7:20	2-Feb-05 9:05	2-Feb-05 10:00
Field Parameters	Temperature	None	Celsius	None	NA	16.6	2.9	6.6	10.5	12.9
	Conductivity	None	μS/cm	None	NA	269	103	103	177	251
	Dissolved Oxygen	None	mg/L	None	NA	1.7	9.7			7.14
	<u>рН</u>	6 - 8.5	Units	SMCL	NA	6.78	6.95	6.95	8.21	8
	Turbidity	11	NTU	MCL, MML	NA		<1			<1
	ORP	None	mV	None	NA	-60	612	31	6	60
Geochemical	Bicarbonate	None	mg/L	None	2	136	28			96
	Calcium	None	mg/L	None	0.1	30.5	16.1			26.3
	Carbonate	None	mg/L	None	2		<1			<1
	Chloride	250	mg/L	SMCL	1	2.99	0.52			2.64
	Hardness (as CaCO3)	250	mg/L	URC	4		40.3			65.8
	Magnesium	None	mg/L	None	0.05	15.5	2.07			12
	Nitrate as N	10	mg/L	MML	0.5		0.07			0.05
	Nitrite as N	1	mg/L	MCL	0.01		<0.02			<0.02
	Total Nitrate-Nitrite	10	mg/L	MML			0.07			0.05
	Potassium	None	mg/L	None	0.1	2	<0.5			1.5
	Silica	None	mg/L	None	0.2	29	7			23
	Sodium	20	mg/L	URC (advisory)	0.05	17.1	1.88			11.3
	Sulfate	250	mg/L	URC, SMCL	5	34.7	2.91			20.1
	Total Alkalinity	250	mg/L	SMCL	2	136	28			96
	Total Dissolved Solid	500	mg/L	SMCL	0.7	310	50			130
	Total Organic Carbon	None	mg/L	None	0.5	0.6	0.6			0.6
Matala	Total Suspended Solids	None	mg/L	None	2	<1	<1			<1
Metals	Aluminum	0.05	mg/L	SMCL	0.05		<0.1			<0.1
	Antimony	0.006	mg/L	MCL	0.001		<0.005			<0.005
	ArsenicBarium	0.05	mg/L	MCL, MML MCL, MML	0.002		<0.005			0.007
	Beryllium	0.004	mg/L	MCL, MML	0.05		<0.5			< 0.5
	Cadmium	0.004	mg/L	MCL, MML	0.0005		<0.0005			<0.0005
	Chromium	0.05	mg/L mg/L	MCL, MML	0.001		<0.005			< 0.0005
		1.3	mg/L	MCL, MML	0.002		<0.1			<0.005
	Iron (Total)	None	mg/L	None	0.005	0.22	<0.1			<0.1
	Iron (Dissolved)	0.3	mg/L	SMCL	0.05	0.22	<0.1			<0.1
	Lead	0.015	mg/L	MCL, MML	0.001		<0.005			<0.005
	Manganese (Total)	None	mg/L	None	0.002		<0.05			<0.005
	Manganese (Dissolved)	0.05	mg/L	SMCL	0.002	0.1	<0.05			<0.05
	Mercury	0.002	mg/L	MCL, MML	0.0002		<0.001			<0.001
	Nickel	0.1	mg/L	MCL	0.004		<0.01			<0.01
	Selenium	0.01	mg/L	MCL, MML	0.002		<0.005			<0.005
	Silver	0.05	mg/L	MML, SMCL	0.005		<0.05			<0.05
	Thallium	0.002	mg/L	MCL	0.0006		<0.002			<0.002
	Zinc	5	mg/L	SMCL	0.01		<0.05			<0.05
Miscellaneous	Odor	3	TON	SMCL	1 ton		ND			ND
	Color	15	ACU	SMCL	5 color units		ND			ND
	Methylene Blue Active Substance	0.5	mg/L	SMCL	0.05		0.025			< 0.01
	Corrosivity (Langelier Saturation Index)	Non-Corrosive	mg/L	SMCL			-1.87			-1.27
	Cyanide (as free cyanide)	0.2	mg/l	MCL			<0.2			<0.2
	Fluoride	2	mg/L	MCL, MML, SMCL	0.5		0.52			0.22

Indicates analyte not required during sampling event

Indicates analyte not required during sampling of mg/L = milligram per liter MDL = Method Detection Limit ND = Not detected at concentrations greater than the MDL NT = Analyte not tested MCL = Federal maximum contanianant level for drinking water MML = DEQ's maximum measurable levels for groundwater URC = State unregulated contaminant SMCL = Federal secondary maximum contaminant levels for drinking water UCMR = EPA unregulated contaminant monitoring regulations for drinking water Samples are unfiltered unless noted (i.e., dissolved)

Groundwater Solutions Inc.

	Class Ana	lyte Lowest Regulatory Standard	Units	Regulatory Criteria	MDL	Native Groundwater	BCRW-C2SW-1 Source Water	BCRW-C2SW-2 Source Water	BCRW-C2SW-3 Source Water	BCRW-C2T-1 Storage	BCRW-C2T-2 Storage	BCRW-C2R-1 Recovery	BCRW-C2R- Recovery
				Арг	proximate Date	29-Jan-03 10:00	2-Feb-05 10:30	23-Mar-0 <u>5 10:00</u>	29-Jun-05 10:00	11-Jul-05 00:30	27-Jul-05 11:30	21-Sep-05 11:00	26-Oct-05 11:0
Synthetic Organic Compounds (SOCs)	2,4,5-TP (Silvex)	0.01	mg/L	MCL, MML	0.0004	ND	ND	MODES CONTRACTOR	ND		ND	ND	ND
Regulated SOCs	2,4-D	0.07	mg/L	MCL, MML	0.0002	ND	ND		ND		ND	ND	ND
	Alachlor (Lasso)	0.002	mg/L	MCL	0.0004	ND	NĎ		NĎ		ND	ND	ND
	Atrazine	0.003	mg/L	MCL	0.0002	ND	ND		ND		ND	ND	ND
	Benzo(a)Pyrene	0.0002	mg/L	MCL	0.00004	ND	ND		ND		ND	ND	ND
	BHC-gamma (Lindane		mg/L	MCL, MML	0.00002	ND	ND		ND		ND	ND	ND
	Carbofuran	0.04	mg/L	MCL	0.001	ND	ND		ND		ND	ND	ND
	Chlordane	0.002	mg/L_	MCL	0.0004	ND	ND		ND		ND	ND	ND
	Dalapon	0.2	mg/L	MCL	0.002	ND	ND		ND		ND	ND_	ND
	Di(2-ethylhexyl)adipat		mg/L	MCL	0.001	ND	ND		ND		ND	ND	ND
	Di(2-ethylhexyl)phthal		mg/L_	MCL	0.001	ND	ND		ND		ND	ND	ND
	Dibromochloropropan		mg/L	MCL	0.00002	ND	ND		ND		ND	ND	ND
	Dinoseb	0.007	mg/L	MCL	0.0004	ND	ND		ND		ND	ND	ND
	Diquat	0.02	mg/L	MCL	0.0004	ND	ND		ND		ND	ND	ND
	Ethylene Dibromide (E	DB) 0.00005	mg/L	MCL	0.00001	ND	ND		ND		ND	ND	ND
	Endothali	0.1	mg/L	MCL	0.01	ND	ND		ND		ND	ND	ND
	Endrin	0.0002	mg/L	MCL, MML	0.00002	ND	ND		ND		ND	ND	ND
	Glyphosate	0.7	mg/L	MCL	0.01	ND	ND		ND		. ND	ND	ND
	Heptachlor	0.0004	mg/L	MCL	0.00004	ND	ND		ND		ND	ND	ND
	Heptachlor Epoxide	0.0002	mg/L	MCL	0.00002	ND	ND		ND		ND	ND	ND
	Hexachlorobenzene (ICB) 0.001	mg/L	MCL	0.0001	ND	ND		ND		ND	ND	ND
	Hexachlorocyclopenta	diene 0.05	mg/L	MCL	0.0002	ND	ND		ND		ND	ND	ND
	Methoxychlor	0.04	mg/L	MCL, MML	0.0002	ND	ND		ND		ND	ND	ND
	Polychlorinated Biphe	nyls (PCBs) 0.0005	mg/L	MCL	0.0002	ND	ND		ND		ND	ND	ND
	Pentachlorophenol	0.001	mg/L	MCL	0.00008	ND	ND		ND		ND	ND	ND
	Picloram	0.5	mg/L	MCL	0.0002	NĎ	ND		ND		ND	ND	ND
	Simazine	0.004	mg/L_	MCL	0.0001	ND	ND		ND		ND	ND	ND
	Toxaphene	0.003	mg/L	MCL, MML	0.001	ND	ND		ND		ND	ND	ND
	Vydate (Oxamyl)	0.2	mg/L	MCL	0.002	ND	ND		ND		ND	ND	ND
	1,1,1-Trichloroethane	0.2	mg/L	MCL, MML	0.0005	ND	ND		ND		ND	ND	ND
platile Organic Compounds (VOCs)	1,1,2-Trichloroethane	0.005	mg/L	MCL	0.0005	ND	ND		ND		ND	ND	ND
egulated VOCs	1,1-Dichloroethylene	0.007	mg/L	MCL, MML	0.0005	ND	ND		ND		ND	ND	ND
	1,2,4-Trichlorobenzen	0.07	mg/L	MCL	0.0005	ND	ND		ND		ND	ND	ND
	1,2-Dichlorobenzene		mg/L	MCL	0.0005	ND	ND		NO		ND	N/D	ND
	1,2-Dichloroethane (E		mg/L	MCL, MMI_	0.0005	ND	ND		ND		ND	ND	ND
	1,2-Dichloropropane	0.005	mg/L	MCL	0.0005	ND	ND		ND		ND	ND	ND
	1,4-Dichlorobenzene		mg/L	MCL, MMI	0.0005	ND	ND		ND		ND	ND	ND
	Benzene	0.005	mg/L	MCL, MML	0.0005	ND	ND		ND		ND	ND	ND
	Carbon Tetrachloride	0.005	mg/L	MCL, MML	0.0005	ND	ND		ND		ND	ND	ND
	Chlorobenzene (monoc		mg/L	MCL	0.0005	ND	ND		ND		ND	ND	ND
	cis-1,2-Dichloroethyle		mg/L	MCL	0.0005	ND	ND		ND		ND	ND	ND
	Ethylbenzene	0.7	mg/L	MCL	0.0005	ND	ND		ND	Contraction of the second	ND	ND	ND
	Dichloromethane (met		mg/L	MCL	0.0005	ND	ND	CARLES STATES	ND		ND	ND	ND
	Styrene	0.1	mg/L	MCL	0.0005	ND	ND		ND	AND CONTRACT ADDRESS	ND	ND	ND
	Tetrachloroethylene	0.005	mg/L	MCL.	0.0005	ND	ND	State of the second second	ND	A STATE OF A STATE	ND	ND	ND
	Toluene	1	mg/L	MCL	0.0005	ND	ND		ND	NERESPECTATION OF THE REAL	ND	ND	ND
	trans-1,2-Dichloroethy	lene 0.1	mg/L	MCL	0.0005	ND	ND		ND		ND	ND	ND
	Trichloroethylene	0.005	mg/L	MCL, MML	0.0005	ND	ND		ND	CARGE STREET, S	ND	ND	ND
	Vinyl chloride	0.002	mg/L	MCL, MML	0.0005	ND	ND		ND		ND	ND	ND
	Total Xylenes	10	mg/L	MCL	0.0005	ND			ND				11D

NOTE

Indicates analyte not required during sampling even Indicates analyte not required during sampling event

 MOTE

 Indicates analyte not required during sampling even Indicates analyte not required during sampling event

 mg/L = milligram per liter

 MDL = Method Detection Limit

 ND = Not detected at concentrations greater than the MDL

 NT = Analyte not tested

 MCL = Federal maximum contaminant level for drinking water

 MML = DEC/s maximum measurable levels for groundwater

 URCE = Federal maximum contaminant levels for drinking water

 MML = DEC/s maximum contaminant levels for drinking water

 UCMR = EPA unregulated contaminant

 UCMR = EPA unregulated contaminant monitoring regulations for drinking water

 Samples are unfiltered unless noted (i.e., dissolved)

 1 = Combined Radium 226/228 and Uranium required after December 2003

 2 = Only need to analyze if in a vunerable area per OAR 333-61-0036, 6(b)(A) (i.e., near man-made radioactive sources, such as nuclear facilities - currently only selected systems along Columbia River classified as vunerable)

 3 = These compounds would be analyzed if Gross Alpha or Beta exceed an MCL.

 * BCRW-C2SW-1 sample was collected pre-chlorination, result not accurate for injected water.

 i = Major cation and anion charge balance not compliant with QC requirement of 5%

 L = Field parameter data analysed at the laboratory

Table 4 Analyte List for ASR Pilot Test Cycle 2 City of Baker City ASR Program

City of Baker City ASR Pro	ogram		-		-									
	Class	Analyte	Lowest Regulatory Standard	Units	Regulatory Criteria	MDL	Native Groundwater	BCRW-C2SW-1 Source Water	BCRW-C2SW-2 Source Water	BCRW-C2SW-3 Source Water	BCRW-C2T-1 Storage	BCRW-C2T-2 Storage	BCRW-C2R-1 Recovery	BCRW-C2R-2 Recovery
I				I	Ap	proximate Date	29-Jan-03 10:00	2-Feb-05 10:30	23-Mar-05 10:00	29-Jun-05 10:00	11-Jul-05 09:30	27-Jul-05 11:30	21-Sep-05 11:00	26-Oct-05 11:00
Bacteriological		Fecal Coliforms/E.Coli					<1	6/5 *						
Zueteneiogieur		Total Coliform	<1/100 ML	CFU/100 ml	MML		<1	21 *						
Disinfection By-Products		Chloroform (Trichloromethane)	None	mg/L	URC	0.0005	ND	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE						
ТНМ		Bromodichloromethane	None	mg/L	None	0.0005	ND							
тнм		Dibromochloromethane	None	mg/L	None	0.0005	ND							
тнм		Bromoform (Tribromomethane)	None	mg/L	URC	0.0005	ND							
тнм		Total Trihalomethanes	0.08	mg/L	MCL, MML		ND	ND *	0.0199	0.0075	0.0281	0.0249	0.0074	0.0028
		Monochloroacetic Acid	None	mg/L	None	0.002	ND	-						
HAA HAA		Dichloroacetic Acid	None None	mg/L	None None	0.001	ND ND	-						
HAA		Monobromoacetic Acid	None	mg/L mg/L	None	0.001	ND	-						
HAA		Dibromoacetic Acid	None	mg/L	None	0,001	ND	-						
HAA		Total Haloacetic Acids	0.06	mg/L	MCL		ND	ND *	0.024	0.12	0.006	0.002	ND	ND
Field Parameters		Temperature	None	Celsius	None	NA	14.7	4	3,5	10.4	58 L	50 L	8.9	11,5
		Conductivity	None	mS/cm	None	NA	315	77	100	83	151 L	147 L	212	259
		Dissolved Oxygen	None	mg/L	None	NA	NT	10.8 L	NT	8.4	8.2 L	8.4 L	7.0	<u>9</u> 1
1		pH	6 - 8.5	Units NTU	SMCL MCL, MML	NA NA	8.01 NT	7.9	7.3	7.2	<u>7.5</u> <u>L</u> 140 L	6.1 L	7.6	6.81
		Turbidity	None	mV	None	NA NA	NT	88	0.412	0.5	615 L	612 L	70	70
Geochemical		Bicarbonate	None	mg/L	None	2	92	 	027	22 1	33 i	54 i	81 i	110
		Calcium	None	mg/L	None	0.1	30.9	16.4 i	-	13.2	18.2 i	19.9 i	26.4	29.5 1
		Carbonate	None	mg/L	None	2	<1	<1 i		<1 1	<1 i	<1 i	<1 i	<1 i
1		Chloride	250	mg/L	SMCL	1	6	1,25 *i	1.25	0.83 1	<u>1.91 i</u>	2.18 i	<0.08 í	2.2
		Hardness (as CaCO3)	250	mg/L	URC	4	154	41 i	_	33 1	<u>51</u>	66.6	66	129
		Magnesium Nitrato as N	10 None	mg/L	Morie MML	0.05	16.3	2.04 i		<u> </u>	<u>4.23</u> i 0.21 i	4.26 i	<u>10.9 i</u> 0.13 i	<0.03
		Nitrate as N	1	mg/L mg/L	MCL	0.01	<0.05	<0.02	-	0.29 1	<.02 i	0.36 i <0.002 i	0.002 i	<0.02
		Total Nitrate-Nitrite	10	mg/L	MML	~	40.002	0.06 i		0.29 1	0.21	0.37 1	0.132	<0.03
		Potassium	None	mg/L	None	0.1	1.8	<0.5 i		<0.5 i	0.5 1	0.6 i	1 1	1.4
		Silica	None	mg/L	None	0.2	38.1	9		7.0	11	22	9.36	44
		Sodium	20	mg/L	URC (advisory)	0.05	19	1.95	_	1,45 1	2.37 1	3.09 1	9.36	14.5
		Sulfate	250	mg/L	URC, SMCL	2	39	2.8 1	-	1.69	<u>4.19 i</u>	5.5 54 i	<0.08 i	21.7
		Total Dissolved Solid	250	mg/L mg/L	SMCL SMCL	0.7	92	28 i 40	-	<u> </u>	33 1	60	150	190
		Total Organic Carbon	None	mg/L	None	0.5	6.7	0.6		0,7	1.1	1	0.6	0.5
		Total Suspended Solids	None	mg/L	None	2	<1	<1	-	<1	64	72	3	<1
Metals		Aluminum	0.05	mg/L	SMCL	0.05	0.0071	<0.1		<0.1	0.4	<0.1	<0.1	≤0,1
		Antimony	0,006	mg/L	MCL	0.001	ND	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005
		Arsenic	0.05	mg/L	MCL, MML	0.002	0.006	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005
		BariumBeryllium	0.004	mg/L mg/L	MCL, MML MCL	0.05	ND ND	<0.5		<0.5 <0.005	< <u>0.5</u> <0.0005	<0.5 <0.0005	< <u>0.5</u> <0.0005	<0.5
		Cadmium	0.004	mg/L	MCL, MML	0.001	ND	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
		Chromium	0.05	mg/L	MCL, MML	0.002	ND	<0.005		<0.005	<0.005	<0.005	< 0.005	<0.005
		Copper	1.3	mg/L	MCL, MML	0.005	ND	<0.1		<0.1	<0,1	<0.1	<0.1	<1
		Iron (Total)	None	mg/L	None	0.05	<0.1	<0.1		<0.1	2.81	1.11	<0.1	<0.1
		Iron (Dissolved)	0.3	mg/L	SMCL	0.05	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
		Lead Manganese (Total)	0.015 None	mg/L mg/L	MCL, MML None	0.001	0.005	<0.005	-	<0.005	<u><0.005</u> 0.12	0.005	<0.005 <0.05	<0.005 <0.05
		Manganese (Dissolved)	0.05	mg/L mg/L	SMCL	0.002	0.09	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05
		Mercury	0.002	mg/L	MCL, MML	0.0004	ND	<0.001		<0.001	<0.001	<0.001	<0.001	< 0.001
		Nickel	0.1	mg/L	MCL	0.004	ND	<0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
		Selenium	0.01	mg/L	MCL, MML	0.002	ND	< 0.005	-	< 0.005	<0.005	< 0.005	<0.005	<0.005
		Silver	0.05	mg/L	MML, SMCL	0.005	ND	<0.05	_	<0.05	< 0.05	<0.05	<0.05	< 0.05
		Thallium	0.002	mg/L	MCL	0.0006	ND	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002 <0.05
Miscellaneous		 <u> </u>	3	mg/L TON	SMCL SMCL	0.01 1 ton	ND	<0.05 ND		<0.05	<0.05	0.09 ND	<0.05 ND	×0.05 ND
macenaneous		Color	15	ACU	SMCL	5 color units	ND			ND		ND	ND	ND
		Methylene Blue Active Substance	0.5	mg/L	SMCL	0.05	NT	0.031		< 0.01		0.01	<0.01	<0.01
		Corrosivity (Langelier Saturation Index)	Non-Corrosive	mg/L	SMCL		0.23	-1.97		-2.1		-1.8	-0.42	-0.57
		Cyanide (as free cyanide)	0.2	mg/l	MCL_			A 0-		<0.01		<0.01	<0.01	<0.01
B. R		Fluoride	2	mg/L	MCL, MML, SMCL	0.5	0.3	0.36		<0.01		0.05	<0.03	0.13
Radionuclides		Combined Radium 226/228	5	pCi/L	MCL, MML			ND		ND ND		ND	ND	<u>ND</u>
			0.03	mg.L	MCL MOT	1 70	11	ND		ND		ND	ND ND	ND 3.2
		Gross Alpha	15	pCi/L	MCL, MML	1.79	1.1	ND		1.1		1.2	NU	3.2
			4		1 1/0/		40.0							
		Beta/Photon emitters ² Gross Beta	4 50	mrem/yr pCi/L	MCL MML	2.83	12.2							

b

Table 5 Additional ASR Source Water Quality Testing During Injection - Cycle 2

	Analyte	Lowest Regulatory Standard	Units	Regulatory Criteria	MDL	Native Groundwater Quality Analysis	Source Water Quality Analysis		Source Water Quality Analysis											
					Date	7-Jan-05	2-Feb-05	16-Mar-05	23-Mar-05	6-Apr-05	13-Apr-05	20-Apr-05	27-Apr-05	4-May-05	18-May-05	25-May-05	2-Jun-05	15-Jun-05	22-Jun-05	29-Jun-05
Field Parameters	Temperature	None	Celsius	None	NA	16.9	4	3.3	3.5	4.1	4	4.5	5.8	6.4	7.3	7	8.3	8.9	10	10.4
	Conductivity	None	mS/cm	None	NA	260	77	74	100	100	106	107	133	81	80	79	80		100	83
	pH	6 - 8 <u>.5</u>	Units	SMCL.	NA	6.78	7.9	7.8	7.3	7.5	7.65	7.5	7.47	7.42	7.5	7.5	7.4	6.57	7.3	7.2
	Turbidity	1	NTU	MCL, MML	NA			0.174	0.412*	0.536	0.771	0.476	1.073*	0.726	0.8	0.545	0.361	0.643	0.4	0.5
	ORP	None	mV	None	NA	-58	88	634	624	588	551	568	538	L NA	600	600	590	633	580	590

* manual turbidity reading

	Analyte	Lowest Regulatory Standard	Units	Regulatory Criterla	MDL	Recovery Water Quality Analysis												
					Dat	e 22-Aug-05	24-Aug-05	25-Aug-05	26-Aug-05	29-Aug-05	30-Aug-05	7-Sep-05	21-Sep-05	28-Sep-05		12-Oct-05	19-Oct-05	26-Oct-05
Field Parameters	Temperature Conductivity	None	Celsius	None	NA	8.3	8.5	8.3	8.3	8	8	8	8.9	9.1	10.5	10.7	11	11.5
	Conductivity	None	mS/cm	None	NA	134	127	141	146	155	160	192	212	227	243	247	256	259
	рН	6 - 8.5	Units	SMCL	NA	8.3	7.64	6.87	6.95	6.9	6.91	6.7	7.6	7.8	7.5	6.667	6.9	6.81
	Turbidity	11	NTU	MCL, MML	NA													
	ORP	None	mV	None	NA	70	119	98	107	90	86	63	70		1	58	61	70

NOTE Indicaté® ensityle rigt réquired during sampling event mg/L * milligram per liter MDL = Netificid Detection Limit ND = Not détected at concentrations greater then the MDL NT = Anelyte not tested MCL = 70eent Anstrüm commainant level for drinking water MML = DEQ's medimum commainant levels for drinking water URC = State unregulated contaminant URC = 20edral elocativery maximum contaminant levels for drinking water UCMR = EPA unregulated contaminant monitoring regulations for drinking water Samples are unfiltered unless noted (i.e., dissolved) * Turbidity me@surement 3/24/05

Input Values in Yellow Cells			3/31/2006	
Expected AVERAGE Injection Rate:	800	(gpm)		
Expected AVERAGE Recovery Rate:	1500	(gpm)		
Expected Injection Start Date	Friday 1/27/2006 12:00 PM		Carryover Volume (gal)	
Expected Injection End Date	Friday 6/30/06 12:00 PM		and the second	30,300,000
Expected Elapsed Injection Days	and the second s	154	days	
Expected Elapsed Injection Hours		3696	hours	
		177,408,000	gallons injected at injection rate	
Total Planned Injection Volume (MG)		177.4	MG 207.7 Stored Vol. MG+Carryover	
Expected Storage Start Date	Friday 6/30/06 12:00 PM	States and		
Expected Storage End Date	Friday 6/30/06 12:00 PM	A		
Expected Elapsed Storage Days				
Expected Elapsed Storage Hours	and the second	0		
Total Planned Recovery Volume	Contraction of the second second second	198.84	Assume 95% Recovered	
Expected Recovery Start Date	Friday 6/30/06 12:00 PM		and the second s	
Expected Days Required to Recover 100% of Injection Volume	Wednesday 10/4/06 3:52 PM	96		
Expected Days Required to Recover Planned Volume	Saturday 9/30/06 1:18 PM	92	Assumes single-batch recovery	

Water Quality Monitoring Program

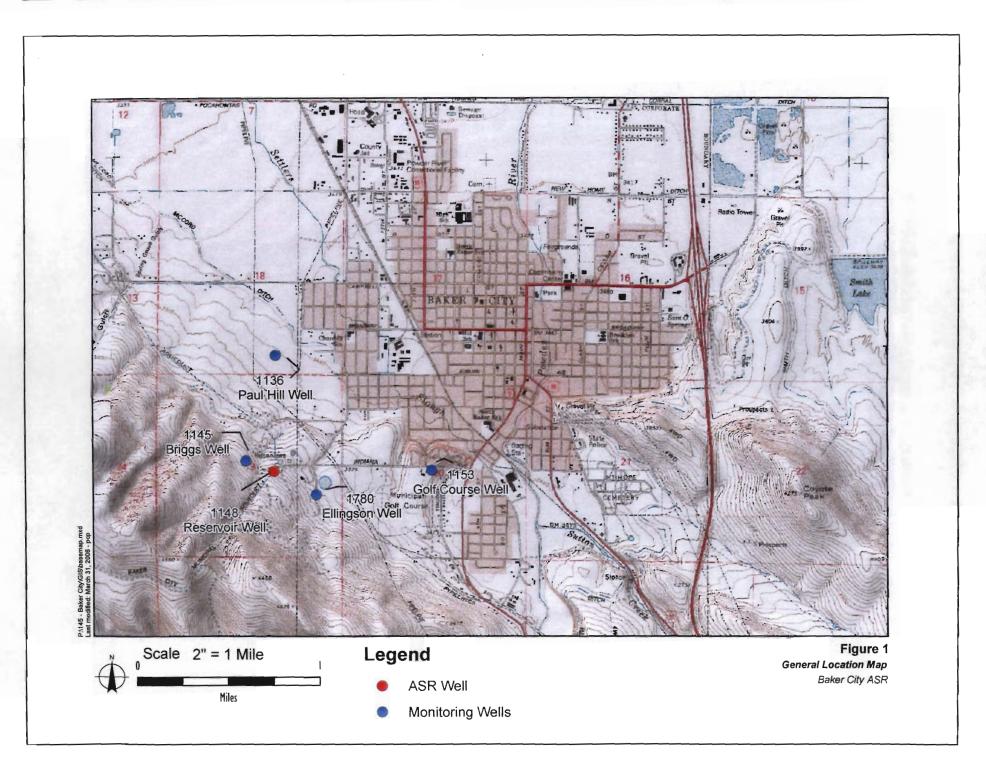
Water Type	Progress Point	Date	Elapsed Days	Analysis	Sample ID	Date Collected	Bottles Verified?	Comments
Baseline	Groundwate	r						
GW		Friday 1/27/06	0	FP, GC, DBP, Radon	BCRW-C3GW			
Injection	Period							
Source Source Source	0% 50% 99%	Friday 1/27/06 Sunday 4/16/06 Thursday 6/29/06	0 79 153	FP, GC, DBP, & SDWA, Radon FP only FP, GC, DBP, & SDWA,	BCRW-C3SW-1 BCRW-C3SW-2 BCRW-C3SW-3			
Storage	Period							
Stored	90%	Friday 6/30/06	0	FP, GC, DBP, SDWA, Radon	BCRW-C3T-1			
Recover	y Period							
Recovered Recovered	and the second division of the second divisio	Monday 8/14/06 Friday 9/29/06	45 91	FP, GC, DBP, SDWA, Radon FP, GC, DBP, SDWA, Radon	BCRW-C3R-1 BCRW-C3R-2			

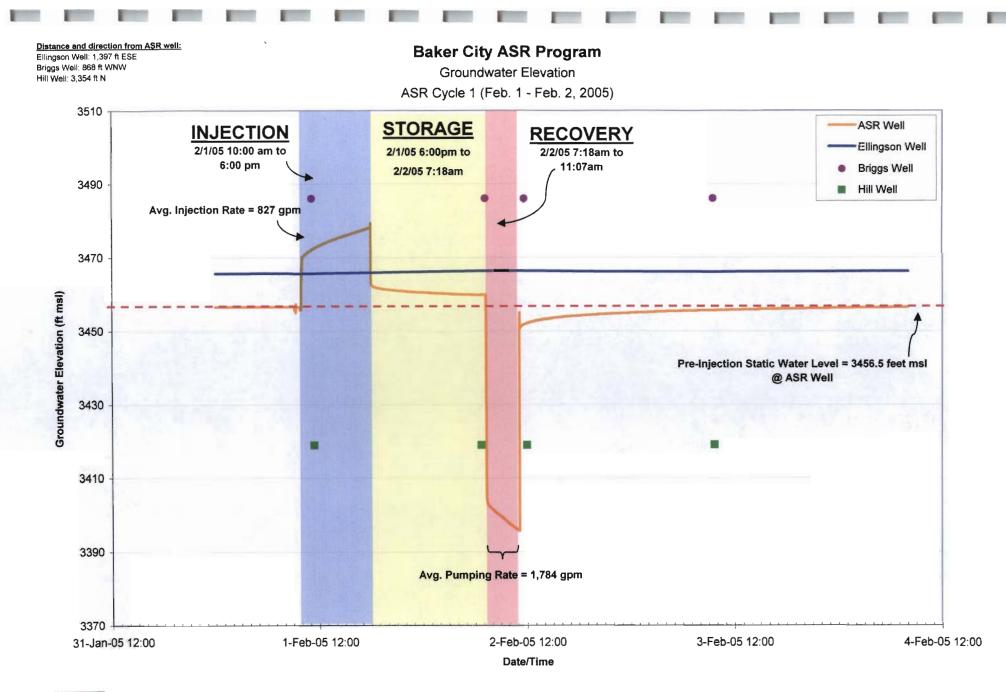
Notes:

FP = Field Parameters

GC = Geochemical Parameters

DBP = Disinfection By-Products

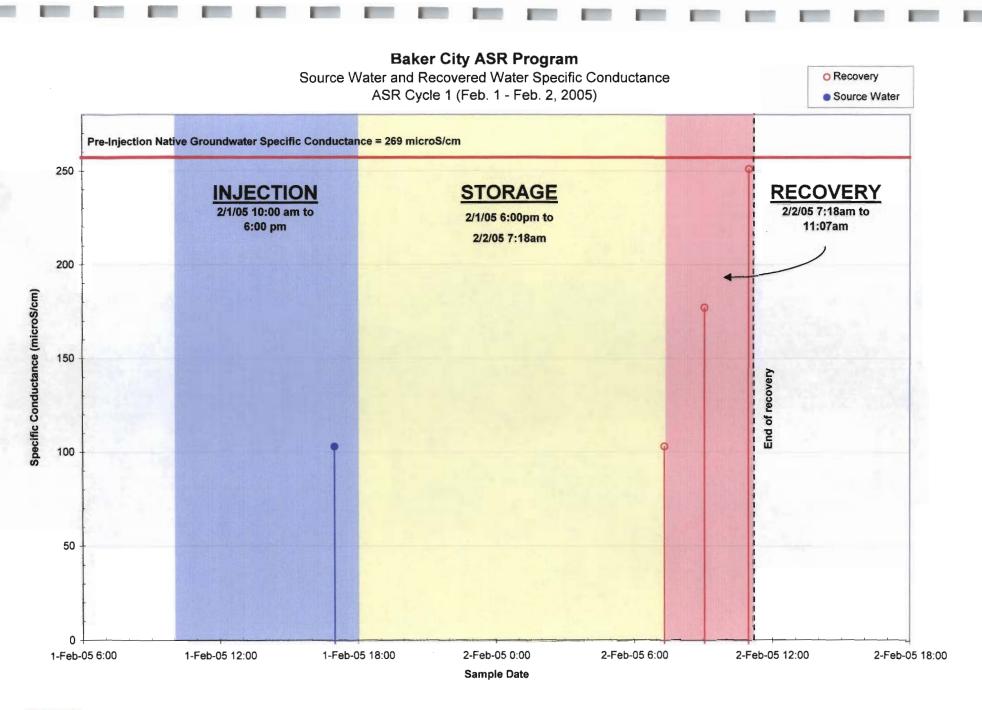

SDWA = Safe Drinking Water Act Parameters (DHS, DEQ MML, Federal SMCL)


UCMR = EPA Unregulated Contaminant Monitoring Regulations parameters

Radon = Radon In drinking water analysis, SM 7500 or EPA 913.0

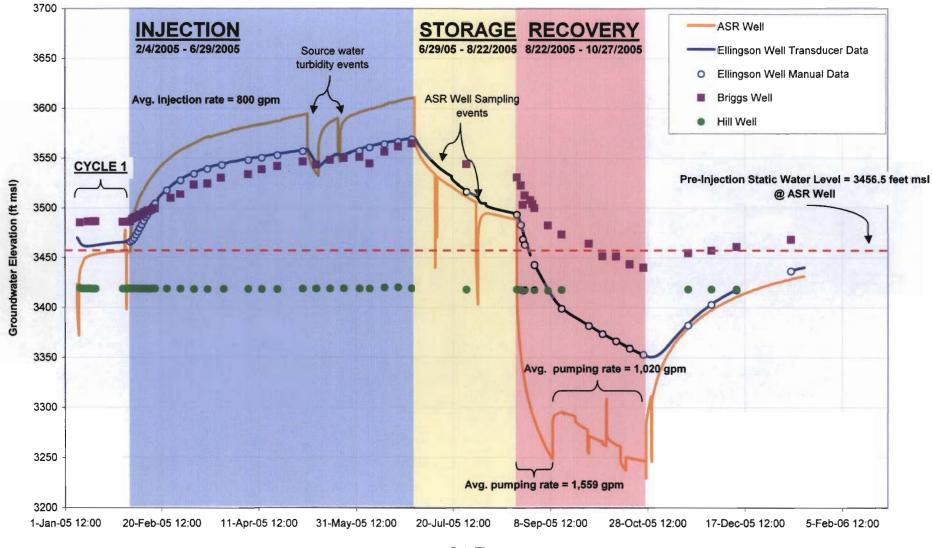
Figures

-



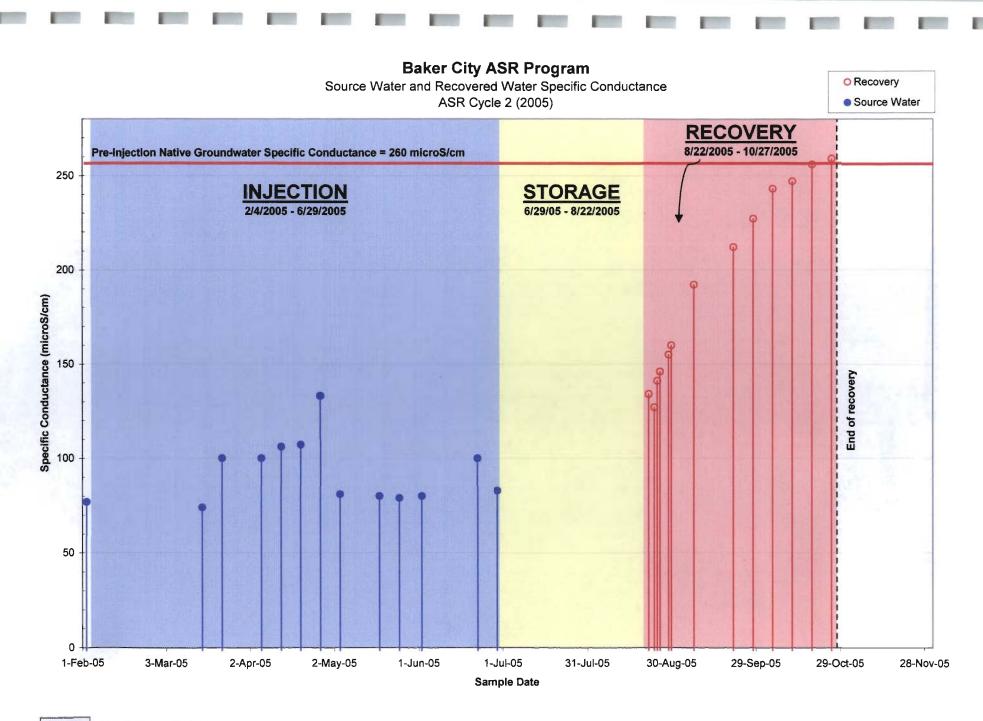
P:\145 - Baker City\002\Hydro Data\Cycle1_Data.xls Last Modified: 5/5/2006 - pcp

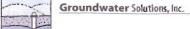
Figure 2. Water levels in monitoring wells during ASR Cycle 1.



P:3145 - Baker City1002\Analytical_Data\Waterquality_results_2005.xls Last modified: 5/5/2006 - pcp Distance and direction from ASR well: Ellingson Well: 1,397 ft ESE Briggs Well: 868 ft WNW Hill Well: 3,354 ft N

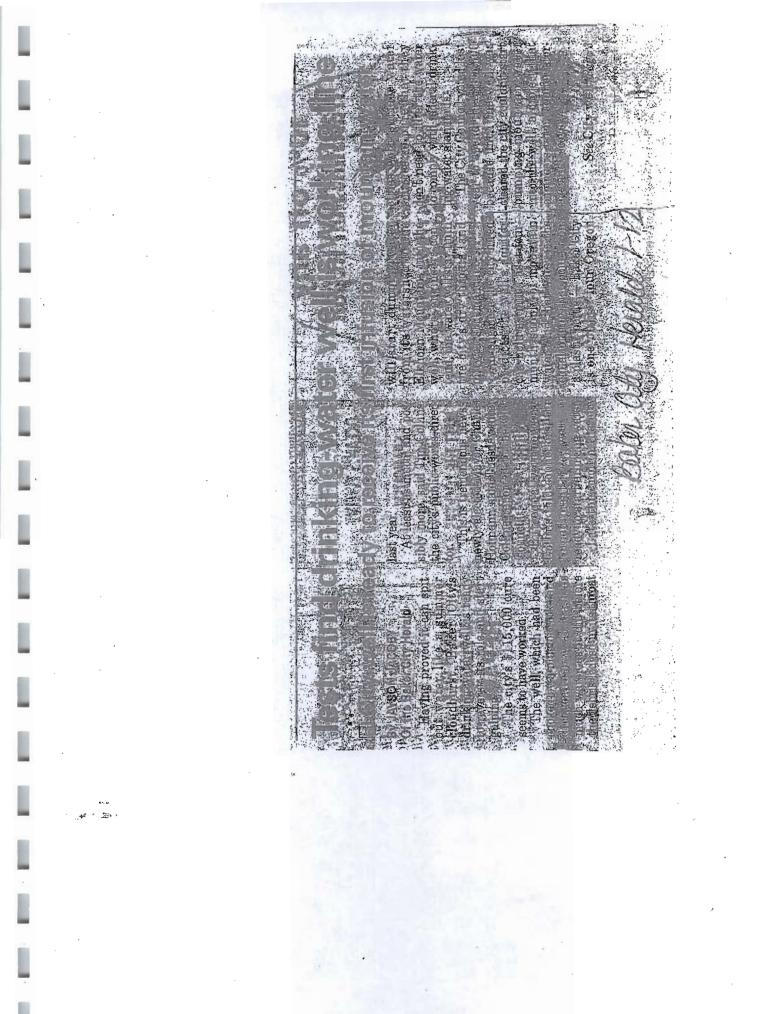
Baker City ASR Program

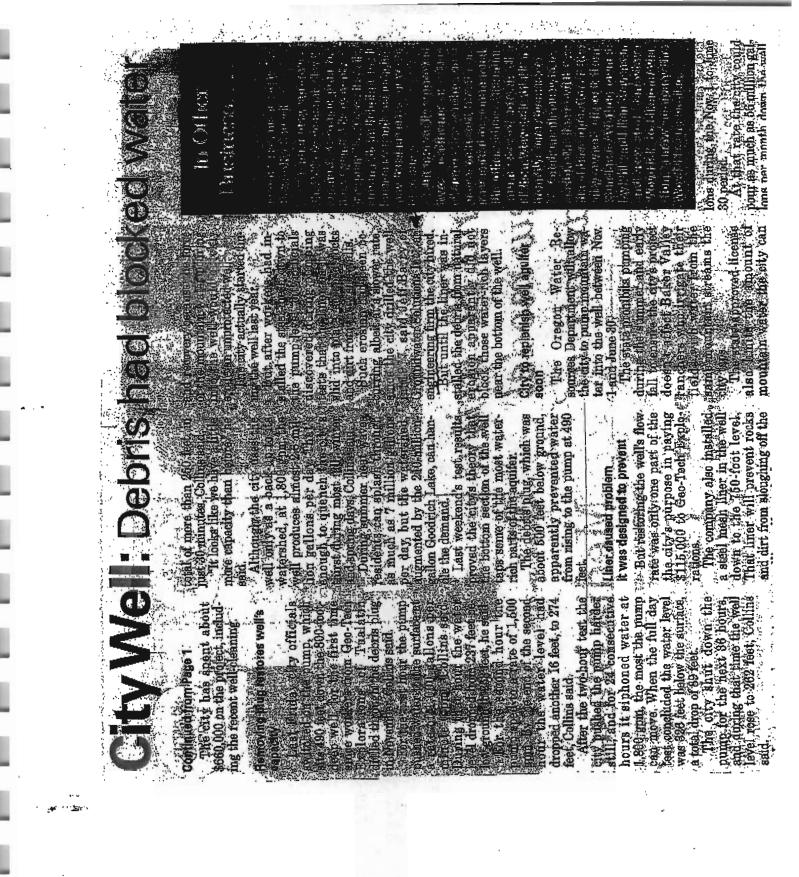

Groundwater Elevation ASR Cycle 2 (2005)



Date/Time

P:\145 - Baker City\002\Hydro Data\2005_data_final.xls Last modified: 5/5/2006 - pcp





P:\145 - Baker City\002\Analytical_Data\Waterquality_results_2005.xls Last modified: 5/5/2006 - pcp

Appendix A

L

flowing

Well Intended use of \$660,000 project gets under way

By JAYSON JACOBY. Of the Baker City Herald

Some sultry day this summer, you — or possibly your petunias — will sip cool water that's had the sort of adventure a person might pay a travel agent to arrange.

シャーシャ

÷,

and the state of the second

31.1

The water that soothes you'r parched throat will already have ambled across mountain meadows and trickled through fragrant forests and finally journeyed, though not all the way to the center of the Earth, closer to it than you'll probably ever get.

If you live in Baker City you helped pay the \$660,000 fare for all that meandering.

But city officials are confident your investment will pay off at the faucet.

And if a forest fire or other catastrophe ever prevents the city from tapping the dozen streams and springs in the Eikhorn Mountains that supply most of the city's water, that \$660,000 might seem like a bargain.

Engineers call the process "aquifer storage and recovery," but there's a three-part description that's a bit easier to digest. The first two parts are under way as you read these words:

First, the city is diverting

See Well/Page 5

Well: City hopes to store 100 million gallons

Continued from Page 1

water from the mountains into a pipe that descends to town.

Second, the city is dumping that water - about 1.1 million gallons per day - into its 800-foot-deep well.

For the final part, scheduled to start in August, the city will pump the mountain water out of the well and into the pipes that lead to your faucets (and to your petunias).

Now you might well ask: "Aren't wells places to get water from, not put water in?"

It's a question Mayor Charles Hofmann said he has fielded several times since the city embarked on its aquiferfilling project about two years ago

Tve had people say, pouring water down a hole what's that?" Hofmann said during an interview last month. "People have told me they think it's the single biggest mistake the city has made."

And although Hofmann voted to pursue the well-filling project, he admits it was difficult to decide to spend close to three quarters of a million dollars to bring more water to a city where most lawns stay green even during droughts.

"This one personally tore me up," Hofmann said. "I hope K Engineers also concluded it works." Engineers also concluded that the mountain water,

Like Hofmann, Tim Collins, the city's public works director, understands that most people consider wells places where you withdraw water, not deposit it.

But Collins said the city's well, which was drilled in 1977, doesn't spew out water the way it did in its youth.

For the past several years, in fact, whenever the city tapped the well continuously for more than a week or so, its

How's it work?

Se Principal Se TANK TALLE To Friday al Carte in the And Ve

can stain clothes.

This problem prompted Collins' predecessor, Dick Fleming, to research aquifer storage and recovery. In 2003 Fleming convinced the City Council to test the technology that several other Oregon cities, including Pendleton and Tigard, are using.

Fleming's plan, later confirmed as plausible by an engineering firm the city hired, is to replenish the well's aquifer with water from those mountain streams, which for more than a century have served as the city's main water source.

while it waits down in the well, will retain the refreshingly chilly temperature and the purity that distinguish it from the stuff that drips from most other cities' taps. Baker City is one of just four cities in Oregon with surface water so pure it need not be filtered to meet federal drinking-water standards.

And now, almost two years after Fleming sold the plan to the City Council, that mounflow dwindled and the water tain water is pouring into the became tinged with man-well ganese, and iron, which, Last year Oregon's Water though not harmful to people. Resources Department issued the city a five-year license that allows the city to dump. mountain water down the well between Nov. 1 and June 30.

That license prohibits the city from refilling the well aquifer with mountain water between July 1 and Oct. 81. The purpose of that limitation is to preserve water for Baker Valley farmers and ranchers who irrigate from the same mountain streams the city uses.

Baker County Watermaster Rick Lusk also can curtail the city's aquifer-filling earlier than June 30 if that's necessary to ensure irrigators have water for their fields, Collins said.

He expects that this year, with Elkhorn Mountain snowpacks at near record lows, and water shortages therefore likely, the city won't be allowed to continue putting mountain water into the well clear through June.

(The restrictions apply to aquifer-filling only - the city can use as much mountain water as it needs as long as the water flows directly to residents rather than down the well.)

Lusk said Collins probably is right, although predicting how much water will be available, and when irrigators will ask for that water, is impossible.

Tm not sure how it's going. to pan out because we haven't gone through it yet," Lusk said. "We'll know a lot more every year"

He said that in extremely dry years, the city might be able to pump mountain water into the well through June 30 because so little water would be available downstream that farmers and ranchers wouldn't be able to make "beneficial use" of the water, as required by state law.

And in extremely wetyears, Lusk said, there ought. to be enough water to replen- . ish the city's aquifer and irrigate fields.

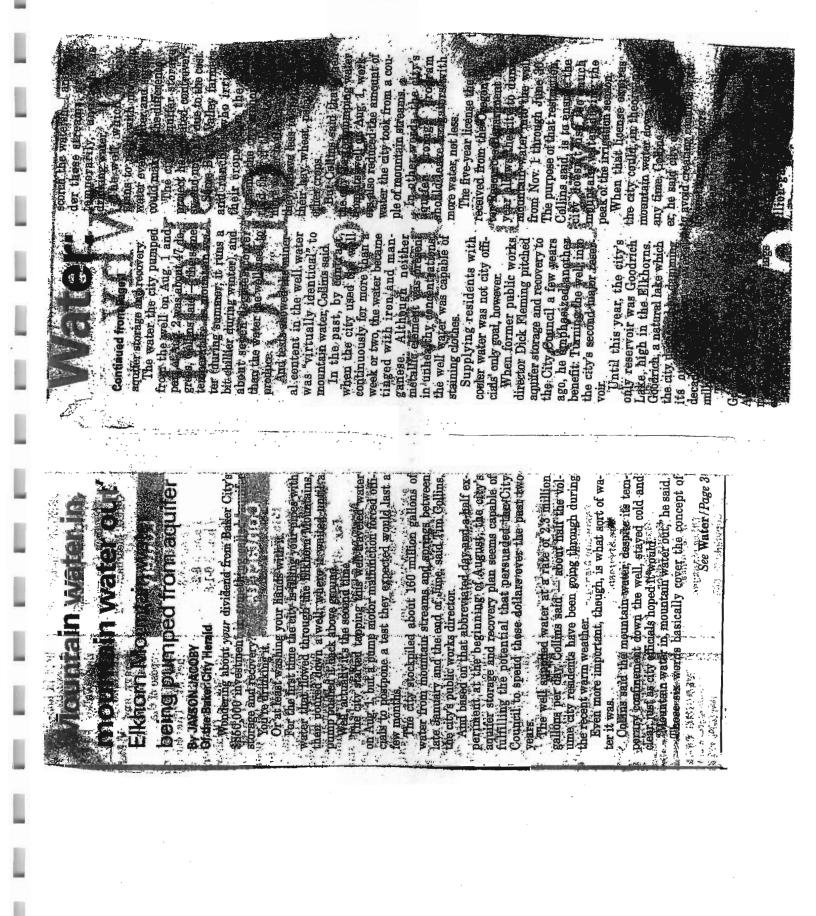
Most years, though, are neither abnormally damp nordry, Lusk said. In those years he said he might have to cap the city's well earlier than June 30. Or he might not.

"It's not in my hands ---- it's in nature's hands," Lusk said

Although Collins anticipates an early shutoff this year, he figures the city will dump close to 100 million gallons of mountain water into the well before Lusk cuts off the city (the state license allows up to 200 million gallons per year) At the current rate of about 1.1 million gallons per day, the city would reach the 100-million-gallon level by about May 1. ÷ . .

That's enough water to satisfy the thirsts of the city's people (and their petunias) for about a month during the summer, or about two and a g half months during the cooler seasons, Collins said.

He said the city intends to start using the stored mountain water in August, when demand for water usually peaks, while the flow in Elkhorn streams plummets.


In the past few years, as the well's production declined, the city dealt with that latesummer dilemma by diverting more water from Goodrien Lake, high in the Elkhorns. Goodrich holds about 210 million gailons.

Collins said the replenished well aquifer will serve as a second reservoir - a reservoir the city would desperately need, along with Goodrich, were a forest fire ever to singe the watershed and render, at least temporarily, water from the mountain streams unfit for drinking.

City officials also hope that by topping off the aquifer every spring, the city will use less mountain water during summer and leave more in the streams for the farmers and ranchers 200 1. M Dec. 865 8653 50 20

ANDERSON - PERRY

2001/001

City thinks investment in well was worth it City can now dump mountain water down well, pump it up later

By JAYSON JACOBY Of the Baker City Herald

Baker City officials believe they've proved that a hole in the ground can hold drinking water just as well as the city's aboveground tanks

can. Mavhe

Maybe even better.

The hole certainly handles more water — 160 million gallons, 22 times the combined capacity of 7.1 mil-

lion gallens for the city's two above-ground reservoirs. Tim Collins Public works director

The hole's cheaper, too.

Though hardly inexpensive at about \$850,000, the city's investment in its underground reservoir the past few years is paltry compared with the \$3.7 million it spent to build a four-million-gallon above-ground tank in 1992.

The city is still paying off that bill, with the last installment due in December 2006.

The hole in question is an 800foot-deep well the city drilled in the late 1970s near those two reservoirs, on a hill at the southwest corner of town.

In late October the city finished its first full-scale test of a new way to use that well.

It's a concept that officials say should keep faucets flowing during the most dire drought — and which could spare the city the multimillion-dollar bill for building a water filtration plant if a forest fire ever ravages the Elkhorn Mountains, where the city gets most of its water. If Tim Collins were grading the well based on the recent test, which involved dumping 160 million gallons of mountain water into the well, then pumping most of that water back to the surface and into the city's supply pipes months later, he'd put it on the dean's list.

See City well/Page 5

'Baker City's system has been

Continued from Page 1

Collins is the city's public works director.

He said this year's experiment showed that the city's \$850,000 investment paid precisely the dividends the city's consultant said it could: The well disgorges more water than it did before.

Water flowed at a rate of 1,800 gallons per minute (gpm) for a month, and maintained a 1,000-gpm pace for more than three months.

Before the well was fortified with mountain water, it couldn't keep up even the 1,000-gpm rate for more than a couple weeks.

But now the well water, with its mountain origin, is also colder, and more pure, than the groundwater the well used to spew out, Collins said.

The 160-million-gallon total is about as much water as city residents use in a month during the hottest part of summer.

In winter, when lawn-watering is impractical, and harmful to hoses, 160 million gallons would last about four months.

Based on this year's test, the city should be able to continue storing that much mountain water in the well during winter and spring, and then using it during the dog days of sumperforming very well."

Jeff Barry, Groundwater Solutions Inc.,

the city's consultant on aquifer storage

mer, said Jeff Barry, an engineer from Groundwater Solutions Inc., the Portland firm the city hired to oversee the experiment. "Baker City's system has

"Baker City's system has been performing very well," Barry said.

In fact, Barry said Baker City could become the first of the 10 Oregon cities that have tried this technology to apply for a permanent permit from the Oregon Water Resources Department.

Baker City's current test license, which the state agency granted last year, lasts for five years.

Collins said city officials plan to apply for a permanent permit as soon as this spring. He said they also intend to start refilling the well aquifer later this month.

Although the city has for more than a century obtained most of its water from springs and streams in the Elkhorns, about 10 miles west of town, the city taps the well occasionally to supplement the mountain supply.

But since 1977 the average water level in the well dropped by about 80 feet. And starting several years ago, when the city used the well for more than a few weeks in a row, the well produced less water that was warmer than mountain water and contained more dissolved minerals and elements.

The most distinct problem with well water was its higher concentrations of iron and manganese, compared with mountain water. Those concentrations weren't high enough to pose a health hazard to people, but the metallic elements could, like a red sock tossed into the washer with the whites, stain clothes.

About three years ago Dick. Fleming, then the city's public works director, introduced to the City Council a concept called "aquifer storage and recovery."

The basic idea is to divert water from one source — those Elkhorn Mountain streams and springs, in Baker City's case — into a well, then pump the water back to the surface when it's needed.

Fleming's goal, though, wasn't merely to prevent people from unwittingly turning their white undergarments pink.

He was more worried about wildfire.

City officials have known for decades that a big fire in the 10,000-acre watershed probably would foul streams with ash and mud, rendering them, at least for a year or two, unfit as drinking water.

In that case the city would have to rely on two main sources: the well, and Goodrich Lake, a reservoir in the Elkhorns that holds about 210 million gallons and, because it lies above the heaviest timber, isn't as vulnerable to fire as most parts of the watershed.

But Fleming, having watched the well's production plummet after just a couple weeks, figured that it could not quench the city's thirst were a wildfire to temporarily wreck the watershed.

The city's other option in such a situation would be to start filtering the mountain water, at an estimated cost of at least a few million dollars.

Now, Baker City is one of just four Oregon cities with surface water so pure it need not be filtered to meet federal drinking water standards (the others are Bend, Portland and Reedsport).

Appendix B

L

L

Sample ID: BCRW-C1SW-1 Sample Date: February 1, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Collection		me 6:00 PM SPE	ation CIAL PROJECT - SC FER MTN LINE	DURCE
Sample #	Test / Method Code	Results in mg/L	Date Analyzed	Analyst
487891	TEMP. epa170.1	12.0C	2/2/2005	KE
487892	CONDUCTIVITY	116uS	2/3/2005	GF
487893	DISS. OXYGEN EPA360.1	9.7	2/3/2005	MW
487894	pH EPA150.1	7.1	2/3/2005	RB
487895	TURBIDITY	< 1	2/3/2005	RB
487896	ORP	683mV	2/3/2005	GF
487897	BICARBONATE	28	2/4/2005	EB
487898	CALCIUM SM3111D	16.1	2/22/2005	RB
487899	CARBONATE	- <1	2/8/2005	EB
4878910	CHLORIDE EPA300.0	0.52	2/3/2005	GF

Pullet

Signature

Report Date: Thursday, March 17, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

4878911	HARDNESS (CaCo3)		40.3	2/22/2005	RB
4878912	MAGNESIUM SM3111B		2.07	2/19/2005	RB
4878913	NITRATE/N EPA300.0		0.07	2/3/2005	GF
4878914	NITRITE/N EPA300.0		<0.02	2/3/2005	GF
4878915	NITRATE/N + NITRITE/N		0.07	2/3/2005	GF
4878916	POTASSIUM SM3111B		<0.5	2/9/2005	RB
4878917	SILICA	Sur.	7.0	2/7/2005	GF
4878918	SODIUM SM3111B		1.88	2/8/2005	RB
4878919	SULFATE EPA300.0		2.91	2/3/2005	GF
4878920	ALKALINITY SM2320B		28	2/4/2005	EB
4878921	TDS SM2540C		50	2/3/2005	кс
4878922	тос		0.6	2/10/2005	KJR
4878923	TSS EPA160.2		< 1	2/3/2005	KC
4878924	ALUMINIUM		<0.1	2/10/2005	RLH
4878925	ANTIMONY		<0.005	2/14/2005	RB

Report Date: Thursday, March 17, 2005

Signature

.....

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

¢,

4878926	ARSENIC	<0.005	2/10/2005	RB
4878927	BARIUM	<0.5	2/8/2005	RB
4878928	BERYLLIUM	<0.0005	2/18/2005	RB
4878929	CADMIUM	<0.0005	2/15/2005	RB
4878930	CHROMIUM	<0.005	2/16/2005	RB
4878931	COPPER	<0.1	2/4/2005	RB
4878932	TOTAL IRON	<0.1	2/5/2005	RB
4878933	DISSOLVED IRON SM3111B	<0.1	2/5/2005	RB
4878934	TOTAL MANGANESE	<0.05	2/4/2005	RB
4878935	DISSOLVED MN SM3111B	<0.05	2/4/2005	RB
4878936	MERCURY	<0.001	2/4/2005	RB
4878937	NICKEL	<0.01	2/11/2005	RB
4878938	SELENIUM	<0.005	2/11/2005	RB
4878939	SILVER	<0.05	2/22/2005	RB
4878940	THALLIUM	<0.002	2/14/2005	RB

Report Date: Thursday, March 17, 2005

Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

7

4878941	ZINC		<0.05	2/23/2005	RB
4878942	ODOR		ND	2/3/2005	RB
4878943	COLOR		ND .	2/3/2005	RB
4878944	SURFACTANTS		0.025	2/7/2005	GF
4878945	LANGLIER INDEX		-1.87	2/26/2005	RB
4878946	CYANIDE		<0.2	2/10/2005	KJP
4878947	FLUORIDE	• •	0.52	2/3/2005	GF
4878948	LEAD		<0.005	2/17/2005	RB

Report Date: Thursday, March 17, 2005

Signature

٠.

Sample ID: BCRW-C1R-3 Sample Date: February 2, 2005

L

L

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 **BAKER CITY OR 97814**

Collection Collection		Received Date Received Time		ation ECIAL PROJECT - W	/ELL
Sample #	Test / Method	Code	Results in mg/L	Date Analyzed	Analyst
487881	TEMP. epa170.1		12.0C	2/2/2005	KE
487882	CONDUCTIVITY	13	251uS	2/3/2005	GF
187883	DISS. OXYGEN EP	4360.1	7.14	2/3/2005	MW
187884	рН ЕРА150.1	1	7.0	2/3/2005	RB
87885			< 1	2/3/2005	RB
87886	ORP		6535mV	2/3/2005	GF
87887	BICARBONATE		96	2/4/2005	EB
87888	CALCIUM SM3111D		26.3	2/22/2005	RB
87889	CARBONATE		< 1	2/8/2005	EB
878810	CHLORIDE EPA300	.0	2.64	2/3/2005	GF

Signature

Report Date: Thursday, March 17, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

4878811	HARDNESS (CaCo3)	65.8	2/22/2005	RB
4878812	MAGNESIUM SM3111B	12.0	2/19/2005	RB
4878813	NITRATE/N EPA300.0	0.05	. 2/3/2005	GF
4878814	NITRITE/N EPA300.0	<0.02	2/3/2005	GF
4878815	NITRATE/N + NITRITE/N	0.05	2/3/2005	GF
4878816	POTASSIUM SM3111B	1.5	2/9/2005	RB
4878817	SILICA	23	2/7/2005	GF
4878818	SODIUM SM3111B	11.3	2/8/2005	RB
4878819	SULFATE EPA300.0	20.1	2/3/2005	GF
4878820	ALKALINITY SM2320B	96	2/4/2005	EB
4878821	TDS SM2540C	130	2/3/2005	KC
4878822	тос	0.6	2/10/2005	KJR
4878823	TSS EPA160.2	< 1	2/3/2005	KC
4878824	ALUMINIUM	<0.1	2/10/2005	RLH
4878825	ANTIMONY	<0.005	2/14/2005	RB

Signature

Report Date: Thursday, March 17, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

4878826	ARSENIC	0.007	2/10/2005	RB
4878827	BARIUM	<0.5	2/8/2005	RB
4878828	BERYLLIUM	<0.0005	2/18/2005	RB
4878829	CADMIUM	<0.0005	2/15/2005	RB
4878830	CHROMIUM	<0.005	2/16/2005	RB
4878831	COPPER	<0.1	2/4/2005	RB
4878832	TOTAL IRON	<0.1	2/5/2005	RB
4878833	DISSOLVED IRON SM3111B	<0.1	2/5/2005	RB
4878834	TOTAL MANGANESE	<0.05	2/4/2005	RB
4878835	UISSOLVED MN SM3111B	<0.05	2/4/2005	RB
4878836	MERCURY	<0.001	2/4/2005	RB
4878837	NICKEL	<0.01	2/11/2005	RB
4878838	SELENIUM	<0.005	2/11/2005	RB
4878839	SILVER	<0.05	2/22/2005	RB
4878840	THALLIUM	<0.002	2/14/2005	RB

Aulte Report Date: Thursda

Signature

Report Date: Thursday, March 17, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

4878841	ZINC	<0.05	2/23/2005	RB
4878842	ODOR	ND	2/3/2005	RB
4878843	COLOR	ND	2/3/2005	RB
4878844	SURFACTANTS	<0.01	2/7/2005	GF
4878845	LANGLIER INDEX	-1.27	2/26/2005	RB
4878846	CYANIDE	<0.2	2/10/2005	KJP
4878847	FLUORIDE	0.22	2/3/2005	GF
4878848	LEAD	<0.005	2/17/2005	RB

FILTER 4678849

٠,

Report Date: Thursday, March 17, 2005

Signature

Q

Sample ID: BCRW-C2SW-1 Sample Date: February 2, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

	Date2/2/2005Received DateTime10:30 AMReceived Time		ation JRCE MTN LINE	
Sample #	Test / Method Code	Results in mg/L	Date Analyzed	Analyst
488291	TEMP. epa170.1	12.0C	2/2/2005	KE
488292	CONDUCTIVITY	123uS	2/3/2005	GF
188293	DISS. OXYGEN EPA360.1	10.8	2/3/2005	MW
88294	pH EPA150.1	7.0	2/3/2005	RB
88295	TURBIDITY	< 1	2/3/2005	RB
88296	ORP	665mV	2/3/2005	GF
88297	BICARBONATE	28	2/4/2005	EB
88298	CALCIUM SM3111D	16.4	2/22/2005	RB
88299	CARBONATE .	< 1	2/8/2005	EB
882910	CHLORIDE EPA300.0	0.24	2/3/2005	GF

FECAL COLIFORM = 6 CFU/100ML E-COLI = 5 MPN/100ML

Signature

Beport Date: Thursday, March 17, 2005

,

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

4882911	HARDNESS (CaCo3)	41.0	2/22/2005	RB
4882912	MAGNESIUM SM3111B	2.04	2/19/2005	RB
4882913	NITRATE/N EPA300.0	0.06	2/3/2005	GF
4882914	NITRITE/N EPA300.0	<0.02	2/3/2005	GF
4882915	NITRATE/N + NITRITE/N	0.06	2/3/2005	GF
4882916	POTASSIUM SM3111B	<0.5	2/9/2005	RB
4882917	SILICA	9.0	2/7/2005	GF
4882918	SODIUM SM3111B	1.95	2/8/2005	RB
4882919	SULFATE EPA300.0	2.80	2/3/2005	GF
4882920	ALKALINITY SM2320B	28	2/4/2005	EΒ
4882921	TDS SM2540C	40	2/3/2005	KC
4882922	тос	0.6	2/10/2005	KJR
4882923	TSS EPA160.2	< 1	2/3/2005	KC
4882924	ALUMINIUM	<0.1	2/10/2005	RLH
4882925	ANTIMONY	<0.005	2/14/2005	RB

TOTAL COLIFORM = 21 MPN/100ML FECAL COLIFORM = 6 CFU/100M4 E-COLI = 5 MPN/100ML Report Date: Thursday, March 17, 2005 Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

4882926	ARSENIC	<0.005	2/10/2005	RB
4882927	BARIUM	<0.5	2/8/2005	RB
4882928	BERYLLIUM	<0.0005	2/18/2005	RB
4882929	CADMIUM	<0.0005	2/15/2005	RB
4882930	CHROMIUM	<0.005	2/16/2005	RB
4882931	COPPER	<0.1	2/4/2005	RB
4882932	TOTAL IRON	<0.1	2/5/2005	RB
4882933	DISSOLVED IRON SM3111B	<0.1	2/5/2005	RB
4882934	TOTAL MANGANESE	<0.05	2/4/2005	RB
4882935	DISSOLVED MN SM3111B	<0.05	2/4/2005	RB
4882936	MERCURY	<0.001	2/4/2005	RB
4882937	NICKEL	<0.01	2/11/2005	RB
4882938	SELENIUM	<0.005	2/11/2005	RB
4882939	SILVER	<0.05	2/22/2005	RB
4882940	THALLIUM	<0.002	2/14/2005	RB

TOTAL COLIFORM = 21 MPN/100ML FECAL COLIFORM = 6 CFU/100ML E-COLI = 5 MPN/100ML

Report Date: Thursday, March 17, 2005

Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

4882941	ZINC	<0.05	2/23/2005	RB
4882942	ODOR	ND	2/3/2005	RB
4882943	COLOR	ND	2/3/2005	RB
4882944	SURFACTANTS	0.031	2/7/2005	GF
4882945	LANGLIER INDEX	-1.97	2/26/2005	RB
4882946	CYANIDE	<0.2	2/10/2005	KJP
4882947	FLUORIDE	0.36	2/3/2005	GF
4882948	LEAD	<0.005	2/17/2005	RB
4882949	FILTER	*		

ς.

TOTAL COLIFORM = 21 MPN/100ML FECAL COLIFORM = 6 CFU/100ML E-COLI = 5 MPN/100ML Signature Report Date: Thursday, March 17, 2005

Magic Valley Labs, Inc 210 Addison Ave PO Box 1867 Twin Falls, 1D 83301 ID 100001

Total Trihalomethanes and Haloacetic Acids

TO BE FILLED IN	BY PERSON SUBMITTING	SAMPLE:				
PWS ID #:	4100073					
Water System	BAKER CITY OF	BAKER CITY OF				
Address	P.O. BOX 650					
City, State, Zip	BAKER CITY OR 97814					
SAMPLE IDENTIFICATION:		(Listed	below sa	ample resu	ults)	_
Sampled by:						
Date Collected:	2/2/2005	Time Collected	: 10:30:0	00 AM		
TO BE COMPLET	ED BY LABORATORY:					
Date Received in I	Lab: 2/2/2005	Date Analyzed:	THM:	2/9/05	HAA:	2/15/05
Lab sample ID#:	488321 (Listed below)	Analysts:	THM:	*	HAA:	*

	Method:	EPA 524.2	Method detect	ion limit (mg/l):	0.0005
THMs	Sample results (mg/l)				
	#1		#2	#3	#4
CHCI3					
CHBrCl ₂					
CHBr ₂ CI					
CHBr ₃					
Total THM	ND				
2950		126.16		Sec. Sec.	

	Method:	SM 6251B	Method detectio	n limit (mg/l):	0.001
HALOACETIC		S	ample results (mg	/I)	
ACIDS	#1		#2	#3	#4
MCAA					
DCAA					
ТСАА					
MBAA					
DBAA					
Total HAA5 2456	ND				

Sample Location	#1: SOURCE MTN LINE
	#2:
	#3:
	#4:
Identify DBPMAX Id	ocation with * or other designation
Reviewed by:	render eller Date: 3-5-05

*TEST PLRFORMED BY ANA/TEK LABS, INC. ORELAP #: ID 200001

MAGIC VALLEY LABS 210 Addison Box 1867 Twin Falls, ID 83301 ID 100001

System ID #: 4100073	Entry Point or Source ID:	Source name(s):
Water System BAKER CI	TY OF	
Address P.O. BOX 650	decision and	
City, State, Zip BAKER C	ITY OR 97814	
Sample Ide	entification	
Sampled at: SOURCE MT	'N LINE Sa	mpled by:
Date Collected: 2/2/2005	T	me collected: 10:30:00 AM
Date recieved: 2/2/2005	D	ate analyzed:
Sample Composition:	Single	
Lab sample 1D #: 48831	Sa	imple Composited: No

Synthetic Organ	nic Chemical	s				
Regulated						
Contaminant	Code	MCL mg/l	Analysis mg/	I LRL M	ethod	Analyst
2.4-1)	2105	0.07	ND	0.0001	515.3	*
.4.5-TP Silvex	2110	0.05	ND	0.0001	515.3	*
dipates	2035	0.4	ND	0.002	525.2	*
Alachlor (Lasso)	2051	0.002	ND	0.0001	525.2	*
Atrazine	2050	0.003	ND	0.0001	525.2	*
Benzo(A)Pyrene	2306	0.0002	ND	0.00002 5	25.2	*
HC-gamma (Lindane)	2010	0.0002	ND	0.00002	505	*
arbofuran	2046	0.04	ND	0.0009	531.1	*
hlordane	2959	0.002	ND	0.0001	505	.*
alapon	2031	0.2	ND	0.001	515.3	*
ibromochloropropane	2931	0.0002	ND	0.00002	504.1	*
inoseb	2041	0.007	ND	0.0001	515.3	*
ioxin	2063	3x10 ⁻⁸				
iquat	2032	0.02	ND	0.0004	549.2	*
ndothall	2033	0.1	ND	0.009	548.1	*
ndrin	2005	0.002	ND	0.00003	505	*
thylene Dibromide (EDB)	2946	0.00005	ND	0.00001	504.1	*
llyphosate	2034	0.7	ND	0.006 54	7	*

Heptachlor Epoxide	2067	0.0002	ND	0.00002	505	*
Heptachlor	2065	0.0004	ND	0.00004	505	*
Hexachlorobenzene (HCB)	2274	0.001	ND	0.0001	525.2	*
Hexachlorocyclopentadiene	2042	0.05	ND	0.0001	525.2	*
Methoxychlor	2015	0.04	ND	0.0001	505	*
Pentachlorophenol	2326	0.001	ND	0.00004	515.3	*
Phthalates	2039	0.006	ND	0.0006	525.2	×
Picloram	2040	0.5	ND	0.0001	515.3	*
Polychlorinated Biphenyls	2383	0.0005	ND	0.00001	505	*
Simazine	2037	0.004	ND	0.00007	525.5	*
Toxaphene	2020	0.003	ND	0.001	505	*
Vydate	2036	0.2	ND	0.002	531.1	*

		Unregulated			
Contaminant	Code	Analysis mg/l	Method	MDL Ana	alyst
3-Hydroxycarbofuran	2066	ND	531.1	0.004	*
Aldicarb	2047	ND	531.1	0.002	*
Aldicarb Sulfoxide	2043	ND	531.1	0.003	*
Aldicarb Sulfone	2044	ND	531.1	0.001	*
Aldrin	2356	ND	505	0.0001	*
Butachlor	2076	ND	507	0.001	*
Carbaryl	2021	ND	531.1	0.004	*
Dicamba	2440	ND	515.1	0.005	*
Dieldrin	2070	ND	505	0.0001	*
Methomyl	2022	ND	531.1	0.004	*
Metolachlor	2045	ND	507	. 0.002	*
Metribuzin	2595	ND	507	0.001	*
Propachlor	2077	ND	507	0.001	*

BAKER CITY OF 488311

*ORELAP #1D200001

Signature / Date: 2 Marcallin 3-5-05

Water System ID #: 4100073	Source ID:	Source nam	ne(s):		<u></u>
Water System BAKER CIT	YOF				
Address P.O. BOX 650)				
City, State, Zip BAKER CIT	Y OR 97814		linde -		
Sample Identific	ation				
Sampled at: SOURCE MTN LIN	Е	Sampled	by:		
Date Collected: 2/2/2005		Time coll	lected: 10:30:00 A	M	
Date received: 2/2/2005		Date anal	vzed:		
Sample Composition:		Single			
· · · · · · · · · · · · · · · · · · ·					
Lab sample ID #: 48832		Sample C	Composited : No		
	Volatile Orga	nic Chemicals		MDL for all test =	0.0005
	Reg	gulated VOCs			
Contaminant	Code	MCL mg/l	Analysis mg/l	Method	Analyst
1.1-Dichloroethylene	2977	0.007	ND	524.2	*Anatek
1.1.1-Trichloroethane	2981	0.2	ND	524.2	*Anatek
1,1,2-Trichloroethane	2985	0.005	ND	524.2	*Anatek
1.2 Dichloroethane	2980	0.005	ND	524.2	*Anatek
1,2 Dichloropropane	2983	0.005	ND	524.2	*Anatek
1.2.4-Trichlorobenzene	2378	0.07	ND	524.2	*Anatek
Benzene	2990	0.005	ND	524.2	*Anatek
Carbon Tetrachloride	2982	0.005	ND	524.2	*Anatek
Cis-1.2-Dichloroethylene	2380	0.07	ND	524.2	*Anatek
Methylene Chloride	2964	0.005	ND	524.2	*Anatek
Ethylbenzene	2992	0.7	ND	524.2	*Anatek
Chlorobenzene	2989	. 0.1	ND	524.2	*Anatek
I-2-Dichlorobenzene	2968	0.6	ND	524.2	*Anatek
1-4-Dichlorobenzene	2969	0.075	ND	524.2	*Anatek
Styrene	2996	0.1	ND	524.2	*Anatek
Tetrachloroethylene	2987	0.005	ND	524.2	*Anatek
Toluene	2991	1.0	ND	524.2	*Anatek
Total Xylenes	2955	10.0	ND	524.2	*Anatek
Trans-1,2-Dichloroethylene	2979	0.1	ND	524.2	*Anatek

Trichloroethylene	2984	0.005	ND	524.2	*Anatek
Vinvl Chloride	2976	0.002	ND	524.2	*Anatek
	Ur	regulated			
Contaminant	Code		Analysis mg/l	Method	Analyst
I.I-Dichloroethane	2978		ND	524.2	*Anatek
1.1-Dichloropropene	2410			524.2	*Anatek
1.1.1.2-Tetrachloroethane	2986			524.2	*Anatek
1.1.2.2Tetrachloroethane	2988			524.2	*Anatek
1.2.3Trichloropropane	2414			524.2	*Anatek
1.3-Dichloropropane	2412			524.2	*Anatek
Irans-1.3-Dichloropropene	2224			524.2	*Anatek
Cis-1,3-Dichloropropene	2413			52112	
2,2-Dichloropropane	2416			524.2	*Anatek
Bromobenzene	2993			524.2	*Anatek
Bromodichloromethane	2943			524.2	*Anatek
Bromoform	2942			524.2	*Anatek
Bromomethane	2214			524.2	*Anatek
Chloroethane	2216			524.2	*Anatek
Chloroform	2941			524,2	*Anatek
Chloromethane	2210			524.2	*Anatek
Dibromochloromethane	2944			524.2	*Anatek
Dibromomethane	2408			524.2	*Anatek
I-3-Dichlorobenzene	2967			524.2	*Anatek
2-Chlorotoluene	2965			524.2	*Anatek
4-Chlorotoluene	2966			524.2	*Anatek

d 2 Signature Date: -025 7-5

[] home an meyer results you 3/10/93

PUBLIC 10:30:00 AM DATE REPORTED BY LAB: 3/11/2005 488301 REPLACEMENT SAMPLE Σ CONTACT PHONE #: COLLECTION TIME: TAG #/FACILITY ID: BAKER CITY OF LAB SAMPLE #: PRIVATE (24 hour clock) PWS NAME: YES NO SAMPLING POINT/LOCATION: SOURCE MTN N DATE LAB REC'D SAMPLE: 2/2/2005 RADS 2/2/2005 LAB FEDERAL ID #ID00911 COMPLIANCE SAMPLE COLLECTOR'S NAME: COLLECTION DATE : PWS#: 4100073 SAMPLE TYPE: LINE

MAGIC VALLEY LABS, INC. 210 Addison Ave. PO Box 1867 Phone: 208-733-4250 Twin Falls ID 83301 Fax: 208-734-8539

PUBLIC DRINKING WATER SYSTEM RADIOLOGICAL ANALYSIS REPORT:

FRDS	CONTAMINANT	RESULT	RESULT	MCL	ANALYSIS	ANALYS	METHOD
		µg/L	pCi/L		DATE	-	
4002	Gross Alpha Activity (includes radium and uranium)		QN		2/16/05	*	E900.0
4006	Uranium, Combined convert to activity; multiply concentration in µg/L x 0.67 (required if gross alpha exceeds 15pCi/L)	QN		30 µg/L	2/15/05	*	E200.8
4000	Net Alpha subtract Uranium activity from Gross alpha activity (includes radium but excludes uranium)			15 pCi/L			
4020	Radium-226 (required if alpha activity is greater than 5pCilL)		QN		2/16/05	*	E903.0
4030	Radium-228		ND		2/16/05	*	E904.0
4010	Radium, Combined (226 & 228) add results of Ra-226 and Ra-228			5 pCi/L			
4100	Gross Beta/Photon Activity (required to measure major isotopes if activity exceeds 50pCilL)			4 mREM			
ND = Not detected withi	ND = Not detected within sensitivity of instrument *TEST PERFORMED BY						4
	med D & D - ENERGY LABS	COMPOSITE SAMPI 1ST Duadedy Sample:	COMPOSITE SAMPLE DATES: 1ST Outleded Sample:	ES:			.826
1 1 um	all clean De () - () - ()	and Ounstedy Sample.	Somnlar				
Signature of Laboratory Supervisor	ry Supervisor Date	קווח החמונפוו)	valsipie.				
		3rd Quarterly Sample: Enter 4th Quarter or latest	Sample: rter or latest				920
BAKER CITY OF		sample date beside	eside				X
P.O. BOX 650	(Reserved for comments/notations)	Collection	Collection Date at top of form	form			BO
BAKER CITY OR 97814	OR 97814						BAK P.O. BAK

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 **BAKER CITY OR 97814**

Collection Date 2/2/2005 Received Date Collection Time 10:30 AM Received Time Sample # Test / Method Code		2/2/2005 6:00 PM	SPE	ation ECIAL PROJECT - S N LINE	OURCE		
Sample #	Tes	t / Method (Code	Result in mg		Date Analyzed	Analyst
487921	RADO	DN		<100)	2/4/2005	DB

Report Date: Thursday, March 17, 2005

Signature

Sample ID: BCRW-C2SW-2 Sample Date: March 23, 2005

L

Magic Valley Labs, Inc 210 Addison Ave PO Box 1867 Twin Falls, ID 83301 ID 100001

Total Trihalomethanes and Haloacetic Acids TO BE FILLED IN BY PERSON SUBMITTING SAMPLE: PWS ID #: 4100073 Water System **BAKER CITY OF** Address P.O. BOX 650 City, State, Zip BAKER CITY OR 97814 SAMPLE IDENTIFICATION: (Listed below sample results) Sampled by: Time Collected: 10:00:00 AM Date Collected: 3/23/2005 TO BE COMPLETED BY LABORATORY: Date Received in Lab: 3/23/2005 Date Analyzed: THM: HAA: Lab sample ID#: 500141 (Listed below) Analysts: THM: * HAA: *

	Method:	EPA 524.2	Method detect	tion limit (mg/l):	0.0005
THMs		Sa	ample results (m	g/l)	
	#1		#2	#3	#4
CHCl₃					
CHBrCl ₂					
CHBr ₂ Cl	···· ···				
CHBr3					
Total THM	0.0199				
2950				and the second	

	Method:	SM 6251B	Method detect	tion limit (mg/l):	0.001					
HALOACETIC		Sample results (mg/l)								
ACIDS	#1		#2	#3	#4					
MCAA										
DCAA										
TCAA			of a line of the descent of the second state o							
MBAA										
DBAA										
Total HAA5 2456	0.024									

Sample Location	#1: GROL	IND WATER PRO	JECT - IN.	JECTION WELL
	#2:			and the second
	#3:			
· ·	#4:			
Identify DBPMAX Ig	cation with * or of	her designation	1.	
Reviewed by:	rendo	elli	Date:	4-27-05

*TEST PERFORMED BY ANATEK LABS, INC ORELAP #: ID 200001

210 Addison Ave / PO Box 1867 Twin Falis ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

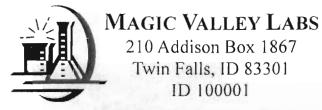
BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Date 3/23/2005 Received Date Collection Time 10:00 AM Received Time		Received Date Received Time	3/23/2005 10:00 AM	Location GROUND WATER PROJE	CT -	
Sample #	Test	/ Method C	ode	Results in mg/L	Date Analyzed	Analyst
500151	CHLC	ORIDE EPA300	.0	1.25	3/25/2005	GF

TOTAL COLIFORM < 1 MPN/100ML FECAL COLIFORM < 1 CFU/100ML E-COLI < 1 MPN/100ML

Report Date: Tuesday, April 26, 2005


Signature

Sample ID: BCRW-C2SW-3 Sample Date: June 29, 2005

L

L

L

System ID #: 4100073	Entry Point or Source ID:	Source name(s):
Water System BAKER CITY	/ OF	
Address P.O. BOX 650	and the second	
City. State, Zip BAKER CIT	Y OR 97814	
Sample Iden	ification	
Sampled at: SOURCE / OLL	MOUNTAIN LINE	Sampled by: KEN ELLIS
Date Collected: 6/29/2005		Time collected: 10:00:00 AM
Date recieved: 6/29/2005		Date analyzed:
Sample Composition:	Single	
Lab sample ID #: 52488		Sample Composited: No

Synthetic	Organic	Chemicals
	-	

Regulated						
Contaminant	Code	MCL mg/l	Analysis mg/l	LRL	Method	Analyst
2.4-[)	2105	0.07	ND	0.0001	515.3	*
2.4.5-TP Silvex	2110	0.05	ND	0.0001	515.3	*
Adipates	2035	0.4	ND	0.002	525.2	*
Alachlor (Lasso)	2051	0.002	ND	0.0001	525.2	*
Atrazine	2050	0.003	ND	0.0001	525.2	*
Benzo(A)Pyrene	2306	0.0002	ND	0.00002	525.2	*
BHC-gamma (Lindane)	2010	0.0002	ND	0.00002	505	*
Carbofuran	2046	0.04	ND	0.0009	531.1	*
Chlordane	2959	0.002	ND	0.0001	505	*
Dalapon	2031	0.2	ND	0.001	515.3	*
Dibromochloropropane	2931	0.0002	ND	0.00002	504.1	*
Dinoseb	2041	0.007	ND	0.0001	515.3	*
Dioxin	2063	3x10 ⁻⁸				
Diquat	2032	0.02	ND	0.0004	549.2	*
Endothall	2033	0.1	ND	0.009	548.1	*
Endrin	2005	0.002	ND	0.00003	505	*
Ethylene Dibromide (EDB)	2946	0.00005	ND	0.00001	504.1	*
Glyphosate	2034	0.7	ND	0.006	547	*

						•	
Heptachlor Epoxide	2067	0.0002	ND	0.00002	505	×	
Heptachlor	2065	0.0004	ND	0.00004	505	*	
Hexachlorobenzene (HCB)	2274	0.001	ND	0.0001	525.2	*	
Hexachlorocyclopentadiene	2042	0.05	ND	0.0001	525.2	*	
Methoxychlor	2015	0.04	ND	0.0001	505	*	
Pentachlorophenol	2326	0.001	ND	0.00004	515.3	*	
Phthalates	2039	0.006	ND	0.0006	525.2	*	
Picloram	2040	0.5	ND	0.0001	515.3	*	
Polychlorinated Biphenyls	2383	0.0005	ND	0.00001	505	*	
Simazine	2037	0.004	ND	0.00007	525.5	*	
Toxaphene	2020	0.003	ND	0.001	505	*	
Vydate	2036	0.2	ND	0.002	531.1	*	
	a the second second	and the second	and an a				

ANALYST	DATE	METHOD
*	7/7/2005	504.1
*	7/13/2005	50
· *	7/8/2005	515.3
*	7/13/2005	525.2

*Test performed by Anatek Labs, Inc ORELAP #ID200001

Carllin 5-15-05 Signature Date:

BAKER CITY OF sample date	Signature of Laboratory Supervisor Date 3rd Quarter	ES 1	ND = Not detected within sensitivity of instrument *Bureau of Laboratories COMPOS	4100 Gross Beta/Photon Activity (required to measure major isotopes if activity exceeds 50pCilL)	4010 Radium, Combined (226 & 228) add results of Ra-226 and Ra-228	4030 Radium-228	4020 Radium-226 (required if alpha activity is greater than 5pCilL)	4000 Net Alpha subtract Uranium activity from Gross alpha activity (includes radium but excludes uranium)	4006 Uranium, Combined convert to activity; multiply concentration in µg/L x 0.67 ND (required if gross alpha exceeds 15pCi/L)	4002 Gross Alpha Activity (includes radium and uranium)		C DRINKING WATER SYSTEM RADIOLOGICAL ANALYSIS REPORT:	COLLECTOR'S NAME: KEN ELLIS CONTACT PHONE #:	SAMPLING POINT/LOCATION: SOURCE / OLD MOUNTAIN LINE TAG #FACILITY ID:	PWS#: 4100073 PWS NAME: BAKER CITY OF	SAMPLE TYPE RADS PRIVATE PUBLIC	(24 hour clock)	COLLECTION DATE : 6/29/2005 COLLECTION TIME: 10:00:00 AM	COMPLIANCE SAMPLE VES REPLACEMENT SAMPLE NO	LAB FEDERAL ID #ID00911 LAB SAMPLE #: 524871 DATE LAB REC'D SAMPLE: 6/29/2005 DATE REPORTED BY LAB: 9/14/2005
		J		es if activity exceed	add results of Ra-2;		r than 5pCilL)	ity from Gross alpha nium)	activity; multiply con 5pCi/L)			DIOLOGICAL	ONTACT PHONE #	-	AKER CITY OF	PRIVATE	4 hour clock)	DLLECTION TIME:	REPLACEMEN	ATE REPORTED BY
(Reserved for comments/notations)		- ENERGY LABORATORIES	TEST PERFORMED BY *Bureau of Laboratories	ls 50pCilL)	26 and Ra-228			a activity	centration in µg/L × 0.67			ANALYSIS REPORT:		TAG #/FACILITY ID:				10:00:00 AM	NT SAMPLE	524871 Y LAB: 9/14/2005
Collection	3rd Quarterly Sample Enter 4th Quarter or latest sample date beside	DATES: 1ST Quarterly Sample 2nd Quarterly Sample:	COMPOS						ND		hgl	070111								
Collection Date at top of form	Sample arter or latest beside	DATES: interly Sample: interly Sample:	COMPOSITE SAMPLE		ND	ND	ND			Ш	pCi/L	DECINY					A			1
form				4 mREM	5 pCi/L			15 pCi/L	30 µg/L		MUCE	MC				1	N			1
						8/4/05	8/4/05		8/10/05	07/15/05	DATE	ANAL VOIC				Fax: 208	Phone: 2	Twin Fal	MAGIC VALLEY LABS, INC. 210 Addison Ave. PO Box 1867	
						**	*		*	*	T	ANALVO				Fax: 208-734-8539	Phone: 208-733-4250	Twin Falls ID 83301	EY LABS	
	R CITY (-			E904.0	E903.0		E200.8	E900.0		MCT					0		, ÎNC . 1867	

L

l

l

l

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

		6/29/2005 10:00 AM	Received Date Received Time	6/29/2005 6:00 PM	Location SOURCE/OLD MOUNTAIN	N LINE
Sample #	Test	/ Method Co	ode	Results in mg/L	Date Analyzed	Analys
539371	ALUN	MINIUM		<0.1	8/2/2005	JJW
				3	rendel	; C.E.

Report Date: Wednesday, September 14, 2005

Magic Valley Labs, Inc 210 Addison Ave PO Box 1867 Twin Falls, ID 83301 ID 100001

Total Trihalomethanes and Haloacetic Acids

TO BE FILLED IN	BY PERS	ON SUBMITTING	G SAMPLE:				
PWS ID #:	4100073						
Water System	BAKER	CITY OF					
Address	P.O. BO	X 650					
City, State, Zip	BAKER	CITY OR 97814					
SAMPLE IDENTI	(Listed below sample results)						
Sampled by:	KEN ELI	LIS					
Date Collected:	6/29/200	5	Time Collected	: 10:00:0	MA OC		
TO BE COMPLET	TED BY LA	BORATORY:					
Date Received in	Lab: 6/29	9/2005	Date Analyzed:	THM:	7/7/05	HAA:	7/6/05
Lab sample ID#:	524901	(Listed below)	Analysts:	THM:	*	HAA:	*

	Method:	EPA 524.2	Method detect	ion limit (mg/l):	0.0005
THMs		g/l)			
	#1		#2	#3	#4
CHCI3					
CHBrCl ₂					
CHBr ₂ Cl					
CHBr ₃					
Total THM	0.0075				
2950			- All Summer		

	Method:	SM 6251B	Method detection	on limit (mg/l):	0.001			
HALOACETIC	Sample results (mg/l)							
ACIDS	#1		#2	#3	#4			
MCAA								
DCAA								
ТСАА								
MBAA								
DBAA								
Total HAA5 2456	0.012							

Sample Location	#1 SOURCE / OLD MOUNTAIN LINE
	#2:
	#3:
	#4:
Identify DBPMAX loc	cation with * or other designation
Reviewed by	rendally Date: S-TE-05

*TEST PERFORMED BY ANATEK LABS, INC. ORELAP# ID 200001

Magic Valley Labs 210 Addison Box 1867 Twin Falls, ID 83301 ID 100001

Water System II	D #: 4100073	Source ID:	Source nam	ne(s):		
Water System	BAKER CIT	YOF				
Address	P.O. BOX 65	0	de te			
City, State, Zip	BAKER CIT					
	Sample Identific	ation				
Sampled at: SO	URCE / OLD MC	DUNTAIN LINE	Sampled	by: KEN ELLIS		
Date Collected:	6/29/2005		Time coll	ected: 10:00:00 AI	М	
Date received:				yzed: 7/7/05		
				yzou, 1/1/05		
Sample Compos	sition:		Single			
Lab sample ID #	#: 52489		Sample C	omposited : No		
		Volatile Orga	nic Chemicals	٨	MDL for all test =	0.0005
		Re	gulated VOCs			
Cor	ntaminant	Code	MCL mg/l	Analysis mg/l	Method	Analys
1.1-Dichloroethy	lene	2977	0.007	ND	524.2	*
1.1.1-Trichloroe	thane	2981	0.2	ND	524.2	*
1,1,2-Trichloroe	thane	2985	0.005	ND	524.2	*
1.2 Dichloroetha	ine	2980	0.005	ND	524.2	*
1.2 Dichloroprop	oane	2983	0.005	ND	524.2	*
1.2.4-Trichlorob	enzene	2378	0.07	ND	524.2	*
Benzene		2990	0.005	ND	524.2	*
Carbon Tetrachle	oride	2982	0.005	ND	524.2	*
Cis-1.2-Dichlord	oethylene	2380	0.07	ND	524.2	*
Methylene Chlor	ide	2964	0.005	ND	524.2	*
Ethylbenzene		2992	0.7	ND	524.2	*
Chlorobenzene		2989	0.1	ND	524.2	* .
I-2-Dichloroben	zene	2968	0.6	ND	524.2	*
-4-Dichloroben	zene	2969	0.075	ND	524.2	*
Styrene		2996	0.1	ND	524.2	*
Fetrachloroethyl	ene	2987	0.005	ND	524.2	*
Toluene		2991	1.0	ND	524.2	*
Fotal Xylenes		2955	10.0	ND	524.2	*
iotal Aquenes						

Trichloroethylene	2984	0.005	ND	524.2	*
Vinvl Chloride	2976	0.002	ND	524.2	*

Comments:

*Test performed by Anatek Labs ORELAP # ID200001

Of Silles 8di -6 1 Signature / Date:

11 home mc meyer results vice 3/10/93

P.O. BOX 650		BAKER CITY OF	אין אינטיר ערבמיטי מעיני אישער איזיי	Signature of Laboratory Supe	= No analysis performed		ND = Not detected within sensitivity of instrument	4100 Gros	4010 Rad	4030 Radi	4020 Radi	4000 Net , (inclu	4006 Urar (requ	4002 Gros (inc		FRDS	PUBLIC DRINKIN	KEN ELLIS	LINE	SAMPLING POINT/LOCATION:	PWS#: 4100073	SAMPLE TYPE: F		COLLECTION DATE : 6/2	COMPLIANCE SAMPLE	LAB FEDERAL ID #ID00911 DATE LAB REC'D SAMPLE. 6/29/2005	
				Date	di alla S	211	ivity of instrument	Gross Beta/Photon Activity (required to measure major isotopes if activity exceeds 50pCilL)	Radium, Combined (226 & 228) add results of Ra-226 and Ra-228	Radium-228	Radium-226 (required if alpha activity is greater than 5pCilL)	Net Alpha subtract Uranium activity from Gross alpha activity (includes radium but excludes uranium)	Uranium, Combined convert to activity; multiply concentration in µg/L x 0.67 (required if gross alpha exceeds 15pCi/L)	Gross Alpha Activity (includes radium and uranium)			PUBLIC DRINKING WATER SYSTEM RADIOLOGICAL ANALYSIS REPORT:			DN: SOURCE / OLD MOUNTAIN	PWS NAME:	RADS		6/29/2005	Ves	6/29/2005	
					5.2-05			topes if activit	28) add results		ater than 5pC	ctivity from Gr uranium)	to activity; mu ts 15pCi/L)			CONTAMINANT	RADIOLO	CONTACT PHONE #:			BAKER CITY OF	PRIVATE	(24 hour clock)	COLLECTION TIME:	REPL	LAB SAMPLE # DATE REPORT	
								ty exceeds 50	s of Ra-226 a		ЯIL)	oss alpha act	utiply concent			NINANT	GICAL AN	HONE #:	IAG #/FACILITY ID		YOF	NTE	sk)	N TIME:	REPLACEMENT SAMPLE	LAB SAMPLE # 524871 DATE REPORTED BY LAB: 8/2/2005 8/2/2005	
	(Reserved for comments/notations)					Bureau of Laboratories	*TEST PERFORMED BY	OpCilL)	nd Ra-228			ivity	tration in µg/L x 0.67				ALYSIS REPORT:		I Y IU:			PUBLIC		10:00:00 AM	AMPLE	524871 B: 8/2/2005	
	Collection	Enter 4th Quarter or latest sample date beside	3rd Quarterly Sample:	2nd Quarterly Sample:	1ST Quarterly Sample:	COMPOS	Y								hâl	RESULT			1								ŗ
Date at top of	ction Date at ton of form	beside	Sample:	Sample:	rterly Sample:	COMPOSITE SAMPLE	1							Ξ	pCI/L	RESULT									ぶ	1	
	form							4 mREM	5 pCi/L			15 pCi/L	30 µg/L			MCL							N			/	
														07/15/05	DATE	ANALYSIS						Fax: 208-	Phone: 208-733-4250	Twin Falls ID 83301	MAGIC VALLEY LABS, INC. 210 Addison Ave. PO Box 1867		
										*	*		*	*		ANALYS						Fax: 208-734-8539	8-733-4250	; ID 83301	EY LABS, e. PO Box		
	BO	CIT X 6 CIT	50		978	314	- • •			E904.0	E903.0		E200.8	E900.0		METHOD									INC. 1867		

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

		ived Date 6/29/2005 ved Time 6:00 PM	Location SOURCE / OLD MOUNTAI	N LINE
Sample #	Test / Method Code	Results in mg/L	Date Analyzed	Analyst
524861	ODOR	ND	6/30/2005	RB
524862	COLOR	ND	6/30/2005	RB
524863	SURFACTANTS EPA425.1	<0.01	6/30/2005	GF
524864	LANGLIER INDEX	-2.1	8/23/2005	RB
524865	CYANIDE	< 0.01	7/6/2005	ETL
524866	FLUORIDE EPA300.0	<0.01	6/30/2005	GF

betha Bicar Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Collection		ived Date 6/29/2005 ived Time 6:00 PM	Location SOURCE / OLD MOUNTAI	N LINE
Sample #	Test / Method Code	Results in mg/L	Date Analyzed	Analyst
524851	THALLIUM EPA200.9	<0.002	7/7/2005	RB
524851	ANTIMONY	<0.005	7/2/2005	RB
524852	ARSENIC EPA 200.9	<0.005	7/1/2005	RB
524853	BARIUM SM3111D	< 0.5	7/7/2005	RB
524854	BERYLLIUM EPA200.9	<0.005	7/5/2005	RB
524855	CADMIUM SM3113B	<0.0005	7/6/2005	RB
524856	CHROMIUM SM3113B	<0.005	7/6/2005	RB
524857	COPPER SM3111B	<0.1	6/30/2005	RB
524858	TOTAL IRON	<0.1	7/1/2005	RB
524859	DISSOLVED IRON SM3111B	<0.1	7/1/2005	RB

7

Signature

Report Date: Tuesday, August 23, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

		6/29/2005 10:00 AM	Received Date Received Time	6/29/2005 6:00 PM	Location SOURCE / OLD MOUNTA	IN LINE
Sample #	Test	/ Method Co	ode	Results in mg/L	Date Analyzed	Analys
524921	тос			0.7	7/11/2005	KJR
	N ¹					

elichher B Report Date: Friday. August 26. 2005 Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

	n Date 6/29/2005 Received Date 10:00.AM Received Tir		Location SOURCE / OLD MOUNTAI	N LINE
Sample #	Test / Method Code	Results in mg/L	Date Analyzed	Analyst
524911	TEMP SM2550B	58 C	6/29/2005	KE
524912	CONDUCTIVITY SM2510B	114uS	7/5/2005	GF
524913	DISS. OXYGEN SM45000G	8.4	6/30/2005	EB
524914	рН SM4500H+B	6.2	6/30/2005	EB
524915	TURBIDITY EPA180.1	< 1 NTU	6/30/2005	RB
524916	ORP	706mV	6/30/2005	GF
524917	BICARBONATE SM2320B	22	7/1/2005	EB
524918	CALCIUM SM3111D	13.2	7/9/2005	RB
524919	CARBONATE SM2320B	< 1	7/1/2005	EB
5249110	CHLORIDE EPA300.0	0.83	6/30/2005	GF

chelina. Report Date: Friday, August 26, 2005 Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5249111	HARDNESS (CaCo3)	33	7/9/2005	RB
5249112	MAGNESIUM SM3111B	1.88	7/9/2005	RB
5249113	NITRATE/N EPA300.0	<0.03	6/30/2005	GF
5249114	NITRITE/N EPA300.0	0.29	6/30/2005	GF
5249115	NITRATE/N + NITRITE/N	0.29	6/30/2005	GF
5249116	POTASSIUM SM3111B	<0.5	7/9/2005	RB
5249117	SILICA EPA370.1	7.0	7/5/2005	GF
5249118	SODIUM SM3111B	1.45	7/7/2005	RB
5249119	SULFATE EPA300.0	1.69	6/30/2005	GF
5249120	SULFATE EPA300.0	1.69	6/30/2005	GF
5249121	ALKALINITY SM2320B	22	7/1/2005	EB
5249122	TDS SM2540C	40	7/1/2005	EB
5249123	TSS SM2540D	< 1	7/1/2005	EB

hulta Report Date: Friday, August 26, 2005 Signature

Sample ID: BCRW-C2T-1 Sample Date: July 11, 2005

1

L

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Collection			ation ERVOIR WELL - WEL	L HEAD
Sample #	Test / Method Code	Results in mg/L	Date Analyzed	Analyst
527351	TEMP. SM2550B	58 C	7/11/2005	KE
527352	CONDUCTIVITY SM2510B	151 uS	7/14/2005	TF
527353	DISS. OXYGEN SM45000G	8.2	7/12/2005	EB
527354	рН ЅМ4500Н+В	7.5	7/12/2005	EB
527355	TURBIDITY EPA180.1	140	7/13/2005	RB
527356	ORP	615mV	7/13/2005	GF
527357	BICARBONATE SM2320B	33	7/13/2005	JD
527358	CALCIUM SM3111D	18.2	7/26/2005	RB
527359	CARBONATE SM2320B	. < 1	7/13/2005	JD
5273510	CHLORIDE EPA300.0	1.91	7/13/2005	GF

T

Signature

Report Date: Tuesday, August 23, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5273511	HARDNESS (CaCo3)	51	7/14/2005	GF
5273512	MAGNESIUM SM3111B	4.23	7/26/2005	RB
5273513	NITRATE/N EPA300.0	0.21	7/12/2005	GF
5273514	NITRITE/N EPA300.0	<0.02	7/13/2005	GF
5273515	NITRATE/N + NITRITE/N	0.21	7/13/2005	GF
5273516	POTASSIUM SM3111B	0.5	7/25/2005	RB
5273517	SILICA EPA370 1	11.0	7/18/2005	ΤF
5273518	SODIUM SM3111B	2.37	7/25/2005	RB
5273519	SULFATE EPA300 0	4.19	7/13/2005	GF
5273520	ALKALINITY SM2320B	33	7/13/2005	JD
5273521	TDS SM2540C	30	7/13/2005	ΕB
5273522	TSS SM2540D	64	7/12/2005	JD

Report Date: Tuesday, August 23, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collectio Collectio		7/11/2005 9:30 AM	Received Date Received Time	7/11/2005 6:00 PM	Location RESERVOIR WELL - WEL	L HEAD
Sample #	Test	/ Method Co	ode	Results in mg/L	Date Analyzed	Analyst
539381	ALUN	MINIUM		0.4	8/3/2005	CAR

C -2 Report Date: Wednesday, September 14, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

						L HEAD
Sample #	Test	/ Method Co	de	Results in mg/L	Date Analyzed	Analys
527361	TOC			1.1	7/20/2005	KJR
	x *					
			16			
			ß		loc V	ĺ.

Report Date: Tuesday, August 23, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Collection	n Date 7/11/2005 n Time 9:30 AM	Received Date Received Time	7/11/2005 6:00 PM	Location RESERVOIR WELL - WEL	L HEAD
Sample #	Test / Method Coo	de	Results in mg/L	Date Analyzed	Analyst
527371	ANTIMONY		<0.005	7/16/2005	RB
527372	ARSENIC EPA 200 9		<0.005	7/15/2005	RB
527373	BARIUM SM3111D		<0.5	7/26/2005	RB
527374	BERYLLIUM EPA200.	Э	<0.0005	7/20/2005	RB
527375	CADMIUM SM3113B		<0.0005	7/26/2005	RB
527376	CHROMIUM SM3113B		<0.005	7/23/2005	RB
527377	COPPER SM3111B		<0.1	7/27/2005	RB
527378	TOTAL IRON		2.81	7/25/2005	RB
527379	DISSOLVED IRON SM	3111B	<0.1	7/25/2005	RB
5273710	TOTAL MANGANESE	SM3111B	0.12	7/25/2005	RB

Report Date: Tuesday, August 23, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5273711	DISSOLVED MN SM3111B	<0.05	7/25/2005	RB
5273712	LEAD SM3113B	<0.005	7/19/2005	RB
5273713	MERCURY EPA245.1	<0.001	7/28/2005	RB
5273714	NICKEL SM3113B	<0.01	7/19/2005	RB
5273715	SELENIUM EPA200.9	<0.005	7/26/2005	RB
5273716	SILVER SM3111B	<0.05	7/27/2005	RB
5273717	THALLIUM EPA200 9	<0.002	7/23/2005	RB
5273718	ZINC SM3111B	<0.05	7/27/2005	RB
5273719	FILTER	*		
5273720	DIGESTION	*		

Duk Bre -24

Signature

Report Date: Tuesday, August 23, 2005

Magic Valley Labs, Inc 210 Addison Ave PO Box 1867 Twin Falls, ID 83301 ID 100001

	Total Trihalometha	anes and Hale	oacetic	c Acids		
TO BE FILLED IN	BY PERSON SUBMITTING	G SAMPLE:				_
PWS ID #:	4100073					
Water System	BAKER CITY OF					
Address	P.O. BOX 650					
City, State, Zip	BAKER CITY OR 97814					
SAMPLE IDENTI	FICATION:	(Listed	below s	ample resu	ults)	
Sampled by:						
Date Collected:	7/11/2005	Time Collected	: 9:30:00	MA 0		
TO BE COMPLE	TED BY LABORATORY:	and a state of the				
Date Received in	Lab: 7/11/2005	Date Analyzed:	THM:	7/20/05	HAA:	7/25/05
Lab sample ID#:	527341 (Listed below)	Analysts:	THM:	*	HAA:	*

	Method:	EPA 524.2	Method detect	ion limit (mg/l):	0.0005	
THMs	Sample results (mg/l)					
	#1		#2	#3	#4	
CHCI3						
CHBrCl ₂	2000		- mental - mental			
CHBr ₂ CI						
CHBr ₃						
Total THM 📜 2950	0.0281					

	Method:	SM 6251B	Method detecti	ion limit (mg/l):	0.001	
HALOACETIC	Sample results (mg/l)					
ACIDS	#1		#2	#3	#4	
MCAA						
DCAA	E.C.					
ТСАА		-	and a state of the state of the			
MBAA						
DBAA						
Total HAA5 2456	0.006					

Sample Location	#1:RESERVOIR WELL - WELL HEAD
1 1	#2:
20	#3:
	#4:
Identify DBPMAX Io	cation with * or other designation
Reviewed by	endagle Date: 5-15-05

*TEST PURFORMED BY ANATEK LABS. INC. ORELAP # 1D 200001

Sample ID: BCRW-C2T-2 Sample Date: July 27, 2005

L

L

L

L

Water System ID #: 4100073	Source ID:	Source nam	ne(s):		
Water System BAKER CITY	Y OF				
Address P.O. BOX 650					
City, State, Zip BAKER CITY	Y OR 97814	T.			
Sample Identifica	ation				
Sampled at: RESERVOIR WELL		Sampled	by: KEN ELLIS		
Date Collected: 7/27/2005		Time coll	ected: 11:30:00 A1	M	
Date received: 7/27/2005			yzed: 8/2/05		
Sample Composition:		Single	<u></u>		
Lab sample ID #: 53325		Sample C	omposited : No		
	Volatile Organ	ic Chemicals	P	ADL for all test =	0.0005
	Reg	ulated VOCs			
Contaminant	Code	MCL mg/l	Analysis mg/l	Method	Analyst
1.1-Dichloroethylene	2977	0.007	ND	524.2	*
1.1.1-Trichloroethane	2981	0.2	ND	524.2	*
1.1.2-Trichloroethane	2985	0.005	ND	524.2	ж
1.2 Dichloroethane	2980	0.005	ND		
	2980	0.005	ND	524.2	*
1.2 Dichloropropane	2980	0.005	ND	524.2 524.2	*
1.2 Dichloropropane 1.2.4-Trichlorobenzene					* *
	2983	0.005	ND	524.2	* * *
1.2.4-Trichlorobenzene	2983 2378	0.005 0.07	ND ND	524.2 524.2	* * *
1.2.4-Trichlorobenzene Benzene	2983 2378 2990	0.005 0.07 0.005	ND ND ND	524.2 524.2 524.2	* * * *
1.2.4-Trichlorobenzene Benzene Carbon Tetrachloride	2983 2378 2990 2982	0.005 0.07 0.005 0.005	ND ND ND ND	524.2 524.2 524.2 524.2 524.2	* * * *
1.2.4-Trichlorobenzene Benzene Carbon Tetrachloride Cis-1.2-Dichloroethylene	2983 2378 2990 2982 2380	0.005 0.07 0.005 0.005 0.07	ND ND ND ND	524.2 524.2 524.2 524.2 524.2 524.2	* * * * * * *
1.2.4-Trichlorobenzene Benzene Carbon Tetrachloride Cis-1.2-Dichloroethylene Methylene Chloride	2983 2378 2990 2982 2380 2964	0.005 0.07 0.005 0.005 0.07 0.005	ND ND ND ND ND	524.2 524.2 524.2 524.2 524.2 524.2 524.2	
1.2.4-Trichlorobenzene Benzene Carbon Tetrachloride Cis-1.2-Dichloroethylene Methylene Chloride Ethylbenzene	2983 2378 2990 2982 2380 2964 2992	0.005 0.07 0.005 0.005 0.07 0.005 0.7	ND ND ND ND ND ND	524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	
1.2.4-Trichlorobenzene Benzene Carbon Tetrachloride Cis-1.2-Dichloroethylene Methylene Chloride Ethylbenzene Chlorobenzene	2983 2378 2990 2982 2380 2964 2992 2989	0.005 0.07 0.005 0.005 0.07 0.005 0.7 0.1	ND ND ND ND ND ND	524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	
1.2.4-Trichlorobenzene Benzene Carbon Tetrachloride Cis-1.2-Dichloroethylene Methylene Chloride Ethylbenzene Chlorobenzene 1-2-Dichlorobenzene	2983 2378 2990 2982 2380 2964 2992 2989 2968	0.005 0.07 0.005 0.005 0.07 0.005 0.7 0.1 0.6	ND ND ND ND ND ND ND	524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	

2991

2955

2979

1.0

10.0

0.1

524.2

524.2

524.2

×

ND

ND

ND

foluene

fotal Xylenes

Trans-1.2-Dichloroethylene

Frichloroethylene	2984	0.005	ND	524.2	*
Vinyl Chloride	2976	0.002	ND	524.2 -	*

Comments:

*Test performed by Anatek Labs ORELAP # TD200001

18 gillin 9-15-05 2. Signature Date:

H home memory results voc. 3/10/93

MAGIC VALLEY LABS 210 Addison Box 1867 Twin Falls, ID 83301 ID 100001

System 1D #: 4100073 Entry Point of	or Source 1D: Source name(s):
Water System BAKER CITY OF	
Address P.O. BOX 650	
City. State, Zip BAKER CITY OR 97814	
Sample Identification	
Sampled at: RESERVOIR WELL	Sampled by: KEN ELLIS
Date Collected: 7/27/2005	Time collected: 11:30:00 AM
Date recieved: 7/27/2005	Date analyzed:
Sample Composition:	Single
Lab sample ID #: 53324	Sample Composited: No

Synthetic Organic Chemicals						
Regulated						
Contaminant	Code	MCL mg/l	Analysis mg/l	LRL	Method	Analyst
2.4-D	2105	0.07	ND	0.0001	515.3	*
2.4.5-TP Silves	2110	0.05	ND	0.0001	515.3	*
Adipates	2035	0.4	ND	0.002	525.2	*
Alachlor (Lasso)	2051	0.002	ND	0.0001	525.2	*
Atrazine	2050	0.003	ND	0.0001	525.2	*
Benzot A)Pyrene	2306	0.0002	ND	0.00002	525.2	*
BHC-gamma (Lindane)	2010	0.0002	ND	0.00002	505	ж
Carbofuran	2046	0.04	ND	0.0009	531.1	*
Chlordane	2959	0.002	ND	0.0001	505	*
Dalapon	2031	0.2	ND	0.001	515.3	*
Dibromochloropropane	2931	0.0002	- ND	0.00002	504.1	*
Dinoseb	2041	0.007	ND	0.0001	515.3	۴
Dioxin	2063	3×10 ⁻⁸				
Diquat	2032	0.02	ND	0.0004	549.2	*
Endothall	2033	0.1	ND	0.009	548.1	*
Endrin	2005	0.002	ND	0.00003	505	*
Ethylene Dibromide (EDB)	2946	0.00005	ND	0.00001	504.1	*
Glyphosate	2034	0.7	ND	0.006	547	*

						•
Heptachlor Epoxide	2067	0.0002	ND	0.00002	505	*
Heptachlor	2065	0.0004	ND	0.00004	505	*
Hexachlorobenzene (HCB)	2274	0.001	ND	0.0001	525.2	*
Hexachlorocyclopentadiene	2042	0.05	ND	0.0001	525.2	*
Methoxychlor	2015	0.04	ND	0.0001	505	*
Pentachlorophenol	2326	0.001	ND	0.00004	515.3	*
Phthalates	2039	0.006	ND	0.0006	525.2	*
Pictoram	2040	0.5	ND	0.0001	515.3	*
Polychlorinated Biphenyls	2383	0.0005	ND	0.00001	505	*
Simazine	2037	0.004	ND	0.00007	525.5	*
Toxaphene	2020	0.003	ND	0.001	505	*
Vydate	2036	0.2	ND	0.002	531.1	*

ANALYST	DATE	METHOD	ANALYST	DATE	METHOD
	8/5/2005	515.3		8/2/2005	504.1
•	8/12/2005	525.2		8/11/2005	549.2
*	8/3/2005	505	•	8/11/2005	548.1
*	8/10/2005	531.1		8/8/2005	547

Le allin 9-15-05 Signature Date: 2-1

Magic Valley Labs, Inc 210 Addison Ave PO Box 1867 Twin Falls, ID 83301 ID 100001

Total Trihalomethanes and Haloacetic Acids TO BE FILLED IN BY PERSON SUBMITTING SAMPLE: PWS ID #: 4100073 Water System BAKER CITY OF Address P.O. BOX 650 City, State, Zip **BAKER CITY OR 97814** SAMPLE IDENTIFICATION: (Listed below sample results) **KEN ELLIS** Sampled by: Time Collected: 11:30:00 AM Date Collected: 7/27/2005 TO BE COMPLETED BY LABORATORY: HAA: 8/8/05 Date Received in Lab: 7/27/2005 Date Analyzed: THM: 8/2/05 * Lab sample ID#: 533191 (Listed below) Analysts: THM: * HAA:

	Method:	EPA 524.2	Method detect	tion limit (mg/l):	0.0005
THMs		S	ample results (m	g/l)	
	#1		#2	#3	#4
CHCI3					
CHBrCl ₂					
CHBr ₂ CI					
CHBr ₃					
Total THM 2950	0.0249				

	Method:	SM 6251B	Method detecti	on limit (mg/l):	0.001
HALOACETIC ACIDS		5	Sample results (m	g/l)	
	#1		#2	#3	#4
МСАА					
DCAA					
ТСАА					
МВАА					
DBAA					
Total HAA5 2456	0.002				

Sample Location	#1 RESERVOIR WELL	
1	#2:	
	#3:	
	#4	
Identify DBPMAX lo	tion with * or other designation	5

TIEST PERFORMED BY ANATEK LABS, INC. ORELAP #: 1D 200001

l L	P.O. BOX 650 BAKER CITY OR 97814	BAKER CITY OF	Signature of Laboratory Supervisor	r n n n	= No analysis performed	ND = Not detected wit	4100	4010	4030	4020	4000	4006		4002	FRDS	0	KEN ELLIS	SAMPLING POINT/LOCATION:	PWS#: 4100073	SAMPLE TYPE:		COLLECTION DATE :		LAB FEDERAL ID #ID00911
	0 OR 97814	OF	ory Supervisor Date	wet they 1-	ormed Contract	ND = Not detected within sensitivity of instrument	Gross Beta/Photon Activity (required to measure major isotopes if activity exceeds 50pCilL)	Radium, Combined (226 & 228) add results of Ra-226 and Ra-228	Radium-228	Radium-226 (required if alpha activity is greater than 5pCilL)	Net Alpha subtract Uranium activity from Gross alpha activity (includes radium but excludes uranium)	Uranium, Combined convert to activity, multiply concentration in µg/L x 0.67 (required if gross alpha exceeds 15pCi/L)	(includes radium and uranium)	Gross Alpha Activity		DRINKING WATER SYSTEM RADIOLOGICAL		LOCATION: RESERVOIR WELL	PWS NAME:	RADS		E : 7/27/2005	VIPLE YES	LAB FEDERAL ID #ID00911 DATE LAB REC'D SAMPLE: 7/27/2005
1				5-05			otopes if activity exceeds 50	28) add results of Ra-226 a		eater than 5pCilL)	activity from Gross alpha ac s uranium)	t to activity; multiply concen ds 15pCi/L)	n)		CONTAMINANT		CONTACT PHONE #	L TAG #/FACILITY ID:	BAKER CITY OF	PRIVATE	(24 hour clock)	COLLECTION TIME:	REPLACEMENT SAMPLE	LAD SAMPLE # 533231 DATE REPORTED BY LAB: 9/14/2005
	comments/notations)	(Reserved for			ENERGY LABS	*TEST PERFORMED BY	OpCilL)	ind Ra-228			tivity	tration in µg/L x 0.67				ANALYSIS REPORT:		JTY ID:		PUBLIC		11:30:00 AM	SAMPLE	533231 AB: 9/14/2005
l	Collectio	Enter 4th Q sample date	3rd Quarterly Sample	2nd Quarterly Sample	COMPO	1						ND		hgl	RESULT									
1	Collection Date at top of form	Enter 4th Quarter or latest sample date beside	rly Sample	rly Samole:	COMPOSITE SAMPLE DATES:			ND	ND	ND				pCi/L	RESULT								に	
ī.	form				-		4 mREM	5 pCi/L			15 pCi/L	30 µg/L			MCL)
1									8/4/05	8/4/05		8/10/05	0,0,0	0ATE	ANALYSIS					Fax: 208	Phone: 20	Twin Fall	MAGIC VALLEY LABS, INC. 210 Addison Ave. PO Box 1867	
Ī.									*	*		*		*	ANALYS T					Fax: 208-734-8539	Phone: 208-733-4250	Twin Falls ID 83301	EY LABS, ve. PO Box	
P.	AKER O. BO AKER	X 65	0		7814				E904.0	E903.0		E200.8		FOUUU	METHOD								, INC. 1867	

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

		eived Date eived Time	7/27/2005 4:45 PM	Location RESERVOIR WELL	
Sample #	Test / Method Code		Results in mg/L	Date Analyzed	Analyst
533181	ALUMINIUM		<0.1	8/2/2005	*
533182	ANTIMONY		<0.005	8/17/2005	RB
533183	ARSENIC EPA 200.9		<0.005	7/30/2005	RB
533184	BARIUM SM3111D		<0.5	8/16/2005	RB
533185	BERYLLIUM EPA200.9		<0.0005	8/19/2005	RB
533186	CADMIUM SM3113B	1	<0.0005	8/25/2005	RB
533187	CHROMIUM SM3113B		<0.005	8/23/2005	RB
533188	COPPER SM3111B		<0.1	7/29/2005	RB
533189	TOTAL IRON		1.11	7/29/2005	RB
5331810	DISSOLVED IRON SM31111	3	< 0.1	8/27/2005	RB

Ribekha & Bicart Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5331811	TOTAL MANGANESE SM3111B	<0.05	7/30/2005	RB
5331812	DISSOLVED MN SM3111B	<0.05	7/30/2005	RB
5331813	LEAD SM3113B	0.005	7/28/2005	RB
5331814	MERCURY EPA245.1	<0.001	7/28/2005	RB
5331815	NICKEL SM3113B	<0.01	8/24/2005	RB
5331816	SELENIUM EPA200.9	<0.005	8/16/2005	RB
5331817	SILVER SM3111B	 <0.05	9/1/2005	RB
5331818	THALLIUM EPA200.9	<0.002	8/31/2005	RB
5331819	ZINC SM3111B	0.09	9/1/2005	RB

FILTER 5331820

Rebekhaf Bicant Signature

Report Date: Friday, January 20, 2006

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collectio Collectio		ceived Date ceived Time	7/27/2005 4:45 PM	Location RESERVOIR WELL	
Sample #	Test / Method Code		Results in mg/L	Date Analyzed	Analyst
533201	TEMP SM2550B		50 C	7/27/2005	KE
533202	CONDUCTIVITY SM2510B		147uS	7/28/2005	TF
533203	DISS. OXYGEN SM450000	3	8.4	7/28/2005	JD
533204	рН SM4500H+B		6.1	7/28/2005	JD
533205	TURBIDITY EPA180.1		4.0 NTU	7/29/2005	TF
533206	ORP		612mV	8/2/2005	GF
533207	BICARBONATE SM2320B		54	7/28/2005	JD
533208	CALCIUM SM3111D		19.9	8/24/2005	RB
533209	CARBONATE SM2320B	z	< 1	7/28/2005	JD
5332010	CHLORIDE EPA300.0		2.18	8/2/2005	GF

ature 13 Report Date: Friday, August 26, 2005 Signature

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5332011	HARDNESS EPA130.2	66.6	7/29/2005	GF
5332012	MAGNESIUM SM3111B	4.26	7/28/2005	RB
5332013	NITRATE/N SM4500	0.36	7/29/2005	ΤF
5332014	NITRITE/N SM4500	<0.002	7/27/2005	TF
5332015	NITRATE/N + NITRITE/N	0.37	7/29/2005	ΤF
5332016	POTASSIUM SM3111B	0.6	7/30/2005	RB
5332017	SILICA EPA370.1	22.0	8/2/2005	ΤF
5332018	SODIUM SM3111B	3.09	7/30/2005	RB
5332019	SULFATE EPA300.0	5.50	8/2/2005	GF
5332020	ALKALINITY SM2320B	54	7/28/2005	JD
5332021	TDS SM2540C	60	7/28/2005	JD
5332022	TSS SM2540D	72	7/28/2005	JD

chillion Signature Report Date: Friday, August 26, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

		7/27/2005 11:30 AM	Received Date Received Time	7/27/2005 4:45 PM	Location RESERV	OIR WELL	
Sample #	Test	/ Method Co	ode	Results in mg/L		Date Analyzed	Analyst
533211	тос			1.0		8/10/2005	KJR

5 10

Report Date: Wednesday, September 14, 2005

Sample ID: BCRW-C2R-1 Sample Date: September 21, 2005

L

L

L

L

L

L

L

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

	A/21/05 n Date 8/22/2005 n Time 11:00 AM	Received Date Received Time	9/21/2005 6:00 PM	Location WELL	
Sample #	Test / Method Co	ode	Results in mg/L	Date Analyzed	Analyst
550381	BICARBONATE SM2	320B	81	9/23/2005	JD
550382	CALCIUM SM3111D		26.4	9/28/2005	RB
550383	CARBONATE SM232	20B	< 1	9/23/2005	JD
550384	CHLORIDE EPA300.	0	<0.08	9/27/2005	TF
550385	HARDNESS (CaCo3)		66.0	9/28/2005	RB
550386	MAGNESIUM SM311	1B	10.9	10/4/2005	RB
550387	NITRATE/N SM4500		0.13	9/23/2005	SK
550388	NITRITE/N SM4500		0.002	9/24/2005	GF
550389	NITRATE/N + NITRIT	E/N	0.13	9/23/2005	SK
5503810	POTASSIUM SM311	1B	. 1.0	10/5/2005	RB

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5503811	SILICA EPA370.1	22.0	9/26/2005	ΤF
5503812	SODIUM SM3111B	9.36	9/30/2005	RB
5503813	SULFATE EPA300.0	<0.08	9/27/2005	TF
5503814	ALKALINITY SM2320B	81	9/23/2005	JD
5503815	TDS SM2540C	150	9/23/2005	JD
5503816	ТОС	0.6	10/4/2005	KJR
5503817	TSS SM2540D	3	9/23/2005	JD

Report Date: Friday, December 02, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

CHUCK EVERSON BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

	n Date8/22/2005 Received Da n Time 11:00 AM Received Tir		Location WELL	
Sample #	Test / Method Code	Results in mg/L	Date Analyzed	Analyst
550391	ALUMINIUM	<0.1	10/4/2005	RAS
550392	ANTIMONY	< 0.005	10/14/2005	RB
550393	ARSENIC EPA 200.9	<0.005	9/29/2005	RB
550394	BARIUM SM3111D	<0.5	9/29/2005	RB
550395	SERYLLIUM EPA200.9	<0.0005	10/8/2005	RB
550396	CADMIUM SM3113B	<0.0005	10/6/2005	RB
550397	CHROMIUM SM3113B	<0.005	10/8/2005	RB
550398	COPPER SM3111B	<0.1	9/24/2005	RB
550399	TOTAL IRON	<0.1	10/7/2005	RB
5503910	DISSOLVED IRON SM3111B	<0.1	10/7/2005	RB

5

Report Date: Thursday, December 29, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5503911	LEAD SM3113B	<0.005	10/5/2005	RB
5503912	TOTAL MANGANESE SM3111B	<0.05	10/7/2005	RB
5503913	DISSOLVED MN SM3111B	<0.05	10/7/2005	RB
5503914	MERCURY EPA245.1	<0.001	9/24/2005	RB
5503915	NICKEL SM3113B	<0.01	10/11/2005	RB
5503916	SELENIUM EPA200.9	<0.005	10/4/2005	RB
5503917	SILVER SM3111B	<0.05	10/8/2005	RB
5503918	THALLIUM EPA200.9	<0.002	10/15/2005	RB
5503919	ZINC SM3111B	<0.05	10/7/2005	TF
5503920	ÖDOR	ND	9/24/2005	RB
5503921	COLOR	ND	9/24/2005	RB
5503922	SURFACTANTS EPA425.1	<0.01	9/26/2005	TF
5503923	LANGLIER INDEX	-0.42	12/6/2005	RB
5503924	CYANIDE	<0.01	10/11/2005	ETL
5503925	FLUORIDE EPA300.0	<0.03	9/27/2005	TF

Report Date: Thursday, December 29, 2005

Water System ID #: 4100073	Source ID:	Source nam	ne(s):					
Water System BAKER CITY	Y OF							
Address P.O. BOX 650								
City. State, Zip BAKER CITY	Y OR 97814							
Sample Identifica	ation							
Sampled at: WELL		Sampled	by: KEN ELLIS					
Date Collected: 9/21/2005		Time collected: 11:00:00 AM						
Date received: 9/21/2005								
		Date analyzed: 10/4/05						
Sample Composition:		Single						
Lab sample ID #: 55061		Sample C	composited : No					
	Volatile Orga	nic Chemicals	Ν	MDL for all test =	0.0005			
	Re	gulated VOCs						
Contaminant	Code	MCL mg/l	Analysis mg/l	Method	Analyst			
1.1-Dichloroethylene	2977	0.007	ND	524.2	*			
I.I.I-Trichloroethane	2981	0.2	ND	524.2	*			
1.1.2-Trichloroethane	2985	0.005	ND	524.2	*			
1.2 Dichloroethane	2980	0.005	ND	524.2	×			
1.2 Dichloropropane	2983	0.005	ND	524.2	*			
1.2.4-Trichlorobenzene	2378	0.07	ND	524.2	*			
Benzene	2990	0.005	ND	524.2	*			
Carbon Tetrachloride	2982	0.005	ND	524.2	*			
Cis-1.2-Dichloroethylene	2380	0.07	ND	524.2	*			
Methylene Chloride	2964	0.005	ND	524.2	*			
Ethylbenzene	2992	0.7	ND	524.2	*			
Chlorobenzene	2989	- 0.1	ND	524.2	*			
1-2-Dichlorobenzene	2968	0.6	ND	524.2	*			
1-4-Dichlorobenzene	2969	0.075	ND	524.2	*			
Styrene	2996	0.1	ND	524.2	*			
Tetrachloroethylene	2987	0.005	ND	524.2	*			
Toluene	2991	1.0	ND	524.2	*			
Total Xylenes	2955	10.0	ND	524.2	*			

Frichtoroethylene	2984	0.005	ND	524.2	*
Vinyl Chloride	2976	0.002	ND	524.2	*

Comments:

*Test performed by Anatek Labs ORELAP # ID200001

light 30-05 Signature / Date:

II nome nic mever/results voc 3/10/93

MAGIC VALLEY LABS 210 Addison Box 1867 Twin Falls, ID 83301 ID 100001

System ID #: 4100073	Entry Point or Source ID:	Source name(s):
Water System BAKER CI	TY OF	
Address P.O. BOX 650		
City, State, Zip BAKER C	ITY OR 97814	
Sample Ide	ntification	
Sampled at: WELL		ampled by: KEN ELLIS
Date Collected: 9/21/2005		ime collected: 11:00:00 AM
Date recieved: 9/21/2005		Date analyzed:
Sample Composition:	Single	
Lab sample ID #: 55060	5	ample Composited: No

Synthetic Organic Chemicals								
Regulated								
Contaminant	Code	MCL mg/l	Analysis mg/l	LRL	Method	Analyst		
2.4-D	2105	0.07	ND	0.0001	515.3	*		
2.4.5-TP Silvex	2110	0.05	ND	0.0001	515.3	*		
Adipates	2035	0.4	ND	0.002	525.2	*		
Alachlor (Lasso)	2051	0.002	ND	0.0001	525.2	*		
Atrazine	2050	0.003	ND	0.0001	525.2	*		
Benzo(A)Pyrene	2306	0.0002	ND	0.00002	525.2	*		
BHC-gamma (Lindane)	20 0	0.0002	ND	0.00002	505	*		
Carbofuran	2046	0.04	ND	0.0009	531.1	*		
Chlordane	2959	0.002	ND	0.0001	505	*		
Dalapon	2031	0.2	ND	0.001	515.3	*		
Dibromochloropropane	2931	0.0002	ND	0.00002	504.1	*		
Dinoseb	2041	0.007	ND	0.0001	515.3	*		
Dioxin	2063	3x10 ⁻⁸						
Diquat	2032	0.02	ND	0.0004	549.2	*		
Endothall	2033	0.1	ND	0.009	548.1	*		
Endrin	2005	0.002	ND	0.00003	505	*		
Ethylene Dibromide (EDB)	2946	0.00005	ND	0.00001	504.1	*		
Glyphosate	2034	0.7	ND	0.006	547	*		

						*
Heptachlor Epoxide	2067	0.0002	ND	0.00002	505	*
Heptachlor	2065	0.0004	ND	0.00004	505	*
Hexachlorobenzene (HCB)	2274	0.001	ND	0.0001	525.2	*
Hexachlorocyclopentadiene	2042	0.05	ND	0.0001	525.2	*
Methoxychlor	2015	0.04	ND	0.0001	505	*
Pentachlorophenol	2326	0.001	ND	0.00004	515.3	*
Phthalates	2039	0.006	ND	0.0006 5	525.2	*
Piclorani	2040	0.5	ND	0.0001	515.3	*
Polychlorinated Biphenyls	2383	0.0005	ND	0.00001	505	*
Simazine	2037	0.004	ND	0.00007	525.5	*
Toxaphene	2020	0.003	ND	0.001	505	*
Vydate	2036	0.2	ND	0.002	531.1	×

ANALYST	DATE	METHOD	ANALYST	DATE	METHOD
*	10/11/2005	515.3		9/29/2005	504.1
*	10/6/2005	525.2		9/28/2005	549.2
*	10/10/2005	505	*	10/4/2005	549.1
*	10/6/2005	531.1	*	10/6/2005	547

*Test performed by Anatek Labs, Inc ORELAP #ID200001

Signature Date:

. .

1000		1					-					r				1				
	Signature of Laboratory Supervisor BAKER CITY OF P.O. BOX 650 BAKER CITY OR 97814	- = Neganalysis performed	4100 Gross Beta/Photon (required to measure ND = Not detected within sensitivity of instrument	4010	4030	4020	4000	4006	4002		FRDS	KEN ELLIS	COLLECTOR'S NAME:	PWS#: 4100073	SAMPLE TYPE:		COLLECTION DATE :	COMPLIANCE SAMPLE	DATE LAB REC'D SAMPLE: 9/21/2005	LAB FEDERAL ID #ID00911
	OF OR 97814	med al	Gross Beta/Photon Activity (required to measure major isotopes if activity exceeds 50pCilL) *TE	Radium, Combined (226 & 228) add results of Ra-226 and Ra-228	Radium-228	Radium-226 (required if alpha activity is greater than 5pCilL)	Net Alpha subtract Uranium activity from Gross alpha activity (includes radium but excludes uranium)	Uranium, Combined convert to activity; multiply concentration in µg/L x 0.67 (required if gross alpha exceeds 15pCi/L)	Gross Alpha Activity (includes radium and uranium)		FRDS CONTAMINANT		OCATION: WELL		RADS		: 8/22/2005		AMPLE: 9/21/2005	ID00911
1			ton Activity sure major isotop ent	red (226 & 228)		activity is greate	ct Uranium activ but excludes ura	ned convert to a alpha exceeds 1	and uranium)		R SYSTEM R	C		PWS NAME: B.		(2	0	NO YES	D	
1		-1-06	oes if activity exc	add results of R		r than 5pCilL)	ity from Gross al nium)	activity; multiply (5pCi/L)			CONTAMINANT	CONTACT PHONE #	TAG #	BAKER CITY OF		(24 hour clock)	COLLECTION TIME:	REPLACE	DATE REPORTED BY LAB: 2/24/2006	LAB SAMPLE #:
l	(Reser	ENER	eeds 50pCilL) *TES	a-226 and Ra-2			lpha activity	concentration in			AL ANALYS	Π #	TAG #/FACILITY ID:		3			REPLACEMENT SAMPLE	D BY LAB: 2/24/	550401
	(Reserved for comments/notations)	ENERGY LABS	JIL) *TEST PERFORMED BY	28				µg/L x 0.67			IS REPORT:				PUBLIC		11:00:00 AM		2006	01
	2nd Quarterly Sample 3rd Quarterly Sample: Enter 4th Quarter or la sample date beside Collection Date a) BY					ND		μg/L	RESULT									
	2nd Quarterly Sample: 3rd Quarterly Sample: Enter 4th Quarter or latest sample date beside Collection Date at top of form	COMPOSITE SAMPLE DATES: IST Quarterly Sample:		ND	ND	ND			ND	pCi/L	RESULT					4			1	
	form		4 mREM	5 pCi/L			15 pCi/L	30 µg/L			MCL					Ņ		≥ 2 M		
					10/13/05	10/13/05		10/13/05	10/17/05	DATE	ANALYSIS				Fax: 2	Phone:	Twin F	AGIC VAL		
					*	*		*	*	-	ANALYS				Fax: 208-734-8539	Phone: 208-733-4250	Twin Falls ID 83301	MAGIC VALLEY LABS, INC. 210 Addison Ave. PO Box 1867		
1	BAKER CITY OF P.O. BOX 650 BAKER CITY OR	97814			E904.0	E903.0		E200.8	E900.0		METHOD					50		s, INC. × 1867		
									-	-										

Sample ID: BCRW-C2R-2 Sample Date: October 26, 2005

L

L

L

L

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Collection	Date 10/26/2005	Received Date Received Time	10/26/2005 6 :00 PM	Location RESERVOIR WELL	
Sample #	Test / Method Co	de	Results in mg/L	Date Analyzed	Analyst
563321	FLUORIDE EPA300.0)	0.13	10/27/2005	GF
563322	LANGLIER INDEX		-0.57	12/6/2005	RB
563323	SURFACTANTS EPA	425.1	<0.01	10/31/2005	GF
563324	ODOR		ND	10/29/2005	RB
563325	TEMP. SM2550B		50	10/27/2005	KE
563326	CONDUCTIVITY SM2	2510B	660uS	10/27/2005	TF
563327	DISSOLVEDOXYGEN	1	9.0	10/27/2005	JD
563328	pH SM4500H+B		6.9	10/26/2005	JD
563329	TURBIDITY EPA180.	1	<1	10/27/2005	RB
5633210	ORP		600.4	10/31/2005	GF

MAGIC VALLEY LABS 210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5633211	BICARBONATE SM2320B	110	10/28/2005	JD
5633212	CALCIUM SM3111D	29.5	11/10/2005	RB
5633213	CARBONATE SM2320B	<1	10/28/2005	JD
5633214	CHLORIDE EPA300.0	2.20	10/26/2005	GF
5633215	HARDNESS EPA130.2	129	10/31/2005	GF
5633216	MAGNESIUM SM3111B	17.0	11/11/2005	RB
5633217	NITRATE/N EPA300.0	<0.03	10/27/2005	GF
5633218	NITRITE/N EPA300.0	<0.02	10/27/2005	GF
5633219	NITRATE/N + NITRITE/N	<0.03	10/27/2005	GF
5633220	POTASSIUM SM3111B	1.4	11/9/2005	RB
5633221	SILICA EPA370.1	44.0	11/2/2005	GF
5633222	SODIUM SM3111B	14.5	11/8/2005	RB
5633223	SULFATE EPA300.0	21.7	10/27/2005	GF
5633224	ALKALINITY SM2320B	110	10/28/2005	JD
5633225	TDS SM2540C	190	10/28/2005	JD
5633226	ANTIMONY	<0.005	11/4/2005	RB

c.

MAGIC VALLEY LABS 210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5633227	ARSENIC EPA 200.9	<0.005	11/3/2005	RB
5633228	BARIUM SM3111D	<0.5	11/10/2005	RB
5633229	BERYLLIUM EPA200.9	<0.0005	11/18/2005	RB
5633230	CADMIUM SM3113B	<0.0005	10/27/2005	RB
5633231	CHROMIUM 503	255mg/kg dry	11/1/2005	RB
5633232	COPPER SM3111B	<1	11/2/2005	RB
5633233	TOTAL IRON	<0.1	10/29/2005	ŔВ
5633234	DISSOLVED IRON SM3111B	<0.1	10/29/2005	RB
5633235	LEAD SM3113B	<0.005	11/2/2005	RB
5633236	TOTAL MANGANESE SM3111B	<0.05	10/29/2005	RB
5633237	DISSOLVED MN SM3111B	<0.05	10/29/2005	RB
5633238	MERCURY EPA245.1	<0.001	11/3/2005	RB
5633239	NICKEL SM3113B	<0.01	10/28/2005	RB
5633240	SELENIUM EPA200.9	<0.005	11/3/2005	RB
5633241	SILVER SM3111B	<0.05	11/2/2005	RB
5633242	THALLIUM EPA200.9	<0.002	11/18/2005	RB

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

5633243	ZINC SM3111B	<0.05	11/11/2005	RB
5633244	COLOR	ND	10/29/2005	RB
5633245	TSS SM2540D	<1	11/2/2005	JD

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Collection	Date 10/26/2005 Time	Received Date Received Time		ocation ESERVOIR WELL	
Sample #	Test / Method Co	de	Results in mg/L	Date Analyzed	Analyst
563261	ТНМ		0.0028	11/8/2005	SAT
563262	HAA		ND	11/8/2005	SAT

TOTAL COLIFORM < 1 MPN/100ML FECAL COLIFORM < 1 CFU/100ML E-COLI < 1 MPN/100ML

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collectio Collectio	n Date 10/26/2005 n Time	Received Date Received Time	10/26/2005 6:00 PM	Location RESERVOIR WELL	
Sample #	Test / Method Co	ode	Results in mg/L	Date Analyzed	Analyst
563291	CYANIDE		<0.01	11/15/2005	KAS

1

Signature

Report Date: Monday, December 12, 2005

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collectio Collection	n Date 10/26/2005 n Time	Received Date Received Time	10/26/2005 6.00 PM	Location RESERVOIR WELL	
Sample #	Test / Method Co	ode	Results in mg/L	Date Analyzed	Analyst
563271	TOC		0.5	11/9/2005	KJR
563272	ALUMINIUM		<0.10	11/9/2005	KC

Report Date: Monday, December 12, 2005

Magic Valley Labs, Inc 210 Addison Ave PO Box 1867 Twin Falls, ID 83301 ID 100001

Total Trihalomethanes and Haloacetic Acids

TO BE FILLED IN	BY PERSON SUBMITTING	SAMPLE:				
PWS ID #:	4100073					
Water System	BAKER CITY OF					
Address	P.O. BOX 650					
City, State, Zip	BAKER CITY OR 97814					
SAMPLE IDENTIFICATION:		(Listed	below sam	ple res	sults)	
Sampled by:	KEN ELLIS					
Date Collected:	10/26/2005	Time Collected	12:00:00	AM		
TO BE COMPLET	TED BY LABORATORY:					
Date Received in	Lab: 10/26/2005	Date Analyzed:	THM:		HAA:	
Lab sample ID#:	563261 (Listed below)	Analysts:	THM:	*	HAA:	*

	Method:	EPA 524.2	Method detect	ion limit (mg/l):	0.0005
THMs	Sample results (mg/l)				
	#1		#2	#3	#4
CHCI3					
CHBrCl ₂					
CHBr ₂ CI					
CHBr ₃					
Total THM	0.0028				
2950		in the second			

	Method: SM 6251B Method detection limit (mg/l):			0.001				
HALOACETIC		Sample results (mg/l)						
ACIDS	#1	1000	#2	#3	#4			
MCAA								
DCAA								
ТСАА								
MBAA								
DBAA								
Total HAA5 2456	ND							
Sample Location	#1:	RESERVOIR	WELL					
	#2:							
	#3:							
	#4:							
Identify DBPMA	Clocation with	or other des	ignation	te: 12 - 14 - 0	5			

* TEST PERFORMED BY ANATEK LABS, INC. ORELAP #: 1D 200001

Magic Valley Labs 210 Addison Box 1867 Twin Falls, ID 83301 ID 100001

.

Water System ID #: 4100073	Source ID:	Source nam	ne(s):		
Water System BAKER CITY	OF				
Address P.O. BOX 650					
City. State, Zip BAKER CITY	OR 97814				
Sample Identifica	tion				
Sampled at: RESERVOIR WELL		Sampled	by: KEN ELLIS		_
Date Collected: 10/26/2005		Time coll			
Date received: 10/26/2005	Date analyzed:				
			iyzeu.		
Sample Composition:		Single			
Lab sample ID #: 56328		Sample C	Composited : No		
	Volatile Orga	nic Chemicals		MDL for all test =	0.0005
	Reg	gulated VOCs			
Contaminant	Code	MCL mg/l	Analysis mg/l	Method	Analyst
1.1-Dichloroethylene	2977	0.007	ND	524.2	*
1.1.1-Trichloroethane	2981	0.2	ND	524.2	*
1.2-Trichloroethane	2985	0.005	ND	524.2	*
1.2 Dichloroethane	2980	0.005	ND	524.2	*
1.2 Dichloropropane	2983	0.005	ND	524.2	*
1.2.4-Trichlorobenzene	2378	0.07	ND	524.2	*
Benzene	2990	0.005	ND	524.2	*
Carbon Tetrachloride	2982	0.005	ND	524.2	*
Cis-1,2-Dichloroethylene	2380	0.07	ND	524.2	*
Methylene Chloride	2964	0.005	ND	524.2	*
Ethylbenzene	2992	0.7	ND	524.2	*
Chlorobenzene	2989	.0.1	ND	524.2	*
1-2-Dichlorobenzene	2968	0.6	ND	524.2	*
I-4-Dichlorobenzene	2969	0.075	ND	524.2	*
The second second	2996	0.1	ND	524.2	*
Styrene		10000		524.2	*
Fetrachloroethylene	2987	0.005	ND		
	2987 2991	0.005	ND	524.2	*
Fetrachloroethylene					*

Trichloroethylene	2984	0.005	ND	524.2	*
Vinyl Chloride	2976	0.002	<u>ND</u>	524.2	*

The second second second

Comments:

*Test performed by Anatek Labs ORELAP # ID200001

La Ellis 12-14-05 Signature / Date:

H home nic mover results voc. 3/10/93

MAGIC VALLEY LABS 210 Addison Box 1867 Twin Falls, ID 83301 ID 100001

System ID #: 4100073	Entry Point or Source ID:	Source name(s):	
Water System BAKER CI	ΓΥ OF		
Address P.O. BOX 650			
City: State, Zip · BAKER C	ITY OR 97814		
Sample Ide	ntification		
Sampled at: RESERVOIR	WELL	Sampled by: KEN ELLIS	
Date Collected: 10/26/200	5	Time collected:	
Date recieved: 10/26/2005		Date analyzed:	
Sample Composition:	Single		
Lab sample ID #: 56330		Sample Composited: No	

Synthetic	Organic	Chemicals	
-----------	---------	-----------	--

Regulated	04/10/25					
Contaminant	Code	MCL mg/l	Analysis mg/l	LRL	Method	Analyst
2.4-[)	2105	0.07	ND	0.0001	515.3	*
2.4.5-TP Silvex	2110	0.05	ND	0.0001	515.3	*
Adipates	2035	0.4	ND	0.002	525.2	*
Alachlor (Lasso)	2051	0.002	ND	0.0001	525.2	*
Atrazine	2050	0.003	ND	0.0001	525.2	*
Benzo(A)Pyrene	2306	0.0002	ND	0.00002	525.2	*
BHC-gamma (Lindane)	2010	0.0002	ND	0.00002	505	*
Carbofuran	2046	0.04	ND	0.0009	531.1	*
Chlordane	2959	0.002	ND	0.0001	505	*
Dalapon	2031	0.2	ND	0.001	515.3	*
Dibromochloropropane	2931	0.0002	ND	0.00002	504.1	*
Dinoseb	2041	0.007	ND	0.0001	515.3	*
Dioxin	2063	3×10^{-8}				
Diquat	2032	0.02	ND	0.0004	549.2	*
Endothall	2033	0.1	ND	0.009	548.1	*
Endrin	2005	0.002	ND	0.00003	505	*
Ethylene Dibromide (EDB)	2946	0.00005	ND	0.00001	504.1	*
Glyphosate	2034	0.7	ND	0.006	547	*

						*
Heptachlor Epoxide	2067	0.0002	ND	0.00002	505	*
Heptachlor	2065	0.0004	ND	0.00004	505	*
Hexachlorobenzene (HCB)	2274	0.001	ND	0.0001	525.2	*
lexachlorocyclopentadiene	2042	0.05	ND	0.0001	525.2	*
Methoxychlor	2015	0.04	ND	0.0001	505	*
Pentachlorophenol	2326	0.001	ND	0.00004	515.3	*
Phthalates	2039	0.006	ND	0.0006	525.2	*
cloram	2040	0.5	ND	0.0001	515.3	*
olychlorinated Biphenyls	2383	0.0005	ND	0.00001	505	*
imazine	2037	0.004	ND	0.00007	525.5	*
oxaphene	2020	0.003	ND	0.001	505	*
Vdate	2036	0.2	ND	0.002	531.1	*

ANALYST	DATE	METHOD	ANALYST	DATE	METHOD
*	11/10/2005	515.3	*	11/8/2005	504.1
*	11/11/2005	525.2		10/9/2005	549.2
*	11/15/2005	505	*	11/8/2005	548.1
*	11/16/2005	531.1	*	11/14/2005	547

2

*Test performed by Anatek Labs, Inc ORELAP #ID200001

Brendo Ellis 13-14-05 Signature Date:

× 1

LAB FEDERAL ID #ID00911	000911	LAB SAMPLE #: 563331						
DATE LAB REC'D SAMPLE: 10/26/2005	MPLE: 10/26/2005	DATE REPORTED BY LAB: 2/24/2006						
COMPLIANCE SAMPLE	LE YES	REPLACEMENT SAMPLE				MAGIC VALLEY LABS, INC. 210 Addison Ave. PO Box 1867	EY LABS, re. PO Box	INC. 1867
COLLECTION DATE :	10/26/2005	COLLECTION TIME: 12:00:00 AM				Twin Falls	Twin Falls ID 83301	
~ .		(24 hour clock)			N	Phone: 20	Phone: 208-733-4250	
SAMPLE TYPE:	RADS	PRIVATE PUBLIC				Fax: 208-	Fax: 208-734-8539	
PWS#: 4100073	PWS NAME:	BAKER CITY OF						
SAMPLING POINT/LOCATION:	RESE	TAG #/FACILITY ID:						
COLLECTOR'S NAME: KEN ELLIS	1 1	CONTACT PHONE #:						
PUBLIC DRI	NKING WATER SYSTEM	PUBLIC DRINKING WATER SYSTEM RADIOLOGICAL ANALYSIS REPORT:						
FRDS		CONTAMINANT	RESULT	RESULT	MCL	ANALYSIS	ANALYS	METHOD
			μg/L	pCi/L		DATE	-	
4002	Gross Alpha Activity (includes radium and uranium)			3.2		11/16/05	*	E900.0
4006	Uranium, Combined convert to activity; (required if gross alpha exceeds 15pCi/L)	Uranium, Combined convert to activity; multiply concentration in µg/L x 0.67 (required if gross alpha exceeds 15pCi/L)	ND		30 µg/L	11/15/05	*	E200.8
4000	Net Alpha subtract Uranium activity from Gross alpha activity (includes radium but excludes uranium)	ctivity from Gross alpha activity uranium)			15 pCi/L			
4020	Radium-226 (required if alpha activity is greater than 5pCilL)	ater than 5pCilL)		ND		11/11/05	*	E903.0
4030	Radium-228			ND		11/11/05	*	E904.0
4010	Radium, Combined (226 & 2)	Radium, Combined (226 & 228) add results of Ra-226 and Ra-228		ND	5 pCi/L			
4100	Gross Beta/Photon Activity (required to measure major isc	Gross Beta/Photon Activity (required to measure major isotopes if activity exceeds 50pCilL)			4 mREM			
ND = Not detected withi	ND = Not detected within sensitivity of instrument	* TEST PERFORMED BY	F					
- = No analysis performed	Heller J	ENERGY LABS	COMPOSITE SAM DATES: 1ST Quarterly Sample:	COMPOSITE SAMPLE DATES: 1ST Quarterly Sample:				97814
Signature of Laboratory Supervisor	y Supervisor Date		and Quarterly Sample.	Y sample.)
BAKER CITY OF	OF		3rd Quarterly Sample: Enter 4th Quarter or latest sample date beside	Sample: arter or latest beside				CITY ((650 CITY (
P.O. BOX 650		(Keserved for comments/notations)	Collection	Collection Date at top of form	form			BO
	JK 9/814							Ρ.Ο.
					ī			
				1	l			

210 Addison Ave / PO Box 1867 Twin Falls ID 83303-1867 Phone: (208) 733-4250 Fax: (208) 734-2539

BAKER CITY OF

P.O. BOX 650 BAKER CITY OR 97814

Collection Collection	n Date 10/26/2005 n Time	Received Date Received Time		Location RESERVOIR WELL	
Sample #	Test / Method Co	ode	Results in mg/L	Date Analyzed	Analyst
563311	RADON		591 pCi/L	10/27/2005	DB

Report Date: Tuesday, December 13, 2005