Oregon Water Resources Department
725 Summer Street NE, Suite A
Salem Oregon 97301-1271
(503) 986-0900
www. wrd.state.or.us

Please type or print in dark ink. Prior to submitting an application, the Oregon Water Resources Department (OWRD) recommends applicants consult with the Department's Hydroelectric Staff about the proposed project. If an application is found to be incomplete or inaccurate, it will be returned to the applicant. If any requested information does not apply, please insert " n / a."

1. APPLICANT INFORMATION

Applicants: MARC | First |
| :--- |

Organization: THREE SISTERS IRRIGATION DISTRICT
Mailing Address: $\frac{\text { PO Box 2230, Sisters, OR 97759 }}{\text { City }}$

Phone:

$541-549-8815$	Work
Home	Other

*Fax: 541-549-8070 *E-mail address: manager@tsidweb.org
*Optional Information

2. CONDUIT CONTROL

If the water to be used for the proposed hydroelectric project is delivered by a public entity other than the applicant you must provide a statement from that public entity that it will be able to deliver water as described in this application. -- Attach the statement.
\times No
STOP. A certificate cannot be issued unless the applicant owns or otherwise controls the water conveyance system.

RECENED BY OWRD
Alla 252016
SALEM, OR

3. WATER USE

A. Proposed Source and Amount of Water

Provide the certificate number or, if no confirming certificate has been issued, the decree reference, of the existing water right associated with this proposed project:
Certificate C-74135 Reservoir Permit No. 3902, Reservoir Permit 29312
Identify the amount of water you propose to use from each source, for each powerhouse, in cubic feet-per-second (CFS).
(1 cubic foot per second $=448.8$ gallons per minute $\quad 1$ acre-foot $=43,560$ cubic feet $)$

Source	Amount (AF, CFS, GPM)
WHYCHUS CREEK	20 cfs

C. Power Development

The project will utilize 194 \qquad (number of feet) of gross head to develop 440.9 \qquad (Amount) theoretical horsepower (THP).
THP is calculated by multiplying the quantity of water to be diverted in cubic feet per second by the vertical head in feet and dividing the product by 8.8). The head is the difference in elevation between the intake of the pipeline and the return discharge to the stream.

D. Location

Identify the following points on a copy of the final proof map for the certificate.

1) The point of diversion is in the : $\mathrm{SW}^{1 / 4}$ of the $\mathrm{SW}^{1 / 4}$ of

Section 21 ,Township 15 S , Range 10 E , W.M
2) The power plant is to be located within the SW ${ }^{1 / 4}$ of the SW ${ }^{1 / 4}$ of Section 13 Township 15 S , Range 10E_W.M.
3) After passing through the power plant, the water will be discharged to OEIVED BY OWAD

4. WATER MANAGEMENT

How will you monitor your diversion to ensure the volume of water use is within the limits of the water right and that no water is being wasted?

$$
\square \text { Weir } \quad \times \text { Meter } \quad \text { Periodic Sampling }
$$

Describe measuring devices and the frequency of recording. Oregon Water Resources
Department gauging stations 14076001 and 14076010 (every 15 minutes)

5. FEDERAL ENERGY REGULATORY

COMMISSION (FERC) JURISDICTION
Provide a copy of your FERC declaration of intent or exemption application: http://www.ferc.gov/industries/hydropower/gen-info/comp-admin/iur-deter.asp .

If a FERC exemption is not needed, provide a copy of the Lease of Power Privilege if Project is on a U. S. Bureau of Reclamation facility, or similar document if jurisdiction is from any other federal agency.

Note: Oregon Water Resources Department will not issue a certificate for the proposed project until a FERC determination or exemption is issued. If another federal agency has jurisdiction then the appropriate approval document must be submitted before a certificate is issued by OWRD.

6. REMARKS

If you would like to clarify any information you have provided in the application, please do so here and reference the specific application question you are addressing.
\qquad
\qquad
\qquad
\qquad
\qquad

7. MAP REQUIREMENTS

SEE ATTACHED
Attach a copy of the final proof map for this certificate that clearly indicates the township, range, section, and quarter-quarter section of the existing diversion point from the stream and add any proposed diversions from the existing canal or pipeline. Indicate the location of the proposed powerhouse. Also, map existing and proposed canals, pipelines and or penstocks that will be part of the hydroelectric use. See the map guidelines sheet for detailed map specifications. SEE PAGES 7-9.

REGEIVED BY OWRD

8. SIGNATURE

By my signature below I confirm that I understand and agree:

- I own the land that the point of diversion, conduit and powerhouse will be located or I have a recorded easement or written authorization permitting access.
- I will be billed annually based on the theoretical horsepower produced by the hydroelectric project. Failure to pay this invoice by the prescribed date may result in cancellation of the hydroelectric water right certificate.
- Use of water for hydroelectric purposes will not exceed the rate, duty, season and any other limitations of the existing certificated water right.
- Water may be used for hydroelectric use, only if the same water is being used for its original purpose as described in the attached certificate.
- If development of the hydroelectric use is not according to the terms of the certificate, the certificate may be canceled.
- I have provided all the exhibits identified below.

I affirm that all information provided in this application is true and correct to the best of my knowledge.

Signature of applicant

Date

END OF APPLICATION

9. EXHIBITS

The following Exhibits must be included as a part of this application:
Exhibit A Final proof map for attached certificate showing existing point of diversion and proposed additional canals, pipelines, penstocks, and powerhouse. See the examples provided on pages 8 and 9 .

Exhibit B Copy of certificate to which hydroelectric use is to be added.
Exhibit C A narrative statement describing the proposed project from the point(s) of diversion to where the water re-enters the stream.

Exhibit D Copy of agreement with Oregon Department of Fish and Wildlife describing fish screening, bypass devices, and fish passage measures that may also be described in a FERC exemption order, a U.S. Bureau of Reclamation Lease of Power Privilege, or other federal agency's approval document. Attach a waiver or exemption from fish passage under ORS 509.585, if applicable. Or attach a statement the Applicant will pay annual fees into the Fish Passage Restoration Subaccount at ODFW. See Page 11.

Exhibit E Evidence of water use for at least one of the past five years for the attached certificate.

Exhibit F If the water to be used for the proposed hydroelectric project is delivered by a public entity other than the applicant for a certificate under this section, a statement from that entity that the entity will be able to deliver water as described in the application.

Exhibit G Land use form. Land use form must be signed by the local planning official, certifying that the use and structures associated with this project are allowed. The land use form is available from the OWRD Salem office or OWRD web site, http://www 1 wid.state or us/pdfs/landuseform.pdf

Exhibit H Final approval document from applicable federal agency (FERC determination of qualifying conduit facility or exemption order, USBR Lease of Power Purchase, or equivalent).

Drawings, Maps, Diagrams

Inchde a set of drawings/maps/diagrams clearly showing the structures and equipment of the hydropower facilty in relation to the existing conduit. Project drawings of the project must include:

- A Plan View (overhead view) drawing of the proposed hydropower facilities. The drawing must include the following:
- The hydropower facilities, including all intake and discharge pipes, and how those pipes comect to the conduit
- The portion of the conduit in proximity to the facilities on which the hydroelectric facillites will be located
- The dimensions (e.g. length, width, diameter) of all facilities, intakes, discharges, and conduits
- Identification of all facilities as either existing or proposed
- The flow direction labelled on intakes, discharges, and conduits
- A Location Map showing the facilities and the ir relationship to the nearest town. The map must include the following:
- The powerhouse location labeled, and its latude and longitude identified
- The nearest town, if possible, or other permanent monuments or objects, such as roads or other structwres, that can be easily noted on the map and identified in the field
- If a dam or impoundment is associated with the facility, a proflle drawing showing the conduit, and not the dam or impoundment, creates the hydroelectric potential.

ω
0
0
0
+
0
$\begin{array}{llllllllllllll}\infty & 0 & \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty & 0 \\ \infty & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0\end{array}$

9
9
0
0
人上トゥ

$$
5681
$$

5
0
0
0
0
0
3

$$
\left.\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& 65 \\
& 06 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Richardson, } \\
& \text { Richardson. }
\end{aligned}
$$

'uoseət

$$
\begin{aligned}
& \text { Aaron } \\
& \text { Aaron }
\end{aligned}
$$

$$
\begin{aligned}
& 08 \\
& 08
\end{aligned}
$$

置

$$
9
$$

\square

Kavanagh，Geraldin Sanders，Ed \＆Betty
Kavanagh，Geraldine Sanders，Ed \＆Betty
Sanders，Ed \＆Betty

Burdick，Joyce G Burdick，Joyce G

 Vestal，William \＆VictoriaVolz，Charles \＆Jan
Volz，Charles \＆Jan
Shirazi，Mostafa \＆Naoko
 Geraldin
Paul \＆
Geraldin
Paul \＆ әus x tnea
әutprexas

ัํํํํํํํํํ
 ：8：8：8：

品品品员品品

| ∞ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 0 | ∞ | 0 | 0 | ∞ | ∞ |

불코로를

 00
0
0

दिधदरिद
$\begin{array}{ll}\text { x } \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$

중
号
0
0
0
0 3
0
2
2
2
0
0
0 H
5
8
0
0
0

0 | 9 |
| :--- |
| H |
| 0 |
| 0 |
| 2 |
| 2 |
| 2 |
| 0 |
| 0 |
| 0 |

$P D P D P$ くらくなく W W W世世 55；5

R R R R R

$3 \frac{5}{5}$
25
5

0	0	0
N	0	
N	N	
	0	0

 HH
H

 5
0
H
0
0
0
0
ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

9

\section*{| U |
| :--- |
| U |
| H |
| H | Bruce \&} Tracy

Jracy
Jamie
Jamie
Jamie $*$ d
d
0
0
0
0
0 esnick,
Vavrinec,
Vavrinec,
Vavinec,
in in in in in in

800000 - $\because \because$

$$
\rightarrow \dot{\sim} \dot{\sim}
$$

0.8080
NO 08

$\begin{array}{lll}0 & 0 & \circ \\ 4 & 4 & 5 \\ 0 & 0 & 5\end{array}$

 응ㅇㅇㅇㅁㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ은ㅇㅇㅇㅇ

\section*{| ω | ω | ω | ω | ω | ω | N | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O | N | N | | | | | |}

管 0

\circ	0	
\circ	0	0

$\stackrel{\oplus}{-}$

 in 8 in $88 \% 8$ in in in in in $8 \circ$ in

 0
0
0

EXHIBIT C

> Three Sisters Irrigation District Application to Develop Hydroelectric Use

NARRATIVE

Whychus Creek, which originates in the Three Sisters Wilderness Area on the northeast slopes of South Sister, approximately 15 miles southwest of Sisters, Oregon, in Deschutes County.

The TSID point of diversion is located on the Sisters Ranger District, at River Mile 23, approximately 4 miles south of Sisters, in T15, R10, in the SE/SW of section 29, W.M. The source of water comes from Whychus Creek a tributary of the Deschutes River.

TSID holds the water right certificates on 7,572 acres of irrigation water as well as storage and supplemental permits at Watson Reservoir. The Main Canal Pipeline Project, which consists of the two 54"HDPE pipes, North and South, serves the district's 193 farmers who use the water for agricultural applications. The Watson Net Meter/Micro Hydroelectric Demonstration Facility's primary purpose is to deliver irrigation water for agriculture. The supplemental use is to generate clean, renewable electricity.

The Watson Net Meter/Micro Hydroelectric Demonstration Facility will be located on the south pipe of the Three Sisters Irrigation District's Main Canal pipeline, in the northeast corner of the TSID main office property approximately 3 miles southwest of Sisters. Water is diverted from Whychus Creek through a dam that was constructed in 1970. The diversion dam includes 4 head gates at the river. In 2010, TSID cooperated with the Upper Deschutes Watershed Council and the US Forest Service (USFS) to raise the depth of the stream starting 200 feet downstream and working back to the diversion. The diversion dam and the old fish ladder were buried in the newly roughened channel. The roughened channel provides natural conditions for fish passage over the TSID dam. The project area serves as a steep transitional reach linking the dam-influenced portion upstream of the TSID dam, with the moderate gradient USFS reach downstream from the roughened channel.

One-hundred feet down the canal from the diversion works is a brand new Farmers Conservation Alliance twin bay horizontal flat plate fish screen. This screen is designed so the diverted water travels slowly through the screen and the remaining water moves quickly across the screen surface and back to the river. It is this combination of minimal downward velocity and high sweeping velocity that manages debris and protects fish. The screen was installed in 2011, and meets the criteria of

Oregon Fish and Wildlife (ODFW), US Fish and Wildlife (USFW) and National Marine Fisheries Service (NMFS).

The conduit for the Watson Net Meter/Micro Hydroelectric Demonstration Facility is the Watson McKenzie Main Canal South Pipe. The North pipe supplies water (up to 56 cfs) to a 700 kW hydropower station, and is discharged into Watson Reservoir. The South Pipe is designed to provide pressurized water to on-farm irrigation systems via direct delivery through the pipe and also discharge into Watson Reservoir.

The North Pipe supplies the reservoir and is augmented by the South Pipe as needed. The South Pipe inflow is discharged at a pressure range of about $70-80$ psi into an energy dissipation rip rap structure before entering Watson Reservoir. The goal of the net metering/micro hydro project is to capture this pressure energy and convert it into clean, renewable electricity, as well as, create transferable technology for future on farm net metering projects for farmers and ranchers in TSID. The primary use of the water is for irrigation delivery and agricultural use on farm.

Watson Net Meter/Micro Hydroelectric Demonstration Facility will consist of a 20^{\prime} by 40^{\prime} concrete structure located at the reservoir next to a valve station. The 4 turbines listed in the table below will generate a total of approximately 200 kW .

Turbine Manufacturer	Turbine Type	Model Number	Generator Manufacturer	Generator Nameplate (kW)	Generator Nameplate (hp)	Average Net Head at Turbine Infet (psi)	Estimated combined Turbine/Generator Efficiency (\%)	Estimated Averaze Flow Rate Through Turbine (cfs)	Estimated Power Output (kw)	Estimated Days/Year of Operation	Annual Projected Generation (kW-hrs)
Comell	Reverse Pump	10TR22-CC	Marathon	150	201	70	80	12.57	138.64	120	399,272
Soar	Vertical francis	11706	US Motors	22.38	30	70	80	19	20.79	150	74.644
Canyon	Horkontal Shat Tangential	96102 Difect Drive	US Motors	11.19	15	70	72	1	9.85	210	49,633
Hydrotek	inclinedlet water Felton 4Nozze)	$\begin{gathered} \text { Hydrotek } \\ 100 \end{gathered}$	Hydrocek	15	20.1	70	72	1.4	13.79	180	59,560
Total				198.57				16.97	183.06		583,308

The Watson Net Meter/Micro Hydroelectric Demonstration Facility will discharge up to 20 cfs into Watson Reservoir which then TSID will deliver that water on farm through the Cloverdale and TSID Main Canal Pipelines.

AUC 252016

Department of Fish and Wildlife

Fish Division
3406 Cherry Avenue NE
Salem, OR 97303
503-947-6228
Fax: 503-947-6202
TTY: 503-947-6339
greg.dapke•Ostate.orus
Mr. Mathias Pere
Upper Deschutes Watershed Council
P.O. Box 1812

Bend, OR 97709
Mr. William Anthony

US Forest Service
Deschutes National Forest
June 22, 2010
Sisters Ranger District
P.O. Box 249

Sisters, OR 97759

Re: Fish Passage Approval at Whychus Creek Fish Passage and Channel Restoration Project (PA-05-0005)

Mr. Pere and Mr. Anthony,
The Oregon Department of Fish and Wildlife (ODFW) has reviewed and approves, as required by Oregon Fish Passage Law 509.585, the fish passage design plans proposed for the Whychus Creek Fish Passage and Screening Improvement Project (Project).
ODFW Fish Passage program staff has reviewed the Fish Passage Plan and corresponding designs, which we received May 21, 2010, and we find that the project is consistent with Oregon Fish Passage statutes and meets Oregon Fish Passage design criteria (OAR 635-412-0035(1) and (2)).

The proposed project will improve fish passage and screening conditions at the existing concrete water diversion structure owned and managed by the Three Sisters Irrigation District (TSID). TSID and the US Forest Service (Deschutes National Forest) are collaborating on this fish passage and channel restoration project which will improve fish passage and stream corridor conditions through the project area. The project will: 1) construct a roughened channel solution that enables upstream and downstream fish passage at an existing artificial obstruction (concrete water diversion structure), 2) improve degraded in-stream channel processes through stream corridor habitat restoration activities and 3) construct an irrigation intake and fish screening structure that will allow the continued operation of the TSID water diversion facility while excluding fish from the irrigation canal.

The Whychus Creek Fish Passage and Channel Restoration Project's fish passage approval is contingent on specific provisional items which include the following:

1. All in-water work associated with the project will be performed during the ODFW in-stream work widow or as negotiated with ODFW.
2. TSID and the Forest Service shall be responsible for all maintenance required such that the project provides adequate passage for native migratory fish. If monitoring by the Applicants or the ODFW indicates that fish passage is not being provided, the Applicants, in consultation with ODFW, shall determine the cause and, during a work period approved by ODFW, shall modify the project to rectify problems as necessary.
3. TSID and the Forest Service shall monitor and report the effectiveness of fish passage during, throughout and after completion of the project. This shall entail monitoring of the existing roughened channel during construction as well as throughout the project area(s) after construction and project completion. Monitoring will be performed by a qualified fisheries biologist to determine whether or not the project is functioning as it was designed to function for fish passage. Fish passage monitoring reports shall report on the effectiveness of fish passage of native migratory fish at a variety of passage flows when these fish are migrating through the project area. Monitoring and reporting shall coincide with the time of the year when native migratory fish species are migrating in the Whychus Creek throughout the project area. Monitoring and reporting shall consist of a summary of the fish passage conditions and fish passage performance with particular emphasis on flow velocities, water depths and the volitional unimpeded passage of native migratory fish during the appropriate fish passage design flows. Monitoring and reporting shall be based on visual observations, established photo points, flow velocity characteristics of the roughened channel, or other means; particularly with regards to fish passage conditions and fish passage performance through the project area during and after the completion of the project.
4. Monitoring reports shall be completed and submitted by TSID, the Forest Service or your designee, to the ODFW Fish Passage Program Coordinator and the District Fish Biologist annually for a period of 3-years after the completion of the project. Monitoring reports shall be submitted by January 31 of each year for the previous years reporting period.
5. The ODFW shall be allowed to inspect the project at reasonable times for the duration of this approval. Unless prompted by emergency or other exigent circumstances, inspection shall be limited to regular and usual business hours, including weekends.
6. It is the TSID's and US Forest Service's responsibility to maintain fish passage at this location as approved. Failure to maintain fish passage for the duration of this approval shall constitute a violation of this approval and applicable fish passage laws (ORS 509.610).

Please retain this correspondence for your records, as this documents ODFW's approval of fish passage at this site. Please pass this information along to the appropriate TSID and US Forest Service staff as appropriate. Please notify me if you have any questionse regarding the content of this fish passage approval. Thank you for cooperation and
patience as we worked through the fish passage approval for this project. If you have any questions, please contact me by calling 503-947-6228.

Sincerely,

Greg Apke
ODFW - Statewide Fish Passage Program Coordinator
c.c. Ray Hartlerode

Brett Hodgson
Ted Wise
Project File (PA-15-0005)

Oregon Water Resources Department
725 Summer Street NE, Suite A
Salem, Oregon 97301-1266
(503) 986-0900
www.wrd.state.or.us

Please print legibly or type. Be as specific as possible. Attach additional pages if you need more spacing. Supporting documentation must be attached.

State of Oregon
)
) ss
County of Deschutes
I, Marc Thalacker)
mailing address PO Box 2230, Sisters, OR 97759
telephone number (541) 549-8815 , being first duly sworn depose and say:

1. My knowledge of the exercise or status of the water right is based on (check one):
【 Personal observation
《 Professional expertise
2. I attest that:

X Water was used during the previous five years on the entire place of use for Certificate \# \qquad ; OR
\square My knowledge is specific to the use of water at the following locations within the last five years:

Certificate \#	Township		Range		Mer	Sec	$1 / 41 / 4$	Gov't Lot or DLC	Acres (if applicable)

OR
Confirming Certificate \# \qquad has been issued within the past five years; $\mathbf{O R}$
Q Part or all of the water right was leased instream at some time within the last five years. The instream lease number is:
(Note: If the entire right proposed for transfer was not leased, additional evidence of use is needed for the portion not leased instream.); OR
The water right is not subject to forfeiture and documentation that a presumption of forfeiture for non-use would be rebutted under ORS 540.610(2) is attached.
\square Water has been used at the actual current point of diversion or appropriation for mordfan EIVED BY OWRE 10 years for Certificate \# \qquad (For Historic POD/POA Transfers)
3. The water right was used for: (e.g., crops, pasture, etc.): Irrigation including crops, pasture, industrial stock water, pond maintenance and some acres leased instream.
4. I understand that if I do not attach one or more of the documents shown in the table below to support the above statements, my application will be considered incomplete.

Signature of Affiant

Signed and sworn to (or affirmed) before methis \qquad day of \qquad 20 16

My Commission Expires: $2-17-19$

WEIR BILLING 2014

Acct	Weir	Ac_ft del	Prior/1895	Junior	Additional	Ac DelCh	Minimum	Minimum	TOTAL	Last
					AC FT Del		Ac Ft.	Ac Ft. Ch		
1062	BD15,16	269.64	147.00	0.00	0.00	\$2,291.94	294.00	\$2,499.00	\$2,499.00	Redfield
1018	CD07	378.68	80.00	17.50	361.18	\$457.05	17.50	\$148.75	\$577.75	Cyrus, K\&C
1013	CD08	38.83	10.00	0.00	18.83	\$330.06	20.00	\$170.00	\$330.06	Cyrus, Connie
1069	CD09	139.83	40.00	0.00	59.83	\$1,188.56	80.00	\$680.00	\$1,188.56	Salmon
1064	CD12	51.24	17.00	0.00	17.24	\$435.54	34.00	\$289.00	\$435.54	Richardson
1058	CD13	10.50	10.50	0.00	0.00	\$89.25	21.00	\$178.50	\$178.50	Pollard
1094	CD14	50.60	3.00	11.00	33.60	\$430.10	17.00	\$144.50	\$430.10	Kline
1032	CD18	21.87	6.00	0.00	9.87	\$185.90	12.00	\$102.00	\$185.90	Jeffers
1200	CD22	10.51	7.50	0.00	0.00	\$89.34	15.00	\$127.50	\$127.50	Gillespie (Paulus)
1092	FR05	24.00	10.00	2.00	2.00	\$204.00	22.00	\$187.00	\$204.00	Kimberley
1010	FR07	35.47	14.00	0.00	7.47	\$301.50	28.00	\$238.00	\$301.50	Hunter
1121	FR10	116.66	10.00	3.50	93.16	\$991.61	23.50	\$199.75	\$991.61	Sprague
1035	FR11	84.51	10.50	6.00	57.51	\$718.34	27.00	\$229.50	\$718.34	Keith
1187	LZ10	0.00	10.50	63.00	0.00	\$0.00	84.00	\$714.00	\$714.00	R\& B Ranch
1067	MCOO	105.34	40.00	0.00	25.34	\$895.39	80.00	\$680.00	\$447.70	Runco
1019	MC20	449.42	134.30	0.00	180.82	\$3,820.07	268.60	\$2,283.10	\$3,820.07	Cyrus, Matt
1074	MC21	0.00	2.00	0.00	0.00	\$0.00	4.00	\$34.00	\$34.00	Sisters School
1028	MC26	385.83	117.00	0.00	151.83	\$3,279.56	234.00	\$1,989.00	\$3,279.56	Eady
1079	MC30	78.40	25.10	0.00	28.20	\$666.40	50.20	\$426.70	\$666.40	Enger
1037	MC51	577.88	115.50	0.00	346.88	\$4,911.98	231.00	\$1,963.50	\$4,911.98	Keeton
1105	MC52	564.51	173.00	0.00	218.51	\$4,798.34	346.00	\$2,941.00	\$4,798.34	Keeton
1191		14.00	3.40	0.00	7.20	\$119.00	6.80	\$57.80	\$119.00	Weston
		3,407.72	986.30	103.00	1,619.47	\$26,203.89	1,915.60	\$16,282.60	\$26,959.37	

Acct	Meter	Ac ft del	Prior/1895	Junior	Additional	Ac Del	Minimum	Minimum	TOTAL	Last
					AC FT Del	Charge	Ac ft	Ac ft ch		
1195	ASm001	0.00	0.50	0.00	0.00	\$0.00	1.00	\$8.50	\$8.50	Mohr
1070	ASm002	53.53	49.57	0.00	0.00	\$455.01	99.14	\$842.69	\$842.69	Smith
1022	Asm003	227.03	65.18	0.00	96.67	\$1,929.76	130.36	\$1,108.06	\$1,929.76	Vejrostek
1059	ASm004	113.84	24.50	0.00	64.84	\$967.64	49.00	\$416.50	\$967.64	McKibbin
1129	ASm005	15.00	7.50	0.00	0.00	\$127.50	15.00	\$127.50	\$127.50	Dykes
1124	AS09	0.00	1.60	0.00	0.00	\$0.00	3.20	\$27.20	\$27.20	Barber
1082	AS02	482.09	182.50	16.50	100.59	\$4,097.77	381.50	\$3,242.75	\$4,097.77	Thalacker
1097	BBm001	56.00	28.00	0.00	0.00	\$476.00	56.00	\$476.00	\$476.00	Ferera
1045	BBm002	13.60	0.00	6.80	6.80	\$115.60	6.80	\$57.80	\$115.60	St. Clair
1011	BBm003	2.55	0.00	7.50	7.50	\$21.68	7.50	\$63.75	\$63.75	Brandon
1036	BBm004	22.88	4.20	0.00	14.48	\$194.48	8.40	\$71.40	\$194.48	Kelley
1012	BBm005	14.32	5.00	5.20	5.20	\$121.72	15.20	\$129.20	\$173.40	Burdick
1091	BBm006	61.54	16.70	0.00	28.14	\$523.09	33.40	\$283.90	\$523.09	Gibbs
1072	BBm007	0.00	1.80	0.00	0.00	\$0.00	3.60	\$30.60	\$30.60	Shirazi
1102	BBm008	14.84	5.80	0.00	3.24	\$126.14	11.60	\$98.60	\$126.14	Thomas/McCoy
1168	BBm008	27.83	19.80	0.00	0.00	\$236.56	39.60	\$336.60	\$336.60	Taylor
1027	BBm010	0.00	15.00	0.00	0.00	\$0.00	30.00	\$255.00	\$255.00	Foster
1188	BBm011	20.37	8.00	1.10	3.27	\$173.15	17.10	\$145.35	\$173.15	Ludi
1185	BBm012	24.44	14.50	3.50	3.50	\$207.74	32.50	\$276.25	\$276.25	DiPaolo
1194	BBm013	18.61	23.00	0.50	0.50	\$158.19	46.50	\$395.25	\$395.25	Tisher
1073	BBm014	144.15	65.00	19.50	19.50	\$1,225.28	149.50	\$1,270.75	\$1,270.75	Parks
1060	BBm015	275.48	204.00	0.00	0.00	\$2,341.58	408.00	\$3,468.00	\$3,468.00	Sparks
1169	BBm017	12.89	5.00	0.00	2.89	\$109.57	10.00	\$85.00	\$109.57	Kibak
1044	BBm018	59.48	27.00	0.00	5.48	\$505.58	54.00	\$459.00	\$505.58	Lawrence
1093	BBm019	657.22	124.00	11.50	397.72	\$5,586.37	259.50	\$2,205.75	\$5,586.37	Simpson1
1003	B8m020	484.23	117.00	17.00	233.23	\$4,115.96	251.00	\$2,133.50	\$4,115.96	Dutson
1108	BBm021	731.71	229.50	12.50	260.21	\$6,219.54	471.50	\$4,007.75	\$6,219.54	Long Hollow
1006		36.20	41.50	6.00	6.00	\$307.70	89.00	\$756.50	\$756.50	Frost
1055	BBm022	57.00	28.50	0.00	0.00	\$484.50	57.00	\$484.50	\$484.50	Kronsberg
1039	BBm023	310.40	69.00	5.00	167.40	\$2,638.40	143.00	\$1,215.50	\$2,638.40	Kidson 1
1039	BBm024	0.00			0.00	\$0.00	0.00	\$0.00	\$0.00	Kidson 2
1053	BBm025	787.21	99.00	93.00	496.21	\$6,691.29	291.00	\$2,473.50	\$6,691.29	Mulkey
1016	BBm026	625.09	84.50	211.50	651.45	\$5,313.27	380.50	\$3,234.25	\$5,313.27	Cooper 1
1016	BBm027	406.86	OWPD					\$0.00	\$0.00	Cooper 2

METER BILLING 2014

$\begin{gathered} \text { 苟 } \\ \text { g } \end{gathered}$	$\left\{\begin{array}{l} \frac{2}{0} \\ \frac{1}{0} \\ \frac{1}{0} \\ \frac{\pi}{20} \end{array}\right.$	$\frac{2}{\Sigma}$	$\begin{aligned} & \frac{3}{U} \\ & \frac{\mathrm{E}}{8} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \bar{\Phi} \\ 0 \\ \stackrel{c}{\Phi} \\ \stackrel{\omega}{\omega} \\ \hline \end{array}$			$\frac{\frac{\pi}{\pi}}{\frac{\pi}{\frac{\pi}{4}}}$	$\begin{aligned} & \frac{1}{y} \\ & \frac{1}{0} \\ & \frac{1}{0} \\ & \hline \mathbf{0} \end{aligned}$		$\begin{aligned} & \frac{\varepsilon}{0} \\ & \frac{\underset{5}{5}}{5} \\ & \underset{0}{2} \end{aligned}$	$\frac{ \pm}{\mathrm{I}}$	$\begin{aligned} & \frac{\Sigma}{\bar{E}} \\ & \frac{\tilde{\sigma}}{\boldsymbol{I}} \end{aligned}$	$\begin{aligned} & \frac{\rightharpoonup}{0} \\ & \frac{1}{5} \\ & \frac{1}{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{8}{2} \\ & \frac{2}{3} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \mathbf{0} \\ 0 \\ 3 \\ 0 \end{array}\right\|$	$\frac{\sum}{I}$	$\left.\begin{aligned} & 7 \\ & \frac{0}{2} \\ & \frac{0}{6} \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & N \\ & \hline \mathbf{N} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \frac{0}{0} \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & C \\ & 0 \\ & \cline { 1 - 1 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \frac{\pi}{0} \\ & \frac{\pi}{4} \\ & \frac{\pi}{4} \\ & \frac{4}{4} \end{aligned}\right.$	$\begin{aligned} & \frac{c}{\otimes} \\ & \frac{y}{c} \\ & \frac{0}{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \frac{1}{0} \\ \stackrel{1}{2} \end{array}$	$\sqrt{\bar{\sigma}}$				BrianConner	$\left\{\begin{array}{l} 9 \\ 0 \\ 3 \end{array}\right.$	$\begin{gathered} \frac{c}{0} \\ \frac{0}{0} \\ 0 \\ 0 \\ \frac{0}{\Sigma} \\ \hline \mathbf{y} \end{gathered}$	$\begin{aligned} & \frac{c}{5} \\ & \frac{9}{9} \end{aligned}$	5 0 5 5 0
$\begin{aligned} & \frac{1}{4} \\ & \stackrel{1}{6} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 10 \\ & \hline \end{aligned}$		$\begin{gathered} n \\ 0 \\ n \\ n \\ n \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & n_{1} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 8 \end{aligned}$		$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		9 0 0 0 0		$\begin{aligned} & \mathbf{o} \\ & 9 \\ & 0 \\ & 10 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \infty \end{aligned}$	$\begin{aligned} & N \\ & N \\ & 0 \\ & N \end{aligned}$	0 10 0 0 0	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \vdots \\ \underset{N}{n} \\ \infty \end{gathered}$	$\begin{gathered} \infty \\ 0 \\ 0 \\ \frac{0}{\infty} \\ \hline \end{gathered}$	$\begin{aligned} & 9 \\ & N \\ & 0 \\ & \frac{1}{n} \\ & \infty \end{aligned}$	9 0 0 0 8	$\frac{\dot{F}}{\frac{5}{5}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \mathbf{O} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\infty} \\ & \dot{\sim} \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	＋
$\begin{aligned} & \underline{E} \\ & \frac{E}{E} \\ & \frac{E}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 10 \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { N } \\ & \text { on } \\ & \text { N } \\ & \underset{寸}{2} \end{aligned}$	$\begin{aligned} & \hline \frac{8}{\infty} \\ & \frac{\infty}{\infty} \\ & \frac{\infty}{\infty} \end{aligned}$		0 0 0 0 0 0 0	$\frac{0}{i}$	$$	$\begin{aligned} & 0 \\ & \frac{0}{j} \\ & \frac{j}{s} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{j} \\ & \frac{j}{\infty} \end{aligned}$			$\begin{aligned} & 0 \\ & \hline \\ & \hline \\ & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \\ & \hline \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|} \hline 0 \\ 0 \\ n \\ \frac{n}{\infty} \end{array}$		$\begin{array}{\|c\|} \hline 0 \\ \text { e } \\ \text { m } \\ n \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathbf{j}} \\ & \text { Ni } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 아 } \\ 10 \\ \hline 0 \\ \hline \end{array}$	$\frac{0}{\frac{0}{\dot{N}}}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 9 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ \mathrm{j} \\ \mathrm{~N} \\ \mathrm{~m} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ \hline 10 \\ 0 \\ 0 \\ 6 \end{array}$	$\begin{aligned} & \text { O} \\ & \text { 守 } \\ & \text { 内 } \end{aligned}$	家	守	$\begin{aligned} & 0 \\ & 0 \\ & \tilde{j} \\ & \tilde{n} \\ & 0 \end{aligned}$	$$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
$\begin{aligned} & E \\ & \frac{E}{E} \\ & \frac{E}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	品	$\begin{array}{\|l\|} \hline \infty \\ 0 \\ \dot{5} \\ \hline \end{array}$	안	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	응	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & \hline \mathbf{o} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \infty \end{aligned}$?	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \infty \end{aligned}$		0	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~F} \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{array}{\|c\|} \hline 9 \\ 1 \\ \hline 1 \end{array}$	$\begin{array}{l\|} \hline 0 \\ \infty \\ \infty \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ \text { 스́ } \end{array}$	$\begin{array}{l\|} \hline 0 \\ \infty \\ \infty \end{array}$	음	앙	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{l\|} \hline 0 \\ \dot{+} \end{array}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 0 \\ \infty \\ \infty \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \end{aligned}$	8
$$	$$	$\begin{aligned} & 8 \\ & \substack{8 \\ N \\ \text { N } \\ \hline} \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ \dot{j} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & n \\ & ल \\ & n \\ & n \\ & n \\ & n \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \underset{N}{2} \\ & \text { N } \\ & \text { N } \end{aligned}$	9 0 0 0 0 0	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$	$$	$$	$\left\|\begin{array}{l\|} \hline 8 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	8 0 0 8 6	10 M ダ 6	$\begin{aligned} & \mathbf{N} \\ & 0 \\ & 0 \\ & 10 \\ & 0 \\ & 0 \end{aligned}$	9 9 9 0	$\begin{aligned} & \text { N } \\ & \underset{\sim}{4} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathfrak{m} \\ & \underset{\sim}{n} \\ & \underset{\infty}{2} \end{aligned}$	N N N	$\begin{array}{\|c\|} \hline \mathbf{N} \\ 9 \\ 0 \\ \text { of } \end{array}$	$\begin{gathered} \infty \\ \mathbf{N} \\ \underset{c}{9} \\ \underset{\sim}{n} \end{gathered}$	$\begin{array}{\|c} \infty \\ 0 \\ 0 \\ 0 \\ \hline s \end{array}$		9 0 0 	$\begin{aligned} & \underset{寸}{寸} \\ & \frac{~}{s} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { O} \\ \underset{\sim}{0} \\ 0 \\ \circ \end{array}$	$$	$\begin{array}{\|c\|} \hline 9 \\ 0 \\ \hline \\ \stackrel{\infty}{\infty} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline N \\ N \\ \mathbf{N} \\ \mathbf{N} \end{array}$	$\begin{array}{\|c\|} \hline N \\ N \\ 0 \\ N \\ n \end{array}$	$\begin{array}{\|c\|} N \\ N \\ 0 \\ N \\ \infty \end{array}$	$\left\|\begin{array}{l\|} \infty \\ \infty \\ \dot{U} \\ \dot{j} \\ \infty \end{array}\right\|$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\left\lvert\, \begin{aligned} & N \\ & \sim \\ & N_{0} \\ & 0 \\ & \infty \end{aligned}\right.$	\pm + 0 0
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{gathered} 0 \\ \sim \\ n^{\circ} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 8 \\ 0 \\ \sim \\ \sim \end{gathered}$	$\begin{aligned} & 10 \\ & \text { No } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \mathbf{5} \\ & \stackrel{m}{m} \end{aligned}$		$\stackrel{m}{\infty}$		$\underset{\sim}{*}$	$\begin{aligned} & \mathbf{o} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \boldsymbol{\Phi} \\ & \underset{N}{2} \\ & \underset{m}{2} \end{aligned}$	O	$\begin{aligned} & \text { W } \\ & \text { N } \end{aligned}$		$\underset{\sim}{\infty}$	$\begin{gathered} N \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{6}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\phi} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { ले } \\ & \text { gi } \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & 0 \\ & \infty \end{aligned}$		0	$\begin{gathered} \infty \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & N \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\stackrel{N}{\mathrm{~N}}$	$\begin{aligned} & N \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \end{gathered}$	응	$\left\|\begin{array}{l} 9 \\ 0 \\ 0 \end{array}\right\|$	荌
$\begin{aligned} & \frac{\circ}{2} \\ & \frac{\mathrm{C}}{3} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	응	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \end{aligned}$	8		8	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$		0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	0	0	8	$\begin{array}{l\|} \hline 8 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	8	0	0	0	8	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 8 \\ 0 \\ 0 \end{array} \right\rvert\,$	O
	$\begin{aligned} & \dot{8} \\ & \stackrel{9}{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \mathbf{~} \\ & \mathbf{\infty} \\ & \text { Nin } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 웅 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	M N in	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { 웅 } \\ & \infty \end{aligned}$			$\frac{ㅇ}{*}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \text { o } \end{array}$	o		$\begin{aligned} & \mathrm{O} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { N } \end{aligned}$	0	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 우 } \\ & \mathbf{N} \end{aligned}$	8	옹	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{i} \end{aligned}$	$\begin{array}{\|l} \hline 8 \\ \text { N } \end{array}$	$\begin{aligned} & 8 \\ & +8 \\ & + \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 8 \\ 0 \\ \dot{\sim} \end{array} \right\rvert\,$	O－8
$\begin{aligned} & \overline{0} \\ & \frac{0}{0} \\ & \vdots \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \mathrm{N} \end{aligned}$	0	$\stackrel{\text { 을 }}{\substack{\text { N }}}$	웅	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	$\begin{array}{l\|l} \stackrel{n}{N} \\ \underset{N}{n} & \stackrel{y}{n} \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & \text { గి } \end{aligned}$					$\underset{\sim}{\underset{\sim}{ }}$	9 ∞ 0					$\begin{aligned} & \mathrm{N} \\ & \infty \\ & \infty \end{aligned}$	$\underset{\infty}{\mathbf{N}}$	$\begin{aligned} & n \\ & N \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { ホ } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \mathbf{~} \\ & \bullet \\ & \bullet \end{aligned}$	웅	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \text { io } \end{aligned}$	$\begin{array}{\|c\|} \hline N \\ \infty \\ \infty \end{array}$	$\begin{aligned} & \text { N } \\ & \infty \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \text { N } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 8 \\ & \dot{寸} \end{aligned}$	$\begin{aligned} & N \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	＋

[^0]| Last |
| :--- |
| Mitchell |
| Hakes |
| Harris |
| Swearingen |
| Duey |
| Falco |
| Nelson |
| Goodwin |
| Fackler |
| Bieber |
| Faris |
| Pine Ridge Rancl |
| Drake |
| Hougham |
| Gillespie |
| Willitts |
| Rognlien |
| Lazy Z |
| Amestoy |
| Morrow |
| City of Sisters |
| Mansker |
| Apregan |
| Bend／Sisters |
| Rodeo Assoc． 1 |
| Rodeo Assoc．2 |
| Rubbert |
| Herring |
| Koos |
| Vetterlein＇s |
| Wattenburg |
| Bartolotta |
| Halousek |
| Halousek（Falls） |
| Prete |
| Grisham |
| Hoff |

$\frac{\stackrel{\rightharpoonup}{⿺}}{\stackrel{5}{\circ}}$	$\begin{array}{\|c} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{C A} \end{aligned}$	$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \\ 8 \\ \hline \end{gathered}$	$\frac{\underset{~}{~}}{\frac{j}{5}}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \end{aligned}$	8 0 0 0 0	$\begin{aligned} & n \\ & \sim \\ & 0 \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{gathered} \stackrel{n}{0} \\ \tilde{j} \\ 0_{0} \\ 0 \\ \sim \end{gathered}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \vdots \\ & 0 \\ & \infty \end{aligned}$	$\left\lvert\,\right.$		$\begin{aligned} & \mathbf{O} \\ & \mathbf{1} \\ & \mathbf{N} \\ & 0 \end{aligned}$		$\begin{aligned} & \vec{j} \\ & \dot{O} \\ & \mathbf{O} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 10 \\ & 10 \\ & \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & \infty \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{gathered} 0 \\ \underset{\sim}{N} \\ \stackrel{N}{\sim} \end{gathered}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \end{aligned}$		$\begin{aligned} & m \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \\ & \mathbf{S}^{2} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 18 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N} \\ & \text { N} \\ & \text { N- } \end{aligned}$	$\begin{aligned} & 8 \\ & \% \\ & \% \\ & 8 \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\underset{\sim}{N}$	
$\begin{aligned} & \frac{E}{3} \\ & \frac{E}{E} \\ & \frac{E}{\Sigma} \end{aligned}$	0 0 0 8 4	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$	品	$\frac{8}{5}$	8 0 0 0 0 0	$$	8 0 0 0 8	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{n} \\ \mathrm{~N} \\ \mathrm{~N} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$$	$\begin{array}{\|c\|} \hline 9 \\ 10 \\ 10 \\ \infty \\ 10 \\ 10 \\ \hline \end{array}$		8 1 0 0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & \hline 0 \end{aligned}$	0 0 N 4	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{5} \\ & \underset{\sim}{5} \end{aligned}$		$\begin{array}{\|l\|} \hline \text { in } \\ 10 \\ 10 \\ 10 \\ \end{array}$	0 0 O． N N 	$\begin{array}{\|l\|} \hline 0 \\ \text { on } \\ \text { no } \\ 6 \\ \text { Nin } \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 0 \\ & \dot{J} \\ & 0 \\ & -8 \end{aligned}$	0 \sim ∞ 0 0 0 0 0	8 i i		$\begin{gathered} 8 \\ 0 \\ 10 \\ 9 \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ 0 \\ \vdots \\ - \\ 6 \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & j \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \text { O } \\ & \text { N } \\ & \mathbf{O} \\ & \mathbf{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{n} \\ & \underset{N}{2} \\ & \underset{N}{N} \end{aligned}$	O N N N			$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & N \end{aligned}$		N
$\left\lvert\, \begin{gathered} \frac{E}{3} \\ \frac{E}{E} \\ \frac{E}{\Sigma} \end{gathered}\right.$	$\begin{aligned} & 8 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \dot{f} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \hline \stackrel{8}{\circ} \\ & \stackrel{\sim}{\sim} \\ & \sim \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \\ & \hline 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \text { लें } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 8 \\ & \hline 0 \\ & 10 \end{aligned}$	8 8 0 0	웅	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \text { ¢i } \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{p} \\ \text { n } \\ \stackrel{n}{N} \\ \hline \end{array}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\mathrm{m}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	ले N О	$\begin{aligned} & \hline \text { O } \\ & 0 \\ & \text { N} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	ल़	$\begin{array}{\|l\|} \hline 0 \\ \text { n} \\ 0 \\ \hline \mathbf{m} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \text { ले } \\ & \text { ले } \end{aligned}$	8-	$\frac{8}{7}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { N్ } \\ \text { ni } \\ \hline \end{array}$	
0	$\begin{array}{\|c\|} \hline \infty \\ \hline \\ 0 \\ 0 \\ \hline \end{array}$	$\frac{m}{i n}$	$\begin{aligned} & \mathbf{N} \\ & \underset{\sim}{\mathbf{N}} \\ & \underset{\infty}{\prime} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{N} \\ \mathrm{~N} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \infty \\ & \hline \end{aligned}$	$\frac{J}{\frac{J}{\dot{N}}}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \underset{j}{c} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{n} \end{aligned}$	$\begin{gathered} 8 \\ \mathbf{O} \\ \underset{\infty}{\infty} \end{gathered}$			$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ \hline \\ \bar{n} \\ 0 \\ \hline \end{array}$		$\begin{aligned} & \hline 8 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$						$\begin{aligned} & 8 \\ & \stackrel{8}{+} \\ & \frac{-}{9} \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ \infty \\ \infty \\ \infty \end{array} \right\rvert\,$	$\begin{aligned} & \text { O} \\ & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|c\|} \hline \infty \\ \infty \\ 0 \\ \text { 箴 } \end{array}$	$\begin{aligned} & \mathbf{O} \\ & \mathbf{N} \\ & \mathrm{N} \\ & 0 \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \mathbf{j n} \end{aligned}$		$\begin{aligned} & 10 \\ & \text { N } \\ & \text { on } \\ & \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \\ & 10 \\ & 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 10 \\ & 0 \\ & 0 \\ & \Theta \end{aligned}$	$$	N	
	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \substack{0 \\ 0} \end{aligned}$	$\begin{aligned} & \mathbf{U} \\ & \mathbf{0} \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \end{aligned}$	0	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	0	안	$\begin{aligned} & \text { N } \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { ले } \end{aligned}$	8	$\begin{aligned} & \bar{n} \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 10 \end{aligned}$	$\stackrel{N}{\mathbf{N}} \underset{\tilde{N}}{ }$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\text { 운 }}{\text { in }}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 1 \\ & 10 \end{aligned}$	$\stackrel{0}{0}$	$\begin{aligned} & \text { 은 } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \mathcal{Y} \\ & \underset{\infty}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{2} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \circ \\ & \stackrel{0}{n} \\ & 9 \end{aligned}$	O	$\begin{aligned} & \mathfrak{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & \stackrel{9}{n} \\ & \infty \end{aligned}$	

METER BILLING 2014

Acct	Meter	Acft del	Prior/1895	Junior	Additional	Ac Del	Minimum	Minimum	TOTAL	Last
1080	MCm016	59.22	22.00	0.00	15.22	\$503.37	44.00	\$374.00	\$503.37	Taylor, J
1080	VRm001b									Taylor, J2
1087	MC02	120.28	33.57	0.00	53.14	\$1,022.38	67.14	\$570.69	\$1,022.38	Chelew, Donald
1170	MC01	63.21	21.07	0.00	21.07	\$537.29	42.14	\$358.19	\$537.29	Pendleton (Trone
1100	MC31	1.64	14.50	0.00	0.00	\$13.94	29.00	\$246.50	\$246.50	Slagle
1116	MC34	41.83	14.00	0.00	13.83	\$355.56	28.00	\$238.00	\$355.56	Daday
1089	MC12	0.00	32.00	0.00	0.00	\$0.00	64.00	\$544.00	\$544.00	Trachsel
1061	MC04	64.76	12.50	1.00	38.76	\$550.46	26.00	\$221.00	\$550.46	Elsbeth
1117	MCm	27.66	0.00	10.00	17.66	\$235.11	10.00	\$85.00	\$235.11	Nulton
1071	MCm003	8.00	4.00	0.00	0.00	\$68.00	8.00	\$68.00	\$68.00	Wilder
1041	MC08	28.00	14.00	0.00	0.00	\$238.00	28.00	\$238.00	\$238.00	Drinkward
1049	MC03									OlsonEast Pond
1049	MC04	421.78	98.90	0.00	223.98	\$3,585.13	197.80	\$1,681.30	\$3,585.13	Olson
1015	MC35	28.00	14.00	0.00	0.00	\$238.00	28.00	\$238.00	\$238.00	Cochran
1001	MCm026	160.30	75.00	0.00	10.30	\$1,362.55	150.00	\$1,275.00	\$1,362.55	Friend
1063	MCm	154.97	47.00	0.00	60.97	\$1,317.25	94.00	799.00	\$1,317.25	Baker
1078	MC06	16.00	16.00	0.00	0.00	\$136.00	32.00	\$272.00	\$272.00	Stotts
1021	MC07	15.00	15.00	0.00	0.00	\$127.50	30.00	\$255.00	\$255.00	Fetrow
1088	MC13	61.00	30.50	0.00	0.00	\$518.50	61.00	\$518.50	\$518.50	Hull-Koops
1017	SDm001	461.46	148.50	0.00	164.46	\$3,922.41	297.00	\$2,524.50	\$3,922.41	Schaad
1136	SDm004	71.46	34.50	0.00	2.46	\$607.41	69.00	\$586.50	\$607.41	Wiltse
1048	SDm002	84.00	28.00	0.00	28.00	\$714.00	56.00	\$476.00	\$714.00	Herold
1009	SDm003	126.00	42.00	0.00	42.00	\$1,071.00	84.00	\$714.00	\$1,071.00	Brockway
1086	MC18	734.74	330.30	0.00	74.14	\$6,245.29	660.60	\$5,615.10	\$6,245.29	Jones, Becky
1086	MC19									Jones, Becky
1057	ZD04	22.68	16.00	0.00	0.00	\$192.78	32.00	\$272.00	\$272.00	McKeever
1096	ZD03	30.50	20.00	0.00	0.00	\$259.25	40.00	\$340.00	\$340.00	Poole
1004	ZD05	7.30	17.00	0.00	0.00	\$62.05	34.00	\$289.00	\$289.00	Barclay
1081	ZD01	0.89	16.00	0.00	0.00	\$7.57	32.00	\$272.00	\$272.00	Tewalt
1040	ZD02	39.49	16.00	0.00	7.49	\$335.67	32.00	\$272.00	\$335.67	King
1104	MCm012	259.54	61.00	0.00	137.54	\$2,206.09	122.00	\$1,037.00	\$2,206.09	Temple (Patterso
1046										CyrusK1
1046										CyrusK2
1046										Cyrusk3
1046	MC05 BP									MC05 BP Weir
1046	MC05 BP	918.51	84.47	295.40	454.17	\$7,807.34	464.34	\$3,946.89	\$7,807.34	Cyrus, K\&C
1046	Cinder Pit	144.86	49.51	10.40	35.44	\$1,231.31	109.42	\$930.07	\$1,231.31	Cyrus, K\&C
1046	Cyrus Well	193.00								Cyrus Well

METER BILLING 2014

Acct	Meter	Ac ft del	Prior/1895	Junior	Additional	Ac Del	Minimum	Minimum	TOTAL	Last
1038	MCm008	66.00	0.00	0.00	66.00	\$561.00		\$0.00	\$561.00	Keeton B1
1038	MCm009	100.00	0.00	0.00	100.00	\$850.00		\$0.00	\$850.00	Keeton B2
1038	MCm010	124.00	0.00	0.00	124.00	\$1,054.00		\$0.00	\$1,054.00	Keeton B3
1085	MCm006	543.90	240.50	0.00	62.90	\$4,623.15	481.00	\$4,088.50	\$4,623.15	Fronk 1
1085	MCm022			0.00	0.00	\$0.00		\$0.00	\$0.00	Fronk2
1014	BDm001	124.23	135.00	0.00	0.00	\$1,055.96	270.00	\$2,295.00	\$2,295.00	French
1002	MCm005	251.05	56.00	0.00	139.05	\$2,133.93	112.00	\$952.00	\$2,133.93	Gillespie
1140	MC25	201.98	65.00	0.00	71.98	\$1,716.83	130.00	\$1,105.00	\$1,716.83	Swaner2
1095	BDm003	26.65	13.00	0.00	0.65	\$226.53	26.00	\$221.00	\$226.53	Goodwin
1063	BDm004	21.32	7.50	0.00	6.32	\$181.22	15.00	\$127.50	\$181.22	Rogers
1025	BDm005	32.78	9.00	0.00	14.78	\$278.63	18.00	\$153.00	\$278.63	Rinke
1029	BDm006	29.85	20.00	0.00	0.00	\$253.73	40.00	\$340.00	\$340.00	Hicks
1043	MCm007	100.00	40.00	0.00	20.00	\$850.00	80.00	\$680.00	\$850.00	
1008	MCm001	79.30	35.00	0.00	9.30	\$674.05	70.00	\$595.00	\$674.05	Swaner
1033	MCm019	37.32	15.50	0.00	6.32	\$317.22	31.00	\$263.50	\$317.22	Elwing
1026	MCm019	21.00	8.00	0.00	5.00	\$178.50	16.00	\$136.00	\$178.50	F \& L 2
1125	MCm020	26.57	6.23	0.00	14.11	\$225.85	12.46	\$105.91	\$225.85	Vendetti
1114	MCm027	0.00	4.77	0.00	0.00	\$0.00	9.54	\$81.09	\$81.09	Peterson
1126	$\mathrm{MCm021}$	7.27	3.00	0.00	1.27	\$61.80	6.00	\$51.00	\$61.80	McMonagle
1077	MCm015	10.00	7.00	0.00	0.00	\$85.00	14.00	\$119.00	\$119.00	Stephenson
1111	$\mathrm{MCm013}$	10.00	5.00	0.00	0.00	\$85.00	10.00	\$85.00	\$85.00	Biggers
1023	MCm011									
1180			16.00	0.00	21.98	\$458.83	32.00	\$272.00	\$458.83	Moen
1101						\$ 69.87	10.00	\$85.00	\$85.00	Baldwin
1113		53.77						\$136.00	\$226.19	Worcester
		53.77	15.00	0.00	23.77	\$457.05	30.00	\$255.00	\$457.05	Brand
1051	MCm011	80.66	30.00	0.00	20.66	\$685.61	60.00	\$510.00	\$685.61	Angel
1167	MCm024	8.00	4.00	0.00	0.00	\$68.00	8.00	\$68.00	\$68.00	Crawford
1052	MCm023	15.00	5.00	0.00	5.00	\$127.50	10.00	\$85.00	\$127.50	Crenshaw
1112	MCm002	27.00	9.00	0.00	9.00	\$229.50	18.00	\$153.00	\$229.50	Molesworth
		17889.77	4919.36	1094.00	6844.83	\$138,773.30	11,003.02	\$92,928.12	\$147,692.43	

$\frac{\text { SISTERS }}{\text { City }} \frac{O R}{\text { State }} \frac{97759}{\text { Zip }} \quad$ Daytime Phone: $\frac{541-549-8815}{541-419-5850}$

A. Land and Location

Please include the following information for all tax lots where water will be diverted (taken from its source), conveyed (transported), and/or used or developed. Applicants for municipal use, or irrigation uses within irrigation districts may substitute existing and proposed service-area boundaries for the tax-lot information requested below.

Township	Range	Section	1/4/4	Tax Lot \#	Plan Designation (e.g., Rural Residential/RR-5)	Water to be:			Proposed Land Use:
$15 S$	10E	13	SW SW	600	Agriculture	(Diverted	DConveyed	$\times^{\text {Used }}$	Hydroelectric
						\square Diverted	\square Conveyed	\square Used	
						\square Diverted	\square Conveyed	\square Used	
						\square Diverted	\square Conveyed	\square Used	

List all counties and cities where water is proposed to be diverted, conveyed, and/or used or developed:
DESCHUTES

B. Description of Proposed Use

Type of application to be filed with the Water Resources Department:
\square Permit to Use or Store WaterLimited Water Use LicenseWater Right TransferAllocation of Conserved Water \square Ground Water
\qquad
Source of water: \square Reservoir/Pond
Estimated quantity of water needed【 Surface Water (name) Whychus Creek X cubic feet per secondgallons per minute facre-feet
\square
Commercial Quasi-Municipal

IndustrialDomestic for \qquad householdfs) 20

Briefly describe:
Three Sisters Irrigation District is applying to add Hydroelectric Use as part of an existing certificatea water right.
\qquad
Note to applicant: If the Land Use Information Form cannot be completed while you wait, please have a Focalgovernment OWRD representative sign the receipt at the bottom of the next page and include it with the application filed with the Water Resources Department.

AUG 252015
See bottom of Page 3. \longrightarrow
SALEM: OR

For Local Government Use Only

The following section must be completed by a planning official from each county and city listed unless the project will be located entirely within the city limits. In that case, only the city planning agency must complete this form. This deals only with the local land-use plan. Do not include approval for activities such as building or grading permits.

Please check the appropriate box below and provide the requested information

Land uses to be served by the proposed water uses (including proposed construction) are allowed outright or are not regulated by your comprehensive plan. Cite applicable ordinance sections): $\qquad$$\mathbb{X}$ Land uses to be served by the proposed water uses (including proposed construction) involve discretionary land-use approvals as listed in the table below. (Please attach documentation of applicable land-use approvals which have already been obtained. Record of Action/land-use decision and accompanying findings are sufficient.) If approvals have been obtained but all appeal periods have not ended, check "Being pursued."

Local governments are invited to express special land-use concerns or make recommendations to the Water Resources Department regarding this proposed use of water below, or on a separate sheet.

Note to local government representative: Please complete this form or sign the receipt below and return it to the applicant. If you sign the receipt, you will have 30 days from the Water Resources Department's notice date to return the completed Land Use Information Form or WRD may presume the land use associated with the proposed use of water is compatible with local comprehensive plans.

FEDERAL ENERGY REGULATORY COMMISSION
Washington, D.C. 20426
OFFICE OF ENERGY PROIECTS
Docket No. CD16-13-000 - Oregon
Watson Net Meter/Micro Hydroelectric
Demonstration Facility
Three Sisters Irrigation District
August 4, 2016
Mr. Marc Thalacker, Manager
Three Sisters Irrigation District
PO Box 2230
Sisters, OR 97759
Subject: Determination that the Watson Net Meter/Micro Hydroelectric Demonstration Facility Meets the Qualifying Conduit Hydropower Facility Criteria

Dear Mr. Thalacker:
On June 2, 2016, as supplemented on June 13, 2016, you filed a notice of intent pursuant to section 30(a) of the Federal Power Act (FPA), as amended by Section 4 of the Hydropower Regulatory Efficiency Act of 2013 (2013 Act), ${ }^{1}$ to construct a qualifying conduit hydropower facility, the Watson Net Meter/Micro Hydroelectric Demonstration Facility, to be located in Deschutes County, Oregon.

On June 16, 2016, Commission staff issued a public notice that preliminarily determined that the project met the statutory criteria for a qualifying conduit hydropower facility, and thus was not required to be licensed under Part I of the FPA. The notice established a 45-day period for entities to contest whether the project met the criteria. No comments or interventions were filed in response to the notice. Accordingly, this letter constitutes a written determination that the Watson Net Meter/Micro Hydroelectric Demonstration Facility meets the qualifying criteria under FPA section 30(a), and is not required to be licensed under Part I of the FPA. Qualifying conduit hydropower facilities remain subject to other applicable federal, state, and local laws and regulations.

[^1]If you have any questions, please contact Mr. Christopher Chaney at (202) 502 6778 or Christopher.Chaney@ferc.gov.

Sincerely,

Kelly Houff
Chief, Engineering Resources Branch
Division of Hydropower Administration and Compliance

BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION NOTICE OF INTENT TO CONSTRUCT QUALIFYING CONDUIT HYDROPOWER FACILITY

INTRODUCTORY STATEMENT

Three Sisters Irrigation District applies to the Federal Energy Regulatory Commission for a determination that the Watson Net MeterMicro Hydroelectric Demonstration Facility is a Qualifying Conduit Hydropower Facility, meeting the requirements of section 30(a) of the Federal Power Act (FPA), as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA).

The location of the facility is:

State or Territory:	Oregon
County:	Deschutes
Township or nearby town:	Sisters Water source:
Whychus Creek	

The exact name and business address of the applicant(s) is:
[Do not include the representative or consultant preparing the application.]

Applicant's Name:	Three Sisters Imigation District Address:
Telephone Number: $\underline{\text { POBox } 2230}$ Email Address: $\frac{\text { Sil } 549-87759}{\text { Manager@tsidweb.org }}$	

The exact name and business address of each person authorized to act as agent for the applicant(s) in this notice of intent is:

Name of Agent:	$\frac{\text { Mare Thalacker }}{\text { Address: }}$
Telephone Number:	$\frac{\text { Sisters. OR 97759 }}{541) 549-8815}$
Email Address:	$\frac{\text { Manageratsidweb.org }}{}$

Three Sisters Irrigation District is a local government agency, a special district organized under Oregon Revised Statutes Chapter 545 -Imigation Districts, and a political subdivision of the state of Oregon. Three Sisters Imigation District was organized in 1916 as Squaw Creek Irrigation District from the irigation works and water rights of the Squaw Creek Irrigation Company, incorporated in 1891. In 2004, Squaw Creek

Irrigation District was renamed Three Sisters Irrigation District. (For a more detailed history refer to http:/www.tsidweb.org/siteHistory/HS-How-We-Began.aspx).

NON-FEDERAL CONDUIT

The Watson Net Meter/Micro Hydroelectric Demonstration Facility will use the hydroelectric potential of a non-federally owned conduit.
[According to section $30(a)(3)(C)(i)$ of the FPA, as amended by HREA, a qualifying conduit hydropower facility may not use the hydroelectric potential of a federally owned conduit.]

ORIGINAL PROJECT

The Watson Net Meter/Micro Hydroelectric Demonstration Facility has not been licensed or exempted from the licensing requirements of Part I of the FPA, on or before August 9 , 2013, the date of enactment of the Hydropower Regulatory Efficiency Act.

Project Information

(1) A detailed description of any conduits and associated consumptive water supply facilities, intake facilities, powerhouses, and any other structures associated with the facility.

Including, but not limited to: (I) the name of the conduit(s)or consumptive water supply facilities; (2) where the conduit(s)or consumptive water supply facilities begin (including the town, river, or reservoir); (3) the length and width or diameter (if enclosed) of the condut; (4) the dimensions of the proposed hydropower structure and any other facilities needed for hydropower operation (i.e imake pipes, powerhouse, turbine generating units, discharge pipes); and (5) how, where, and into what the water will discharge from the proposed power structure. If your project discharges into a natural water body, please explain how the hydroelectric project does not alter the primary purpose of the conduit.]
(1) The conduit for the Watson Net Meter/Micro Hydroelectric Demonstration Facility is the Watson McKenzie Main Canal South Pipe. The North pipe supplies water to a 700 kW hydropower station, and is discharged into Watson Reservoir. The South Pipe is designed to provide pressurized water to on-farm imigation systems via direct delivery through the pipe and discharge into Watson Reservoir.
(2) The water begins as snow melt from Three Sisters Mountains in the Cascade Range, which results in direct runoff and creates a natural flow that feeds Whychus Creek. The water is diverted from Whychus Creek approximately 3 miles above the City of Sisters.
(3) Two NRCS designed 54" HDPE pipes (North and South) are buried underground and traverse 3.77 miles to Watson Reservoir.
(4) Watson Net Meter/Micro Hydroelectric Demonstration Facility will consist of a 20' by 40° concrete structure located at the reservoir next to a valve station, which has a 48 " connector pipe-and-valve between the North and South Pipes. Currently thetoth Ping
delivers 56 cfs to the 700 kW TSID Watson Hydrofacility．The valve station is used to transfer water between the two pipes and also has 24 ＂riser pipes，off the North and South 54 ＂HDPE pipes，which discharge into Watson Reservoir．The Watson Net Meter／Micro Hydroelectric Demonstration Facility will discharge up to 20 cfs into Watson Reservoir which then TSID will deliver that water on farm through the Cloverdale and TSID Main Canal Pipelines．
（5）During the irrigation season（April to November），the North Pipe supplies the reservoir and is augmented by the South Pipe as needed．The South Pipe inflow is discharged at a pressure range of about $70-80 \mathrm{psi}$ into an energy dissipation rip rap structure before entering Watson Reservoir．The goal of the net metering／micro hydro project is to capture this pressure energy and convert it into clean，renewable electricity，as well as， create transferable technology for future on farm net metering projects for farmers and ranchers in TSID．The primary use of the water is for irrigation delivery and agricultural use on farm．
（2）The purposes for which the conduit is used：
Section $30(a)(3)(C)(i)$ of the FPA，as amended by HREA，requires a qualifying conduit hydropower facility to use the hydroelectric potential of a non－federally owned conduit．Such a conduit means any tunnel，canal，pipeline，aqueduct， flume，ditch，or similar manmade water conveyance that is operated for the distribution of water for agricultural，municipal，or industrial consumption and is not primarily for the generation of electricity．Specify the use of your conduit， such as iprigation，municipal water supply，or industrial uses．The primary purpose of the condult cannot be for power production．］

The source of water comes from Whychus Creek a tributary of the Deschutes River． TSID holds the water right certificates on 7,572 acres of irrigation water．The Main Canal Pipeline Project，which consists of the two HDPE pipes．North and South，serves the district＇s 193 farmers who use the water for agricultural applications．The Watson Net Meter／Micro Hydroelectric Demonstration Facility＇s primary purpose is to deliver irrigation water for agriculture．The supplemental use is to generate clean，renewable electricity．
（3）The number，type，generating capacity（ kW or MW），and estimated average annual generation（kWh or MWh）of the generating units you are proposing，including plans，if any，for future units：
［The installed generating capacity cannot exceed 5 MW．］

 		 	 	Gswastatat 紋娄	Gancrato 	 施絞	 	＊＊＊ 	 	 敬 6pary＊im	
T，mavi		Tknter	Whatrumem		W	\％	－	－x^{2} \％	\％rex	效为	
3	Y（tamax reax	ITE	KNMxCu	2\％	3	\％	\％	13	\％kx	㗔	
Castrua	 	Frect Sy	H\％Marors	W莫敩	部	3	72	2	裉碞	20\％	
4－twe	 	$\begin{gathered} \text { Maxerses } \\ \text { way } \end{gathered}$	Faytuex	詒	\％${ }^{\text {s，}}$	$\%$	\％		\％䢒酸	\％	68，53s
Telat				138 ${ }^{3}$				旨			36\％${ }^{\text {ax }}$

(4) Your project must use the hydroelectric potential conduit to generate power, however, if your project is associated with any dam or impoundment, please provide a description of the nature and extent of the dam or impoundment, including a statement of the normal maximum surface area and normal maximum surface elevation of any existing impoundment before and after the hydroelectric facilities are installed. If your project involves a dam or impoundment, you must provide a profile drawing showing that the conduit, not the dam, creates the hydroelectric potential for the project. You must also provide evidence that the dam or impoundment would be constructed or continue to exist for agricultural, municipal, or industrial consumptive purposes even if the hydroelectric generating facilities were not installed:

The Watson Net Meter/Micro Hydroelectric Demonstration Facility will be located on the south pipe of the Three Sisters Irrigation District's Main Canal pipeline, in the northeast corner of the TSID main office property approximately 3 miles southwest of Sisters. Water is diverted from Whychus Creek through a dam that was constructed in 1970. The diversion dam includes 4 head gates at the river. In 2010. TSID cooperated with the Upper Deschutes Watershed Council and the US Forest Service (USFS) to raise the depth of the stream starting 200 feet downstream and working back to the diversion. The diversion dam and the old fish ladder were buried in the newly roughened channel. The roughened channel provides natural conditions for fish passage over the TSID dam. The profect area serves as a steep transitional reach linking the dam-influenced portion upstream of the TSID dam, with the moderate gradient USFS reach downstream from the roughened channel.

One-hundred feet down the canal from the diversion works is a brand new Farmers Conservation Alliance twin bay horizontal flat plate fish screen. This screen is designed so the diverted water travels slowly through the screen and the remaining water moves quickly across the screen surface and back to the river. It is this combination of minimal downward velocity and high sweeping velocity that manages debris and protects fish. The screen was installed in 2011. and meets the criteria of Oregon Fish and Wildlife (ODFW), US Fish and Wildlife (USFW) and National Marine Fisheries Service (NMFS).

No dam construction will occur. There is no impoundment on the Creek. The TSID diversion dam crosses the full width of the Creek but is buried to allow easy fish passage. The elevation of the TSID diversion dam 3.373 feet will remain the same as originally constructed.

The elevation of the four micro hydro turbines is $3,192.37$
The net head of $160 f$ will produce 70 psi on average at the four turbines. The attached canal grade specifications show that the penstock conduit creates the hydroelectric potential for the project.

Existing Preliminary Permit or Permit Application Pending
 If you have a preliminary permit for the facility or have applied for a preliminary permit, please provide the permit number below.

P.

VERIFICATION

You must provide Verification in one of the following forms:
Ether a swom, notarized statement, which states:

1. As to any facts alleged in the application or other materials filed, be subscribed and verified under oath in the form set forth below by the person filing, an officer thereof, or other person having knowledge of the matters sent forth. If the subscription and verification is by anyone other than the person filing or an officer thereof, it shall include a statement of the reasons therefor.

This (notice of intent to construct, etc.) is executed in the:
State of:
County of: Deschutes
by: (Name)

being duly sworn, deposes) and says) that the contents of this (notice of intent to construct, etc.) are true to the best of (his or her) knowledge or belief. The undersigned applicants) has (have) signed the (notice of intent to construct, etc.)
this \qquad day of May , 20-16

By:

Subscribed and sworn to before me, a \qquad Che adler \qquad [Notary Public, or title of other official authorized by the state to notarize documents, as appropriate) of the State of \qquad this day of \qquad 2016.
/SEAL/[if any]

Or an unsworn declaration in the following form:
2. "I declare (or certify, verify, or state) under penalty of perjury that the foregoing is true and correct. Executed on \qquad [date]."

[^2]
[^0]: AECEIVED BY OWRD

[^1]: ${ }^{1} 16$ U.S.C. 8823 (a) (2012), amended by the 2013 Act, Pub L. 113-23, \&BacIPED BY OWRD Stat. 498 (2013).

[^2]: (Signature)

