Groundwater Transfer Review Summary Form

Transfer/PA # T- _13502 (Evans Ranch Land, LLC [Bobby R. & Billie L. Evans])_ GW Reviewer Gerald H. Grondin Date Review Completed: 30 November 2020 **Summary of Same Source Review:** The proposed change in point of appropriation is not within the same aquifer as per OAR 690-380-2110(2). **Summary of Injury Review:** ☐ The proposed transfer will result in another, existing water right not receiving previously available water to which it is legally entitled or result in significant interference with a surface water source as per 690-380-0100(3). **Summary of GW-SW Transfer Similarity Review:** ☐ The proposed SW-GW transfer doesn't meet the definition of "similarly" as per OAR 690-380-2130. This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations. None of the Above

Other ____

Water	WRD ASSOCIATED TO THE STATE OF	Oregon Water Resource 725 Summer Street NE, Salem, Oregon 97301-12 (503) 986-0900 www.wrd.state.or.us	Suite A	Ground Wate ⊠ Water Right □ Permit Ame □ GR Modifica □ Other	ndment
Appli	ication: T- <u>13</u>	<u>3502</u>			
Appli	icant Name:	Evans Ranch Land	, LLC (Bobby R	. & Billie L. Evans)	
Propo	osed Change	es: 🛛 POA	□ APOA ⊠ POU	□ SW→GW □ OTHER	□ RA
Revie	ewer(s): Ge	erald H. Grondin			
Date	of Review:	30 November 2020	<u>0</u>		
Date	Reviewed b	y GW Mgr. and Re	eturned to WRS	SD: <u>JTI 12/10/202</u> 0)
	=	provided in the app pproved because:	olication is insu	fficient to evaluate v	whether the proposed
	The water waffected by t		d with the appli	ication do not corres	pond to the water rights
				•	n of the well construction proposed to be developed

limitations that will need to be placed on the proposed change (rate, duty, etc.):

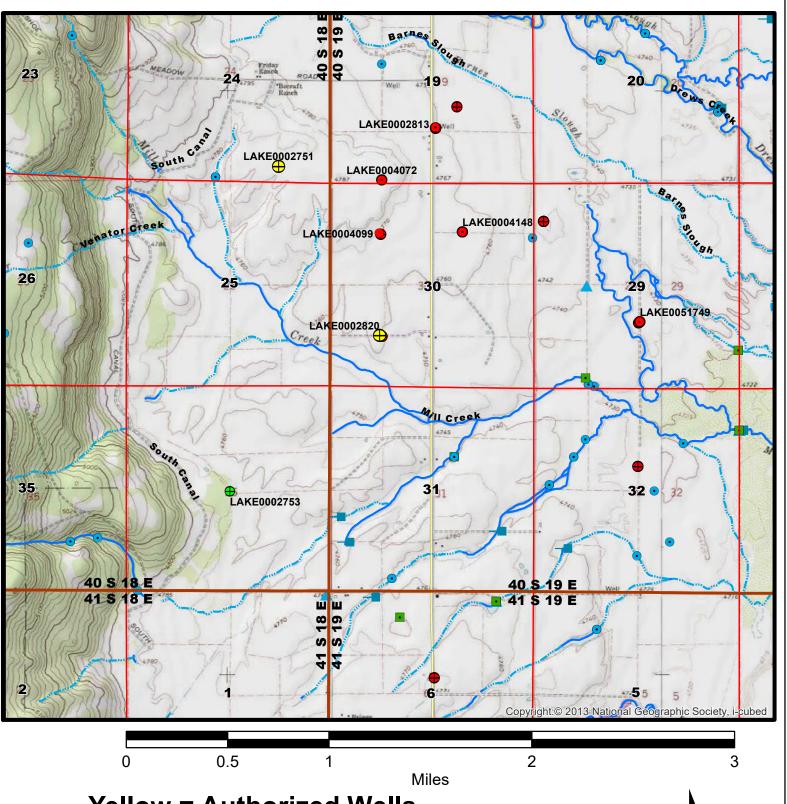
Page 3 Last Revised: 1/17/2018

Transfer Application: T-13502

round Water Review Form		Transfer	Applicati	on: T-13502
a) Will this proposed change, at i in interference with another grou ✓ Yes ☐ No Comments:	und water right?		ly result in	n an increase
Yes. The proposed POA groundwater right well related to sec 06 increasing the seasonal graph feet by the end of the irrigation should be less at wells further at the additional seasonal drawdo same. The long term (annual climate influenced. The attact during the late 1980s-early 1990 post 2000 dry cycle.	to certificate 5807 roundwater level (season (245 days)) way. The impacto own. The long-te l) groundwater le ched hydrograph	3 (LAKE 2914?) lodrawdown at that vertical that see attached). The ed wells should be a rm (annual) impactivel trend appears shows a greater	ocated in 'well from e seasona able to acct should's to be stand 10-	T41S/R19E- 11.4 to 23.0 I drawdown commodate remain the significantly foot decline
b) If yes, would this proposed character groundwater right not recommend. If yes No If yes, explain	ceiving the water to	which it is legally	entitled?	y result in
See part 4a above.				
a) Will this proposed change, at i in interference with another surf Yes No Comments: No, despite the proposed characters.	face water source	?	•	
its perennial tributary, the net s to decrease (see attached calcul		<u>iter interference w</u>	<u>ith the cr</u>	eek appears
b) If yes, at its maximum allowed interference with any surface wa				
Stream: Mill Creek		nimal		Significant
Stream: Provide context for minimal/sign		imal		Significant
See part 5a.				
For SW-GW transfers, will the prevater source similarly (as per OAF	roposed change in	point of diversion a	affect the	surface

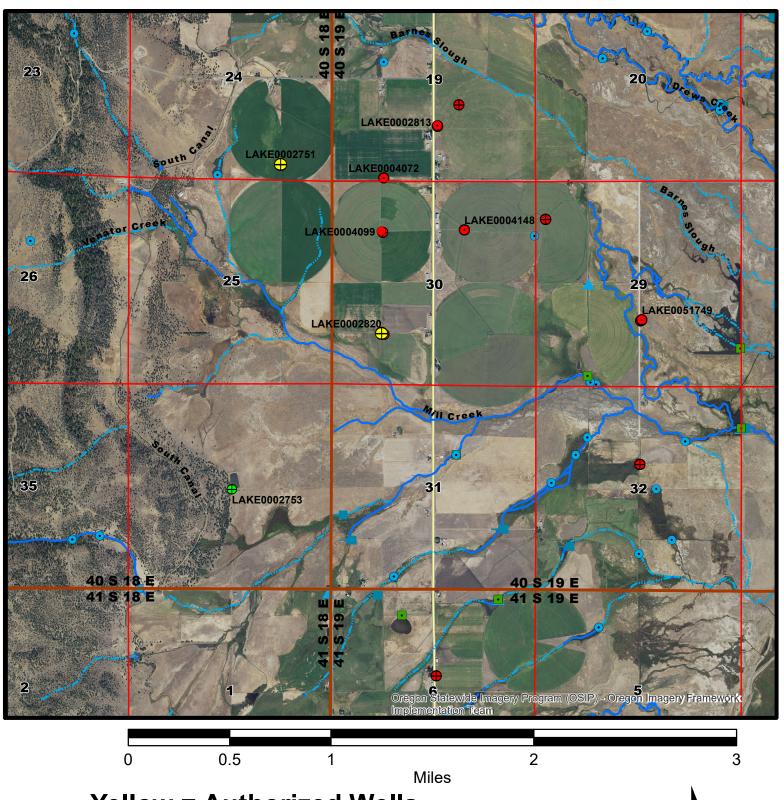
☐ Yes ☐ No Comments:

specified in the water use subject to transfer?


Not Applicable

Page 4 Last Revised: 1/17/2018

	The following are technical groundwater review recommendations. It is recognize
	that one or more technically recommended conditions may or may not be allowed unde
1	the transfer process rules and statutes. This technical groundwater review relies o
9	other appropriate and authorized Department staff to make that determination.
	"Large" flow meter condition for all the "From" POA and the proposed "To" PO
1	wells to prevent enlargement. Require the flow meter for each well be properly installed
3	and maintained. Each meter shall be either within 50 feet of the well head with a clear
,	visible monument adjacent to the meter or a surveyed location shall be provided and
(clearly visible monument adjacent to the meter shall be installed for each meter mo
1	than 50 feet from the well head.
	Condition 7P (well tag condition) for all the "To" and "From" POA wells.
	Condition 7T (modified) for both the existing POA wells and the proposed POA we
("Prior to use, the existing POA wells and the proposed POA well shall be configured
т	allow a strictly clean water (no oil) static water level measurements with an electric-tap
	That can include measurement access via an unobstructed vertical discharge pipe th
	allows the groundwater level to fluctuate freely within the discharge pipe (no valve
-	etc.). Otherwise, a dedicated measuring tube must be installed prior to use. The tu
	must be unobstructed, have a diameter of 3/4 inch (0.75 inch) or greater, and pursuant
	figure 200-5 in OAR 690-200."


Page 5 Last Revised: 1/17/2018

Groundwater Transfer Application T-13502 Evans Ranch Land, LLC (Bobby R. & Billie L. Evans)

Yellow = Authorized Wells
Green = Proposed Well
Red = Groundwater PODs & Obs Wells
Blue = Surface Water PODs

Groundwater Transfer Application T-13502 Evans Ranch Land, LLC (Bobby R. & Billie L. Evans)

Yellow = Authorized Wells Green = Proposed Well Red = Groundwater PODs & Obs Wells Blue = Surface Water PODs

T_13502_Evans_Ranch_application_POA_changes Application submitted 07/27/2020

Certificate	Document			From Well					To Well				Total Transfer	Observation
Number		POD/POA	Well ID	Well T/R-sec	Primary Acres	Supplemental Acres	POD/POA	Well ID	Well T/R-sec	Primary Acres	Supplemental Acres	CFS	Acres	
87093	Application Form	1	LAKE 2820	40S/18E-sec 24	60.60	0.00	3	LAKE 2753	40S/18E-sec 36	60.60	0.00	4.25	60.60	Note: Well ID error, POA 1 = LAKE 2751, not LAKE 2820 (POA 2) Note: CFS error, it should be 0.76
87093	Application Map	1	LAKE 2820	40S/18E-sec 24	same	same	3	LAKE 2753	40S/18E-sec 36	same	same		same	CFS or less for 60.60 acres, Cert. 87093 approves 3.09 CFS for 295.44 acres
95027	Application Form	1	LAKE 2820	40S/18E-sec 24	14.76	0.00	3	LAKE 2753	40S/18E-sec 36	14.76	0.00	4.25	14.76	Note: Well ID error, POA 1 = LAKE 2751, not LAKE 2820 (POA 2) Note: CFS error, it should be 0.18
95027	Application Map	1	LAKE 2820	40S/18E-sec 24	same	same	3	LAKE 2753	40S/18E-sec 36	same	same		same	CFS or less for 14.76 acres, Cert. 95027 approves 0.47 CFS for 44.76 acres
53146	Application Form	2	LAKE 2820	40S/19E-sec 30	24.80	0.00	3	LAKE 2753	40S/18E-sec 36	24.80	0.00	1.40	24.80	Note: CFS error, it should be 0.31 CFS or less for 24.80 acres, Cert.
53146	Application Map	2	LAKE 2820	40S/19E-sec 30	same	same	3	LAKE 2753	40S/18E-sec 36	same	same		same	53146 approves 1.40 CFS for 112.10 acres
											Totals	9.90	100.16	Note: CFS error, it should be 1.25 CFS or less for 100.16 acres

Note: Yellow = CFS greater than typically allowed for acreage (1 cfs per 80 acres) Note: Red = Discrepancies between application form and map

T_13502_Evans_Ranch_proposed_pumping_changes

					Total	Total	Max	Pro-	Open Interval	Total	Static	Land	Static	
Fi	rom Wells	Certific	ate & POU	Acres	Area	Volume	Rate	Rated	Lithology	Depth	GW Level	Elevation	GW Level	Date
Original	Deepening	87093	95027	53146	(acres)	(ac-ft/yr)	(cfs)	(cfs)		(feet)	(ft blsd)	(ft amsl)	(ft amsl)	
					0.00	0.00	0.00	0.00					0.00	
					0.00	0.00	0.00	0.00					0.00	
LAKE 2751		60.600	14.760		75.36	226.08	0.94	0.47	Volcanic Rock & Seds	334	30.00	4,784.15	4,754.15	05/25/1967
LAKE 2820	LAKE 4478			24.800	24.80	74.40	0.31	0.15	Basin-Fill & Volcanic Seds (bottom 100 ft.)	892	16.00	4,760.38	4,744.38	05/15/1978
					0.00	0.00	0.00	0.00					0.00	
	Totals	60.600	14.760	24.800	100.16	300.48	1.25	0.62						

					Total	Total	Max	Pro-	Open Interval	Total	Static	Land	Static	
То	Wells	Certific	ate & POU	Acres	Area	Volume	Rate	Rated	Lithology	Depth	GW Level	Elevation	GW Level	Date
Original	Deepening	87093	95027	53146	(acres)	(ac-ft/yr)	(cfs)	(cfs)		(feet)	(ft blsd)	(ft amsl)	(ft amsl)	
					0.00	0.00	0.00	0.00					0.00	
					0.00	0.00	0.00	0.00					0.00	
LAKE 2753		60.600	14.760	24.800	100.16	300.48	1.25	0.62	Volcanic Tuff & Seds	1,150	30.00	4,770.95	4,740.95	06/04/1981
					0.00	0.00	0.00	0.00					0.00	
					0.00	0.00	0.00	0.00					0.00	
	Totals	60.600	14.760	24.800	100.16	300.48	1.25	0.62						

 $T_13502_Evans_Ranch_distance_compare$

1	m Wells	Distance to well	Distance to Cert. 58073 well	Distance to Mill Creek
Original	Deepening	LAKE 4099	LAKE 2914?	or Tributary
LAKE 2751 LAKE 2820	LAKE 4478	3,165 2,645	13,925 9,000	3,055 950
	Average	2,905	11,463	2,003
	Net Total	5,810	22,925	4,005

То	Wells	Distance to well	Distance to Cert. 58073 well	Distance to Mill Creek
Original	Deepening	LAKE 4099	LAKE 2914?	or Tributary
LAKE 2753		7,780	7,190	3,285
	Average	7,780	7,190	3,285
	Net Total	7,780	7,190	3,285

	specific capa	city_to_transmissi	ivity		
From Driller Wate		Recorded Pump T			
Basin_Fill					
Well County	Well Num	Transmissivity	Transmissivity	Open Interval	Conductivity
•		gpd/ft	ft2/day	feet	ft/day
From Wells		<u> </u>	•		•
None: Only volca	nic rock & sedi	ments or air tests			
•					
				From Wells Average	
To Wells					
	nia raak ⁰ aadi	manta			
None: Only volca	nic rock & seai	nents			
				To Wolle Averes	
				To Wells Average	
Obs Wells					
LAKE	2813	25,148.03	3,361.80	378.00	8.89
LAKE	4072	10,932.72	1,461.49	309.00	4.73
LAKE	4148	11,799.07	1,577.31	720.00	2.19
LANL	4140	11,199.01	1,011.01	720.00	2.19
		15,959.94	2,133.53	Obs Wells Average	5.27
		10,555.54	2,100.00	Obs Wells Average	J.21
		15,959.94	2,133.53	Overall Average	5.27
		10,000.01	_,:00:00	o roram r trorage	
Basalt. Vocanic F	Rocks & Sedir	nents			
		nents	Transmissivity	Open Interval	Conductivity
Basalt, Vocanic F Well County	Rocks & Sedir Well Num	nents	Transmissivity ft2/day	Open Interval feet	Conductivity ft/day
Well County		nents	Transmissivity ft2/day	•	Conductivity ft/day
Well County From Wells	Well Num		ft2/day	feet	ft/day
Well County		150,079.95		•	
Well County From Wells	Well Num	150,079.95	ft2/day 20,062.77	220.00	ft/day 91.19
Well County From Wells	Well Num		ft2/day	feet	ft/day
Well County From Wells	Well Num	150,079.95	ft2/day 20,062.77	220.00	ft/day 91.19
From Wells LAKE	Well Num	150,079.95	ft2/day 20,062.77	220.00	ft/day 91.19
From Wells LAKE To Wells	Well Num 2751	150,079.95 150,079.95	ft2/day 20,062.77 20,062.77	feet 220.00 From Wells Average	91.19 91.19
From Wells LAKE To Wells	Well Num 2751	150,079.95 150,079.95	ft2/day 20,062.77 20,062.77	feet 220.00 From Wells Average	91.19 91.19
From Wells LAKE To Wells LAKE	Well Num 2751	150,079.95 150,079.95 4,737.52	ft2/day 20,062.77 20,062.77 633.31	feet 220.00 From Wells Average 986.00	91.19 91.19 0.64
From Wells LAKE To Wells LAKE Obs Wells	2751 2753	150,079.95 150,079.95 4,737.52	ft2/day 20,062.77 20,062.77 633.31	feet 220.00 From Wells Average 986.00	91.19 91.19 0.64
From Wells LAKE To Wells LAKE Obs Wells	2751 2753	150,079.95 150,079.95 4,737.52	ft2/day 20,062.77 20,062.77 633.31	feet 220.00 From Wells Average 986.00	91.19 91.19 0.64
From Wells LAKE To Wells LAKE Obs Wells	2751 2753	150,079.95 150,079.95 4,737.52 4,737.52	ft2/day 20,062.77 20,062.77 633.31	feet 220.00 From Wells Average 986.00 To Wells Average	91.19 91.19 0.64 0.64
From Wells LAKE To Wells LAKE	2751 2753	150,079.95 150,079.95 4,737.52	ft2/day 20,062.77 20,062.77 633.31 633.31	feet 220.00 From Wells Average 986.00 To Wells Average	91.19 91.19 0.64 0.64
From Wells LAKE To Wells LAKE Obs Wells	2751 2753	150,079.95 150,079.95 4,737.52 4,737.52	ft2/day 20,062.77 20,062.77 633.31	feet 220.00 From Wells Average 986.00 To Wells Average	91.19 91.19 0.64 0.64

r = radial distance (L)

t = time (T) u = dimensionless

s = drawdown (L) T = transmissivity (L*L/T) S = storage coefficient (dimensionless) pi = 3.141592654 W(u) = well function

Transmissivity	Transmissivity	Storage	Pumping Rate	Pumping Rate	Time	Distance	pi	u	W(u)	Drawdown	Drawdown	Well	Comments
Т	Т	Coefficient	Q	Q	t	r				s	Change s		
(gpd/ft)	(ft2/day)	S	(gal/min)	(ft3/sec)	(days)	(feet)				(feet)	(feet)		
								Note - W/w	a a laulation :	valid when u <	7.4		
								Note: W(u)	Calculation	and when u <	7.1		
Note:	yellow grid areas a	are where value	es are calculated					7.0000	1.1545E-04				W(u) calculation test
m" POA wells	to Certificate 5807	3 Well (LAKE 2	2914?) (Transmis:	sivity from specific	c capacity d	ata: Used S =	= 0.001)						
			()	,			,						
149,984.43	20,050.00	0.00100	422.80	0.94	30.00	13,925.00	3.14	0.0806	2.0201	0.6526		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	139.14	0.31	30.00	9,000.00	3.14	0.3162	0.8671	0.8657		LAKE 2820	Continuous Pumping at Full Rate
			561.94	1.25						1.52			
" POA well to C	Certificate 58073 W	eli (LAKE 2914	?) (Transmissivity	r from specific cap	pacity data:	Used S = 0.00)1)						
4,750.13	635.00	0.00100	561.94	1.25	30.00	7,190.00	3.14	0.6784	0.3895	5.2799		Lake 2753	Continuous Pumping at Full Rate
1			561.94	1.25		,				5.28	3.7617		
om" BOA walla	to Certificate 5807	2 Wall /I AKE 2	20142) (Transmiss	sivity from enocific	o canacity d	ata: Usad S -	- 0.001)						
OIII FOA Wells	to certificate 5607	3 Well (LARE 2	.914!) (ITAIISIIIIS	sivity from specific	c capacity u	ala. Useu 5 -	- 0.001)						
149,984.43	20,050.00	0.00100	208.81	0.47	30.00	13,925.00	3.14	0.0806	2.0201	0.3223		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	68.72	0.15	30.00	9,000.00	3.14	0.3162	0.8671	0.4275		LAKE 2820	Continuous Pumping at Full Rate
			277.53	0.62						0.75			
o" POA well to 0	Certificate 58073 W	ell (LAKE 2914	?) (Transmissivity	from specific car	acity data:	Used S = 0.00	01)						
		(., (,		,						
4,750.13	635.00	0.00100	277.53	0.62	30.00	7,190.00	3.14	0.6784	0.3895	2.6076		Lake 2753	Continuous Pumping at Full Rate
			277.53	0.62						2.61	1.8578		

 $\begin{aligned} & \textbf{Theis Equation:} & s = [Q/(4^*T^*pi)][W(u)] \\ & u = (r^*r^*S)/(4^*T^*t) \\ & W(u) = (-\ln u) - (0.5772157) + (u/1^*1!) - (u^*u/2^*2!) + (u^*u^*u/3^*3!) - (u^*u^*u/4^*4!) + \dots \end{aligned}$

r = radial distance (L)

t = time (T) u = dimensionless

s = drawdown (L) T = transmissivity (L*L/T) S = storage coefficient (dimensionless) pi = 3.141592654 W(u) = well function

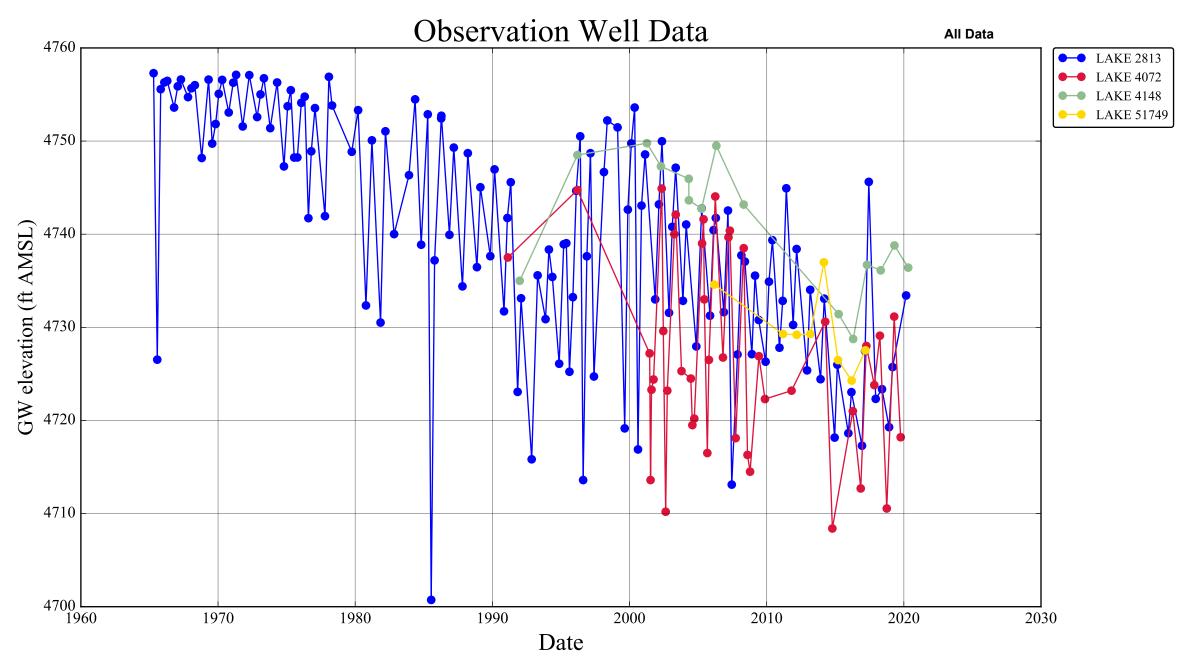
Transmissivity	Transmissivity	Storage	Pumping Rate	Pumping Rate	Time	Distance	pi	u	W(u)	Drawdown	Drawdown	Well	Comments
Т	Т	Coefficient	Q	Q	t	r				s	Change s		
(gpd/ft)	(ft2/day)	S	(gal/min)	(ft3/sec)	(days)	(feet)				(feet)	(feet)		
								Nata - M//			7.4		
								Note: vv(u)	calculation	alid when u <	7.1		
Note:	yellow grid areas	are where value	es are calculated					7.0000	1.1545E-04				W(u) calculation test
om" POA wells	to Certificate 5807	3 Well (LAKE 2	2914?) (Transmis:	sivity from specific	c capacity d	ata: Used S =	= 0.001)						
		•	, ,				,						
149,984.43	20,050.00	0.00100	422.80	0.94	245.00	13,925.00	3.14	0.0099	4.0510	1.3086		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	139.14	0.31	245.00	9,000.00	3.14	0.0387	2.7127	2.7082		LAKE 2820	Continuous Pumping at Full Rate
			561.94	1.25						4.02			
	:		a										
o" POA well to C	Certificate 58073 W	ell (LAKE 2914	?) (Transmissivity	from specific cap	pacity data:	Used S = 0.00	J1)						
4,750.13	635.00	0.00100	561.94	1.25	245.00	7,190.00	3.14	0.0831	1.9922	27.0066		Lake 2753	Continuous Pumping at Full Rate
,			561.94	1.25		,				27.01	22.9899		- 1 9
rom" DOA wello	to Certificate 5807	2 Mall /LAVE C	00142) (Transmiss	ivity from anacifi	itu d	ata: Haad C =	0.004)						
OIII FOA Wells	to certificate 5007	3 Well (LARE 2	.914!) (ITAIISIIIIS	sivity from specific	c capacity u	ata. Useu 5 -	- 0.001)						
149,984.43	20,050.00	0.00100	208.81	0.47	245.00	13,925.00	3.14	0.0099	4.0510	0.6463		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	68.72	0.15	245.00	9,000.00	3.14	0.0387	2.7127	1.3375		LAKE 2820	Continuous Pumping at Full Rate
			277.53	0.62						1.98			
o" POA well to 0	Certificate 58073 W	 	2) (Transmissivity	from specific car	acity data:	Used S = 0.00	01)						
2 . 2		J (2) 2014	., (c cpsomo oup	auni uului	0.00	.,						
4,750.13	635.00	0.00100	277.53	0.62	245.00	7,190.00	3.14	0.0831	1.9922	13.3380		Lake 2753	Continuous Pumping at Full Rate
			277.53	0.62						13.34	11.3542		

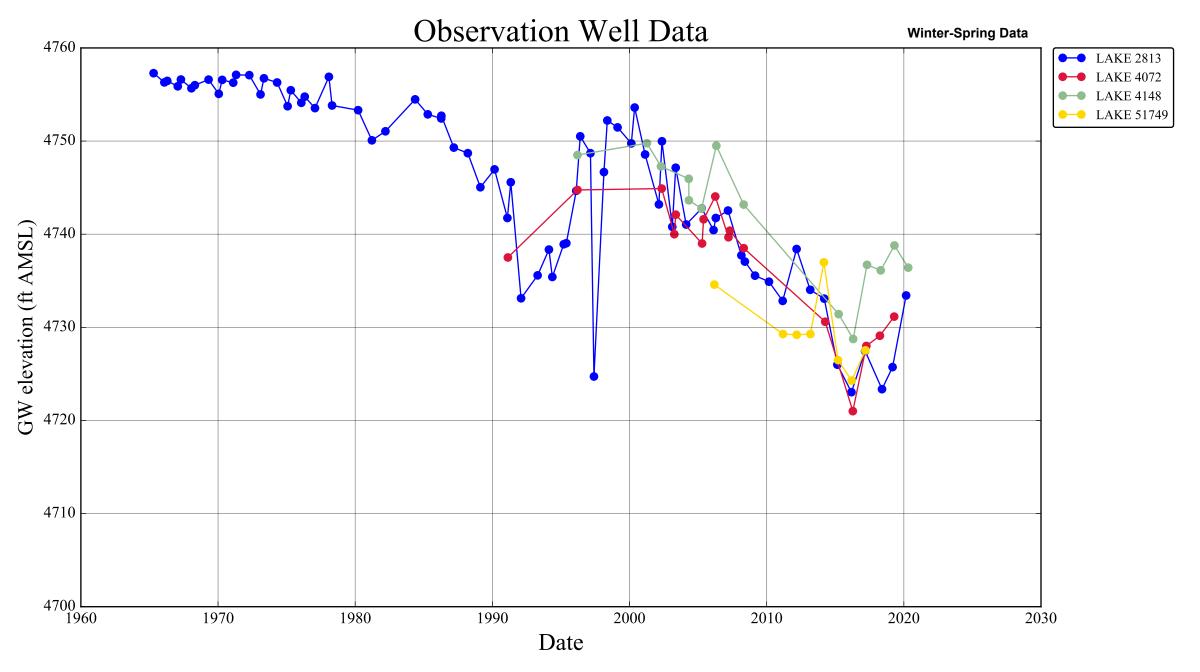
r = radial distance (L)

t = time (T) u = dimensionless

s = drawdown (L) T = transmissivity (L*L/T) S = storage coefficient (dimensionless) pi = 3.141592654 W(u) = well function

Transmissivity	Transmissivity	Storage	Pumping Rate	Pumping Rate	Time	Distance	pi	u	W(u)	Drawdown	Drawdown	Well	Comments
Т	T	Coefficient	Q	Q	t	r				s	Change s		
(gpd/ft)	(ft2/day)	S	(gal/min)	(ft3/sec)	(days)	(feet)				(feet)	(feet)		
								Note: W(u)	calculation	valid when u <	7.1		
								Note . W(u)	Calculation	aliu Wileli u <	7.1		
Note:	yellow grid areas	are where value	es are calculated					7.0000	1.1545E-04				W(u) calculation test
rom" POA wells	to Mill Creek or pe	erennial tributa	ry (Transmissivity	from specific cap	acity data:	Used S = 0.00	11)						
	•				•		•						
149,984.43	20,050.00	0.00100	422.80	0.94	30.00	3,055.00	3.14	0.0039	4.9788	1.6083		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	139.14	0.31	30.00	950.00	3.14	0.0035	5.0748	5.0664		LAKE 2820	Continuous Pumping at Full Rate
			561.94	1.25						6.67			
o" BOA wall to M	Mill Creek or peren	nial tributanı (T	ranamicalvity fra	m specific capacit	v data: Ilca	4 5 - 0 001)							
O FOA Well to I	will Creek or peren	iliai tributary (i	ransinissivity iro	ii specilic capacit	y uata. Use	u 3 = 0.001)							
4,750.13	635.00	0.00100	561.94	1.25	30.00	7,190.00	3.14	0.6784	0.3895	5.2799		Lake 2753	Continuous Pumping at Full Rate
			561.94	1.25						5.28	-1.3948		
rom" POA walls	to Mill Creek or pe	ronnial tributa	ry (Tranemiesivity	from specific can	acity data:	11sed S = 0 00	11)						
TOIL T OA WEIIS	to min oreek or pe	remnar arbata	y (Transinissivity	nom specific cap	acity data.	J364 G = 0.00	1)						
149,984.43	20,050.00	0.00100	208.81	0.47	30.00	3,055.00	3.14	0.0039	4.9788	0.7943		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	68.72	0.15	30.00	950.00	3.14	0.0035	5.0748	2.5022		LAKE 2820	Continuous Pumping at Full Rate
			277.53	0.62						3.30			
o" POA well to I	Mill Creek or peren	nial tributary (1	ransmissivity fro	m specific capacit	y data: Use	d S = 0.001)							
	•	•	•										
4,750.13	635.00	0.00100	277.53	0.62	30.00	7,190.00	3.14	0.6784	0.3895	2.6076		Lake 2753	Continuous Pumping at Full Rate
			277.53	0.62						2.61	-0.6889		


 $\begin{aligned} & \textbf{Theis Equation:} & s = [Q/(4^*T^*pi)][W(u)] \\ & u = (r^*r^*S)/(4^*T^*t) \\ & W(u) = (-\ln u) - (0.5772157) + (u/1^*1!) - (u^*u/2^*2!) + (u^*u^*u/3^*3!) - (u^*u^*u/4^*4!) + \dots \end{aligned}$


s = drawdown (L) T = transmissivity (L*L/T) S = storage coefficient (dimensionless) r = radial distance (L)

t = time (T) u = dimensionless

pi = 3.141592654 W(u) = well function

Transmissivity	Transmissivity	Storage	Pumping Rate	Pumping Rate	Time	Distance	pi	u	W(u)	Drawdown	Drawdown	Well	Comments
Т	Т	Coefficient	Q	Q	t	r				s	Change s		
(gpd/ft)	(ft2/day)	S	(gal/min)	(ft3/sec)	(days)	(feet)				(feet)	(feet)		
								Noto : W(u)	calculation	valid when u <	7.1		
								Note . w(u)	Calculation	and when u	7.1		
Note: yellow grid areas are where values are calculated						7.0000	1.1545E-04			W(u) calculation test			
rom" POA wells	to Mill Creek or pe	erennial tributa	ry (Transmissivity	from specific cap	acity data:	Used S = 0.00)1)						
			,		•								
149,984.43	20,050.00	0.00100	422.80	0.94	245.00	3,055.00	3.14	0.0005	7.0755	2.2856		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	139.14	0.31	245.00	950.00	3.14	0.0004	7.1718	7.1599		LAKE 2820	Continuous Pumping at Full Rate
			561.94	1.25						9.45			
						10 0000							
o" POA well to I	Mill Creek or peren	nial tributary (I	ransmissivity from	n specific capacit	y data: Use	d S = 0.001)							
4,750.13	635.00	0.00100	561.94	1.25	245.00	7,190.00	3.14	0.0831	1.9922	27.0066		Lake 2753	Continuous Pumping at Full Rate
ĺ			561.94	1.25		, i				27.01	17.5612		
marrell DOAalla	to Mill Casals on a	mananial tuibta.	/T	fue un empejfie eeu		Haad C = 0.00	141						
rom POA wells	to Mill Creek or pe	erenniai tributai	ry (Transmissivity	from specific cap	acity data:	Usea 5 = 0.00	11)						
149,984.43	20,050.00	0.00100	208.81	0.47	245.00	3,055.00	3.14	0.0005	7.0755	1.1288		LAKE 2751	Continuous Pumping at Full Rate
15,970.91	2,135.00	0.00100	68.72	0.15	245.00	950.00	3.14	0.0004	7.1718	3.5362		LAKE 2820	Continuous Pumping at Full Rate
			277.53	0.62						4.66			
all DOAall to I	Mill Carely on money	mial tuibustamu (T				4 0 - 0 004)							
U PUA WEII TO I	Mill Creek or peren	iliai tributary (I	ransinissivity froi	ii specilic capacit	y uata: USe	u 5 – 0.001)							
4,750.13	635.00	0.00100	277.53	0.62	245.00	7,190.00	3.14	0.0831	1.9922	13.3380		Lake 2753	Continuous Pumping at Full Rate
*			277.53	0.62						13.34	8.6730		1 0

 ${\tt T_13502_Evans_Ranch_creek_interference_compare}$

		Distance to	Pumping Rate		River Interference (cfs)		River Interference (cfs)		River Interference (cfs)	
	From Wells	Chewaucan River	Full Rate	Pro-Rated	Full Rate	Pro-Rated	Full Rate	Pro-Rated	Full Rate	Pro-Rated
Well	GW Source	(feet)	(cfs)	(cfs)	30 Days	30 days	120 Days	120 days	240 Days	240 days
LAKE 2751	Volcanic Rock & Seds	3,055	0.9400	0.4700	0.0019	0.0009	0.0030	0.0019	0.0056	0.0028
LAKE 2820	Volcanic Seds	950	0.3100	0.1500	0.0019	0.0009	0.0037	0.0018	0.0056	0.0027
	Average	2,003	0.6250	0.3100	0.0019	0.0009	0.0034	0.0019	0.0056	0.0028
	Net Total	4,005	1.2500	0.6200	0.0038	0.0018	0.0067	0.0037	0.0112	0.0055
Total Creek Interference as Percent of Total Pumping Rate						0.29	0.54	0.60	0.90	0.89

		Distance to	Pumping Rate		River Interference		River Interference		River Interference	
To Wells		Chewaucan River	Full Rate	Pro-Rated	Full Rate	Pro-Rated	Full Rate	Pro-Rated	Full Rate	Pro-Rated
Well	GW Source	(feet)	(cfs)	(cfs)	30 Days	30 days	120 Days	120 days	240 Days	240 days
LAKE 2753	Volcanic Tuff & Seds	3,285	1.2500	0.6200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Average	3,285	1.2500	0.6200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Net Total	3,285	1.2500	0.6200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Creek Interference as Percent of Total Pumping Rate						0.00	0.00	0.00	0.00	0.00