Groundwater Transfer Review Summary Form

Transfer/PA # T- <u>14386</u>

GW Reviewer <u>Steve Ahlquist/Travis Brown</u> Date Review Completed: <u>10/22/2024</u>

Summary of Same Source Review:

The proposed change in point of appropriation is not within the same aquifer as per OAR 690-380-2110(2).

Summary of Water Level Decline Condition Review:

□ Water levels at the original point(s) of appropriation have exceeded the allowed decline threshold defined by conditions in the originating water right.

Summary of Injury Review:

The proposed transfer will result in another, existing water right not receiving previously available water to which it is legally entitled or result in significant interference with a surface water source as per 690-380-0100(3).

Summary of GW-SW Transfer Similarity Review:

□ The proposed SW-GW transfer doesn't meet the definition of "similarly" as per OAR 690-380-2130.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations.

O R E G O N WATER RESOURCES D E PA R T M E N T	Oregon Water Resou 725 Summer Street NI Salem, Oregon 97301- (503) 986-0900 www.wrd.state.or.us	E, Suite A	Ground Wate Water Righ Permit Amo GR Modific Other	t Transfer endment	r m:
Application: T- <u>14</u>	<u>4386</u>		Applicant Nan	ne: <u>Robinson Farm</u>	<u>ns LLC</u>
Proposed Change	es: ⊠ POA □ USE	□ APOA □ POU	□ SW→GW □ OTHER	RA	
Reviewer(s): <u>St</u>	eve Ahlquist/Trav	vis Brown	Dat	e of Review: <u>10/2</u>	<u>2/2024</u>
			Date Return	ed to WRSD: 10/3	0/2024

The information provided in the application is insufficient to evaluate whether the proposed transfer may be approved because:

□ The water well reports provided with the application do not correspond to the water rights affected by the transfer.

☐ The application does not include water well reports or a description of the well construction details sufficient to establish the ground water body developed or proposed to be developed.

Other _____

.....

 Basic description of the changes proposed in this transfer: <u>The applicant proposes to change</u> the POA for Claim GR-2000. Claim GR-2000 currently authorizes irrigation of up to 59 acres at a rate of 0.401 cfs from 3 authorized POAs: YAMH 6872, YAMH 57192, and "Stocks Well 2" (not yet constructed). The applicant proposes to replace one authorized POA (YAMH 57192) for 48.03 acres under GR-2000 with two proposed POAs: YAMH 453 and YAMH 59181. The proportional total maximum pumping rate for the proposed POAs under this GR modification would be 0.326 cfs, based on subject acreage.

The proposed POAs have overlapping water rights not included in this GR modification application. Potential injury resulting from the proposed changes will be assessed for each well based on the total combined maximum pumping rate under all authorized and proposed water rights and claims. The overlapping proposed and authorized rights are summarized in the table below.

РОА	Water Right	Use	Rate (cfs)				
"Well 1" / YAMH 6872	Claim GR-2000	Irrig. (3.5 ac / 8.75 af)	0.0238				
"Stocks Well 2"	Claim GR-2000	Irrig. (5.8 ac / 14.5 af)	0.0394				
"Well 2" / YAMH 57192	Claim GR 2000	Irrig. (13.27 ac / 33.18 af) Suppl. Irrig. (36.43 ac / 91.08 af)	0.3377				
	Cert 97691	Nursery (66.6 ac / 333 af) ^a	0.47 ^a				
"Well 3" / YAMH 453	Claim GR 2000	Claim GR 2000 Irrigation (11.6 ac / 29 af) ^{b,c} Suppl. Irrig. (36.43 ac / 91.08 af) ^{b,c}					
	Cert 81063	Irrigation (45 ac / 112.5 af) ^b	0.35 ^b				
	TOTAL	159.63 ac / 565.58 af °	1.146 ^{c,d}				
	Cert 97691	Nursery (66.6 ac / 333 af) ^a	0.24 ^a				
"Well 4" / YAMH 59181	Claim GR 2000	Irrigation (11.6 ac / 29 af) ^{b,c} Suppl. Irrig. (36.43 ac / 91.08 af) ^{b,c}	0.326 ^{b,c}				
	TOTAL	114.63 ac / 453.08 af °	0.566 ^{c,d}				

^aPeriod of use: November 1 through May 31

^bPeriod of use: March 1 through October 31

^cPending approval of this GR Modification (T-14386)

^dTotal maximum flow rates account for overlapping nursery use on Cert 97691 with irrigation use on other rights from March 1 to May 31.

Note: There are discrepancies between the metes and bounds location descriptions provided in the application and the locations depicted on the application map. For the purposes of this review, the location of the authorized and proposed POAs are as follows:

- YAMH 59181 is located approximately 190 feet northeast of the meets and bounds description based on GPS coordinates provided in the well log and the application map.
- YAMH 453 is located approximately 120 ft east of the meets and bounds location description as visible in aerial imagery.
- YAMH 57192 is located 190 feet northeast of the meets and bounds description, as shown on the application maps.

- Will the proposed POA develop the same aquifer (source) as the existing authorized POA?

 ∑ Yes □ No Comments: <u>The authorized POA and proposed POAs produce water</u> from sands and gravels of the semi-confined Willamette aquifer. Well logs for the area show approximately 60 feet of Willamette silt, underlain by approximately 40 feet of sand and gravel, which is the principal water bearing unit.
- 3. a) Is there more than one source developed under the right (e.g., basalt and alluvium)? □ Yes ⊠ No

b) If yes, estimate the portion of the right supplied by each of the sources and describe any limitations that will need to be placed on the proposed change (rate, duty, etc.): _____

4. a) Will this proposed change, at its maximum allowed rate of use, likely result in an increase in interference with **another ground water right**?

Yes Do Comments: <u>The proposed To-POAs (YAMH 59181 & YAMH 453) are</u> <u>closer to several neighboring wells than the authorized From-POA (YAMH 57192). The</u> <u>reduced intervening distance will likely result in an increase in interference with these wells.</u>

YAMH 59181 is located approximately 510 feet southeast from the closest known domestic well (YAMH 56818), whereas the authorized From-POA (YAMH 57192) is approximately 1,240 feet southeast of YAMH 56818. YAMH 59181 is also approximately 240 feet closer than YAMH 57192 to neighboring well YAMH 6869, which is an authorized POA under Certificate 61999.

YAMH 453 is approximately 940 feet west of the residential property at Tax Lot 800, which is likely supplied by a domestic well, whereas YAMH 57192 is approximately 2,700 west of Tax Lot 800.

b) If yes, would this proposed change, at its maximum allowed rate of use, likely result in another groundwater right not receiving the water to which it is legally entitled?

☐ Yes ⊠ No If yes, explain: <u>To assess potential injury at nearby wells due to the</u> proposed use, drawdown from pumping at the proposed To-POAs (YAMH 453 & YAMH 59181) were estimated using the Theis (1935) solution for drawdown in a confined aquifer (see attached Theis Drawdown Analysis).

Results of the Theis analysis indicate that the proposed use would likely result in injury to YAMH 6869 if YAMH 59181 were pumped at the maximum combined rate of 0.566 cfs over the period of overlapping nursery and irrigation use (91 days; March 1 – May 31) under Certificate 97691 and Claim GR-2000. However, it is unlikely that YAMH 6869 could yield the combined maximum rate allowed under the proposed use. Based on drawdown data recorded for a pumping test at YAMH 59181, the maximum achievable pumping rate is likely less than 0.397 cfs (178 gpm) which will not cause injury to neighboring wells. Results of the Theis analysis indicate that the proposed use would likely result in injury to nearby domestic wells (i.e. Tax Lot 800) if YAMH 453 were to pump at the maximum combined pumping rate over the period of overlapping nursery and irrigation use from March through May. However, it is highly unlikely that YAMH 453 could yield the maximum combined pumping rate allowed under the proposed use. The maximum reported well yield for the area is 250 gpm (0.56 cfs) and the yield reported in the log for YAMH 453 is 200 gpm. Based on pumping test data collected at YAMH 453, the maximum achievable pumping rate for YAMH 453 is less than 276 gpm (0.615 cfs). Results of the Theis analysis indicate that, at a maximum pumping rate of 0.615 cfs, YAMH 453 is unlikely to cause injury to neighboring wells.

Based on the estimated maximum well yields for the proposed To-POAs, the proposed use is not likely to cause another groundwater right to not receive water to which it is legally entitled.

5. a) Will this proposed change, at its maximum allowed rate of use, likely result in an increase in interference with **another surface water source**?

Yes Do Comments: <u>The proposed To-POAs are not closer than the authorized</u> From-POA to Salt Creek, which is the closest surface water source. Proposed To-POA YAMH 59181 is closer (~2,970 ft) to the South Yamhill River than the authorized POA (YAMH 57192)(~3,650 ft). The reduced intervening distance could cause an increase in interference with the South Yamhill River.

b) If yes, at its maximum allowed rate of use, what is the expected change in degree of interference with any **surface water sources** resulting from the proposed change?

Stream: South Yamhill River

☑ Minimal☑ Significant☑ Minimal☑ Significant

Stream: _____ Minimal Gignificant Significant Provide context for minimal/significant impact: The potential increase in interference with the South Yamhill River due to the proposed transfer was estimated using a streamflow depletion analytical model for a confined aquifer (Hunt 2003). The South Yamhill River is incised into the Willamette Silt and likely fully penetrates the confining silt unit in this area. Results indicate that stream depletion due to pumping could likely increase by 1.5 percent of the average rate of withdrawal after 245 days of continuous pumping at YAMH 59181 as a result of the proposed change. Assuming YAMH 59181 were to pump the full duty authorized under Claim GR-2000 (120.08 af) over the irrigation season at an average rate of 0.2481 cfs, the proposed change would result in less than 0.01 cfs of additional depletion to the South Yamhill River. Interference with Salt Creek, the closest surface water source to YAMH 59181, is expected to further attenuate stream depletion to the South Yamhill River. Therefore, the change in degree of interference with surface water resulting from the proposed change is expected to be minimal.

6. For SW-GW transfers, will the proposed change in point of diversion affect the surface water source similarly (as per OAR 690-380-2130) to the authorized point of diversion specified in the water use subject to transfer?

 \Box Yes \Box No Comments: <u>N/A</u>

7. What conditions or other changes in the application are necessary to address any potential issues identified above: <u>None</u>

8. Any additional comments: <u>N/A</u>

References:

Application File: T-14386

Claim File: GR-2000

Certificates: 97691, 81063

Driscoll, F.G., 1986, Groundwater and Wells, Second Edition, Johnson Division, St Paul, Minnesota, 1,109 p.

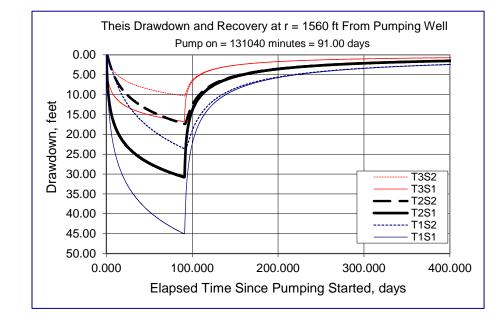
Pumping Test Reports: YAMH 453, YAMH 6869, YAMH 6876, YAMH 59181


Gannett, M.W. and Caldwell, R., 1998, Geologic framework of the Willamette Lowland aquifer system, Oregon and Washington, Professional Paper 1424-A, 32 p: U. S. Geological Survey, Reston, VA.

Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, Vol 8, p. 12-19.

Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, American Geophysical Union Transactions, vol. 16, p. 519-524.

Woodward, D.G., Gannett, M.W., and Vaccaro, J.J., 1998, Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington: U.S. Geological Survey Professional Paper 1424-B, 82 p.


Well Location Map

T-14386 Robinson Farms, LLC

Service Layer Credits: Sources: Esri, HERE, Garmin, Internap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community Copyright® 2013 National Geographic Society, i-cubed

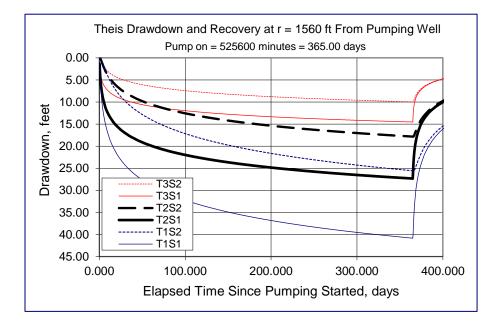
Theis Drawdown Analysis - YAMH 59181 Interference with YAMH 6869

Maximum Combined Rate (0.566 cfs) Scenario

 $Transmissivity: T1=410 \ ft^2/day \ | \ T2=660 \ ft^2/day \ | \ T3=1,380 \ ft^2/day \ [pumping \ test \ data]$

Storativity: S1=0.0003 | S2=0.003 [estimated range]

Total Pumping Time = 91 days [overlapping period (3/1-5/31) under Cert 97691 and GR-2000]


Pumping Rate = 0.566 cfs [maximum combined pumping rate]

Radial Distance = 1,560 ft

YAMH 6869 (Cert 61999, 0.36 cfs, 1 POA)

Required NPSH	5	ft	Estimate
•	_	-	@ 162 gpm (based on spec cap of 3.61 gpm/ft estimate
Estimated Drawdown	45	ft	
Minimum Water Column	45 55		from transmissivity per Driscoll (1986) w/70% efficiency) Estimated Drawdown + NPSH + Pump Height

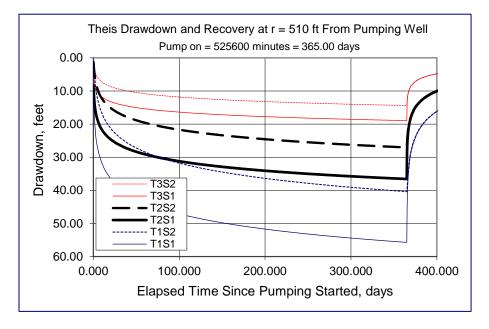
Theis Drawdown Analysis – YAMH 59181 Interference with YAMH 6869

Well-Limited Rate (0.397 cfs) Scenario

Transmissivity: T1=410 ft²/day | T2=660 ft²/day | T3=1,380 ft²/day [pumping test data] Storativity: S1=0.0003 | S2=0.003 [estimated range]

Total Pumping Time = 365 days

Pumping Rate = 0.397 cfs [estimated maximum well yield based on pump test drawdown data]


Radial Distance = 1,560 ft

YAMH 6869 (Cert 61999, 0.36 cfs, 1 POA)

SWL	24	ft bls	OWRD measurement (10/6/1983)
Aquifer Bottom	110	ft bls	Estimated based on well logs
Available Drawdown	86	ft	Aquifer Bottom - SWL
Pump Height Above Bottom	5	ft	Estimate
Required NPSH	5	ft	Estimate
Estimated Drawdown	45	ft	 @ 162 gpm (based on spec cap of 3.61 gpm/ft estimate from transmissivity per Driscoll (1986) w/70% efficiency)
Minimum Water Column	55	ft	Estimated Drawdown + NPSH + Pump Height
Injury Interference Level	31	ft	Available Drawdown - Minimum Water Column

Theis Drawdown Analysis – YAMH 59181 Interference with YAMH 56818

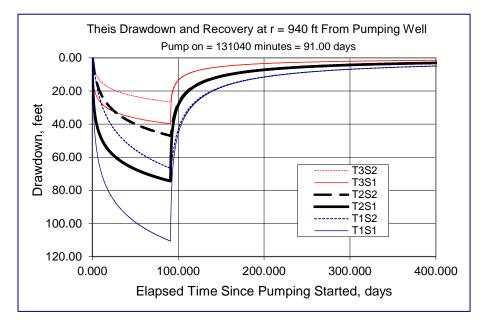
Well-Limited Rate (0.397 cfs)

 $Transmissivity: T1{=}410 \ ft^2{/}day \ | \ T2{=}660 \ ft^2{/}day \ | \ T3{=}1{,}380 \ ft^2{/}day \ [pumping test data]$

Storativity: S1=0.0003 | S2=0.003 [estimated range]

Total Pumping Time = 365 days

Pumping Rate = 0.397 cfs [estimated maximum well yield based on pump test drawdown data]

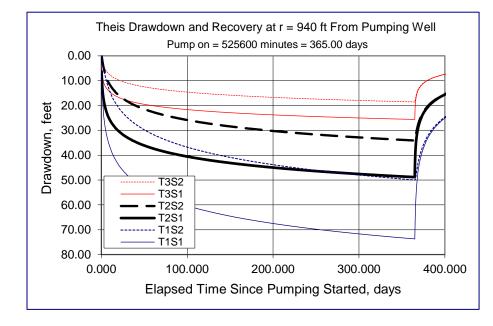

Radial Distance = 510 ft

YAMH 56818 (Exempt Domestic Well)

	Injury Interference Level	54	ft	Available Drawdown - Minimum Water Column
	Minimum Water Column	31	ft	Estimated Drawdown + NPSH + Pump Height
_	Estimated Drawdown	21	ft	 @ 35 gpm (based on spec cap of 1.7 gpm/ft estimate from transmissivity per Driscoll (1986) w/70% efficiency)
	Required NPSH	5	ft	Estimate
	Pump Height Above Bottom	5	ft	Estimate
	Available Drawdown	85	ft	Aquifer Bottom - SWL
_	Aquifer Bottom	104	ft bls	Estimated based on well logs
	SWL	19	ft bls	Estimated from nearby well measurements

Theis Drawdown Analysis – YAMH 453 Interference with Tax Lot 800

Transmissivity: T1=410 ft²/day | T2=660 ft²/day | T3=1,380 ft²/day [pumping test data] Storativity: S1=0.0003 | S2=0.003 [estimated range]


Total Pumping Time = 91 days [overlapping period under Certs 97691, 81063, and GR-2000]

Pumping Rate = 0.615 cfs [maximum combined pumping rate]

Radial Distance = 940 ft

SWL	26	ft bls	Inferred from YAMH 453 and YAMH 55952 SWL measurement
Aquifer Bottom	133	ft bls	based on YAMH 453 well log
Available Drawdown	107	ft	Aquifer Bottom - SWL
Pump Height Above Bottom	5	ft	Estimate
Required NPSH	5	ft	Estimate
Estimated Drawdown	27	ft	 @ 45 gpm (median well yield for area and spec cap of 1.7 gpm/ft estimated from transmissivity per Driscoll (1986) w/ 70% efficiency)
Minimum Water Column	37	ft	Estimated Drawdown + NPSH + Pump Height
Injury Interference Level	70	ft	Available Drawdown - Minimum Water Column

Theis Drawdown Analysis – YAMH 453 Interference with Tax Lot 800

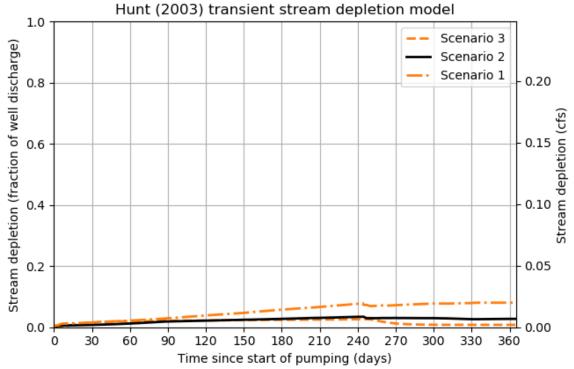
Well-Limited Rate (0.615 cfs) Scenario

Transmissivity: T1=410 ft²/day | T2=660 ft²/day | T3=1,380 ft²/day [pumping test data] Storativity: S1=0.0003 | S2=0.003 [estimated range]

Total Pumping Time = 365 days

Pumping Rate = 0.615 cfs [estimated maximum well yield based on pump test drawdown data] Radial Distance = 940 ft

SWL Aquifer Bottom		ft bls ft bls	Inferred from YAMH 453 and YAMH 55952 SWL measurement based on YAMH 453 well log
Available Drawdown	107	ft	Aquifer Bottom - SWL
Pump Height Above Bottom	5	ft	Estimate
Required NPSH	5	ft	Estimate
Estimated Drawdown	27	ft	 @ 45 gpm (median well yield for area and spec cap of 1.7 gpm/ft estimated from transmissivity per Driscoll (1986) w/ 70% efficiency)
Minimum Water Column	37	ft	Estimated Drawdown + NPSH + Pump Height
Injury Interference Level	70	ft	Available Drawdown - Minimum Water Column


Hunt (2003) Stream Depletion Analysis – YAMH 57192 Depletion of South Yamhill River

Well number: 2 Stream Number: 1 Pumping rate (cfs): 0.2481 Pumping start month number (3=March) 3.0 Plotting duration (days): 365 Plotting duration (days): 365 Stream Number (3=March) 3.0 Plotting duration (days): 365 Plotting duration (days): 365 Stream well to stream a Aquifer transmissivity T Aquitard sturated thickness ba Aquitard sturated thickness ba Aquitard sturated thickness ba Stream width Sya Stream width Sya Stream in thickness ba Stream in thickness ba Stream width Sya Stream in thickness ba Stream in thicknes <th></th> <th></th> <th></th> <th>pplicatio</th> <th></th> <th></th> <th></th> <th>T 14386</th> <th>_</th> <th></th>				pplicatio				T 14386	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Pumping duration (days): 245.0 Pumping start month number (3=March) 3.0 Plotting duration (days) 365 Presenter Symbol Scenario 1 Scenario 2 Scenario 3 Units ft2/day Aquifer transmissivity T 1380 660 410 ft2/day Aquifer transmissivity S .0003 .001 .003 - Aquitard vertical hydraulic conductivity Kva .1 .05 .01 ft/day Aquitard saturated thickness ba 35 .00 .02 .02 .02 .02 .1 Aquitard specific yield Sya 0.2 0.2 .02 .1 .1 .1 .2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-	
Pumping start month number (3=March) 3.0 Plotting duration (days) 3.0 Distance from well to stream a 3650 3650 5650 ft Aquifer transmissivity T 1380 660 410 ft2/day Aquifer transmissivity S 0003 001 0.033 - Aquitard vertical hydraulic conductivity Kva 1 0.55 0.11 ft/day Aquitard saturated thickness ba 35 40 45 ft Aquitard specific yield Sya 0.2 3 4 1 Stream width ws 50 180 210 240 270 300 Depletion (%) 0 1 2 0 1 1 1 2						days).			-	
Plotting duration (days) 365 Parameter Symbol Scenario 2 Scenario 3 10 3 10 10 12 10 10 12 10 10 12 10 10 12 10 1							(3-March)		-	
ParameterSymbolScenarioScenarioScenarioUnitsDistance from well to streama 3650 3650 3650 3650 $t1$ Aquifer transmissivityT 1380 660 410 $t12/day$ Aquifer transmissivityS 0003 001 0003 $-$ Aquifer storativityS 0003 001 0003 $-$ Aquitard vertical hydraulic conductivityKva 1 15 40 45 ftAquitard sturated thicknessba 35 40 45 ftAquitard specific yieldSya 0.2 0.2 0.2 $-$ Stream widthws 50 50 50 ftStream depletion for Scenario 2Days 0 1 2 0 1 1 1 2 2 2 2 Cenario 2Scenario 2 Stream depletion for Scenario 2Days 10 330 360 30 60 90 120 180 210 240 270 300 Depletion (%) 0 1 2 0 1 1 1 1 2 2 2 2 2 Cenario 3Scenario 3Scenario 1 0.20 On 0.00 0.00 $0.$		Pumping start month number (3=March) 3.0								
Distance from well to stream a 3650 3650 3650 ft Aquifer transmissivity T 1380 660 410 ft2/day Aquifer storativity S .0003 .001 .003 - Aquifer storativity S .0003 .001 .003 - Aquitard vertical hydraulic conductivity Kva .1 .05 .01 ft/day Aquitard sturated thickness ba 35 .40 .45 ft Aquitard sturated thickness below stream babs 2 3 .4 ft Aquitard specific yield Sya 0.2 0.2 0.2 - .50 Stream width ws 50 50 50 ft .				lotting u	unution (un	.,.,		1303		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Parame	eter		Symbol	Scenario 1	Scenario 2	Scenario 3	Units
Aquifer storativity S 0003 001 003 - Aquitard vertical hydraulic conductivity Kva 1 0.5 0.1 ft/day Aquitard saturated thickness ba 35 40 45 ft Aquitard started thickness ba 35 40 45 ft Aquitard started thickness babs 2 3 4 ft Aquitard specific yield Sya 0.2 0.2 0.2 - Stream width ws 50 50 ft ft Estream depletion for Scenario 2: Days 10 330 360 30 60 90 120 180 210 240 270 300 Depletion (%) 0 1 2 0 1 1 1 2		Distance fro	m well to	stream		a	3650	3650	3650	ft
Aquitard vertical hydraulic conductivity Kva 1 01 ft/day Aquitard vertical hydraulic conductivity Kva 1 01 ft/day Aquitard saturated thickness ba 35 40 45 ft Aquitard structures below stream babs 2 3 4 ft Aquitard specific yield Sya 0.2 0.2 50 50 ft Stream width ws 50 50 50 ft Days 1 1 1 2		Aquifer tran	smissivity	/		т	1380	660	410	ft2/day
Aquitard saturated thickness ba 35 40 45 ft ft ft Aquitard specific yield Sya 0.2 0.2 0.2 50 ft ft Aquitard specific yield Sya 0.2 50 50 50 ft ft Stream width ws 50 50 50 50 ft ft Days 10 330 360 30 60 90 120 150 180 210 240 270 300 200 200 0.00 0.00 0.00 0.00 0.00 0		Aquifer stor	ativity			S	.0003	.001	.003	-
Aquitard thickness below stream Aquitard specific yield Stream width babs 2 3 4 ft Sya 0.2 50 50 50 50 10 10 10 10 10 10 10 10 10 20 10 10 10 20 10 10 20 20 10 10 20<		Aquitard ve	tical hydi	raulic co	nductivity	Kva	.1	.05	.01	ft/day
Aquitard specific yield Stream width Sya 0.2 50 ft Stream width Wis 50 50 50 60 90 120 150 180 210 240 270 300 Depletion (%) 0 1 2 0 1 1 1 2 3		Aquitard sat	urated th	ickness		ba	35	40	45	ft
Stream width ws 50 50 50 ft Stream depletion for Scenario 2: Days 10 330 360 30 60 90 120 150 180 210 240 270 300 Depletion (%) 0 1 2 0 1 1 1 2 2 2 2 2 Depletion (cfs) 0.00 0.		Aquitard thi	ckness be	elow stre	am	babs	2	3	4	ft
Stream depletion for Scenario 2: Days 10 330 360 30 60 90 120 150 180 210 240 270 300 Depletion (%) 0 1 2 0 1 1 1 1 2 5		Aquitard sp	ecific yiel	d		Sya	0.2	0.2	0.2	-
Days 10 330 360 30 60 90 120 150 180 210 240 270 300 Depletion (%) 0 1 2 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2		Stream widt	h			WS	50	50	50	ft
1.0 Scenario 3 0.8 Scenario 1 0.6 Scenario 1 0.6 0.15 0.4 0.10	Deplet	tion (cfs) 0.00	0.00	0.00	0.00 0	0.0 0.0	0.00	0.00 0.00	0.00 0.00	0.00 0.00
0.8 0.8 0.6 0.4 0.4 0.15 0.4	Deplet	tion (cfs) 0.00	0.00	0.00	0.00 0	0.00 0.0	0 0.00	0.00 0.00	0.00 0.00	0.00 0.00
0.4										0.00 0.00
0.4									model – Scena	rio 3
0.4	1.0								model – Scena Scena	rio 3 rio 2
0.4	1.0								model – Scena Scena	rio 3 rio 2
	1.0								model – Scena Scena	rio 3 rio 2
	1.0 0.8								model – Scena Scena	rio 3 rio 2 rio 1 - 0.20
	1.0 0.8								model – Scena Scena	rio 3 rio 2 rio 1 - 0.20
0.2	1.0 0.8 0.6								model – Scena Scena	rio 3 rio 2 rio 1 - 0.20 - 0.15
	1.0 0.8 0.6								model – Scena Scena	rio 3 rio 2 rio 1 - 0.20 - 0.15
	1.0 0.8 0.6								model – Scena Scena	rio 3 rio 2 rio 1 - 0.20 - 0.15
0.0	1.0 0.8 0.6 0.4								model – Scena Scena	rio 3 rio 2 rio 1 - 0.20 - 0.15 - 0.10

Time since start of pumping (days)

Hunt (2003) Stream Depletion Analysis – YAMH 59181 Depletion of South Yamhill River

Appli	cation type:					Т	_			
Appli	cation numbe	er:				14386				
Well	number:				4					
Stream	n Number:					1				
Pump	oing rate (cfs):					0.2481				
Pump	ing duration	(days):				245.0				
Pump	oing start mor	th num	nber ((3=March)		3.0				
Plotti	ng duration (d	days)				365				
							_			
Parameter		Symb		Scenario 1		cenario 2		nario 3	Units	
Distance from well to stre	am	a 2970		_	2970		2970 ft			
Aquifer transmissivity		T 1380 6		660 410		ft2/da	у			
Aquifer storativity		S		.0003		.001	.00	3	-	
Aquitard vertical hydrauli	c conductivity	y Kva		.1		.05	.01		ft/day	
Aquitard saturated thickr	less	ba		35		40	45		ft	
Aquitard thickness below	stream	bab	s	2		3	4		ft	
Aquitard specific yield		Sya		0.2		0.2	0.2		-	
Stream width		WS	[50		50	50		ft	
	Strea	m denl	etion	for Scena	rio 2					
Days 10 330 36		60	90	120	150		210	240	270	300
Depletion (%) 1 3 3	1	1	2	2	2	3	3	3	3	3
•		0.00	0.00	0.01	0.0		0.01	0.01	0.01	0.01

