

Groundwater Transfer Review Summary Form

Transfer/PA # T- 14771

GW Reviewer Stacey Garrison Date Review Completed: 1/13/2026

Summary of Same Source Review:

- The proposed change in point of appropriation is not within the same aquifer as per OAR 690-380-2110(2).

Summary of Water Level Decline Condition Review:

- Water levels at the original point(s) of appropriation have exceeded the allowed decline threshold defined by conditions in the originating water right.

Summary of Injury Review:

- The proposed transfer will result in another, existing water right not receiving previously available water to which it is legally entitled or result in significant interference with a surface water source as per 690-380-0100(3).

Summary of GW-SW Transfer Similarity Review:

- The proposed SW-GW transfer doesn't meet the definition of "similarly" as per OAR 690-380-2130.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations.

Oregon Water Resources Department
725 Summer Street NE, Suite A
Salem, Oregon 97301-1271
(503) 986-0900
www.wrd.state.or.us

Ground Water Review Form:

- Water Right Transfer**
- Permit Amendment**
- GR Modification**
- Other**

Application: T-14771

Applicant Name: Hannelore L. Ledebuer Revocable Living Trust

Proposed Changes: POA APOA SW→GW RA
 USE POU OTHER

Reviewer(s): Stacey Garrison

Date of Review: 1/13/2026

Date Returned to WRSD: 1/14/2026

The information provided in the application is insufficient to evaluate whether the proposed transfer may be approved because:

- The water well reports provided with the application do not correspond to the water rights affected by the transfer.
- The application does not include water well reports or a description of the well construction details sufficient to establish the ground water body developed or proposed to be developed.
- Other _____

1. Basic description of the changes proposed in this transfer: Applicant proposes to add POA 2/Well A (MARI 1143) to Certificate 26082. Certificate 26082 authorizes POA 1/Well 4 (MARI 1145) to irrigate 61.8 ac at a maximum rate of 0.77 cfs (345.6 gpm) and a maximum annual volume of 154.5 acre-feet.
2. Will the proposed POA develop the same aquifer (source) as the existing authorized POA?
 Yes No Comments: the authorized POA, Well 4 (MARI 1145) develops sand and gravel water bearing zones, WBZs, from 91 to 110 ft below land surface, bls [62 to 81 ft amsl]. These WBZs are within the alluvial Willamette Aquifer and the Willamette Confining Unit, WCU (Woodward et al., 1998), or the Middle Sedimentary Unit, MSU, and Lower Sedimentary Unit, LSU, respectively (Conlon et al., 2005). The APOA, Well A (MARI 1143), develops the same alluvial groundwater resource from 85 to 202 ft bls [-40 to 77 ft amsl].
3. a) Is the existing authorized POA subject to a water level decline condition?
 Yes No Comments: _____
b) If yes, for each POA identify the reference level, most recent spring-high water level, and whether an applicable permit decline condition has been exceeded: _____
4. a) Is there more than one source developed under the right (e.g., basalt and alluvium)?
 Yes No Comments: Only the alluvial source is developed.

b) If yes, estimate the portion of the right supplied by each of the sources and describe any limitations that will need to be placed on the proposed change (rate, duty, etc.): _____

5. a) Will this proposed change, at its maximum allowed rate of use, likely result in an increase in interference with **another ground water right**?

Yes No Comments: The APOA, Well A (MARI 1143) is closer to MARI 341, a POA under Certificate 53064 with priority date 4/8/1975. The reduced intervening distance is likely to result in an increase in interference with MARI 341.

b) If yes, would this proposed change, at its maximum allowed rate of use, likely result in another groundwater right not receiving the water to which it is legally entitled?

Yes No If yes, explain: The Theis (1935) solution for drawdown was used to assess the potential for injury to MARI 341 (see attached Theis Interference Analysis). Pumping by the APOA, Well A (MARI 1143), is not likely to result in MARI 341 not receiving the water to which it is legally entitled.

6. a) Will this proposed change, at its maximum allowed rate of use, likely result in an increase in interference with **another surface water source**?

Yes No Comments: The APOA, Well A (MARI 1143), is closer to Yergen Creek. The reduced intervening distance is likely to result in an increase in interference with Yergen Creek.

b) If yes, at its maximum allowed rate of use, what is the expected change in degree of interference with any **surface water sources** resulting from the proposed change?

Stream: Yergen Creek Minimal Significant

Provide context for minimal/significant impact: Due to the thickness of the Willamette Silt and the relatively small decrease in distance the increase in interference from pumping by the APOA, Well A (MARI 1143), is expected to be minimal.

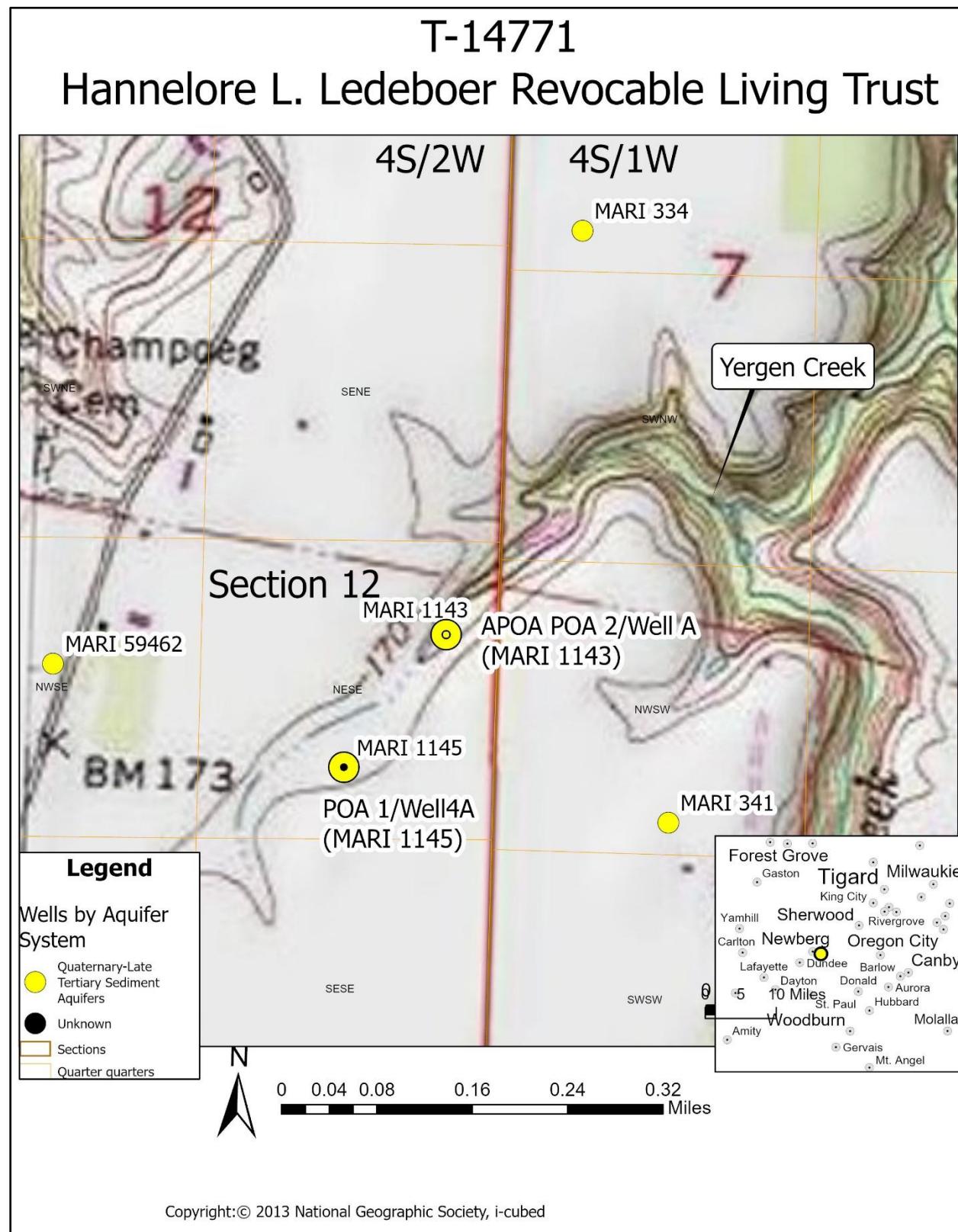
7. For SW-GW transfers, will the proposed change in point of diversion affect the surface water source similarly (as per OAR 690-380-2130) to the authorized point of diversion specified in the water use subject to transfer?

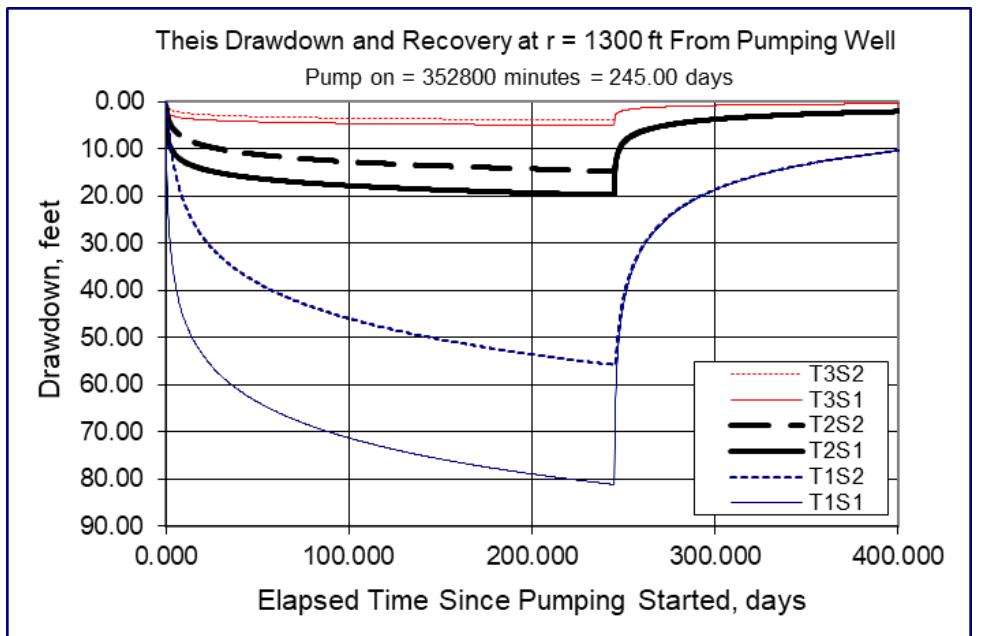
Yes No Comments: N/A

8. What conditions or other changes in the application are necessary to address any potential issues identified above: N/A

9. Any additional comments: N/A

ReferencesTransfer File: T-14771


Pumping Test Files: MARI 563, MARI 1160, MARI 358, MARI 348, MARI 614, MARI 53183, MARI 58607, MARI 59462, MARI 58623, MARI 60041, MARI 350 ,MARI 363, MARI 595, MARI 602, MARI 17816, MARI 17816, MARI 63578, MARI 56719, MARI 1152, MARI 65211


Conlon, T.D., Wozniak, K.C., Woodcock, D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Ground-water hydrology of the Willamette Basin, Oregon, Scientific Investigations Report 2005-5168: U. S. Geological Survey, Reston, VA.

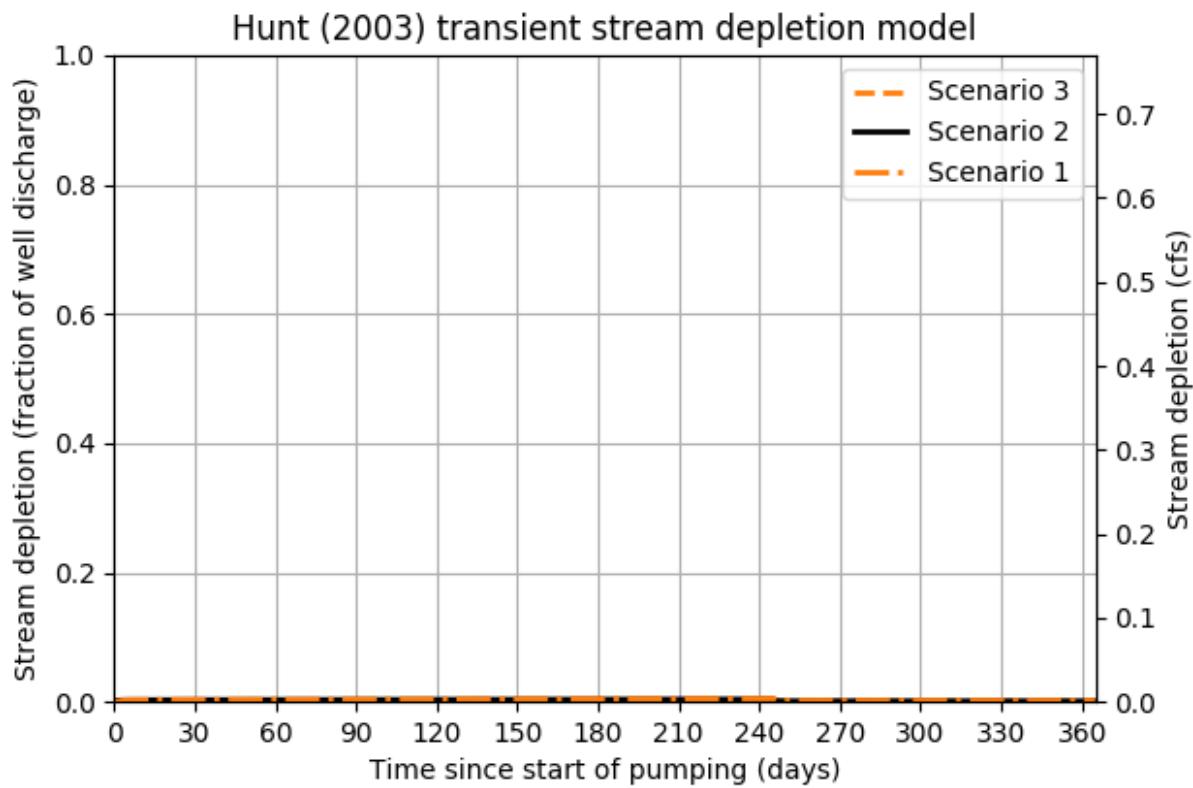
Hunt, B., 2003. Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, 2003.O'Connor, J.E., Sarna-Wojcick, A.,

O'Connor, J.E., Sarna-Wojcick, A., Wozniak, K.C., Polette, D.J., Fleck, R.J., 2001, Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon; U.S. Geological Survey, Professional Paper 1620, 51 p.

Woodward, D.G., Gannett, M.W., and Vaccaro, J.J., 1998, Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington: U.S. Geological Survey Professional Paper 1424-B, 82 p.

Map

Theis Interference Analysis


Input Data:	Var Name	Scenario 1	Scenario 2	Scenario 3	Units	
Total pumping time	t		245		d	
Radial distance from pumped well:	r		1300		ft	Q conversions
Pumping rate	Q		0.77		cfs	345.58 gpm
Hydraulic conductivity	K	2.18	10.9	50	ft/day	0.77 cfs
Aquifer thickness	b		220		ft	46.20 cfm
Storativity	S_1		0.0001			66,528.00 cfd
	S_2		0.001			1.53 af/d
Transmissivity Conversions	T_f2pd	479.6	2398	11000	ft ² /day	
	T_ft2pm	0.33305556	1.66527778	7.63888889	ft ² /min	
	T_gpdft	3587.408	17937.04	82280	gpd/ft	Recalculate

SWL	48	ft bls	Woodward et al., 1998
Aquifer Bottom	297	ft bls	Woodward et al., 1998; MARI 59462
Available Water Column	249	ft	Aquifer bottom-SWL
Pump Height Above Bottom	5	ft	Estimate
NPSHa	5	ft	Estimate
Drawdown	52	ft	Estimated from drawdown reported on MARI 341
Minimum Water Column	62	ft	Estimated Drawdown + NPSHa + Pump Height
Injury	187	ft	Available Water Column-Minimum Water Column

Stream Interference Analysis

Parameter	Symbol	Scenario 1	Scenario 2	Scenario 3	Units
Distance from well to stream	a	1325	1325	1325	ft
Aquifer transmissivity	T	480	2400	11000	ft ² /day
Aquifer storativity	S	0.001	0.0005	0.0001	-
Aquitard vertical hydraulic conductivity	Kva	0.05	0.05	0.05	ft/day
Aquitard saturated thickness	ba	100	100	100	ft
Aquitard thickness below stream	babs	90	90	90	ft
Aquitard specific yield	Sya	0.2	0.2	0.2	-
Stream width	ws	20	20	20	ft

Stream depletion for Scenario 2:													
Days	10	330	360	30	60	90	120	150	180	210	240	270	300
Depletion (%)	0	0	0	0	0	0	0	0	0	0	0	0	0
Depletion (cfs)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

