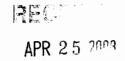
Exhibit A. Stream Depletion Modeling Arrowhead Farms, Inc.; Westwood Farms, Inc.; and Echo Ridge Farms, Inc. Surface to Ground Water Transfer Application April 2008

Introduction


This exhibit included with the water right transfer application submitted by Arrowhead Farms, Westwood Farms, and Echo Ridge Farms (Arrowhead-Westwood-Echo Ridge Farms) presents the results of stream depletion modeling performed by Pacific Hydro-Geology Inc. This modeling was performed to assess if the proposed new wells will affect the surface water source, Deep Lake, similarly to the authorized points of diversion which are located more than 500 feet from the proposed new wells, in accordance with the requirements of OAR 690-380-2130(2)(e). The term "similarly" is defined by OAR 690-380-2130(11)(b) to mean that the use of ground water at the new wells affects the surface water source specified in the water right and would result in stream depletion of at least 50 percent of the rate of appropriation within 10 days of continuous pumping.

Geologic and Hydrogeologic Conditions

According to geologic mapping compiled by Gannet and Caldwell (1998), the area in the vicinity of the Arrowhead-Westwood-Echo Ridge Farms site is underlain by Holocene alluvium comprising the Willamette Aquifer. The deposits of the Willamette Aquifer identified by Gannet and Caldwell (1998) are on the order of about 100 feet thick according to a geologic cross-section in their report (B-B') which runs through the Arrowhead-Westwood-Echo Ridge Farms property.

Based on a review of logs from several wells located near the Arrowhead-Westwood-Echo Ridge Farms site, Deep Lake is formed within a sequence of recent alluvial deposits consisting generally of about 25 to 30 feet of clay, possibly representing the Willamette Silt unit, overlying alluvial gravels having an estimated thickness of 40 to 60 feet. Static water levels reported for the wells completed within the uppermost gravel unit were generally about 20 feet below land surface. The well logs reviewed include MARI 4781, 4787, 4792, 4794, 4800, and 51172. Copies of the well logs are provided in Attachment A-1 to this document. The locations of the wells are shown on Figure A-1, Attachment A-1.

We conducted hand level measurements at the site to estimate the elevation of the water surface in Deep Lake relative to the surrounding land surface. We also sounded the lake in several places from a boat to determine the depth of the lake. Based on these investigations, we determined that at the time of our measurements, the lake level was about 21 feet below the ground surface elevation at the proposed Well 1 site, and the depth of the lake averaged about 12 feet. Based on our measurements, we estimate that the bottom of Deep Lake lies at an elevation that is about 33 feet below the ground surface elevation at the proposed well site. This places the bottom of the lake a few to several feet below the bottom of the clay layer. Therefore it appears that Deep Lake fully penetrates the upper clay layer, and partially penetrates the top of the underlying gravels.

WATER REUS SALEM :

Model Selection

Three analytical models were considered for the simulation: the Jenkins Model (Jenkins, 1968), the 1999 Hunt Model (Hunt, 1999), and the more recent 2003 version of the Hunt Model (Hunt, 2003). The Jenkins model assumes complete penetration of the aquifer by the stream. The 1999 Hunt model represents the condition of a clogged stream channel which partially penetrates the aquifer. The 2003 Hunt Model is configured to simulate the condition of a stream bed partially penetrating a semi-permeable layer of specified thickness which overlies the pumped aquifer. We chose the 1999 Hunt model because it simulates the condition of a surface water body which only partially penetrates the aquifer. We also assumed there is an accumulation of fine-grained material in the bottom of the lake, forming a clogging layer.

Model Parameters

The parameters to be chosen for use in the 1999 Hunt model include the well pumping rates, distance from the well to the stream, stream (or lake in this case) width, aquifer thickness, aquifer hydraulic conductivity, aquifer storage coefficient, streambed (i.e., clogging layer) hydraulic conductivity, and streambed (clogging layer) thickness. The values chosen for each of these parameters are discussed in the following paragraphs.

Pumping Rate: The pumping rate used in the model was calculated based on the assumption that the full allowed duty would be used in an irrigation season. The total acreage of the places of use under Certificates 47856 and 61435 affected by the transfer is 135.6 acres. The pumping rate of 0.7 cubic feet per second (cfs) was calculated based on a duty of 2 ½ acre-feet per acre for the 135.6 acres, assuming that the total volume of water could be discharged from either one of the proposed wells at a constant rate continuously (24 hours/day, 7 days/week) over the 245-day irrigation season. The model was run for 245 days to simulate the impacts of irrigating continuously for the full irrigation season.

Distance to Stream: The distances from proposed Wells 1 and 2 to the edge of Deep Lake were estimated from the transfer application map to be about 1,440 feet and 1,020 feet, respectively.

Lake Width: The width of the lake was estimated to be about 200 feet based on measurements taken from a recent Google Earth satellite photograph which was scaled to overlay on the transfer application map.

Aquifer Thickness: The estimated thickness of the recent alluvial deposits beneath the Arrowhead-Westwood-Echo Ridge Farms site is based on a review of several logs from wells located near the property. These wells included MARI 4781, 4787, 4792, 4794, 4800, and 51172. Copies of the well logs are provided in Attachment A-1 to this document. The locations of the wells are shown on Figure A-1, Attachment A-1.

According to the well logs reviewed, the upper fine-grained layer, generally described as consisting of yellow or brown clay, was present from the ground surface to a depth of between 14 and 35 feet. The two wells closest to the proposed well, MARI 4787 and MARI 4794, indicate clay to depths of 31 and 24 feet, respectively. Of the well logs reviewed, only two, MARI 4792 and MARI 51172, indicated full penetration of the upper gravel zone. MARI 4792 indicates gravels between depths of 35 and 73 feet. MARI

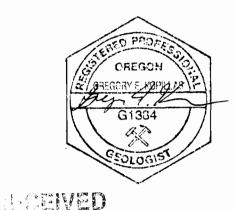
WATER RE SALE

APR 25

Arrowhead-Westwood-Echo Ridge Farms - Exhibit AA-2

T 10602

4/17/2008


51172 shows gravels from 24 to 85 feet. Based on this information we estimated the thickness of the aquifer (i.e., the uppermost gravel interval) to be about 50 feet. The potentiometric surface in the aquifer is assumed to be at about the same elevation as the water level in the lake, or about 20 feet below ground surface. This is consistent with static water levels reported on logs for nearby wells, and indicates that ground water occurs under confined conditions in the gravel aquifer.

Aquifer Hydraulic Conductivity, Aquifer Storage Coefficient, and "Streambed" Hydraulic Conductivity: The Hunt model was run using the aquifer parameters recommended by the Department for the alluvial deposits of the Willamette Basin. Specifically, these parameter values included 50 ft/day for aquifer hydraulic conductivity (K), 0.0001 for storage coefficient (S) for a confined aquifer, and 0.01 ft/day for "streambed" hydraulic conductivity (Ks). We assume that these values are conservative and appropriate in the absence of site-specific data.

"Streambed" Thickness: When sounding the lake using a heavily weighted cloth tape measure, the weight generally sank about 6 inches into the bottom sediments. Based on this, we estimated that the minimum thickness of the clogging layer was more than 6 inches. It also seemed reasonable to assume that the clogging layer is not more than 4 feet thick. Therefore, the Hunt model was run using three separate scenarios for streambed thicknesses of 2, 3, and 4 feet, while keeping all other parameter the same.

Model Results

When run using the assumptions and parameters discussed above, the Hunt model predicted that the proposed use from Well 1 would result in surface water depletion within 10 days of continuous pumping equal to about 78%, 71%, and 65% of the discharge rate, assuming clogging layer thicknesses of 2, 3, and 4 feet, respectively. For Well 2, the Hunt model predicted surface water depletion of about 79%, 72%, and 66% of the discharge rate, again assuming clogging layer thicknesses of 2, 3, and 4 feet, respectively. All the simulated depletion rates meet the criteria set forth in 690-380-2130(2)(e) and OAR 690-380-2130(11)(b) to establish that the proposed new well will affect the surface water similarly to the original points of diversion. The model input and output data are provided in Attachment A-2 to this document.

APR 25 2008

White I seed to

Arrowhead-Westwood-Echo Ridge Farms - Exhibit AA-3

10602

4/22/2008

References

Gannett, M.W., and Caldwell, R.R. 1998. *Geologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington*. U.S. Geological Survey Professional Paper 1424-A.

Hunt, B. 1999. Unsteady stream depletion from ground water pumping. *Ground Water*. Vol. 37, No. 1: pp. 98-102.

Hunt, B. 2003. Unsteady stream depletion when pumping from semiconfined aquifer. *Journal of Hydrologic Engineering.* Vol. 8, Issue 1: pp. 12-19. January/February, 2003.

Jenkins, C.T. 1968. Techniques for computing rate and volume of stream depletion by wells. *Ground Water.* Vol. 6, No. 2: pp. 37-46.

APR 25 2008

SALEM F. ...

The original and first copy of this report are to be filed with the SEP 2 2 WATER WELL REPORT State Well No. 6/3w-1 P STATE OF OREGON
TE STATE OF OREGON
TE STATE OF OREGON
TO STATE OF OREGON
TO STATE OF OREGON
TO STATE OF OREGON STATE ENGINEER, SALEM, OREGON 97310 within 30 days from the date of well completion. State Permit No. Drawdown is amount water level is lowered below static level (1) OWNER: (11) WELL TESTS: **FEX CREIGHTON JONES** Was a pump test made? Yes No If yes, by whom? DRILLER Address RT. I BOX gal./min. with I9 ft. drawdown after 4. hrs. GERVAIS, OREGON (2) LOCATION OF WELL: ENDEKER 330 gal./min, with 9 ft. drawdown after County MARION Driller's well number II74 g.p.m. Date Artesian flow 1/4 Section I T. 68 Temperature of water Was a chemical analysis made?

Yes

No Bearing and distance from section or subdivision corner (12) WELL LOG: Diameter of well below casing ft. Depth of completed well 99 Formation: Describe by color, character, size of material and structure, and show thickness of aquifers and the kind and nature of the material in each stratum penetrated, with at least one entry for each change of formation. MATERIAL FROM (3) TYPE OF WORK (check): TOP SOIL 3 Maw Well Deepening [Reconditioning [Abandon □ CLAY T5 CLAY & GRAVEL TIGHT indonment, describe material and procedure in Item 12. 34 BLACK SAND & GRAVEL 34 55 (4) PROPOSED USE (check): (5) TYPE OF WELL: Rotary | Driven | BROWN SAND & GRAVEL 55 99 Domestic 🗆 Industrial 🗆 Municipal 🗆 □X Jetted □ SHALE BLACK & GRITTY Cable 99 Irrigation 🛣 Test Well 🗆 Other Dug ☐ Bored ☐ (6) CASING INSTALLED: Threaded | Welded IO Diam from TOP ft. to 99 ft. Gage 250" Diam. from _____ ..." Diam. from _ ft. to ____ ft. Gage ... (7) PERFORATIONS: Perforated? X Yes 🔲 No Type of perforator used 3/8 Size of perforations 2 in. by ... perforations from ft. to ___99 30 ... perforations from perforations from .____ perforations from _____ ft. to ____ perforations from _ft. to .. (8) SCREENS: Well screen installed?
Yes X No JOUGACES DEPT SALERI DREGON Model No. Slot size Set from Work started SEPT. I 166 Completed SEPT 9 1966 Diam, Slot size Set from ... Date well drilling machine moved off of well (9) CONSTRUCTION: (13) PUMP: Well seal-Material used in seal OFMENT & PUDDLE CLAY Manufacturer's Name ... Depth of seal ______ ft. Was a packer used? Diameter of well bore to bottom of seal in. Water Well Contractor's Certification: Were any loose strata cemented off? [Yes [No Depth ... This well was drilled under my jurisdiction and this report is Was a drive shoe used? X Yes 🔲 No true to the best of my knowledge and belief. Was well gravel packed? 🗌 Yes 🛣 No Size of gravel: NAME WILLAMETTE DRILLING CO Gravel placed from _____ ft. to _____ ft. (Person, firm or corporation) Did any strata contain unusable water? Yes 🔲 No Address RT. 2 BOX 276 SALEM, OREGON derth of strata Type of water? Method of sealing strata off (10) WATER LEVELS: ft. below land surface Date 9/9/66 Static level Contractor's License No. 2 Date SEPT 9 1966 lb per square inch Date Artesian pressure (USE ADDITIONAL SHEETS IF NECESSARY)

The original and first copy of this report
are to be filed with the

WATER REPORT FOR STATE OF OREGON

WAY 26 1076 at well no MAY 2 6 1978 ate Well No. 25 SALEM, OREGON 97310 pot write above this line) within 30 days from the date of well completion. SALEM, OREGON (10) LOCATION OF WELL: (1) OWNER: Name Paul Witteman c/o R.M.P.C Driller's well number 2134 County Marion Address Box 939 Prudhoe Bay 34 Section 2 T. 6S R. 2W Anchorage. Alaska Bearing and distance from section or subdivision corner (2) TYPE OF WORK (check): Deepening [Reconditioning [New Well □ Abandon [] If abandonment, describe material and procedure in Item 12. (11) WATER LEVEL: Completed well. (3) TYPE OF WELL: (4) PROPOSED USE (check): Depth at which water was first found Rotary 🕅 Driven [ft. below land surface. Date 3/18/78 Domestic X Industrial [] Municipal [] Static level 19 Cable Jetted 🖂 Dug $\overline{\Box}$ Bored | Irrigation | Test Well | Other Artesian pressure lbs. per square inch. Date CASING INSTALLED: Threaded | Welded | (12) WELL LOG: Diameter of well below casing ... 6 Diam from top st to 60 st Gage 250 Depth drilled 60 ft. Depth of completed well " Diam, from _____ ft. to _____ ft. Gage ____ Formation: Describe color, texture, grain size and structure of materials; _" Diam. from ft. to ft. Gage and show thickness and nature of each stratum and aquifer penetrated, with at least one entry for each change of formation. Report each change in PERFORATIONS: position of Static Water Level and indicate principal water-bearing strata. Perforated? Tyes X No. Type of perforator used MATERIAL. From Size of perforations in, by Topsoil 31 Brown Silty Clay ____ perforations from _____ ft. to ____ _____ ft. to _____ ft. Black Sand and Gravel perforations from 49 perforations from ft. to Blue Clay Brown Sand and WXXXXXX (7) SCREENS: Well screen installed? | Yes K No Grave1 Manufacturer's Name Loose Brown Sand and Gray 60 Model No. ___ Diam. Slot size Set from Diam. Slot size Set from Drawdown is amount water level is lowered below static level (8) WELL TESTS: Was a pump test made?

Yes X No If yes, by whom? Yield: gal./min. with _____ft. drawdown after hrs. ttest 45 GPM for a period of 1 hour Bailer test gal./min. with Artesian flow g.p.m. Depth artesian flow encountered perature of water Completed 3 /18/78 Work started $\frac{3}{4}/18/78$ Date well drilling machine moved off of well (9) CONSTRUCTION: Well seal-Material used Portland Cement Drilling Machine Operator's Certification: This well was constructed under my direct supervision. Materials used and information reported above are true to my Diameter of well bore to bottom of seal 10 in. best knowledge and helief.

[Signed] Date 3/20/7819

(Drilling Machine Operator)5 Number of sacks of cement used in well seal Drilling Machine Operator's License No. How was cement grout placed Poured in from the top Water Well Contractor's Certification: This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief. Was a drive shoe used? X Yes 🗆 No Plugs Size: location ft. Name Willamette Drilling Co.
(Person, firm or corporation) Did any strata contain unusable water? T Yes XXO (Type or print) Address 1450 Barnick Rd. NE Salem, OR 97303 depth of strata Type of water? (Water Well Contractor) Method of scaling strata off [Signed] Was well gravel packed? [Yes No Size of gravel: Contractor's License No. 561 Date 3/20/78 Gravel placed from _____ft. (USE ADDITIONAL SHEETS IF NECESSARY)

APP OF THE OFFICE OF 1989	18 4792	·
APR 25 2008 ST. CLEWATER WE	LL REPORT	/34-2F
File Original and First Copy with the STATE ENGINEER SALEM, OREGON	,	
(1) OWNER a layer	(11) WELL TESTS: Drawdown is amount w	
Name Hand Lodd	Was a pump test made? No. Yes No. If yes, by whom	AT MADE A LAND
Address Joseph William	Yield: 6 75 gal./min. with & lo ft. drawdow	
		
(2) LOCATION OF WELL:	Bailer test gal./min. with ft. drawdow	n after hrs.
County MARIUN Owner's number, if any— 34 34 Section T. R. W.M.		-15-59
34 34 Section T. R. W.M. Bearing and distance from section or subdivision corner	Temperature of water Was a chemical analysis ma	ide? 🗌 Yes 😭 No
	(12) WELL LOG: Diameter of well	2inches.
	Depth drilled 240 ft. Depth of completed w	
	Formation: Describe by color, character, size of materia show thickness of aquifers and the kind and nature of t stratum penetrated, with at least one entry for each cl	he material in each hange of formation.
	- MATERIAL	FROM TO
(3) TYPE OF WORK (check):	top block dest	0 5
New Well L Deepening L Reconditioning L Abandon L If abandonment, describe material and procedure in Item 11.	- Claren such Clar	5° 20 20 30
	block sondy clay	30 35
PROPOSED USE (check): (5) TYPE OF WELL:	sand + genetigealtherely	35 40
Cable A Jetted	clean groulfyly littlete	40 45
Irrigation [Test Well Other Dug Bored	Charles all the	12 15-
(6) CASING INSTALLED: Threaded Welded	sandy self of ground	45 73
12 "Diam. from to 272 ft. Gage	Mark peat	73 84
" Diam. fromft, toft. Gage	Alui ishali	84 130
	Man stuy shall	149 149
(7) PERFORATIONS: Perforated? Yes No	part w block sand	148 183
SIZE of perforations in. by X 2 in.	black sand & grantlelon	183 227
perforations fromft. toft.	strips scottered through	222 900
perforations from 49 ft. to 73 ft.	to silver and tale actor	223 229
perforations from 190 ft. to 2.30 ft.	green shale	229 238
perforations from ft. to ft.	Januesh Hack shall	235 244
(8) SCREENS: Well screen installed Yes R'No	getylah delana arale	244 246
Manufacturer's Name	black alal hard crunkly	244 250
Type Model No		
Diam. Slot size Set from ft. to ft.	Work started Sept 8 19 . Completed O	et 16 1059
(9) CONSTRUCTION:	(13) PUMP:	4-1-2
Was well gravel packed? Yes No Size of gravel:	Manufacturer's Name	
Gravel placed from	Type:	Z.P.
Was a surface seal provided? A Yes 10 No To what depth? 11. Material used in seal— And Clay	Well Driller's Statement:	
Did any strata contain unusable water? Tes In No	This well was drilled under my jurisdiction a	nd this report is
Type of water? Deptrof strata	true to the best of my knowledge and belief.	
Method of sealing strata off	NAME WILLAMET TE DRILLIA (Person, firm, or corporation) (Ty	NG Go.
(10) WATER LEVELS:	Address	v- y-mit/
Static level ft. blow land surface Date Artesian pressure lbs. ptr square inch Date	Driller's well number 507	
Log Accepted by	[Signed] Gruing bear	
[Signed La Verme Told Date / 0-23-, 1959]	License No. Date / D = 2	12,1059
	-	,

APR 25 2008

WATER RESCURCES USPI SALEM, OREGON

State Well No. 6/3W-2F1	
County Marion	
Application No.	

Chemical Analysis

OWNER LaVerne Todd	OWNER'S NO	
ANALYST USGS	Address Portland, Or	regon
Date of Collection 6-1-60	***************************************	***************************************
Point of Collection		
	P.P.M.	E.P.M.
Silica (SiO ₂)	41	
Iron (Fe) Total	.29	
Manganese (Mn)		
Calcium (Ca)	21	<u>-</u>
Magnesium (Mg)	13	
Sodium (Na)	21	
Potassium (K)	2.2	
Bicarbonate (HCO ₂)	180	
Carbonate (CO ₂)	0	
Sulfate (SO ₄)	1.6_	
Chloride (Cl)	5.5	
Fluoride (F)	.1	
Nitrate (NO ₃)	.2	
Boron (B)		,
Dissolved Solids	195	
Hardness as CaCO	107	
Specific Conductance (Micromhos at 25°C)	273	
рН	7.9	
Percent Sodium	29	
Sodium Absorption Ratio (S.A.R.)	9	
CLASS		
State Pri	nting 80313	10602

STATE WELL NO. 6/3W-2L COUNTY Marion APPLICATION NO. GR-2262

awayan Dari Dari 10 d	MAILING	Doube 1 Pox 9	
OWNER: Ruel Bradford			
LOCATION OF WELL: Owner's No	STATE:	Gervais, Oreg	on
NE 14 SW 14 Sec. 2 T. 6 S., R. 3 W.,	W.M.		1
Bearing and distance from section or subdivision			
corner North 502 30' East 1362 feet from	the		
NW Corner Allanson Beers DLC 38			
		4	

Altitude at well			
TYPE OF WELL: Drilled Date Constructed19	5Ω	<u> </u>	
Depth drilled 41 feet Depth cased 41	feet	Section	2
CASING RECORD:			
6-inch			
FINISH:			
Perforations from 34-to 40 feet			
AQUIFERS:		-	
Sand and gravel from 24 to 41 feet	_ ,		
WATER LEVEL:			
22 feet below land surface		d (9 da 6 dassesse	
PUMPING EQUIPMENT: Type			H.P1½
WELL TESTS: Drawdown 2 ft. after		-	CDM
Drawdown ft. after			
USE OF WATERIrrigation SOURCE OF INFORMATIONGR-2362xGR	Temp	°F	, 19
DRILLER or DIGGER Emil Beier	2159		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ADDITIONAL DATA:			
Logx Water Level Measurements	. Chemical An	alysis	Aquifer Test
REMARKS:			
soil 0 to 2 feet			
clay, yellow 2 to 24-feet sand and gravel 24 to 41 feet			

FCEWED

State Well No. 6/3W-2L
County Marion 2159
Application No. GR-5055

Well Log-

Driller: Emil Beier	Date Dri	illed1950	***********
CHARACTER OF MATERIAL		ow land surface)	Thickne
	From	То	(feet)
Soil	0	2	2
Clay, yellow	2	24	22
Sand and gravel, brown, water bearing	24	41	18
· .			
	•		
AUGUST BY WE STAND AND AUGUST BY AUG			
<u> </u>			
	-		

STATE ENGINEER Salem, Oregon Wel	l Record	STATE WELL NO. 6/3W-2-P COUNTY Marion APPLICATION NO. GR-3327
OWNER: Frank Burke (J.)	MAILING ADDRESS:	Route 1, Box 85
LOCATION OF WELL: Owner's No	CITY AND	
SE 1/4 SW 1/4 Sec. 2 T. 6 S., R. 3	Е. W., W.M.	
Bearing and distance from section or subdivision		
corner S. 34°32' E. 1754.9' thence N.		
653.5' from most Westerly corner of Alans	on Beers	
DLC 38		
	~~~~	
Altitude at well		
TYPE OF WELL: drilled Date Constructed	1952	
Depth drilled5	51	Section
CASING RECORD:		
8"		
•		
FINISH:		
360 perforations from 30 to 53'		
AQUIFERS:		
clay, sand, gravel		
WATER LEVEL:		
201		
PUMPING EQUIPMENT: Type Pomona Tu	rhi ne	TD 5
Capacity G.P.M.	1.M1119	н.гэ
WELL TESTS:		
Drawdown ft. after	hours	G.P.N
Drawdown ft. after	hours	G.P.N
USE OF WATER Trrigation SOURCE OF INFORMATION GR-308L DRILLER or DIGGER		
ADDITIONAL DATA:  Log X Water Level Measurements		
REMARKS:		

State Well No. 6/3W-2P
County Marion
Application No. GR-3327

# Well Log

CHARACTER OF MATERIAL	(Feet below	v land surface)	Thickn
	From	То	(feet
Topsoil	3	3	
Clay yellow color sticky	18	21	_
Clay yellow color sandy	7	28	
Sand medium grain	_1	29	
Water Gravel # 2"-	22	31	
Cemented Gravel- Water Bearing	20	51	
Water gravel #2"-	<u>lı</u>	55	
Casing undermined @ 55' to allow free passage			
of water below pipe			
A CONTRACT OF THE PARTY OF THE			
	<u>-</u>		
( AT 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -			
5 2008		0602	

## STATE OF OREGON

MONITODING WELL REPORT

# MACK DRILLING COMPANY

P O BOX		MOUPI		
LEM. OR 9		41177	Start Card #	- 88
LEM. UN V	1208-0001			-

1) O	WNER/PROJECT:	WELL NO	0. 4613	(6) LOCATIO	N OF WELL By I	egal descri	ption	
Jame	Morse Bros. Inc.	•			ounty Marion	_	•	
Addres	32260 Hwy 34				(N or S) Range 3		W) Section	11
	Tangent	State OR	Zip 97389		1/4 of <u>NE</u> 1		_	
	TYPE OF WORK:	V III	11.521		ddress of well location			a and
-, -	TILOI WORLE			Wheatland R	oed Keizer OR			
	New construction	Alteration (Repa	ir/Recondition)	or Tax lot number	of well location 100	1		
	Conversion	Deepening	Abandonment		PWITH LOCATION I		Man shell	Indude
				approximate scal	e and north arrow.		· wah man	IBCIUGE
3) D	RILLING METHO	<u>D</u>		(7) STATIC W	ATER LEVEL:			
,	X Rotary Air	Rotary Mud	☐ Cable		t, below land surface.	Date	11/8/96	
	Hollow Stem Auger	=			lb/sq. in.		<b>11</b> /0/30	
		Li Ousei			1			
B	ORE HOLE CONS	TRUCTION		(8) WATER B	EARING ZONES	:		
•	Yes No			Depth at which	water was first found			
necial	Standards \( \bigcap \)	Depth of completed	well 84,5 ft.	From		low Rate	T	SWL
,	_			90	100	TATI	MED	2
ntecti	ive casing —	•	— Locking cap		M		VCL	<u> </u>
		<del></del>	Protective					
<b>_</b>	ent monument		N bost			EC - 4	1996	
J. 1.1.			N)					
l and	surface	Ļ.∣	N	(9) WELL LO	G: Graya Le	RESOU	TUES DE	PT.
المساوح			ST	(,,	S	ÄĽĚM, OF	REGON	_
onun	nent	2000	Casing — diameter 2 in.	Materi	al	From	Tb	SWL
_	. 000	1/200	material PVC	Topsoi1		0	1	
<u>_</u>	6 2 3 6		Welded Threaded Glued	Clay brow		1	10	<del> </del>
	n 200	1000		Clay brow		10	14	
_	PO (8.1//	1 1111200	Liner	Sand brow		14	18	
	60.0		diameter in.		n w/gravel am.	18	24	
	C = 0 = 1	///wow	material		w/send br.	24	30	
			Welded Threaded Glued		silt rusty br.	30	42	<del>                                     </del>
Sea		## 5° 5			dium w/send br.	42	45	<del></del>
	n or S	2 8	— Well seal:		sand & silt blk.	45	52	<del>                                     </del>
7	- 0.99	3000	Material Bentonite Grt.	Send blk		52	56	
	n. 9 9 9	10000	Amount 6 Sacks		Send blk.	56	62	
	-"   E &	0.5 m	Grout weight 9.5		d to 1rg w/sand	62	79	
`			Borehole diameter	Sand blk		79	82	
	1000	100 Per C	in.		w/gravel pea	82	85	
	~ 0.50 0.50	กบิลย	Bentonite plug at least 3 ft. thick			85	87	
Filte	. Censen	7087	Screen	Clay gree		97	100	atti at at at a transmit
pack	2021	800	— material PVC					
	n. 10003	<b>B</b> 50,69	interval(s):					
	TO SON	<b>E</b> 8005	From 74 To 84	Bentonite	Holeplug used		APR 2	\$ 5 2008
87			From To	from -1 to			ATERRES	- 2000
	-   ₆ 0,0	<b>⊟</b> %0%0	Slot size .010 in.			`	4-111-1-6	LOBEGO
	PQ°01		Filter pack:	Date started	11/5/96	Completed	11/8/90	
	2002	7 608	Material Silica Sand					
	~ 800a	L 8000	Size $10-20$ in.		or Well Constructor Cert			
5) V	VELLTEST:	_			work I performed on the work I performed on the world is in compliance			
•	Pump Bail	er 🔥 Air	Flowing Artesian	standards. Materia	ils used and information			
	ermeability	Yield	1.5 GPM	knowledge and be	ief. 10603	) м	WC Number	r
	onductivity	PH	6.5	Signed	1 1000	<u>L</u>	Date	
	·		rtesian flow found ft.					
	/as water analysis done?			•	Well Constructor Certific			
	y whom?	→ 2f			sibility for the constructi			
	epth of strata to be analyze	xd. From	ft. to ft.		this well during the couring this time is in com			
	emarks:				port is true to the best o			
					ene l'M	/ 1	WC Number	10166

ORIGINAL & FIRST COPY-WATER RESOURCES DEPARTMENT SECOND COPY-CONSTRUCTOR THIRD COPY-CUSTOMER

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

Proposed Well 1, Arrowhead Farms, Inc., et al. Time since start of pumping (days) 0.9

Stream depletion (fraction of well discharge)

	•	Jenkins s2	s s2		<b>_</b>	Hunt s1		I	Hunt s2	nt s2		
		- Jenkins	— Jenkins s2 residual	nal	<ul><li> Hunt s3</li></ul>	lunt s3		I	⊞H.	Hunt s2 residual	dual	
Output for Hunt Stream Depletion, Scenerio 2 (s2):	unt Strear	n Depleti	ion, Scen	erio 2 (s		Time pump on = 245 days	np on = 2	45 days				ı
Days	30	09	6	120	150	180	210	240	270	300	330	360
Hunt SD s2	0.822	0.872	0.983	0.985	0.987	0.988	0.989	0.990	0.184	0.124	600.0	0.007
Qw, cfs	002'0	0.700	0.700	00.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700
H SD s2, cfs	9/5/0	0.610	0.688	0.690	0.691	0.692	0.692	0.693	0.129	0.087	900.0	0.005

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	2.0	0.7	0.7	cfs
Distance to stream	в	1440	1440	1440	ft
Aquifer hydraulic conductivity	¥	20	20	92	ft/day
Aquifer thickness	q	20	20	920	ft
Aquifer transmissivity	T	2500	2500	2500	ft*ft/day
Aquifer storage coefficient	S	0.0001	0.0001	0.0001	
Stream width	SM	200	200	200	ft

Coleman-Hunt-Model-Well-1



Streambed hydraulic conductivity	Ks	0.01	0.01	0.01	ft/day
Streambed thickness	sq	2	3	4	ft
Streambed conductance	spc	1	0.666666667	0.5	ft/day
Stream depletion factor (Jenkins)	sdf	0.082944	0.082944	0.082944	days
Streambed factor (Hunt)	sbf	9/5'0	0.384	0.288	

APR 2.5 2008

1 10602

											<b>X</b>			= K*b			= Ks							= Ks*ws/bs			$= (a^{4}2^{4})/(4T)$	$= sbc^{\Lambda}2/(4ST)$	$= (a^{4}2^{5})/(T)$	= sbc*a/T		normal		= erfc SQRT(sdf)	= erfc SQRT(sdf)
	Unit	ŧ	Ε	cfs	mdg	sdı	¥	Ε	Ħ	E	ft/day	gpd/ft*ft	m/day	ft*ft/day	gpd/ft	m*m/day	ft/day	gpd/ft*ft	m/day	Ħ	Е	Ħ	٤	ft/day	gpd/ft*ft	m/day	days		days						
	Scenario 3										20.00	374.00	15.24	2500.00	18700.00	232.38	0.01	0.02	0.00			4	1.219512195	5.00E-01	3.74E+00	1.52E-01	2.07E-02	0.25	8.29E-02	2.88E-01	0.00E+00		Scenario 3	9686.0	0.9896
	Scenario 2	1440	439.0243902	0.7	314.16	19.82	20	15.24390244	22	22.86585366	20.00	374.00	15.24	2500.00	18700.00	232.38	0.01	0.07	0.00	200	60.97560976	3	0.914634146	6.67E-01	4.99E+00	2.03E-01	2.07E-02	0.44444444	8.29E-02	3.84E-01	0.00E+00		Scenario 2	0.9896	0.9896
	Scenario 1										20.00	374.00	15.24	2500.00	18700.00	232.38	0.01	0.07	0.00			2	0.609756098	1.00E+00	7.48E+00	3.05E-01	2.07E-02	1	8.29E-02	5.76E-01	0.00E+00		Scenario 1	9686.0	0.9896
	Name	a_ft	E B	Qw_cfs	Qw_gpm	Qw_lps	b_ft	m_d	d_ft	d_m	X T	K_gal	Κ_m	T_ft	T_gal	T_m	Ks_ft	Ks_gal	Ks_m	ws_ft	ws_m	bs_ft	m_sq	sbc_ft	sbc_gal	sbc_m	sdf_1	sdf_2	sdf	sbf	hsdt			sdj	yps
APR SAUGH	25		00	MO MO	244		q		ס		Hydraulic conductivity			Transmissivity			Streambed hydraulic conductivity			Stream width		Stream thickness		Streambed conductance			Stream depletion factor 1 (intermediate calc)	Stream depletion factore 2 (intermediate calc)	Stream depletion factor (Jenkins)	Streambed factor (Hunt)	Hunt exponential stream depletion term		Transient Stream Depletion Output:	Transient Stream Depletion (Jenkins) at time, tp	Transient Stream Depletion (Hunt) at time, tp

Plot labels:

Transient Stream Depletion (Hunt) = 98.96% at 245.00days

APR 2.5 2008

			_																		_		_	_							
Stream Depletion	Hunt s3	2	sdn s3	0.062967311	0.114212493	0.15261411	0.183606493	0.20971328	0.23232234	0.252286551	0.270172303	0.286376384	0.301188948	0.314829186	0.32746711	0.339237483	0.350248683	0.360590757	0.370337341	0.379550717	0.388283769	0.396581808	0.404484074	0.439113899	0.467565313	0.512325883	0.546580813	0.574047873	0.596788562	0.616063567	0.632698345
Residual Str Depletion	Hunt s2	1	sdnr sz	0.081132683	0.144967213	0.191640342	0.228598885	0.259244897	0.285427941	0.308273751	0.32852388	0.346693281	0.36315565	0.378191701	0.392017455	0.404803158	0.416685503	0.427775663	0.438165722	0.44793259	0.457141328	0.465847165	0.47409787	0.509798206	0.538576861	0.582856817	0.615934689	0.641960526	0.663179052	0.680934489	0.696091454
Stream Depletion	Hunt s2	7	ZS ups	0.081132683	0.144967213	0.191640342	0.228598885	0.259244897	0.285427941	0.308273751	0.32852388	0.346693281	0.36315565	0.378191701	0.392017455	0.404803158	0.416685503	0.427775663	0.438165722	0.44793259	0.457141328	0.465847165	0.47409787	0.509798206	0.538576861	0.582856817	0.615934689	0.641960526	0.663179052	0.680934489	0.696091454
Residual Str Depletion	Jenkins s2		sajr sz	0.51958349	0.648844525	0.710036997	0.7474574	0.773346739	0.792622394	0.807692116	0.819891919	0.830030442	0.838629555	0.846043117	0.852520672	0.858243928	0.863348756	0.867939062	0.872095847	0.875883314	0.8793531	0.882547266	0.88550047	0.897517872	0.906404012	0.91889687	0.927434112	0.933741462	0.938646426	0.942601908	0.945879368
Stream Depletion	Jenkins s2	7	zs (ps	0.51958349	0.648844525	0.710036997	0.7474574	0.773346739	0.792622394	0.807692116	0.819891919	0.830030442	0.838629555	0.846043117	0.852520672	0.858243928	0.863348756	0.867939062	0.872095847	0.875883314	0.8793531	0.882547266	0.88550047	0.897517872	0.906404012	0.91889687	0.927434112	0.933741462	0.938646426	0.942601908	0.945879368
Stream Depletion	Hunt s1	7	Sdj S1	0.113953191	0.198128696	0.257008869	0.302106129	0.338504366	0.368900693	0.394904318	0.417554611	0.437562874	0.455437582	0.471554908	0.486200952	0.499598404	0.511923746	0.523319462	0.533901886	0.543767501	0.552996916	0.561658258	0.569809684	0.60445	0.631644766	0.672261332	0.701670611	0.724273974	0.742366223	0.757281707	0.769857997
Time	Since Pump	Stopped	[days]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time	Since Pump	Started	[days]	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.50	3.00	4.00	2.00	00.9	7.00	8.00	9.00
	ĕ																														

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

360 330 Proposed Well 2, Arrowhead Farms, Inc., et al. 300 270 240 Time since start of pumping (days) 210 180 150 120 90 9 8 0. 6.0 0.0 0.2 0.1

(fraction of well discharge)

Stream depletion

——Hunt s2	——Hunt s2 residual	
1		
Hunt s1	<ul><li> Hunt s3</li></ul>	i
- Jenkins s2	—•— Jenkins s2 residual	

0.005 0.003 330 900.0 0.700 0.004 300 0.178 0.700 0.993 0.700 0.695 Time pump on = 245 days 0.992 0.694 180 0.991 150 Output for Hunt Stream Depletion, Scenerio 2 (s2): 0.989 0.700 0.693 8 0.988 0.692 0.878 0.615 0.830 0.700 0.581 cfs Hunt SD s2 H SD s2, Qw, cfs Days

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Š	0.7	2.0		cfs
Distance to stream	a	1020	1020	1020	Ħ
Aquifer hydraulic conductivity	¥	920	95	09	ft/day
Aquifer thickness	q	90	09	09	¥
Aquifer transmissivity	1	2500	2500	2500	ft*ft/day
Aquifer storage coefficient	S	0.0001	1000:0	0.0001	
Stream width	SM	200	200	200	H

Coleman-Hunt-Model-Well-2

APR 25 2008

-LIN MEGON

1 10602

Streambed hydraulic conductivity	Ks	0.01	0.01	0.01	ft/day
Streambed thickness	sq	2	3	4	ft
Streambed conductance	oqs	1	0.666666667	0.5	ft/day
Stream depletion factor (Jenkins)	sdf	0.041616	0.041616	0.041616	days
Streambed factor (Hunt)	sbf	0.408	0.272	0.204	

APR 25 2008

	ı										1			ı			ı								
	Scenario 2	1020	310.9756098	0.7	314.16	19.82	20	15.24390244	75	22.86585366	20.00	374.00	15.24	2500.00	18700.00	232.38	0.01	0.07	0.00	200	60.97560976	3	0.914634146	6.67E-01	4.99E+00
	Scenario 1										20.00	374.00	15.24	2500.00	18700.00	232.38	10.0	0.07	0.00			2	0.609756098	1.00E+00	7.48E+00
	Nате	a_ft	a m	Qw_cfs	Qw_gpm	Qw_lps	b_ft	m_d	J P P	۳ م	K	K_gal	K_m	T_ff	T_gal	m_T	Ks_ft	Ks_gal	Ks_m	ws_ft	ws_m	ps_ft	m_sq	sbc_ft	sbc_gal
APR 2			0.8	MO MO			q		q		Hydraulic conductivity			Transmissivity			Streambed hydraulic conductivity			Stream width		Stream thickness		Streambed conductance	

= K*b

m/day ft*ft/day

**¥** 

ft/day gpd/ft*ft

374.00

15.24

50.00

gpm

Ε

Scenario 3

g

**≠** E

**≠** E

= Ks

ft/day

0.01 0.00

gpd/ft*ft

m/day

**#** ٤

m*m/day

232.38

gpd/ft

18700.00

2500.00

	= erfc SQRT(sdf)	= erfc SQRT(sdf)-hsdt
Scenario 3	0.9926	0.9926
Scenario 2	0.9926	0.9926
Scenario 1	0.9926	0.9926
	sdj	sdh
ransient Stream Depletion Output:	ransient Stream Depletion (Jenkins) at time, tp	ransient Stream Depletion (Hunt) at time, tp

 $= (a^{A}2^{*}S)/(4T)$  $= sbc^{\Lambda}2/(4ST)$  $= (a^{A}2^{*}S)/(T)$ 

= sbc*a/T

2.04E-01 0.00E+00

days

4.16E-02

4.16E-02 4.08E-01 0.00E+00

= Ks*ws/bs

ft/day

**≠** E

1.219512195 5.00E-01 3.74E+00

2.03E-01 1.04E-02 0.44444444 4.16E-02 2.72E-01 0.00E+00

3.05E-01

sbc_m

sdf 2 sdf 1

Stream depletion factore 2 (intermediate calc) Stream depletion factor 1 (intermediate calc)

Stream depletion factor (Jenkins)

Streambed factor (Hunt)

sdf sbf hsdt

Hunt exponential stream depletion term

1.04E-02

gpd/ft*ft

m/day

1.52E-01 1.04E-02

days

0.25

Plot labels:

# 

APR 2 5 2008

VATER RESCUEDES LEMI
SALEM, OREGON

Transient Stream Depletion (Hunt) = 99.26% at 245.00days

Time Since Pump Stopped [days] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Depletion Hunt s1	Stream	Kesidual Ctr Doplotion	Stream	Residual Ctr Depletion	Stream
	Depletion Hunt s1		2	400	200	
	Hunts	Depletion	our Depletion	Depletion	חום הבלובווסוו	Depletion
		Jenkins s2	Jenkins s2	Hunt s2	Hunt s2	Hunt s3
	:	:	:	:	:	:
	sdj s1	sdj s2	sdjr s2	sdh s2	sdhr s2	sdh s3
	0.151802396	0.648276461	0.648276461	0.108487918	0.108487918	0.084367642
	0.238419431	0.747034307	0.747034307	0.17508451	0.17508451	0.13821808
	0.296848851	0.792270908	0.792270908	0.222119994	0.222119994	0.177234328
-	.340921212	0.819584877	0.819584877	0.258830315	0.258830315	0.208285121
_	0.376185392	0.838353499	0.838353499	0.289023925	0.289023925	0.234237273
	0.405468908	0.852267795	0.852267795	0.314684854	0.314684854	0.256599181
0.0	0.430420448	0.863114057	0.863114057	0.336992408	0.336992408	0.276275431
0.0	0.452089337	0.871875899	0.871875899	0.356709834	0.356709834	0.293856632
0.0	0.471185881	0.879145431	0.879145431	0.374363457	0.374363457	0.30975219
0.0	0.488214171	0.885303231	0.885303231	0.390331008	0.390331008	0.324258917
0.0	0.50354448	0.890606529	0.890606529	0.404894154	0.404894154	0.337599569
0.0	0.517457268	0.895236271	0.895236271	0.418269192	0.418269192	0.349946025
0.0	0.530169838	0.899323936	0.899323936	0.430625525	0.430625525	0.361433952
_	0.541854032	0.902967668	0.902967668	0.442098692	0.442098692	0.372172476
0.0	552647856	0.906242409	0.906242409	0.452798849	0.452798849	0.382250794
0.0	562664065	0.909206507	0.909206507	0.462816777	0.462816777	0.391742407
0.0	571995633	0.911906162	0.911906162	0.472228207	0.472228207	0.400710183
0.0	580720386	0.91437849	0.91437849	0.481097076	0.481097076	0.409206182
0.0	588903845	0.916653703	0.916653703	0.489477563	0.489477563	0.41727534
0.0	596601783	0.918756675	0.918756675	0.497416385	0.497416385	0.424956407
0.0	629278176	0.927308588	0.927308588	0.531731937	0.531731937	0.458584638
0.0	654893143	0.933626795	0.933626795	0.559356847	0.559356847	0.486178277
0.0	693096286	0.942502517	0.942502517	0.601806346	0.601806346	0.529536899
0.0	0.720722908	0.948563775	0.948563775	0.633479752	0.633479752	0.562682787
0.0	0.741938593	0.95303994	0.95303994	0.658381423	0.658381423	0.589241674
0.0	0.758910193	0.956519844	0.956519844	0.678672363	0.678672363	0.611219332
0.0	0.772895709	0.959325521	0.959325521	0.695644681	0.695644681	0.629840447
0.0	0.784683894	0.961649886	0.961649886	0.710128482	0.710128482	0.645906074
0.0		0.963616486	0.963616486		0.722686439	<b>Characterization</b>