APPLICATION FOR ALLOCATION AND USE OF CONSERVED WATER

List of Exhibits

- Exhibit A: SCID Affidavit Authorizing OWT to File Application
- **Exhibit B: Water Right Certificate**
- **Exhibit C: Description of Current System**
- **Exhibit D:** Project Description
- **Exhibit E: Map Showing Project**
- **Exhibit F:** Project Budget
- **Exhibit G: Land Use Information Form**
- **Exhibit H: ODFW Statement of Beneficial Use**
- **Exhibit I:** Evidence of Use
- Exhibit J: SCID Manager Letter Regarding Consultation
- Exhibit K: Water Right Transfer Agreement
- **Exhibit L: Explanation of Conserved Water Allocation**
- **Exhibit M: Cloverdale Ditch Seepage Loss Analysis**

Exhibit A

SCID Affidavit Authorizing OWT to File Application

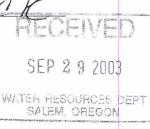
AFFIDAVIT

STATE OF OREGON	
County of Deschutes	

)ss)

I, Marc Thalacker, being first duly sworn, hereby depose and swear to the following:

- I am the manager of the Squaw Creek Irrigation District (SCID), which is responsible for the management and delivery of the water described under water rights certificate 74135. Water rights certificate 74135 is issued in the name of the SCID.
- 2. In my position as manager of the SCID, I have administrative responsibility for the day-to-day operations of the SCID.
- 3. The SCID Board of Directors, by a vote taken on February 1, 2000, authorized entering into a contract with the Deschutes Basin Resource Conservancy to obtain funding for the construction of the Cloverdale Ditch Pipeline Project. One key provision of that contract is that SCID agree to have OWT prepare and file an application to put 3.0 cfs or 50% of the conserved water (whichever is greater) through the State's conserved water project to be transferred to legally protected instream flows.
- 4. I hereby authorize OWT to file the conserved water application for the Cloverdale Ditch Pipeline Project on behalf of the SCID.


IN WITNESS WHEREOF, I hereunto set my hand this 15 day of February, 2001.

By:02

Marc Thalacker Squaw Creek Irrigation District 68000 Hwy 20 W. Sisters, OR 97759

	This instrument was	subscribed and sworn	before me on this	15 day of FEBRUARY
2001,	by Marc Thalacker.		hand.	Barmante

OFFICIAL SEAL JOYCE G BURDICK NOTARY PUBLIC - OREGON COMMISSION NO. 304872 MY COMMISSION EXPIRES SEP. 17, 2001 NOTARY PUBLIC FOR OREGON My Commission Expires:

AFFIDAVIT

STATE OF OREGON

))ss

)

County of Deschutes

I, Marc Thalacker, being first duly sworn, hereby depose and swear to the following:

- 1. I am the manager of the Squaw Creek Irrigation District (SCID), which is responsible for the management and delivery of the water described under water rights certificate 74135. Water rights certificate 74135 is issued in the name of the SCID.
- 2. In my position as manager of the SCID, I have administrative responsibility for the day-to-day operations of the SCID.
- 3. The SCID Board of Directors, by a vote taken on February 1, 2000, authorized entering into a contract with the Deschutes Basin Resource Conservancy to obtain funding for the construction of the Cloverdale Ditch Pipeline Project. One key provision of that contract is that SCID agree to have OWT prepare and file an application to put 3.0 cfs or 50% of the conserved water (whichever is greater) through the State's conserved water project to be transferred to legally protected instream flows.
- 4. I hereby authorize OWT to file the conserved water application for the Cloverdale Ditch Pipeline Project on behalf of the SCID.

IN WITNESS WHEREOF, I hereunto set my hand this 15 day of February, 2001.

By:ma

Marc Thalacker Squaw Creek Irrigation District 68000 Hwy 20 W. Sisters, OR 97759

This instrument was subscribed and sworn before me on this 15 day of February 2001, by Marc Thalacker.

OFFICIAL SEAL JOYCE G BURDICK NOTARY PUBLIC - OREGON COMMISSION NO. 304872 MY COMMISSION EXPIRES SEP. 17, 2001 NOTARY PUBLIC FOR OREGON My Commission Expires:

SEP

WATCH RESOURCES DEP SALEM, OREGON

<u>Exhibit B</u>

Water Right Certificate

1

.

RECEIVED

SEP 2 9 2003

WLTER RESOURCES DEPT SALEM, OREGON

.

COUNTY OF DESCHUTES

CERTIFICATE OF WATER RIGHT

THIS CERTIFICATE ISSUED TO

SQUAW CREEK IRRIGATION DISTRICT PO BOX 2230 SISTERS, OREGON 97759

confirms the right to use the waters of SQUAW CREEK, a tributary of THE DESCHUTES RIVER, for IRRIGATING 7,567.76 ACRES, POND MAINTENANCE, INDUSTRIAL USE, AND STOCK WATER.

This right was confirmed by decree of the Circuit Court of the State of Oregon for CROOK County. The decree is of record at Salem, in the Order Record of the WATER RESOURCES DIRECTOR, in Volume 1, at Pages 121, 122, 123, 124, 435, 438, 445, 472, and 473. The dates of priority are 1869, 1885, 1887, 1889, 1893, 1895, 1895, 1899, 1900, 1901, 1903, and 1904.

The amount of water to which this right is entitled is limited to an amount actually beneficially used and shall not exceed 153.02 CUBIC FEET PER SECOND, BEING 151.35 CFS FOR IRRIGATION, 1.57 CFS FOR POND MAINTENANCE AND 0.10 CFS FOR INDUSTRIAL USE, or its equivalent in case of rotation, measured at the point of diversion from the source. The maximum diversion rate by priority date is:

1		
Priority	Acres (equivalent)	Maximum CFS
1869	48.00	0.96
1885	79.05	1.58
1887	150.00	3.00
1889	201.50	4.03
1893	39.50	0.79
1895	5716.75	114.34
1899	108.80	2.18
1900	54.00	1.08
1901	22.30	0.45
1903	360.60	7.21
1904	870.60	17.41

The point of diversion is located as follows:

SW¼ SW¼, SECTION 21, T. 15 S., R. 10 E., W.M.; 998 FEET NORTH AND 1211 FEET EAST FROM THE SW CORNER OF SECTION 21.

The amount of water used for irrigation, together with the amount secured under any other right existing for the same lands, is limited to ONE- FIFTIETH of one cubic foot per second per acre, or its equivalent for each acre irrigated during the irrigation season of each year.

A description of the place of use to which this right is appurtenant is as follows:

SEP 2 9 2003

7613

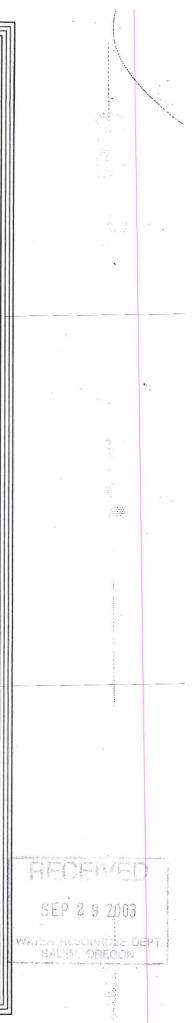
SEE NEXT PAGE

									-			
		1-							and the second			
												Page
Lot	q	2	Tax lot	Acr	tes I	ype	Priority	Owner				
	SEX	SE ¼	1300	34.		IRR		Cooper,	Glenn			
					Sect	tion 1	19					
	SWX		1401	17.		IRR		Cooper,				
		NE¼	1401	23.		IRR		Cooper,				
		NEX	1401	8.	50	IRR		Cooper,				
	NEX	NW1⁄4	1401	22.	00	IRR		Cooper,				
	SWX	NW¼	1401	8.	50	IRR	1.904	Cooper,	Glenn			
	SEX	NW¼	1401	17.	00	IRR		Cooper,				
	SEX	NW %	1401	23.	00	IRR	1904	Cooper,	Glenn			
	NWX	SW1/	1401	18.	00	IRR	1904	Cooper,	Glenn			
	NW1	SW%	1401	4.	00	POND	1904	Cooper,	Glenn			
	SWX	SWX	1401	30.	00	IRR		Cooper,				
		SE%		4.		IRR		Cooper,				
		SE%	1401		00	IRR		Cooper,				
	1111/4	0DA	1101	V - '		tion 2		cooper,	0101111			
					000							
	NTWI	NW¼	1401	39.	0.0	IRR	1895	Cooper,	Clenn			
		NW%		37.						c		
			1900			IRR	1895	Mulkey,				
		SW1/	1900	21.		IRR		Mulkey,			200 C	
		SW%		8.		IRR	1899	Mulkey,				
		SW1/		11.		IRR	1904	Mulkey,		&	Phyllis	
	SW%	SW1/	2000	16.		IRR	1895	Kidson,	Don			
					Sec	tion 2	29					
	NEX		1401	11.	00	IRR	1895	Cooper,	Glenn			
	NE%	NE¼	1401	30.	00	IRR	1904 "	Cooper,	Glenn			
	SWX	NE%	1900	2.	00	IRR	1895	Mulkey,	David	δc	Phyllis	
	SWX	NE¼	1900	14.	00	IRR	1904	Mulkey,	David	&	Phyllis	
	SEX	NE¼	1900	38.	00	IRR	1895	Mulkey,	David	&	Phyllis	
	SE%	NE%	1900	1.		POND		Mulkey,				
		SE%	1900	40.		IRR		Mulkey,				
		SE%		20.		IRR		Mulkey,				
		SE%		6.		IRR		Kidson,		-		
		SE%		0.1		POND		Kidson,				
	SEX		2000	9.		IRR		Kidson,				
	36%	SE¥	2000	э.				Kidson,	Don			
					Sec	tion 3	50					
	NEL	NE¼	2000	9.	0.0	IRR	1895	Kidson,	Don			
				6.								
		NE%				IRR		Kidson,				
		NEX		8.		IRR		Kidson,				
			2000	13.		IRR		Kidson,				
			2100			IRR		Page, Ri				
	SEX	SWX	2100	25.	00	IRR		Page, Ri	chard			
					Sec	tion 3	31					
	NW1/4	NW1/4	2000	1.		IRR		Kidson,	Don			
						tion 3						
			Townsh	ip :	13 SOI	ith, R	lange 12	East, W	.M.			
		NE%		2.		IRR		Hurtley,				
		SE%		2.		IRR		Hurtley,				
	NE%	SEX		1.	50	IRR		Hurtley,				
	NEX	SE%	900	1.	50	IRR		Hurtley,				
		SE%		2.	50	IRR	1895	Hurtley,	David	1 &	Judy	
	NWX	SE%	2400	1.	50	IRR		Hurtley,				
				2.		IRR		Hurtley,				
		SEX		4.		IRR		Hurtley,				
		SE%			00 .	IRR		Hurtley,				
		SE%		1.		IRR		Hurtley,				
		SEX		12.		IRR		Hurtley,				
	~ <i>~M</i>	JUA	2000	4£,	~~	± 1/1/	1095	nurciey,	Dav10	л ос	Judy	
						200			Sen 1	10	CARLES STA	

١.

.

RECEIVED


SEP 2.9 2003

WATER RESOLATES DEPT

						and the second second	
				_			Page 3
Lot	άÖ	Tax_lot	Acres	Type	Priority	<u>Owner</u>	
	SE% SE%	2501	4.00	IRR	1895	Hurtley, David & Judy	
	SE% SE%	2502	5.00	IRR	1895	Hurtley, David & Judy	
	SEX SEX		3.00		1895	Hurtley, David & Judy	
	SEX SEX		4.00		1895	Hurtley, David & Judy	
				ection			
		Townsh				East, W.M.	
			<u>F</u>			1	
	NEX SWX	101	5.00	IRR	1895	Long Hollow Ranch	
	SWX SWX		18.00	IRR		Long Hollow Ranch	
	SWX SWX		4.00		1,904	Long Hollow Ranch	
			32.00			Long Hollow Ranch	
	SEX SWX		2.00				
	NWX SEX	101	16.00	TDD	1895		
	SWX SEX	101	36.50			Town Hallow Damah	
						Long Hollow Ranch	
	SE% SE%	101	26.00		1895	Long Hollow Ranch	
			S	ection	1	Contract West States of Contract	
	SE% SE%	101	11.00	IRR	1895	Long Hollow Ranch	
	OUA OUA	101		ection		-	
				0001011	2		
	NEX NEX	101	25.50	IRŔ	1895		
	NEX NEX		1.00				
	NWX NEX	101	17.50			Long Hollow Ranch	
	NW% NE%		2.50	IRR		Long Hollow Ranch	
	NE% NW%		4.00		1895	Long Hollow Ranch	
	NEA MAA	N.		ection		Long noriow Runch	
			0		<u> </u>		
	NEX NEX	103	23.50	IRR	1895	Long Hollow Ranch	
	NWX NEX	103	8.50	IRR	1895	Long Hollow Ranch	
	NWX NWX	100	6.00	IRR	1895	Long Hollow Ranch	
	NWX NWX	100	3.00	/ IRR	1904	Long Hollow Ranch	
			S	ection	12		
	NWX NEX		5,00	IRR	1895	Simon, Jim	1.5 6 1
	SWX NEX	300	0.68	IRR	1895	Friend, Chester & Pame	
	SEX NEX	401	14.00	IRR	1895	Friend, Chester & Pame	la
	NEX NWX	200	19.50	IRR	1904	Simon, Jim	
	SWX NWX	500	13.50	IRR	1895	Simon, Jim	
	SE% NW%	500	5.50	IRR	1895	Simon, Jim	
	NE% SW%		8.00	IRR	1895	Simon, Jim	
	NWX SWX	500	33.00	IRR	1895	Simon, Jim	
	SWX SWX	700	21.50	IRR	1895	Kavanagh, Geraldine	
	SWX SWX		0.50	IRR	1904	Kavanagh, Geraldine	
	SWX SWX		4.00	IRR	1895	Kavanagh, Geraldine	
	SEX SWX		5.87	IRR	1895	Sanders, Ed & Betty	
			37.00	IRR	1895	Friend, Chester & Pame	la
	NEX SEX				1895	Friend, Chester & Pame	
	NW% SE%		1.50	IRR			10
	SW% SE%		22.00	IRR	1895	Sanders, Ed & Betty	
	SE% SE%		12.00	IRR	1895	Sanders, Ed & Betty	1
	SE% SE%	401	12.00	IRR	1895	Friend, Chester & Pame	la
			5	ection	13	president of	tion in the second s
	SE% SE%	700	3.50	IRR	1895	Kavanagh, Geraldine	
	SE% SE%	700	3.10	IRR	1904	Kavanagh, Geraldine	the second
			2.00	IRR	1895	Kavanagh, Geraldine	A SE
	SE% SE%	800		Section		Ravanagn, Sciardine	
				3002011			
	NE% SW%	600	2.10	IRR	1895	Elmore, Michael Elmore, Michael	0
	NE% SW%		2.10	IRR	1895	Elmore, Michael	i no
			2.90	IRR	1895	Elmore, Michael	2003
	SEX SWX SEX SWX		9.00	IRR	1895		
			2.90	IRR	1895	Elmore, Michael	3
	NW% SE%	100		Section			1
			-	,couron	22		
	Water and					the second se	

1		Contraction of the					
	T - 6	-0] - +		Th	Duri auri tu	Page 4
	Lot	đõ	<u>Tax lot</u>	,	Type	Priority	
		NEX NEX		6.00	IRR	1895	Kavanagh, Geraldine
		NEX NEX		1.50	IRR	1904	Kavanagh, Geraldine
		NEX NEX		15.00	IRR		Helikson, Paul & Sherry
		NE% NE%		1.50	IRR		Kavanagh, Geraldine
		SEX NEX		19.80	IRR		Helikson, Paul & Sherry
		SWX SWX		6.80	IRR		Burdick, Robert R.
		SEX SWX		4.20	IRR		Kelley, William & Mildred
		SEX SWX		7.50	IRR		Burdick, Robert R.
		NEX SEX		8.00	IRR		Vestal, William & Victoria
		NW% SE%		8.00	IRR		Volz, Charles & Jan
		NWX SEX		6.50	IRR		Volz, Charles & Jan Shiragi Mostafa & Nacka
		SWX SEX		1.80	IRR		Shirazi, Mostafa & Naoko
		SWX SEX		5.00	IRR		Burdick, Joyce G.
		SW% SE%	1100	5.20	IRR ection		Burdick, Joyce G.
				36	CCTOIL	6J	
		NE% NE%		2.70	IRR		Sanders, Ed & Betty
		NW% NE%		1.50	IRR		Sanders, Ed & Betty
		NWX NWX		6.00	IRR		Kavanagh, Geraldine
		NWX NWX	500	1.50	IRR	1895	Kavanagh, Geraldine
				Se	ection	24	
		NWX NEX	300	5.00	IRR	1895	Elmore, Michael
		NW% NE%	400	4.00	IRR	1895	Elmore, Michael
				Se	ection	27	
		SE% SW%	500	6.00	IRR	1895	Jeffers, Donald & Gail
		SEA DIA	500		ection		eercre, ponara a gall
		ALMA				1005	Devile men
		SEX SWX		8.00	IRR		Paulus, Tom
		SWX SEX		3.00	IRR		Wilson, Aaron & Helen
		SW% SE%	5802	11.00	IRR	1904	Wilson, Aaron & Helen
				56	ection	23	
		NEX SWX		40.00	IRR		Leason, Catherine
		SEX SWX		6.80	IRR		Leason, John
		SEX SWX	4800	19.60	IRR	1899	Leason, John
		NE% SE%	4700	16.50	IRR	1895	Richardson, Reece & Lorene
		NE% SE%		0.50	POND		Richardson, Reece & Lorene
		NEX SEX		3.00	IRR	1895	Richardson, Reece & Lorene
		SW% SE%		30.90	IRR	1895	Leason, John
		SWX SEX		8.60			Leason, John — — — —
		SE% SE%	4800	36.70	IRR	1895	Leason, John
				Se	ection	30	
		NEX NEX	4800	37.30	IRR	1895	Leason, John
		NW% NE%	4800	40.00	IRR	1895	Leason, John
		SWX NEX	4800	30.40	IRR	1895	Leason, John
		SEX NEX	4800	31.90	IRR	1895	Leason, John
		NEX NWX	4800	9.70	IRR	1895	Leason, John
		SEX NWX	5200	0.70	IRR	1895	Leason, John
	3	NWX SWX	1000	4.00	IRR	1895	Hurtley, David & Judy
	3	NWX SWX	300	4.00	IRR	1895	Hurtley, David & Judy
	3	NWX SWX	500	3.00	IRR	1895	Hurtley, David & Judy
	3	NWX SWX	600	2.00	IRR	1895	Hurtley, David & Judy
	3	NWX SWX	700	4.00	IRR	1895	Hurtley, David & Judy
	3	NWX SWX	800	2.50	IRR	1895	Hurtley, David & Judy
	3	NWX SWX	900	2.00	IRR	1895	Hurtley, David & Judy
	4	SWX SWX	200	22.00	IRR	1895	Hurtley, David & Judy
	4	SWX SWX		6.00	IRR	1895	Hurtley, David & Judy
		NEX SEX		36.60	IRR	1895	Leason, John
		NWX SEX	5300	16.10	IRR	1895	Leason, John

.

Lot	QQ	Tax lot	Acres	Type	Priorit	y Owner
	NW% SE%		1.60	IRR	1899	Leason, John
	SWX SEX		12.20	IRR	1895	Leason, John
	SE% SE%	5500	39.10 S (IRR ection 3	1895 31	Leason, John
	NE% NE%	100	29.00	IRR	1895	Longley, Tom
	NWX NEX	100	32.50	IRR	1695	Longley, Tom
	SWX NEX	100	7.00	IRR	1895	Longley, Tom
	SEX NEX		11.00	IRR	1885	Longley, Tom
	SWX SWX		16.00	IRR		King, Robert & Nancy
	SEX SEX		6.00	IRR	1895	Hicks, John & Barbara
	SEX SEX		12.50	IRR		Russell, Gordon
	SEX SEX	1702	1.50 Se	IRR ection 3		Hicks, John & Barbara
	NWX NWX	400	20.00	TOD	1005	Tennieur Men
100	NWX NWX		<u>20.00</u> 1.00	IRR POND	<u>1895</u> 1895	Longley, Tom — — — — — — — — — — — — — — — — — — —
	SEX NWX		5.00	IND	1904	S.C.I.D., Mac. Pond
	NEX SWX		8.50		1895	Carmell, John P. & Ramona J
	NEX SWX	3600	0.50	POND	1895	Carmell, John P. & Ramona J
	NWX SWX		2.50	IRR	1895	Nicholson, Brad & Molly
	SWX SWX		0.50	IRR	1895	Nicholson, Brad & Molly
	SWX SWX		7.00	IRR	1895	Johnson, Don
	SWX SWX		5.00	IRR	1895	Mason, Don R. & Willadean
	SWX SWX	γ.	8.00 6.00	IRR	1895	Johnson, Don Stophongen Behavit (Detudicie
	SWX SWX SWX SWX	` .3	1.00	IRR IRR	1895 1895	Stephenson, Robert & Patricia Jewett, Daniel & Jeanne
	SEX SWX		1.00	IRR	1895	Stephenson, Robert & Patricia
	SEX SWX		5.00	IRR	1895	Sage, L. Gordon & Linda
	SEX SWX		4.00	IRR	1895	Jewett, Daniel & Jeanne
	NWX SEX	500	9.10	, POND	1895	S.C.I.D., Mac. Pond
	SE% SE%		8.00	IRR	1895	McCullough, William & Shirly
	SE% SE%		7.50	IRR	1895	Gerland, Jacqueline
	SE% SE%	2600	7.50	IRR ection (1895	Gerland, Jacqueline
		Towns				l East, W.M.
1	NE% NE%	800	15.50	IRR	1895	Williams, Don & Myrtle
2	NW% NE%		27.00	IRR	1895	Williams, Don & Myrtle
	SWX NEX	800	25.00	IRR	1895	Williams, Don & Myrtle
	SEX NEX		10.00	IRR	1895	Williams, Don & Myrtle
3 _	NEX NWX			IRR		· #
	SEX NWX	800	7.00 S	IRR ection	1895 5	Williams, Don & Myrtle
-						
3	NEX NWX		40.00	IRR	1895	Page, Richard
	SEX NWX		1.50	IRR	1895	Page, Richard PECEN/
	SEX NWX NEX SWX	902 900	6.00 5.00	IRR IRR	1904	Page, Richard Wallace, Al
6	NE% SW%	1000	2.50	IRR	1895 1895	
6	NWX SWX	1000	6.00	IRR	1904	Wallace, Al SEP 2 9 200 Wallace, Al
7	SWX SWX		35.00	IRR	1895	
7	SWX SWX	1000	5.00	IRR	1904	I TIPILLE MESCHIOPPER
	SE% SW%	900	25.50	IRR	1895	Wallace, Al SALEM, OREGON
	SE% SW%		6.00	IRR	1904	Wallace, Al
	SWX SEX	800	18.00 S	IRR ection	1895 6	Williams, Don & Myrtle
	NWX NEX		11.00	IRR	1895	Williams, Don & Myrtle
	NWX NEX		11.50	IRR	1899	Williams, Don & Myrtle
1	NEX NWX NWX NWX		17.50 31.00		1895 1895	Wallace, Al Wallace, Al

Sec. 1

	and the second						
							Page 6
Lot	Qp	Tax lot	Acres	Type	Priority	Owner	
1	NWX NWX		0.50			Wallace, Al	1.0
4	SEX NWX			IRR IRR		Lawrence, David & Chr Powers, Sherode & Sus	
4	SW% SW% SE% SW%			IRR		Powers, Sherode & Sus	
	SEX SWX			POND		Powers, Sherode & Sus	
	SEX SWX	1401	1.00			Thalacker, Marc & Pam	
	SWX SEX					Thalacker, Marc & Pam	ela
	SW% SE%			POND	1904	Thalacker, Marc & Pam	ela
	SE% SE%	1401	11.50	IRR	895	Thalacker, Marc & Pam	ela
	SE% SE%	1401	6.00	POND		Thalacker, Marc & Pam	ela
			S	ection (7		
	SE% SW%	1400	15.40	IRR	1903	Barber, Rex	
	SE% SW%	1400	20.00	IRR	1904	Barber, Rex	
	NE% SE%	1400	29.00	IRR		Barber, Rex	
	SWX SEX	1400				Barber, Rex	-
			S	ection (8		
	NW% NE%			IRR		Barber, Rex	
	NW% NE%		10.40			Barber, Rex	
	NE% NW%		0.80	IRR		Barber, Rex	
	NEX NWX			IRR		Barber, Rex	
	SWX NWX	1401	32.50			Thalacker, Marc & Pam	ela
			50	ection :	1/		
	NE% NE%	1401	40.50	IRR	1895	Thalacker, Marc & Pam	ela
	NW% NE%		29.50	IRR	1895 `	Thalacker, Marc & Pam	nela
	SW% NE%		37.00	IRR		Thalacker, Marc & Pan	
	SE% NE%		32.50	IRR		Thalacker, Marc & Pam	
2	NEX NWX		27.50	IRR		Powers, Sherode & Sus	
1 2	NWX NWX SWX NWX		32.00			Powers, Sherode & Sus Powers, Sherode & Sus	
2	SW% NW%		38.50 38.00	IRR IRR		Powers, Sherode & Sus Powers, Sherode & Sus	
	NEX SWX		23.00	IRR		Powers, Sherode & Sus	
	NEX SWX		5.50	IRR		Peterson, Robert & Pa	
З	NWX SWX		34.00	IRR		Powers, Sherode & Sus	
з	NWX SWX		5.00	IRR		Peterson, Robert & Pa	
4	SW% SW%			IRR		Peterson, Robert & Pa	
	NW% SE%			IRR		Thalacker, Marc & Pan	
	NW% SE%			IRR		Thalacker, Marc & Pan	nela
	SW% SE%		18.50			Barber, Rex	
	SEX SEX	1400		ection :		Barber, Rex — — —	-
	SW% NE%		7.90			Barber, Rex	
	SE% NE%					Barber, Rex	
	SE% NW%	1400	0.40			Barber, Rex	
		Townsh		ection South, H		East, W.M.	
	MEN OF		-		_		
	NEX SEX		10.00			Cyrus, Keith & Connie Christeson Lee	2
	NE% SE% NE% SE%		1.50 0.30	IRR		Christeson, Lee Christeson, Lee	
	NE% SE%		37.00			Christeson, Lee	
	SE% SE%		1.20			Christeson, Lee	
		200		ection			
1	NEX NEX	100	22 70	TDD	1005	Thompson Onal	
2	NE% NE%		33.70 13.30	IRR IRR	1885 1885	Thompson, Opal Thompson, Opal	
2	NWX NEX		14.30	IRR		Thompson, Opal	
-	SWX NEX		3.70	IRR		Thompson, Opal	
			5.00	IRR	1885	Thompson, Opal	
	SEX NEX	100	3.00	dr 6 6 6 6	7000	THOUPDON! OPAL	

Star Star Bank

	Lot	<u>q</u> Q	Tax lot	Acres	Type	Priorit	y Owner	Page 7
		SE% NE%	100	27.30	IRR	1900	Thompson, Opal	
	3	NEX NWX	100	1.00	IRR	1900	Thompson, Opal	
	4	NW% NW%	100	6.00	IRR	1900	Thompson, Opal	
		NE% SE%	100	1.70 · Se	IRR ection 2	1900 2	Thompson, Opal	
		NE% NE%	100	7.00	IRR	190.	Lazy Z, Joan Hull	
		SEX NEX	100	11.00	IRR		Lazy Z, Joan Hull	
		NEX SEX	100	23.00	IRR		Lazy Z, Joan Hull	
		NW% SE%	100	23.00	IRR		Lazy Z, Joan Hull	
		SWX SEX	100	29.00	IRR		Lazy Z, Joan Hull	
		SEX SEX	100	31.00 Se	IRR ection]	1903 11	Lazy Z, Joan Hull	
		NEX NEX	100	35.50	IRR	1889	Cyrus, Willard & Mae	
		NWX NEX		10.70	IRR		-Stengel, Mary	
		NWX NEX	302	8.40	IRR	1895	Bartlemay, Anita	
		NWX NEX	303	7.90	IRR	1895	Bartlemay, Anita	
		NWX NEX	303	0.50	POND	1895	Bartlemay, Anita	
		SWX NEX	301	15.30	IRR	1895	Evered, James & Pat	
		SEX NEX	100	6.20	IRR	1889	Cyrus, Willard & Mae	
		NEX NWX	302	6.70	IRR	1895 1895	Bartlemay, Anita Bartlemay, Anita	
		NE% NW% NE% NW%	303 304	9.40 3.00	IRR IRR	1895	Bartlemay, Anita Bartlemay, Anita	
		NEX NWX	304	0.10	POND	1895	Bartlemay, Anita	
		NWX SWX	500	19.00	IRR	1904	Cyrus, Keith & Connie	
		SWX SWX	500	17.00	IRR	1904	Cyrus, Keith & Connie	
		NE% SE%	100	6.60	IRR	1895	Cyrus, Willard & Mae	
		NEX SEX	100	10,40	IRR	1904	Cyrus, Willard & Mae	
		NW% SE%	700	23.00	IRR	1904	Cyrus, Keith & Connie	
		SW% SE%	700	15.00	/ IRR	1895	Cyrus, Keith & Connie	
		SE% SE%	700	39.00 Se	IRR ection :	1895 12	Cyrus, Keith & Connie	
		NEX NEX	100	6.50	IRR	1885	Cyrus, Keith & Connie	
		NE% NE%	100	8.50	IRR	1895	Cyrus, Keith & Connie	
		NEX NEX	100	10.00	IRR		Cyrus, Keith & Connie	
		NEX NEX		7.50	IRR	1904	Cyrus, Keith & Connie	
		NWX NEX	100	0.55	IRR	1885	Cyrus, Keith & Connie	
		NW% NE%	100	9.50	IRR	1895	Cyrus, Keith & Connie	
		NW% NE% SW% NE%		26.00 6.00	IRR IRR	1904 1903	Cyrus, Keith & Connie Cyrus, Keith & Connie	
		SWX NEX	100	23.50	IRR	1904	Cyrus, Keith & Connie	Š
		SE% NE%	100	32.50	IRR	1903	Cyrus, Keith & Connie	
		SE% NE%	100	3.50	IRR	1904	Cyrus, Keith & Connie	OFF OFF
		NE% NW%	100	24.00	IRR	1903	Cyrus, Keith & Connie Cyrus, Keith & Connie	12 100
		NWX NWX	100	23.50	IRR	1904	Cyrus, Keith & Connie	0 8
		SWX NWX	100 100	8.00	IRR IRR	1904 1901	Cyrus, Keith & Connie Cyrus, Keith & Connie Cyrus, Keith & Connie	35 4
		SEX NWX	100	11.30 10.00	IRR	1901	Cyrus, Keith & Connie	ESO CO
		SE% NW% NE% SW%	500	0.50	IRR	1904	Cyrus, Keith & Connie	000 . C
		NEX SWX	500	5.50	POND	1904	Cyrus, Keith & Connie	
		NEX SWX	. 501	1.50	POND		Cyrus, Keith & Connie	
		NEX SWX	701	1.00	POND	1903	Cyrus, Keith & Connie	
		NEX SWX	702	2.50	POND		Cyrus, Keith & Connie	
		SW% SW%	700	0.60	IRR	1895	Ruffin, Charles & Bett	
		SEX SWX	700	4.90	IRR	1895	Ruffin, Charles & Bett	cy Jo
		SEX SWX	705	3.80	IRR	1895		
		NE% SE%	702	19.60	IRR	1904		
		NWX SEX	500	0.50	IRR	1904	Cyrus, Keith & Connie Cyrus, Keith & Connie	
		NWX SEX	702	19.50	IRR IRR	1904 1895	Taylor, James & Diana	
1111		SW% SE%	704	4.50	1. 1 × 1 × 1	2000	Taylor, James	

L.

1

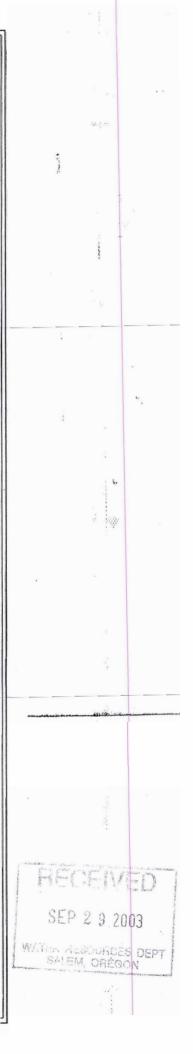
•

									Page 8
Lot	ą	2	<u>Tax lot</u>	Acres	Type	Priority	y <u>Owner</u>		Page o
	SW%	SE¥	705	5.50	IRR	1895		Jerry &	
	SWX	SE%	705	0.20		1895		Jerry &	
	SEX	SE%		1.50					& Sherry
	SE%	SE%	703	12.00	IRR	1895	-	James &	
	SE%	SE¥	704	5.50			Taylor,	James &	Diana
					Section	13			
	NE¥		100	36.00		190?		Joan Hu	
	NWX		100	26.00			-	Joan Hu	
	SWX		100	28.50			_	Joan Hu	
	SE%	NE¼	100	35.00			Lazy Z,	Joan Hu	11
					Section	14			
	NE¼	NE¥	405	6.50		1893			& Sherry
	NE¥	NEX	405	6.00	IRR	1895			& Sherry
	NEX	NEX	406	8.50	IRR	1893	Prete,	Gene & Ba	arbara
	NE%	NEX	406	5.50	IRR	1895	- +	Gene & Ba	
	NE%	NEX	407	2.00	IRR	1893			& Sandra
	NEX		407	2.00		1895			& Sandra
	NW1/	NE¥.	407	5.00	IRR	1893			& Sandra
		NE%	407	5.00	IRR	1895			& Sandra
	NWX	NE%	408	9.00	IRR	1893		e, Hugh (
	NW¥	NEX	408	17.00	IRR	1895		e, Hugh a	
	SWX	NE¼	301	18.00		1895		e, Hugh	
	SWX	NE%	403	13.40		1895	Giguier	e, Hugh a e, Hugh a	& Gail
	SWX	NE¼	403	0.20		1895 🕻	Giguier	e, Hugh	& Gail
		NEX	401	16.00		1895		e, Hugh	
		NEX	404	16.00		1895	-	e, Hugh	
	NEX		400	7.00		1893	-		& Patricia
	NEX			7.50			_		& Patricia
	NW%		200	32.00		1895		on, Kay	
	SWX		200	29.00		1895		on, Kay I	
	SE%		300	3.00				on, Kay	
	NWX		200	12.00				on, Kay	
	NW1			5.50		1895			McCarthy
	NWX			1.00					McCarthy
	SWX		800	3.50		1895			McCarthy
	NE%		500	2.00		1895	Herring		
		SEX	502	25.00		1895			& Patricia
		SE%	500	19.00			Herring		
		SEX		7.00				, Janet	. *
		SE% SE%		21.00 14.00			Herring		
		SEX SEX		2.00			Herring		
	SEM	3674	501		Section		Herring	, Janet	
	5 Percent							·	14.5
	NW%		600	10.00		1885			Barbara
	NWX		600	21.00		1895			Barbara
	NW¼			7.00					Barbara
	SW%		600						Barbara
	NE%		600	19.00		1895			Barbara
	NE%		600	2.10					Barbara
		NW1		6.00					Barbara
	NWX			4.50					Barbara
	NW¥	SE%	600	6.00			Sharpf,	Larry &	Barbara
					Section	26			
	NW¥	SWX	3200	40.00		1895	Runco,	Roy	
			_		Section			dig	
			Townsh	nip 15	South,	Range 10) East, V	V.M. 🖂	

• • 44 RECEIVED SEP 2 9 2003 WALCH MEUCOROES DEPT SALEAN, OREGON

3	
1	
1	

	1.11	
	1.2.2	
	1	
	1.1.1.1	
	1	
	· · · · · ·	
	1.12	
	1	
	×	
1. C		

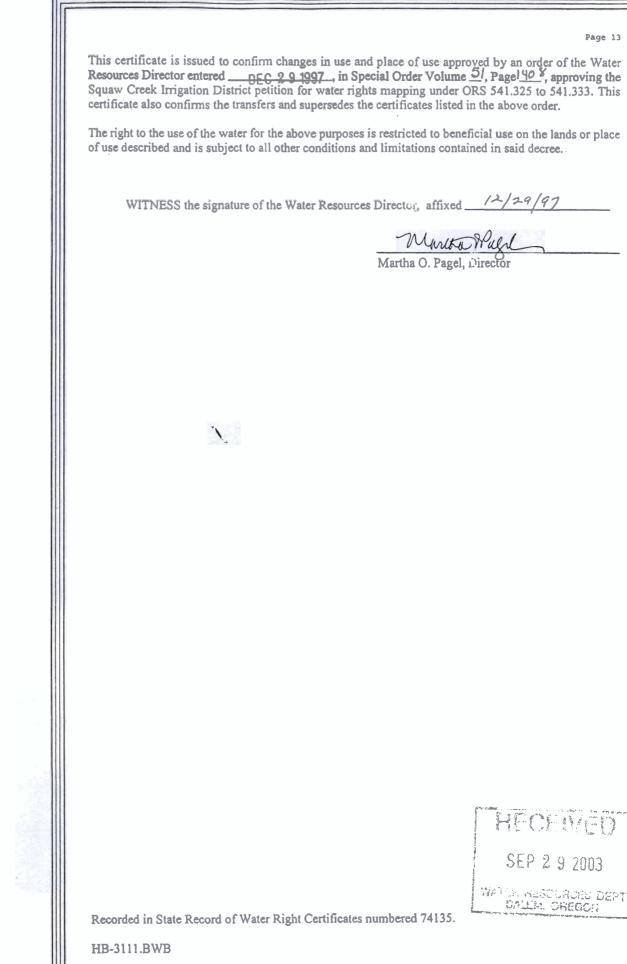


Lot	<u>q0</u>	Tax lot	Acres	Type	Priority	<u>Owner</u>
4	NWX NWX	1101	30.00	IRR	1895	Sharp, Clay
			S	ection	3	
1	NE% NE%	600	15.00	IRR	1895	Kendrick, Jerry & Jo
2	NWX NEX			IRR	1895	Hermens, Marvin & Virginia
	SWX NEX			IRR	1895	Hermens, Marvin & Virginia
3	NEX NWX	201	39.50	IRR	1895	Keeton, Arland & Jean
4	NWX NWX	200	11.00	IRR		Johnson, Don
4	NWX NWX			IRR		Keeton, Arland & Jean
1	NWX NWX		4.50	IRR		Hufstader, Rick
	SWX NWX			IRR		Keeton, Arland & Jean
	SWX NWX		3.00	POND		Keeton, Arland & Jean
	SEX NWX		40.50	IRR	1895	Keeton, Arland & Jean
	NEX SWX			IRR		Hahn, Frederick & Elaine
	NWX SWX			IRR	1895	Keeton, Arland & Jean
	SWX SWX		34.00	IRR		Bauer, Kimerly
	SWX SWX			POND		Bauer, Kimerly
	SEX SWX			IRR		Brennan, Casey
	NEX SEX			IRR		
						Hermens, Marvin & Virginia
	NWX SEX			IRR		Hermens, Marvin & Virginia
	SWX SEX		39.00	IRR		Hermens, Marvin & Virginia
	SE% SE%	100		IRR		Hermens, Marvin & Virginia
			5	ection	4	
1	NE% NE%	102	9.00	IRR	1895	Graham, Bonnie
1	NEX NEX	103	13.00	IRR	1895	Wilson, Burt & Jackie
	NEX NEX		7.50	IRR	1895	Rogers, John & Sharon
	SWX NEX		4.50	IRR	1895	Simon, Cheryle
		105	19.00	IRR	1895	Murphy/Berge, Janice/Dick
	SEX NEX				1895	Murphy/Berge, Janice/Dick
4	NWX NWX				1895	
	NWX NWX NWX NWX	302				Barclay, David
1			7.50	IRR	1895	Tewalt, Richard & Norma
1	NWX NWX		8.50			Tewalt, Richard & Norma
	SWX NWX	301	17.50	IRR		Pardo, Sharon
	SWX NWX SWX NWX	304	17.50	IRR		York, Ervin
				IRR		York, Ervin
	SEX NWX		1.00	IRR	1895	
	NEX SWX	400	36.00	IRR	1895	Redfield, Tygh
		400	36.00	IRR		Redfield, Tygh
	SWX SWX			IRR	1895	Redfield, Tygh
	SE% SW%	400		IRR	1895	Redifierd, Tygn and
			1.00	POND	1895	Redfield, Tygh
		500	18.00	IRR	1889	Clemens, Cecile
	NE% SE%	500	17.00	IRR	1895	Clemens, Cecile
	NWX SEX	500	7.00	IRR	1889	Clemens, Cecile 🔛 💬
	NW% SE%	500	25.00	IRR	1895	Clemens, Cecile
	SW% SE%		37.00	IRR	1895	Clemens, Cecile
	SE% SE%	500	31.00	IRR	1895	Clemens, Cecile
			S	ection	5	
		100	27 00		1005	Column David Manuala
1	NEX NEX		37.00	IRR	1895	Salmon, Roy & Marcia
1	NEX NEX		0.30	POND		Salmon, Roy & Marcia
2			0.20	IRR	1895	Salmon, Roy & Marcia
	SWX NEX			IRR	1889	Sokol, Dorro
	SE% NE%		2.00	IRR	1895	Salmon, Roy & Marcia
	SEX NEX		0.50	POND		Salmon, Roy & Marcia
	SEX NEX		12.00	IRR	1889	Sokol, Dorro
	SEX NEX	101	20.00	IRR	1895	Sokol, Dorro
	SEX NEX	101	5.50	IRR	1903	Sokol, Dorro
3	NEX NWX	1000	5.00	IRR	1895	Carollo, Ed & Barbara
3	NEX NWX	700	2.50	IRR	1895	Hurtley, David & Judy
			2.00		1895	Hurtley, David & Judy

								Page 10
	Lot	gQ	Tax lot	Acres	Type	Priority	Owner	Nage In
	3	NEX NWX	900	2:00	IRR	1895	Hurtley, David & Judy	
	4	NWX NWX	1600	7.50	IRR		Cyrus, Keith & Connie	
	4	NWX NWX	1600	12.50	IRR		Cyrus, Keith & Connie	
	4	NWX NWX		1.00	IRR		Cyrus, Keith & Connie	
	5	SWX NWX		3.50	IRR		Cyrus, Keith & Connie	
11	5	SWX NWX		4.50			Cyrus, Keith & Connie	
	5	SWX NWX		2.00			Cyrus, Keith & Connie Hurtley, David & Judy	
		SEX NWX SEX NWX		1.50 0.50			Hurtley, David & Judy	
1		SEX NWX		1.50			Hurtley, David & Judy	
1		SEX NWX		12.00		1895	Hurtley, David & Judy	
		NEX SWX		17.50			Hurtley, David & Judy	
		NEX SWX		1.00	IRR	1895	Hurtley, David & Judy	
		NE% SW%		8.50			Hurtley, David & Judy	
1		NE% SW%		9.00		1887	Hurtley, David & Judy	
	6	NWX SWX		29.50			Cyrus, Keith & Connie	
	6	NW% SW%		0.50			Cyrus, Keith & Connie	
11	6	NWX SWX		1.50			Cyrus, Keith & Connie Cyrus, Keith & Connie	
	7	SW% SW% SE% SW%		35.00 8.50		1887 1887	Hurtley, David & Judy	
		SEX SWX		8.50		1887	Hurtley, David & Judy	
		SEX SWX		8.00		1887	Hurtley, David & Judy	
11		SEX SWX		8.50		1887	Hurtley, David & Judy	
11		NE% SE%	200	17.00		1889	Cyrus, Willard & Mae	
11		NE% SE%	200	20.00			Cyrus, Willard & Mae	
		NWX SEX	200	17.50	IRR		Cyrus, Willard & Mae	
		NW% SE%		19.50			Cyrus, Willard & Mae	
		SWX SEX		11.00		1889	Cyrus, Willard & Mae	
		SWX SEX		17.00			Cyrus, Willard & Mae	
		SEX SEX		9.30			Cyrus, Willard & Mae Cyrus, Willard & Mae	
		SE% SE% SE% SE%		22.00 1.00			Cyrus, Willard & Mae	
		SUA SUA	200		Section		Clanel Hanne a Hee	
		NE% NE%	100	2.00	IRR	1895	Sisters School Distric	et
	à.	NE% NE%		30.00		1895	Trachsel, Charles & Ri	ita
11		NWX NEX	300	31.50	IRR	1895	Trachsel, Charles & Ri	ita
1		SW% NE%	300	34.00	IRR	1895	Trachsel, Charles & Ri	ita
		SE% NE%		32.00	IRR	1895		
1	14	NE% NW%				1895	Trachsel, Charles & Ri	
	1	NWX NWX		38.00			Trachsel, Charles & Ri	
#	2	SWX NWX		21.00			Trachsel, Charles & Ri	
		SEX NWX NEX SWX		32.00			Trachsel, Charles & Ri Keeton, Boyd & Hazel	LLd
	3	NWX SWX				1895	Keeton, Boyd & Hazel	
	4	SWX SWX		28.00		1895	Keeton, Boyd & Hazel	
	4	SWX SWX	500	3.00			Keeton, Boyd & Hazel	
		SE% SW%		40.00		1895	Keeton, Boyd & Hazel	
		NE% SE%	600	38.50	IRR		Cyrus, Alvin	
		NE% SE%		0.50			Cyrus, Alvin	
11		NW% SE%		30.50			Cyrus, Alvin	
11		SW% SE%		40.00			Cyrus, Alvin	
		SE% SE%	600	39.00			Cyrus, Alvin	
					Section	/		
		NEX NEX		6.00		1889	Tumalo Farms	
		NE% NE%		4.00			Tumalo Farms	
		NWX NEX		35.00		1895		
		SWX NEX		41.00		1000	Tumalo Farms Tumalo Farms	
		SEX NEX		14.00 12.00			Tumalo Farms Tumalo Farms	
		SEX NEX NEX NWX		37.00		1895	Tumalo Farms	
ĮĮ		ned nud	200	57100		~~~~		

.

						Pa	ge :
Lot	Qp	Tax lot	Acres	Туре	Priority		
	NWX NWX	200	29.00	IRR	1895	Tumalo Farms	
	NWX NWX	200	1.00	POND		Tumalo Farms	
	SW% NW%	200	34.50	IRR		Tumalo Farms	
	SWX NWX	200	1.00	POND		Tumalo Farms	
	SE% NW% NE% SW%	200	40.00	IRR IRR		Tumalo Farms Jones, Aaron U.	
	NWX SWX	300	35.00	IRR		Jones, Aaron U.	
	NW% SW%	300	1.00	POND		Jones, Aaron U.	
	SWX SWX	400	14.00	IRR		Tambert, Bob & Sandy	
	SW% SW%	600	22.00	IRR		Srockway, Robert & Meg	
	SWX SWX	600	1.00	POND		Brockway, Robert & Meg	
	SEX SWX	500	13.00	IRR		Lambert, Bob & Sandy	
	SE% SW%	500	1.00	POND		Lambert, Bob & Sandy	
	SEX SWX	600	19.00	IRR	1895	Brockway, Robert & Meg	
	NE% SE%	100	38.50	IRR		Tumalo Farms	
	NWX SEX	100	41.00	IRR	1895	Tumalo Farms	
	SWX SEX	700	32.50	IRR		Tumalo Farms	
	SE% SE%	700	26.00	IRR		Tumalo Farms	
			S	ection	В		
	NE% NE%	400	7.50	IRR	1895	Keeton, Arland & Jean	
	NWX NEX	400	31.00	IRR		Keeton, Arland & Jean	
	NEX NWX	100	3.40	IRR		Keeton, Arland & Jean	
	NE% NW%	100	4.00	IRR		Keeton, Arland & Jean	
	NEX NWX	100	19.10	IRR		Keeton, Arland & Jean	
	NEX NWX	100	4.00	POND	1895	Keeton, Arland & Jean	
	NWX NWX	100	6.60	IRR		Keeton, Arland & Jean	
	NWX NWX	100	16.00	IRR		Keeton, Arland & Jean	
	NWX NWX	100	17.90	IRR		Keeton, Arland & Jean	
	SWX NWX	100	4.00	IRR		Keeton, Arland & Jean	
	SE% NW%	100	2.00 S	IRR ection		Keeton, Arland & Jean	
		1000					
	NEX NWX	200	11.00	IRR		Resnick, Bruce & Tracy	
	NWX NWX	200	36.00	IRR		Resnick, Bruce & Tracy	
	SW% NW%	300	19.50	IRR		Vavrinec, Michael & Jamio	
	SWX NWX	400	3.50	IRR		Vavrinec, Michael & Jami	
	SEX NWX	400	2.10	IRR IRR		Vavrinec, Michael & Jamie Vavrinec, Michael & Jamie	
	SEX NWX	500	5.40 S	ection		vavrinec, Michael & Jami	2
	NEX NEX	100	38.00	TDD	1895	Friend, Robert & Sandra	
	NE% NE%	100	36.00	IRR IRR		Friend, Robert & Sandra Friend, Robert & Sandra	
	NW% NE%		1.00	POND		Friend, Robert & Sandra Friend, Robert & Sandra	
	SWX NEX	800	23.50	IRR	1895	Cyrus, Willard & Mae	
	SWX NEX		0.04	POND		Cyrus, Willard & Mae	
	SEX NEX		1.50	IRR		Cochran, Gene & Mary Jo	
	SEX NEX	800	14.20	IRR	1895	Cyrus, Willard & Mae	
	SEX NEX	900	12.50	IRR	1895	Cochran, Gene & Mary Jo	
	NEX NWX	200	16.00	IRR	1895	Stotts, Larry & Carol	
	NE% NW%		7.50	IRR	1895	Fetrow, Scott & Lisa	H-MAREPA-
	NE% NW%	301	1.00	IRR	1895	Fetrow, Scott & Lisa	104
	NEX NWX		3.90	IRR	1895	Knott, Leonard & Kay	and all
	NEX NWX		0.10	POND		Vachh Toomand F Van 198	1
1	NWX NWX	300	6.00	IRR	1895	Fetrow, Scott & Lisa Fetrow, Scott & Lisa Knott, Leonard & Kay Cyrus, Willard & Mae	E L
1	NWX NWX		0.50	POND	1895	Fetrow, Scott & Lisa	3
1	NWX NWX	400	10.00	IRR	1895	Knott, Leonard & Kay	5
	SWX NWX	700	22.60	IRR	1869	Cyrus, Willard & Mae	2
2	SWX NWX		4.16	IRR		Cyrus, Willard & Mae 🖓	
2	SWX NWX		0.30	POND		Cyrus, Willard & Mae	CEP7
	SEX NWX	700	12.00	IRR	1869		7
	SEX NWX	700	4.50	IRR	1895	Cyrus, Willard & Mae	1000


RECEIVED

.

-	Section Section					
and all the						
						Page 12
	NEX SWX	1601	4.00	IRR	1895	Currie, Albert Lee & Marcy
			7.00	IRR	1869	Cyrus, Willard & Mae
			2.00	IRR	1895	Cyrus, Willard & Mae
3	NWX SWX	1800	10.00	IRR	1901	Nulton, Karl & Patricia
3	NWX SWX			IRR	1895	Pray, Donald & Corrine
3	NWX SWX		1.00	IRR	1901	Pray, Donald & Corrine
3			6.40	IRR	1869	Cyrus, Willard & Mae
3	NWX SWX	700	2.20	IRR	1895	Cyrus, Willard & Mae
4	SW% SW%	2000	17.00	IRR	1895	MJM Ranch, Gatlin & MacNeill
4	SWX SWX		0.50	POND	1895	MJM Ranch, Gatlin & MacNeill
4	SWX SWX		11.00	IRR	1895	MJM Ranch, Gatlin & MacNeill
	SEX SWX	2000	17.00	IRR	1895	MJM Ranch, Gatlin & MacNeill
	SEX SWX	2100	17.50	IRR	1895	MJM Ranch, Gatlin & MacNeill
	SEX SWX	2200	0.50	POND	1895	Vermilyea, Grace
	NWX SEX		12.00	IRR	1895	Vermilyea, Grace
	SWX SEX		19.00	IRR	1895	Vermilyea, Grace
	SW% SE%	2300	0.50		1895	Vermilyea, Grace
				ction 1		a
	NE% NE%	2800	26.50	IRR	1895	Vetterlein, Don
	NW% NE%	2800	27.00	IRR	1895	Vetterlein, Don
	SWX NEX	2800	23.00	IRR	1895	Vetterlein, Don
	SE% NE%	2800	4.50	IRR	1895	Vetterlein, Don
	NE% NW%		3.50	IRR	1895	Vetterlein, Don
	NE% NW%		2.00	POND		Vetterlein, Don
	NW% NW%	2800	25.50	IRR	1895	Vetterlein, Don
	SWX NWX	2800	11.50	IRR		
	SW% NW%	2800	1.00	POND	1895	Vetterlein, Don Vetterlein, Don
	SE% NW%	3302	1.00	IRR	1895	Vetterlein, Don
	NE% SW%	2800	16.00	IRR	1895	Vetterlein, Don
	NWX SWX	2800	2.00	IRR	1895	Vetterlein, Don
	NWX SWX	2800	1.50	POND	1895	Vetterlein, Don
	NE% SE%	2501	2.00	IRR	1895	Vetterlein, Don
	NW% SE%	2800	15.50	IRR	1895	Vetterlein, Don
			Se	ction 2	20	
				-	4.0.5 -	
	NEX NWX			IRR	1895	Whitehead, Ron
	NEX NWX	200	2.00	IRR	1904	Whitehead, Ron
1	NWX NWX	200	1.10	IRR	1895	Whitehead, Ron
1	NWX NWX	201	10.00	IRR	1895	Kolbe, Eugene & Julie
1	NMX NMX	201	3.50	IRR	1904	Kolbe, Eugene & Julie
1	NWX NWX	99	11.00	IRR	1895	Buell, Jerry & Nancy
2	SWX NWX	302	5.00	IRR	1904	Keith, Whitehead
2	SWX NWX	303	10.50	IRR	1895	Keith, Whitehead
2	SWX NWX	303	6.00	IRR	1904	Keith, Whitehead
2	SWX NWX	304	7.00	IRR	1904	Keith, Whitehead
2	SWX NWX	99	3.00	IRR	1895	Buell, Jerry & Nancy
	SEX NWX	302	11.50	IRR	1895	Keith, Whitehead
	SEX NWX	302	4.00	IRR		Keith, Whitehead
	SEX NWX	304	11.50	IRR		Keith, Whitehead
	SE% NW%	304	1.50	IRR	1904	Keith, Whitehead
				ction :		
		Towns	hip 15 S	outh, F	lange 11	L East, W.M.
			÷			

RECEIVED SEP 2 9 2003 WALS MESOURCES DEPT SALEM, OREGON

a., with

¥. .

xhibit C

Description of Current System

1

RECEIVED

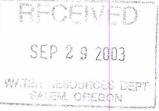
SEP 2 9 2003

W/G ... AGSOURCES DEPT SALEM, OREGON

The Cloverdale Ditch serves as one of the main conveyance ditches for the Squaw Creek Irrigation District, coming off the main canal. The Cloverdale Ditch supplies water to 1020 gares of irrigated land within the SCID.

The Ditch was originally about 10 miles in length. The upper stretch ran from the Fryrear lift on the SCID main canal to the Lazy Z, by Watson Reservoir. In 1991, SCID moved the headgate to Watson reservoir, eliminating approximately 2.5 miles. The 7.5 miles of remaining ditch has a loss factor of 35% to 45%.

The approximate measurements for the Cloverdale Ditch are as follows: 2.5 feet deep; 8.0 feet wide. At full capacity, the Cloverdale Ditch carries well over 20 cfs of flow.



Exhil t D

Project Description

ľ

Project Analysis Report Cloverdale Ditch Pipeline

Squaw Creek Irrigation District Sisters, OR November 10, 2000

Summary

The project includes the replacement of an existing open lateral (identified as Cloverdale Ditch) with a buried pipeline.

Squaw Creek Irrigation District will construct the project with their own forces and equipment. This portion of project costs will be "in-kind" services. Responsible District official is Marc Thalacker, Manager, Squaw Creek Irrigation District, Sisters, OR.

A. Description of the project

The project consists of the installation of a 24 inch diameter (OD) HDPE pipeline, (22.42 inch ID), and related appurtenances. Pipe is Driscopipe 1000 series pipe, manufactured in accordance with ASTM D3350, testing standard ASTM D2837, and pipe size standard meeting ASTM F714. Driscopipe has provided US Filter, supplier, with a copy of the a materials certification, and a copy was provided SCID. This certification is also stamped on the pipe as delivered to SCID. Class of pipe to be used is DR = 32.5, pressure rating = 50 psi. Pipe joints will be welded together by heat fusion.

Buried pipeline will replace the open lateral. The majority of the conserved water is due to eliminating seepage from the open lateral with the remaining portion coming from reducing system management losses due to improved control. Standard type measuring devices (trapezoidal weir) will be utilized at all outlets.

Delivered water will be pressurized (a minor amount) due to differential elevation between inlet at Watson Reservoir and landowner outlets. Pressure at each outlet will vary relative to elevation drop from the inlet (sta. 0+00 at outlet of the dam) and accumulated pipeline friction loss.

B. Responsible Party, Persons and Tasks

1. Overall Project Coordination -

2. Project - design survey, design, etc. SCID was responsible for the design survey & basis hydraulic design. US Filter provided hydraulic design assistance for sizing of pipe

Squaw Creek ID

SEP 2 9 2003

WATER HESEABROES DEPT SALEM OPERON Dec 14 00 08:26a

P.4

3. Project construction coordination

Squaw Creek ID

SCID is responsible:

- a) for project installation, construction supervision, quality control, and for meeting compliance of all federal, state and local regulations, as applicable.
- b) for obtaining all necessary land easements and permits for construction that occur outside of existing R-O-W.
- c) for installing the project
- d) for all work performed by other contractors
- e) for obtaining permits as necessary for digging and construction across or adjacent to all public and private utilities, i.e. electric, natural gas, water, telephone, TV, etc.

C. Project Design

Field Survey

The field data provided consisted of distance measurement along existing lateral alignment (used for establishing horizontal control, i.e. stations) and bench level survey for establishing elevations at stations, turnouts and selected important points. Elevations used in design review and shown on drawings are referenced to elevations shown on Watson Reservoir Outlet Plan & Profile, by W&H Pacific, August, 1990. Data provided for this engineering analysis was provided by SCID.

Design basis

- 1. Basic hydraulic design computations were made by SCID, with assistance from US Filter, using a manufacturers computer program, provided by Driscopipe, for gravity flow plastic pipelines (i.e. using Mannings formula).
- Design criteria for appurtenances, air vents, thrust blocks, drains, access, outlets, backfill
 material, will be developed using manufacturers design and installation recommendations
 Appurtenances (i.e. air-vacuum relief valves, pressure relief valves, gate valves, misc. fittings,
- etc.) were designed/selected based on manufacturers recommendations
- 3. Manufacturer references: DRISCOPIPE: Materials, Design and Installation Manuals

Appurtenances

Air vents and/or air-vacuum valves are to be installed at beginning of the pipeline just downstream of the dam (4 inch), at all abrupt changes in grade (increasing grades) (3 inch), at each isolation (inline) valve (3 inch), at all high spots (3 inch), and at the high point in each turnout assembly between the main pipe and the shutoff valve. Maximum distance between air relief/vacuum valves on the mainline is to be 1300 feet (SCID selection). All air vent assemblies will be attached to the 24 inch mainline pipe using the fusion welding process, with a flanged fitting for the air vent assembly attachment.

Turnout assembly for water delivery will include a shutoff (butterfly valve) controlled by SCID, with misc. elbows and fittings, air-vacuum relief valve, and a flow measuring device. All turnout

WATER RESOURCES DEPT SALEM, OREGON

MELEVED

SEP 2 9 2003

P.5

assembles will be attached to the 24 men pipe using bolt-on steel saddles with a flanged steel fitting for the valve assembly attachment.

A butterfly valve or flow restrictor may need to be installed at end of pipe to control outflow in order to assure having a neighydraulic pressure at all upstream delivery outlets at all flow conditions. The valve she aid not restrict the opportunity to drain the pipe. If a valve is installed, then a pressure relief valve will be necessary just upstream from the valve

Concrete thrust blocks should be installed at major changes in direction (i.e. 90 degrees), abrupt changes in grade, at each isolation valve, and at end of pipeline (i.e. a concrete outlet box). Generally, slight changes in direction of the pipe can be accomplished by field sweeping of the trench (pipe). If proper compaction around the pipe is obtained, field sweeps do not require thrust blocks. Good soil compaction around fittings such as elbows (i.e. less than 60 degrees) is usually sufficient. If thrust blocks are required in low density soils, concrete bearing surfaces poured against undisturbed soil (i.e. side of the trench) will generally provide adequate protection. A thrust block is necessary just downstream from Watson Reservoir to prevent creep due to expansion and contraction and any thrust created due to flow conditions.

Drains should be installed at all low points, i.e. at the lower elevation 90 degree elbows on the east side of Camp Polk Road, and next to Christensens.

Installation


The pipeline will be installed in the existing ditch location for which SCID has easements. The alignment of the existing ditch is somewhat crooked north of Highway 126. Four elbows will probably be needed at the 90 degree turns at Camp Polk Road (2 each) and property edge of Aspen Lakes Golf Course and Lee Christensen's (2 each). However, SCID will sweep other turns in the ditch as much as possible to eliminate elbows.

Installation assistance is being provided by US Filter, i.e. for the fusion welding of pipe joints, air vents, access points and outlets.

Installation Quality Control

Squaw Creek Irrigation District will be responsible for quality control of installation of the pipeline. All installation shall meet manufacturers specifications. Major items include:

- A. SCID will provide installation of all HDPE pipeline and all appurtenances:
- 1. Trench excavation depth and grade control should be on a uniform grade so no low or high spots occur. Where high spots occur air vents should be installed. Where low spots drains should be installed.
- 2. Pipe invert grade control at time of laying pipe should be on uniform grade
- 3. Laying of pipe (including assurance of water tight joints, meeting bending and joint deflection limitations, locating and installing elbows, in accordance with manufacturers recommendations, etc.)
- 4. Installation and compaction of initial bedding and final backfill material should be in accordance with manufacturers recommendations

11-10-2000

- 5. SCID should assure compliance with applicable safety requirements during construction
- 6. SCID should provide suitable site clean up
- B. SCID will provide there own shop designs and the installation of water delivery turnouts, inlet and outlet structure, etc.
- 1. Concrete structures will be shop designed by SCID (including meeting required dimensions, reinforcing steel placement, form bracing, etc.
- 2. Comprete and placement will be provided by SCID(including concrete mix, slump, vibrating, finish, etc.)
- C. SCID will provide shop designs and the installation at county road crossings
- 1. SCID should meet minimum applicable Deschutes County Road Dept. requirements for installation of culverts and paving replacement at county road crossings, where applicable.

Other Recommendations:

- 1. The initial annual filling of the pipeline should be done carefully and slowly. The minimum initial pipeline filling time should be 24 hours.
- Immediately after the installation of the pipeline, frequent inspections should be performed to monitor operation. Any vent, stand pipe, air relief, vacuum release or pressure relief valve that is plugged or damaged and not functioning properly, should immediately be repaired or replaced.
- 3. Periodically inspect for trench backfill subsidence or erosion throughout the pipe length.
- 4. Annually inspect air-vacuum valves, pressure relief valves, control valves, etc.
- 5. Annually inspect flow meters and assure flow accuracy.
- 6. The pipeline should be drained annually after the irrigation season is over using pipe outlet drain facilities.
- 7. The minimum closing time on turnout valves should be 2 seconds per turn in order to avoid excessive surge pressures.
- 8. Periodically check inlet and outlet structure and appurtenances for damage and cracks. Repair as appropriate.

Sedimentation

Sands (coarse and fine) drop out in the upper part of the reservoir (i.e. in the constructed forebay just downstream from the inlet of the canal). Silts are carried on down into the reservoir, but appear to drop out in the upper part of the reservoir. There was little evidence of sediment being settled out in the open lateral downstream of the dam (SCID statement). With a flow of 10 cfs in the pipe, velocity will be 4 fps. This will carry silts without deposition in the pipe. With a flow of 5 cfs, velocity will be 2 fps. Silt size material will deposit at this flow (velocity). It is wise for SCID to provide access facilities at intervals of 500 - 1000 ft, so a high pressure hose can be inserted into the pipe to provide a high velocity/energy flow to dislodge any sediments that have settled in the pipe.

Pipeline Hydraulic Design Analysis:

(Note: Field survey data is available only from Watson Dam north to Highway 126)

SEP 2 9 2003 4 WATER RESOURCES DEPT

RECEIVED

P.6

Watso	on Reservoir Max water surface in reservoir Min water surface in reservoir- Invert of drainline conduit at out		1997 SS 1	<u>Elevation</u> approx 120 109 105.0
Bartle	emay turnout (sta 53+00).			
	Bottom of upper ditch			77.9
	Approx water surface upper ditc	h		79.9
	Bottom lower ditch			75.7
Highv	way 126 (sta 94+70),			
	Invert of culvert south side			62.8
	Approx water water surface			64.8

Hydraulic Gradients	slope (ft/ft)
Max - Dam (upstream of dam) to Bartlemay	.0076
Min – Dam (upstream of dam) to Bartlemay	.0055
Alternate – Dam (invert at outlet) to Bartlemay	.0047
E. Bartlemay to Highway 126	.0036
Max – Dam (upstream of dam) to Highway	.0056
Bartlemay to Highway 126 Max – Dam (upstream of dam) to Highway Min – Dam (downstream of dam) to Highway	.0042
Estimated average grade from just below Watson Dam	.0021
down to Holmes Road just apstream of McKenzie	Res.
Elev & Distance was taken from 7 1/2 min Topo Q	uad sheet.

TERET STILL A

-10 /3

5

Note: SCID determined that all turnouts will be valved turnouts, thus maintaining the available hydraulic head throuthout the pipe. Outletting the mainline into an open box removes all available hydraulic head, both upstream and downstream.

Using 24 inch diameter (OD), DR = 32.5, ID = 22.5 inch, Mannings n = .009

C1-----

Flow at:

Q = 17.8 cfs (Using min slope from Watson Dam to Highway) Q = 20.5 cfs (Using max slope from Watson Dam to Highway) Q = 12.6 cfs (Using estimated ave slope in Cloverdale Ditch (ditch only) from just below Watson Dam to Holmes Road near Mckenzie Reservoir. This does not include the available elevation of water surface within the reservoir when it is full. It also assumes 24 inch pipe is used all of the way. Actual field survey data was not available to check this. Elevations and distance were taken from 7 ½ Min Topo Quad sheet.

S = .0026

S 0042 S - .0056

S = .0021

Q = 13.9 cfs (Using estimated average slope in Cloverdale Ditch from a near max water surface in Watson Reservoir to Holmes

RECEIVED

SEP 2 9 2003

WATER RESOURCES OFFT SALEM, OREGON

11-10-2000

Road. This includes the 15 ft of available elevation within the reservoir.

Observation: The maximum flow of 17.8 cfs meets SCID's objectives for flow in the Cloverdale Pipeline using the minimum slope from Watson Dam to Highway 126. The estimated maximum flow of 12.6 cfs from Watson Dam to McKenzie Reservoir is when the reservoir is almost empty) also meets SCID's objectives. The estimated maximum flow of 13.9 cfs from Watson Reservoir to McKenzie Reservoir (when reservoir is nearly full) also meets SCID's objective

m

Elwin A. Ross, P E Redmond, OR

12-31-00 Expires REGON

SEP 2 9 2003

WATER HESOURCES DEPT SALER OREGON

Map Showing Project

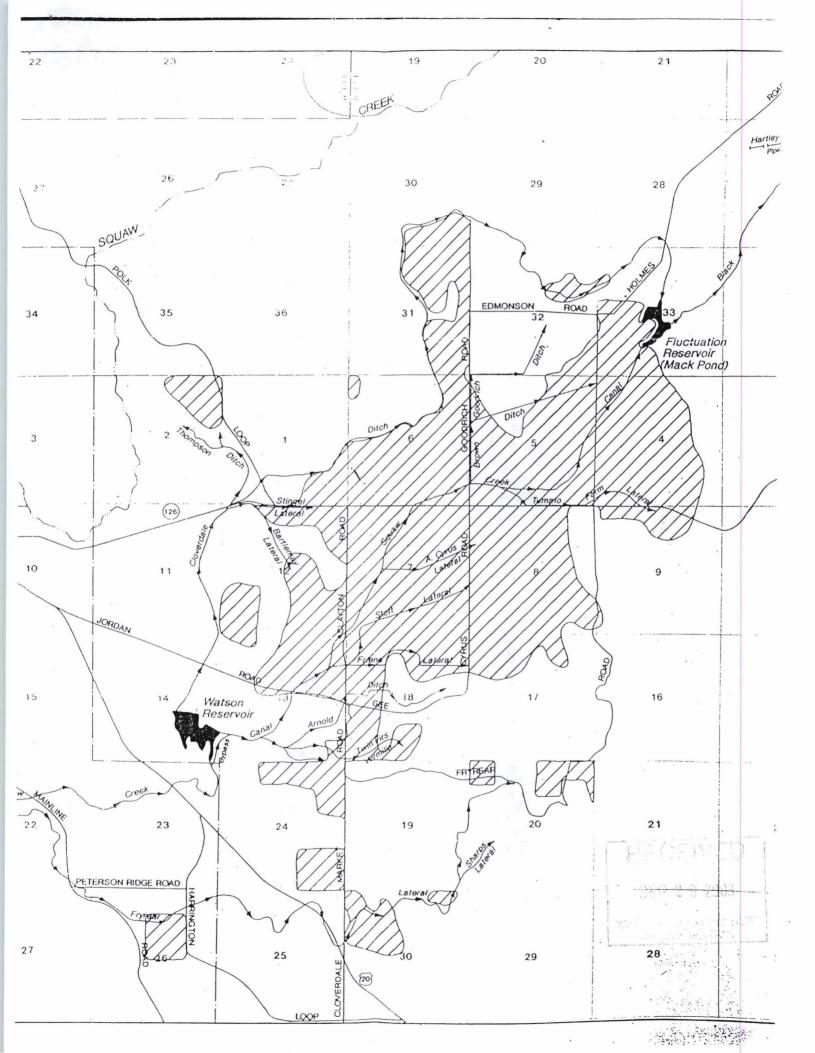
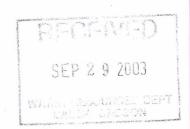


Exhibit F

Project Budget

PERENCE SEP 2 9 2003 WATER HELOURDES DEPT SALEM, OREGON


Project Budget

The Cloverdale Ditch Pipeline Project is estimated to cost \$660,000. The breakdown of the costs is set out on the next page.

SCID has applied for and received a grant from the Deschutes Basin Resources Conservancy (DRC) in the amount of \$260,000 towards this project. The SCID will cover the remaining cost (approximately \$400,000) of the pipeline project. The agreement between the DRC and SCID requires that the SCID put 3.0 cfs or 50% of the water conserved through the project (whichever is greater) to instream flows.

Copies of the SCID grant proposal page and the contract between the SCID, the DRC and the Oregon Water Trust is attached.

CLOVERDALE DRC/SCID PROJECT

PIPELINE:	TOTALS:	NOTES:
	\$5,000.00	
EXCAVATION	\$194,000.00	
TRUCKING	\$132,000.00	
BACK FILL	\$50,000.00	12,500 Yards backfill
MATERIALS	\$3,000.00	Concrete, Tracer wire, etc
FIXTURES	\$15,000.00	Tees, saddles, airvents, pressure relief valve,48"to 24" reducer
PIPE	\$257,000.00	
CULVERTS	\$4,000.00	
COMBINED TOTAL~	\$660,000.00	

January 7, 2000 DRC Project Selection Criteria applied to: SCID Piping Project - Cloverdale piping project

Proposed projects are evaluated to asses their sustainability in meeting the following criteria and are judged to PASS, FAIL, or be at RISK of failing in each of the following six categories. The asterisk (*) indicates that unsatisfactory conditions for this criteria (i.e. FAE) would be a fatal flaw in the project.

Project Summary - Cloverdale

Total Project Cost: \$660,000 Funds requested of DRC: \$260,000

Brief Description: The Cloverdale area of the Irrigation District consists of large irrigated parcels and one 200 acre subdivision with 30 irrigated parcels. This project will replace approximately 15,840' of open ditch with pipe. The pipe diameter to be used would be 24 inches. The estimated water savings amounts to 4 to 5 cfs or 8 to 10 acre-feet per day. The pipe costs are expected to be around \$260,000 and the installation costs around \$400,000.

Project Evaluation

- A. Ecological Function
 - 1. *Addresses a priority ecological goal of DRC.
 - 2. *Compliments or is complimented by other activities in the Basin in pursuit of the ecological goal.
 - 3. Negative ecological impacts of project are minimal or can be mitigated.

This project directly addresses the DRC's goal to improve water quality and quantity by increasing stream flows. It complements other Basin efforts to pipe irrigation canals for water conservation. There are no negative ecological impacts.

B. Feasibility

- 1. *Technically effective high likelihood of project achieving goal.
- 2. *Arranges for necessary coordination with and approvals from appropriate agencies.
- 3. *Includes evaluation of conditions, both before and after the project, to document effectiveness.

SCID has had success with this piping procedure in the past. There is no agency approval needed. Measuring conserved water will document its effectiveness.

C. Partnerships

- 1. *Involves voluntary participation of the resource owner
- 2. Uses partnership(s) and leveraging of funds.
- 3. *Partners demonstrate to capability to accomplish their part of the project.

MUES DEP

SCID is voluntarily proposing this project to conserve water. It will partner with the DRC and use its own funds to leverage DRC funds. Past SCID piping project success demonstrates its capability.

D. Community Support

- 1. Builds trust and understanding between groups/facilitates education.
- 2. Assists local economy/is acceptable to local community.
- 3. Negative economic or social project impacts are minimal or can be mitigated.

Because SCID will be working with the Irrigation mombers there is already trust established at the projects onset. This project will help educate where users about transmission losses and the value of contributing to improving stream flows. The local economy is supported by continuing to deliver irrigation water. The local community is accepting of this piping project.

- E. Cost-Effectiveness
 - 1. *Cost estimate is sound
 - 2. *Is cost-effective compared to other means of achieving the same goal.
 - 3. *DRC participation structured to ensure funds are well spent.

SCID has completed several similar projects and can accurately estimate costs. There are other methods of water conservation being explored that may be more cost-effective, but are not available at this time.

F. Critical Need

1. DRC support is vital or delay may foreclose opportunity.

4. 8

WATER RIGHTS TRANSFER AGREEMENT for the CLOVERDALE DITCH PIPING PROJECT between DESCHUTES BASIN RESOURCES CONSERVANCY and OREGON WATER TRUST and SQUAW CREEK IRRIGATION DISTRICT

1. <u>Background and Purpose</u>. The Squaw Creek Irrigation District (District), Deschutes Basin Resources Conservancy (DRC) and Oregon Water Trust OWT) enter into this Water Rights Transfer Agreement (the "Agreement") for the purpose of installing a distribution pipeline in the Cloverdale Ditch ("the Project") and transferring a certain portion of the water conserved thereby to an instream water right for Squaw Creek. The Project will provide several benefits to the District, the general public and the environment. The primary effect of piping the Cloverdale Ditch is to reduce water losses due to seepage. Other benefits of the Project may include eventual end of system spill savings. The primary effect of this seepage reduction is to improve the reliability of water delivery to District patrons, which will, in turn, improve economic activity. In turn, the District agrees to transfer a certain quantity of the water savings from this project to instream water rights through the Oregon Conserved Water Act, Oregon Revised Statutes (ORS) 537.455 – 500.

The parties desire to enter into this Agreement to set forth the terms and conditions of the DRC's agreement to contribute funding to the Project in exchange for the District's agreement to transfer a portion of its water right to an instream water right (as authorized by ORS Chapter 537.455 and pursuant to procedures established by the Oregon Water Resources Department in Oregon Administrative Rules (OAR) Chapter 690, Division 18.) The three parties to the Agreement will fulfill their obligations as a condition of Federal and State of Oregon funding.

2. <u>The Project.</u> The Project will replace approximately 14,880 feet of open ditch, known as the Cloverdale Ditch, with 24-inch diameter pipe for the purpose of decreasing water loss due to seepage. At full demand, the ditch delivers 21 cubic feet per second (cfs) to 15 farms. The District estimates water losses of four (4) to five (5) cfs during peak delivery periods. The Project proposes \$400,000 of the funding will come from the District and the remaining \$260,000 will come from the DRC.

ACCEDES DELL

3. <u>Agreement to Provide Funding</u>. The DRC agrees to provide \$260,000 to the District as a contribution towards the cost of completing the Project.

Funding will be provided upon completion of all National Environmental Policy Act and DRC funding requirements as outlined in the DRC Terms and Conditions Contract (Attachment 1). The District shall achieve Project installation and determine the conserved water no later than May 1, 2001. The District shall maintain the Project at all times in a workpersonlike manner. The District agrees to reimburse the DRC the invoiced price per foot for any pipe that is not installed before May 1, 2001.

4. <u>Transfer of Water Rights to Instream Water Right.</u> In exchange for the DRC's contribution described above, the District agrees to the provisions set out in this section regarding the project completion and allocation of conserved water to an

ered Through the Cloverdale Ditch

The Cloverdale Ditch services a total of 1020.7 acres. The water rights delivered by the ditch are 3.1 cfs 1887, 0.2 cfs 1889, 15.3 cfs 1895 and 1.3 cfs 1904.

B. Conserved Water

The responsibilities of the parties are as follows:

The DRC agrees to: provide \$260,000 to the District as a contribution to the cost of completing the Project in return for at least 3 cfs or one half of the conserved water from the Project, whichever is greater.

The District agrees to: sign the Conserved Water Application prepared by

OWT described below no later than 60 days after disbursement of funds from the DRC. The Conserved Water Application will seek two allocations of conserved water. The first allocation will be to the State of Oregon for 3 cfs as an instream flow. Any water conserved in excess of 3 cfs will be included in the second allocation. The second allocation will allocate the next 3 cfs to the District. Any conserved water in excess of 6 cfs will be divided equally between the District and the instream flow right held by the State of Oregon.

03

02.5

2003

 $\mathbf{k}_{i}^{(1)}$

OWT agrees to: prepare the Conserved Water Application. OWT will obtain the District's signature on said application and submit the application to the Oregon Water Resources Department (OWRD) for approval. OWT expressly makes no warranties or promises regarding OWRD's approval, rejection or modification of said application nor regarding the timeliness with which the application is reviewed and acted upon by OWRD. The District further agrees that it will not exercise its right to request a decrease in the amount of conserved water as authorized in OAR 690-018-0062 subsection 2.

C. Determination of Conserved Water

The District Manager will determine the amount of water conserved by the Project immediately after project completion. The District Manager will measure flows at the Ditch headgate at Watson Reservoir at full operational capacity. Full operational capacity is defined as delivering 100% of the Cloverdale water rights described in section 4, part A. The Deschutes Basin Watermaster will review measurements to determine if standardized methods were used to assure accuracy. Measurement will be referenced with historical flow data recorded and collected by the District to determine conserved water. The priority dates of the conserved water will be allocated as follows: 16% of the conserved water will have an 1887 priority date, 4% will have an 1889 priority date, and 80% will have an 1895 priority date but will be distributed as outlined in section 4, part E.

D. Instream Water Right

In accordance with the terms of this Agreement, there will be allocated to the State of Oregon, Water Resources Department, an instream water right as per the conserved water statute defined in section 1, paragraph 1 and 2 of this agreement.

E. Operational Agreement

The Squaw Creek Irrigation District, for the benefit of the stream, agrees to distribute the 3 cfs instream water right, outlined in section 4, part B above, at all times in addition to meeting existing downstream demands. The Watermaster will use the Squaw Creek Irrigation District stream gauge # 14076000 and the Squaw Creek stream gauge # 14076050 for determining the required flows.

Any conserved water in excess of 6 cfs will be distributed to the District and the stream equally and by priority date in allocation as described in section 4, part C.

F. Project Completion

Project completion is defined as the date of installation and testing of the distribution pipeline, to occur no later than May 1, 2001, in the Cloverdale Ditch.

5. <u>Term of the agreement.</u> This agreement is effective on the date $\oint f$ the last signature and is perpetual.

6. <u>District's Representations and Warranties</u>. District represents and warrants that: (a) it has the authority to enter into this agreement; (b) that it has the authority to construct the Project; (c) its portion of the water right described in the Certificate is free and clear of liens, claims or encumbrances and (d) that the water rights subject to this Agreement are in all other respects valid and transferable.

7. <u>Water Use</u>. District shall comply with the limitations of the Instream Water Right and shall not pump, store, divert or use any waters of Squaw Creek described under the Instream Water Right or the Operational Agreement described above in section 4, part E.

8. <u>Access</u>. District grants DFC and its agents, employees and contractors, access to the Property for the purpos is of installing any necessary water measuring or control devices, conducting any appropriate evaluations, and monitoring water use. DRC shall be permitted to install locks or other equipment necessary to prevent the water described in the Instream Water Right from being diverted by the District. Access shall be limited in time from 7:00 a.m. to 6:00 p.m., Monday through Friday, excluding holidays.

9. <u>Default</u>. Any deliberate interference by the District with the lawful orders of the Watermaster pertaining to the protection of the Instream Water Right or if the District attempts to use Squaw Creek water in violation of the Operational Agreement described in section 4, part E, above shall constitute a default. Additionally, default shall occur with failure to comply with any other term or condition or obligation within 30 days after written notice specifying the nature of the default. These terms, conditions and obligations include, without limitation, non-payment, refusal to sign an application, failure of representations and failure to transfer conserved water.

10. <u>Time is of the Essence</u>. Time is of the essence with respect to every obligation of this Agreement.

11. <u>Remedies.</u> In the event of default, DRC may withhold any remaining funds, shall be reimbursed for its expenditure and may pursue all other remedies available under applicable law:

12. <u>Indemnities</u>. District will indemnify and hold harmless DRC and OWT from and against any demand, claim or action arising out of or in any way related to District's breach of this Agreement, including without limitation, the failure of the representations and warranties made in this Agreement to be true; or arising out of or in any way related to any demand, claim or action brought by a District member; or arising out of or in any way related to any demand, claim or action challenging the District's authority to undertake the Project.

13. <u>Attorney's Fees</u>. If a suit, action or arbitration is instituted in connection with any controversy arising out of this Agreement or to enforce any rights hereunder, the prevailing party shall be entitled to recover all of its attorney fees, paralegal fees, costs and disbursements and other expenses from the non prevailing party, including without limitations those arising before and at a trial, arbitration or other proceeding, and in any appeal or review

14. <u>Notices</u>. Notices sent under this Agreement shall be in writing and sent by certified or registered mail, return receipt requested, postage prepaid to such party at

the address set forth below or to such other address specified by a party and delivered to the other party by written notice in accordance with this paragraph. Notices are effective three (3) days after placement in the U.S. Mail.

15. <u>Binding Effect</u>. The provisions of this Agreement shall be binding upon and inure to the benefit of the parties and their respective successors and assigns.

16. <u>Assignment</u>. No Party shall assign its rights and obligations under this Agreement without the other Parties prior written consent, which consent shall not be unreasonably withheld.

No consent of the District will be required where the DRC and/or OWT might use the instream water right acquired pursuant to this Agreement to help develop and establish a "mitigation bank" or "water bank" for the purpose of facilitating further mitigation and ecosystem restoration in the Deschutes Basin. Such use may or may not involve an assignment of rights under this Agreement. In the event such assignments are made, the assignees shall not have a direct right of action against the District, but only against the DRC and/or the OWT.

17. <u>Governing Law</u>. This agreement shall be governed by and construed in accordance with the laws of the State of Oregon.

18. <u>Waiver</u>. The Parties do not intend that any right or remedy given to a Party on the breach of any provision under this Agreement be exclusive; each such right or remedy is cumulative and in addition to any other remedy provided in this Agreement or otherwise available at law or in equity. If the nonbreaching Party fails to exercise or delays in exercising any such right or remedy, the nonbreaching Party does not thereby waive that right or remedy. In addition, no single or partial exercise of any right, power, or privilege precludes any other or further exercise of a right, power, or privilege granted by this Agreement or otherwise.

19. <u>Modification</u>. This Agreement may not be modified or amended except by the written agreement of the parties. This Agreement may not be modified or amended orally.

20. <u>Severability</u>. If any term or provision of this Agreement or the application thereof to any person or circumstance shall to any extent be invalid or unenforceable, it shall not affect the other provisions hereof and the remainder of this Agreement shall be valid and enforceable to the fullest extent permitted by law and as though such invalid and or unenforceable provisions where omitted.

21. <u>Integration</u>. This Agreement, together with the DRC Terms and Conditions Contract, contains the entire agreement and understanding of the parties and supersedes all prior and contemporaneous agreements between them.

22. <u>Successor Interests.</u> This Agreement shall be binding upon and inure to the benefit of the assigns and successors in interest of each of the parties hereto.

3è

Ron Nelson

Bend, OR 97701

Chairman

hel

9.20.2000

Date

Deschutes Basin Resources Conservancy 1504 NW 3rd St.

<u>9-19</u> Date 200

Robert Lambert **Board Member** Squaw Creek Irrigation District PO Box 2230 Sisters, OR 97759

oppe

000 20 Date

Glen Cooper Board Member Squaw Creek Irrigation District PO Box 2230 Sisters, OR 97759

Lee Christensen Board Member Squaw Creek Irrigation District PO Box 2230 Sisters, OR 97759

12/00 Date

Ralack

20/2000 9

Date

Marc Thalacker District Manager Squaw Creek Irrigation District PO Box 2230 Sisters, OR 97759

Andrew Purkey Executive Director Oregon Water Trust 111 S.W. Naito Parkway, Suite 404 Portland, OR 97204

200 Date

RECEIVED SEP 2 9 2003 WATER HEGOURCES DEPT SALEM, OREGON

.

Exhibit G

Land Use Information Form

Sec.

PASA AND AND AND

NOTE TO LOCAL GOVERNMENTS

.

WATER RESCURCES DEPARTMENT

The person presenting the attached request for land use information is applying for a transfer of water right. The Water Resources Department (WRD) requires its applicants to obtain land use information to be sure water rights do not result in land uses that would violate your comprehensive plan.

You will receive notice once the applicant formally submits his or her request to WRD. Please complete this form and *return it to the applicant for inclusion their application.* Your attention to this request for information is greatly appreciated by the Department. If you have questions concerning the form, please contact us at 378-3739.

Description of Water Use

Planning Official Initials:

these fail out this sheet belote bringing the attack these complete your land use information form of		will help local planning
ote to Local Planning Officials: Please initia eeded, please make a separate copy for your re	al this sheet. Do not separate it from the land un coords.	se Information form. If
Applicant Mame: OREGON WATER 7 ADDRESS: III S.W. NAITO PL PORTUNO OR 97 Pilone: (503)552-9022	WY, SUITE 404 ZOY	3
Please Indicate what you	will use the water for. Check all boxes that apply nks with key characteristics of the project	
Imigation (crop type, golf course, nursery o	r greenhouse):	
Livestock (type of livestock, feedlot, slaugh	terhouse):	
Residential (# units, single or multi-family, #	lots if partition or subdivision):	a an an Spale p
Commercial (i.e., retail, office, restaurant, ga	as station, hotel, service, etc.):	
Industrial (i.e., factory, pulp mill, research an	nd development, processing, etc.):	
Institutional (i.e., school, library, etc.):		
	e(ç.):	
Recreation (park, campsite, pond, etc.)		
Fish and Wildlife (pond, hatchery, etc.)	STREAM Flow to beachit Fish and 190.	tic hubitat.
Hydropower (dam, reservoir, power generat Other (Name and list key characteristics):	ing or transmitting facilities):	
Indicate sources for the proposed water use below:	Indicate the estimated quantity of water the use will require.	
J Surlace Water	3.0 Cubic feet per second.	
Name sources: Saura CREEK, tributany of	1346.4 Gallons per minute.	PRCEIV
DESENTTS FNER	600 Acre-Feet	
		SEP 2 9 20
Reservoir or pond		WAT IN NEWLARDER
Ground Water		The second

Water Resources Department Commerce Building 158 12th Street NE

Version 10/8/91

b) Please provide printed name and written signal	ture.
Name: Gatharino Tilton	Date: 2/14/01
Title: Accoltate Planner	Phone (541) 383-6719
little: Acost Course fact hor	
Signature: Catharine TOL	

7

Local governments are invited to express special land use concerns or make recommendations to the Department regarding this proposed use of atter below, or on a separate sheet.

31-

Additional Comments:

	1. LPC 4.8	THE REAL PROPERTY OF	
	The set of	and the second s	
		and the second sec	
	CI - C.	and the second s	
		and the second second	
	· · · · · · · · · · · · · · · · · · ·		
		Stenin C	
		A Preserve	4
		SP SP	
· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·
	9		
		and a first of the solution of the solution of the solution of the	
	*		
	Steller.	MW TOPO I	
	an a		
		Y Sarti	
	The UNIQUE AND A STATE OF THE S	Lai Abharia	
	- 19 ⁻		Provide and the second s
		WILLIAM AND	RECEVED
	- 40		
		1.44.1	SEP 2 9 2003
		and the second	
	the second s		WATHLINESOURCES DEPT
÷.			SALEN, OPEGON
de			

Water Resources Department 158 12th NE Salem, OR 97310 (503)378-3739

Land Use Information Form: Water Right Transfers, Use of Conserved Water, Exchanges

This information is needed to determine compatibility with local comprehensive plans as required by ORS 197.180. The Water Resources Department will use this and other information to evaluate the water use application. DO NOT FILL OUT THIS FORM IF: 1) water is to be diverted, conveyed, and/or used only on federal lands; or 2) if ALL OF THE FOLLOWING APPLY: a) the application is for a change in the place of use, b) there are no structural changes, c) the use is irrigation, and d) the use is located in irrigation districts or exclusive fam use zones.

Applicant's Mame:	OREGON	WATER	TRUST			· · · · · · · · · · · · · · · · · · ·
Address:	NAITO	PKWY, 5.	ITE YOY	[
City: Poeni-D	State	: OR	Zip:	97204	_Day Phone:	(503)552-9022

Please provide information as requested below for <u>all tax lots</u> on or through which water will be diverted or used. (Attach extra sheets as necessary.) Applicants for municipal use may substitute existing and proposed service area boundaries for the tax lot information requested below.

		(CHECK ALL THAT APPLY)				
TAX LOT LOCAL ID #	PLAN DESIGNATION/ZONING (e.g. Rural Residential/RR-5)	WATER	WATER CONVEYED	WATER USE		
	SEE ATTACHED					
	"CHANGE IN PLACE OF USE"					

Please list all counties and cities within which water is proposed to be diverted, conveyed, and/or used.

The following section must be completed by a planning official from each county and city listed unless your project will be located entirely within the city limits. In this case, only the city planning agency must complete this form. Please request additional forms as needed.

For Local Government Use Only

Local government planning officials are to complete the remainder of this form and return it to the applicant for inclusion in the application.

a) Check the appropriate box below and provide requested information.

Land uses to be served by proposed water uses (including proposed construction) are allowed outright or are not regulated by your comprehensive plan.

Cite applicable ordinance section(s); _____. Go to section b) on reverse side.

Land uses to be served by proposed water uses (including proposed construction) involve discretionary land use approvals as listed in the table below. <u>Note:</u> Please attach documentation of applicable local land use approvals which have already been obtained. (Record of Action plus accompanying findings is sufficient.)

(CHECK THE BOX THAT APPLIES)

Cite Most Significant, Applicable Plan Policies & Ordinance Section References	Already Obtained	Already Denied	Being Pursued Satisfactorily	SEI
	20. 765			1 03 04
				N C CAR
2. 24		191	And the second second	
	Ordinance Section	Ordinance Section	Ordinance Section	Ordinance Section

ATTACHMENT: Change In Place Of Use

. n. 2 . 6

This is a conversion of a consumptive use to an instream flow through a conserved water project. The refore, the instream right would run from the existing point of diversion on Squaw Creek, 998' N. and 1211' E. from the SW corner of Section 21, in the SW ¼ SW ¼, Section 21, T 15 S, R 10 E, W.M., to the mouth of Squaw Creek The instream water right is for a rate of flow of 3.0 cfs during the period of beneficial use. The instream flow will be allocated on a daily average basis up to that rate for the usual and accustomed irrigation season in the Deschutes Basin. If return flows are determined to be a significant factor in flow downstream, the right will be reduced by the determined return flow amount.

Remarks: This application is for the transfer of the above-described water right. The proposed instream water right is to replace a portion of an existing instream water right on Squaw Creek.

IECENVE SEP 2 9 2003 WATCH MESOURCHE DEPT SALENI, OREGON

. See

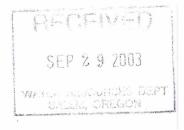
: 100

Exhibit H

ODFW Statement of Beneficial Use

RECEIVED SEP 2 9 2003

PUBLIC USE PROVIDED BY INSTREAM WATER RIGHTS


I believe that a portion of the water right described as Certificate No. 74135 will provide for the conservation, maintenance and enhancement of aquatic and fish life and fish habitat in Squaw Creek, tributary to the Deschutes River, if converted to instream. Specifically, the following benefits will likely be provided:

Enhancement of the migration corridor and spawning and rearing habitat for redband and brown trout will likely be improved in the reach of the instream water right.

Dated:

Signed:

Steve Marx District Fisheries Biologist Bend, Oregon

-

Evidence of Use

ä

AFFIDAVIT

STATE OF OREGON))ss County of Deschutes)

4

I, Marc Thalacker, being first duly sworn, hereby depose and swear to the following:

- 1. I am the manager of the Squaw Creek Irrigation District, which is responsible for the management and delivery of the water described under water rights certificate 74135.
- 2. I have personal knowledge by virtue of my management of the Squaw Creek Irrigation District that the water rights described under water rights certificate 74135 have not been forfeited as provided under ORS 540.610 due to nonuse for any period of five successive years within the last fifteen years.

IN WITNESS WHEREOF, I hereunto set my hand this 15 day of February, 2001.

By: marc

Marc Thalacker Squaw Creek Irrigation District 68000 Hwy 20 W. Sisters, OR 97759

NOTARY PUBLIC FOR OREGON

My Commission Expires: .

Exhibit J

SCID Manager Letter Regarding Consultation

1

RECEIVED SEP 2 9 2003 WATER HESOURCESS DEPT SALESA, OREGON

SQUAW CREEK IRRIGATION DISTRICT P. O. BOX 2230 ~ 68000 HWY. 20 W. SISTERS, OREGON 97759 541-549-8815 ~ FAX 541-549-8070

February 15, 2001

Oregon Water Resources Department 158 12th St., NE Salem, Oregon 97301-4172

To Whom It May Concern:

I am the Manager of the Squaw Creek Irrigation District (SCID). SCID is constructing the Cloverdale Ditch Piping Project, which has been authorized by the SCID Board. The Board has also authorized filing an application for allocation of conserved water for the water that will be saved as a result of this project.

All of the conserved water saved will come from transmission losses. As a result, SCID has the sole interest in the allocation of the conserved water except as stated in the conserved water agreement between SCID, DRC and OWT.

We have consulted with the public agencies that have an interest in the management of Squaw Creek Water (DRC, ODFW, OWRD and USFS). Each agency has expressed support for this project.

Very Truly Yours,

SQUAW CREEK IRRIGATION DISTRICT

n Ralach -

Marc Thalacker, Manager

Exhibit K

Water Right Transfer Agreement

1

WATER RIGHTS TRANSFER AGREEMENT for the CLOVERDALE DITCH PIP'ING PROJECT between DESCHUTES BASIN RESOURC S CONSERVANCY and OREGON WATER TRUST and SQUAW CREEK IRRIGATION DISTRICT

, ***

1. <u>Background and Purpose</u>. The Squaw Creek Irrigation District (District), Deschutes Basin Resources Conservancy (DRC) and Oregon Water Trust OWT) enter into this Water Rights Transfer Agreement (the "Agreement") for the purpose of installing a distribution pipeline in the Cloverdale Ditch ("the Project") and transferring a certain portion of the water conserved thereby to an instream water right for Squaw Creek. The Project will provide several benefits to the District, the general public and the environment. The primary effect of piping the Cloverdale Ditch is to reduce water losses due to seepage. Other benefits of the Project may include eventual end of system spill savings. The primary effect of this seepage reduction is to improve the reliability of water delivery to District patrons, which will, in turn, improve economic activity. In turn, the District agrees to transfer a certain quantity of the water savings from this project to instream water rights through the Oregon Conserved Water Act, Oregon Revised Statutes (ORS) 537.455 – 500.

The parties desire to enter into this Agreement to set forth the terms and conditions of the DRC's agreement to contribute funding to the Project in exchange for the District's agreement to transfer a portion of its water right to an instream water right (as authorized by ORS Chapter 537.455 and pursuant to procedures established by the Oregon Water Resources Department in Oregon Administrative Rules (OAR) Chapter 690, Division 18.) The three parties to the Agreement will fulfill their obligations as a condition of Federal and State of Oregon funding.

2. <u>The Project.</u> The Project will replace approximately 14,880 feet of open ditch, known as the Cloverdale Ditch, with 24-inch diameter pipe for the purpose of decreasing water loss due to seepage. At full demand, the ditch delivers 21 cubic feet per second (cfs) to 15 farms. The District estimates water losses of four (4) to five (5) cfs during peak delivery periods. The Project proposes \$400,000 of the funding will come from the District and the remaining \$260,000 will come from the DRC.

3. <u>Agreement to Provide Funding.</u> The DRC agrees to provide \$260,000 to the District as a contribution towards the cost of completing the Project OCIVED

> WLIER HESOURCES DEPT SALOM CREGON

SEP 2 9 2003

Funding will be provided upon completion of all National Environmental Policy Act and DRC funding requirements as outlined in the DRC Terms and Conditions Contract (Attachment 1). The District shall achieve Project installation and determine the conserved water no later than May 1, 2001. The District shall maintain the Project at all times in a workpersonlike manner. The District agrees to reimburse the DRC the invoiced price per foot for any pipe that is not installed before May 1, 2001.

4. <u>Transfer of Water Rights to Instream Water Right</u>. In exchange for the DRC's contribution described above, the District agrees to the provisions set out in this section regarding the project completion and allocation of conserved water to an instream water right.

A. Water Rights Delivered Through the Cloverdale Ditch

The Cloverdale Ditch services a total of 1020.7 acres. The water rights delivered by the ditch are 3.1 cfs 1887, 0.2 cfs 1889, 15.3 cfs 1895 and 1.3 cfs 1904.

B. Conserved Water

The responsibilities of the parties are as follows:

The DRC agrees to: provide \$260,000 to the District as a contribution to the cost of completing the Project in return for at least 3 cfs or one half of the conserved water from the Project, whichever is greater.

The District agrees to: sign the Conserved Water Application prepared by

OWT described below no later than 60 days after disbursement of funds from the DRC. The Conserved Water Application will seek two allocations of conserved water. The first allocation will be to the State of Oregon for 3 cfs as an instream flow. Any water conserved in excess of 3 cfs will be included in the second allocation. The second allocation will allocate the next 3 cfs to the District. Any conserved water in excess of 6 cfs will be divided equally between the District and the instream flow right held by the State of Oregon.

SFP 2 9 2003

WATER RESOURCES DEPT SALEM, OREGON

OWT agrees to: prepare the Conserved Water Application. OWT will obtain the District's signature on said application and submit the application to the Oregon Water Resources Department (OWRD) for approval. OWT expressly makes no warranties or promises regarding OWRD's approval, rejection or modification of said application nor regarding the timeliness with which the application is reviewed and acted upon by OWRD. The District further agrees that it will not exercise its right to request a decrease in the amount of conserved water as authorized in OAR 690-018-0062 subsection 2.

C. Determination of Conserved Water

The District Manager will determine the amount of water conserved by the Project immediately after project completion. The District Manager will measure flows at the Ditch headgate at Watson Reservoir at full operational capacity. Full operational capacity is defined as delivering 100% of the Cloverdale water rights described in section 4, part A. The Deschutes Basin Watermaster will review measurements to determine if standardized methods were used to assure accuracy. Measurement will be referenced with historical flow data recorded and collected by the District to determine conserved water. The priority dates of the conserved water will be allocated as follows: 16% of the conserved water will have an 1887 priority date, 4% will have an 1889 priority date, and 80% will have an 1895 priority date but will be distributed as outlined in section 4, part E.

D. Instream Water Right

In accordance with the terms of this Agreement, there will be allocated to the State of Oregon, Water Resources Department, an instream water right as per the conserved water statute defined in section 1, paragraph 1 and 2 of this agreement.

E. Operational Agreement

The Squaw Creek Irrigation District, for the benefit of the stream, agrees to distribute the 3 cfs instream water right, outlined in section 4, part B above, at all times in addition to meeting existing downstream demands. The Watermaster will use the Squaw Creek Irrigation District stream gauge # 14076000 and the Squaw Creek stream gauge # 14076050 for determining the required flows.

Any conserved water in excess of 6 cfs will be distributed to the District and the stream equally and by priority date in allocation as described in section 4, part C.

F. Project Completion

Project completion is defined as the date of installation and testing of the distribution pipeline, to occur no later than May 1, 2001, in the Cloverdale Ditch.

5. <u>Term of the agreement.</u> This agreement is effective on the date of the last signature and is perpetual.

6. <u>District's Representations and Warranties</u>. District represents and warrants that: (a) it has the authority to enter into this agreement; (b) that it has the authority to construct the Project; (c) its portion of the water right described in the Certificate is free and clear of liens, claims or encumbrances and (d) that the water rights subject to this Agreement are in all other respects valid and transferable.

7. <u>Water Use</u>. District shall comply with the limitations of the Instream Water Right and shall not pump, store, divert or use any waters of Squaw Creek described under the Instream Water Right or the Operational Agreement described above in section 4, part E.

8. <u>Abcess</u>. District grants DRC and its agents, employees and contractors, access to the Property for the purposes of installing any necessary water measuring or control de inces, conducting any appropriate evaluations, and monitoring water use. DRC shall be permitted to install locks or other equipment necessary to prevent the water described in the Instream Water Right from being diverted by the District. Access shall be limited in time from 7:00 a.m. to 6:00 p.m., Monday through Friday, excluding holidays.

9. <u>Default</u> Any deliberate interference by the District with the lawful orders of the Watermaster pertaining to the protection of the Instream Water Right or if the District attempts to use Squaw Creek water in violation of the Operational Agreement described in section 4, part E, above shall constitute a default. Additionally, default shall occur with failure to comply with any other term or condition or obligation within 30 days after written notice specifying the nature of the default. These terms, conditions and obligations include, without limitation, non-payment, refusal to sign an application, failure of representations and failure to transfer conserved water.

10. <u>Time is of the Essence</u>. Time is of the essence with respect to every obligation of this Agreement.

11. <u>Remedies.</u> In the event of default, DRC may withhold any remaining funds, shall be reimbursed for its expenditure and may pursue all other remedies available under applicable law.

12. <u>Indemnities</u>. District will indemnify and hold harmless DRC and OWT from and against any demand, claim or action arising out of or in any way related to District's breach of this Agreement, including without limitation, the failure of the representations and warranties made in this Agreement to be true; or arising out of or in any way related to any demand, claim or action brought by a District member; or arising out of or in any way related to any demand, claim or action challenging the District's authority to undertake the Project.

13. <u>Attorney's Fees</u>. If a suit, action or arbitration is instituted in connection with any controversy arising out of this Agreement or to enforce any rights hereunder, the prevailing party shall be entitled to recover all of its attorney fees, paralegal fees, costs and disbursements and other expenses from the non prevailing party, including without limitations those arising before and at a trial, arbitration or other proceeding, and in any appeal or review.

14. <u>Notices</u>. Notices sent under this Agreement shall be in writing and sent by certified or registered mail, return receipt requested, postage prepaid to such party at

the address set forth below or to such other address specified by a party and delivered to the other party by written notice in accordance with this paragraph. Notices are effective three (3) days after placement in the U.S. Mail.

15. <u>Binding Effect</u>. The provisions of this Agreement shall be binding upon and inure to the benefit of the parties and their respective successors and assigns.

16. <u>Assignment</u>. No Party shall ass <u>San</u> its rights and obligations under this Agreement without the other Parties prior written consent, which consent shall not be unreasonably withheld.

No consent of the District will be required where the DRC and/or OWT might use the instream water right acquired pursuant to this Agreement to help develop and establish a "mitigation bank" or "water bank" for the purpose of facilitating further mitigation and ecosystem restoration in the Deschutes Basin. Such use may or may not involve an assignment of rights under this Agreement. In the event such assignments are made, the assignees shall not have a direct right of action against the District, but only against the DRC and/or the OWT.

17. <u>Governing Law</u>. This agreement shall be governed by and construed in accordance with the laws of the State of Oregon.

18. <u>Waiver</u>. The Parties do not intend that any right or remedy given to a Party on the breach of any provision under this Agreement be exclusive; each such right or remedy is cumulative and in addition to any other remedy provided in this Agreement or otherwise available at law or in equity. If the nonbreaching Party fails to exercise or delays in exercising any such right or remedy, the nonbreaching Party does not thereby waive that right or remedy. In addition, no single or partial exercise of any right, power, or privilege precludes any other or further exercise of a right, power, or privilege granted by this Agreement or otherwise.

19. <u>Modification</u>. This Agreement may not be modified or amended except by the written agreement of the parties. This Agreement may not be modified or amended orally.

20. <u>Severability</u>. If any term or provision of this Agreement or the application thereof to any person or circumstance shall to any extent be invalid or unenforceable, it shall not affect the other provisions hereof and the remainder of this Agreement shall be valid and enforceable to the fullest extent permitted by law and as though such invalid and or unenforceable provisions where omitted.

21. <u>Integration</u>. This Agreement, together with the DRC Terms and Conditions Contract, contains the entire agreement and understanding of the parties and supersedes all prior and contemporaneous agreements between them.

22. Successor Interests. This Agreement shall be binding upon and inure to the benefit of the assigns and successors in interest of each of the parties hereto.

SEP 2 9 2003

WAT USOURDES DEPT

Ben See

Ron Nelson Chairman Deschutes Basin Resources Conservancy 1504 NW 3rd St. Bend, OR 97701

9-20-2000

Date

000 Date

Robert Lambert **Board Member** Squaw Creek Irrigation District PO Box 2230 Sisters, OR 97759

L. Comper ann Glen Cooper

9/20, 2000 Date

Board Member Squaw Creek Irrigation District PO Box 2230 Sisters, OR 97759

Lee Christensen **Board Member** 1 Squaw Creek Irrigation District **PO Box 2230** Sisters, OR 97759

21 19/00 Date

Thelank.

20/2000 9,

Date

Marc Thalacker District Manager Squaw Creek Irrigation District PO Box 2230 Sisters, OR 97759

to

Andrew Purkey Executive Director Oregon Water Trust 111 S.W. Naito Parkway, Suite 404 Portland, OR 97204

12000 21 Date

MELEIVEL SEP 2 9 2003 WATER PRODUCES DE DEPT

Exhibit L

Explanation of Conserved Water Allocation

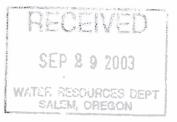

RECENTED SEP 2 9 2003 WATER RESOURCES DEPT SALEM, OREGON

EXHIBIT L

The water lost through seepage in the Cloverdale ditch was lost from serving water rights with various priority dates. Piping the Cloverdale Ditch and will conserve water with these various priority dates. The Squaw Creek Irrigation District has made the determination that the saved water should be allocated proportionately among three priority dates according to the same proportion that such rights are delivered through the Cloverdale ditch and pipeline, with the additional provision that the District will deliver the three cubic feet per second (cfs) of saved water at all times to instream use.

The proposed allocation is as follows:

Total conserved water	 3.00 cfs
1895 priority date (80%)	2.40 cfs
1889 priority date (4%)	0.12 cfs
1887 priority date (16%)	 0.48 cfs

<u>Exhibit M</u>

Cloverdale Ditch Seepage Loss Analysis

EXHIBIT M

Exhibit M contains the Cloverdale Ditch Seepage Loss Analysis, prepared by Elwin Ross, and signed off on by Bruce Estes and Kyle Gorman. Mr. Ross and Mr. Estes are both engineers with substantial training and experience in working with water delivery systems. Kyle Gorman is the Oregon Water Resources Department watermaster for District 11, which includes Squaw Creek.

The report analyzes the portion of the Cloverdale ditch that were piped by the Squaw Creek Irrigation District, in order to determine what the losses to seepage were in that section while it was unpiped.

Cloverdale Ditch Seepage Loss Analysis

-

Prepared for

Deschutes Resources Conservancy Bend, OR

By

H & R Engineering, Inc. Redmond, OR

RECEIVED SEP 2 9 2003 WATER MESOURCES DEPT SALEM, OREGON

5:

Cloverdale Ditch Seepage Loss Analysis

.

*#

Prepared for

Deschutes Resources Conservancy Bend, OR

By

H & R Engineering, Inc. Redmond, OR

x

Summary - Cloverdale Ditch Seepage Analysis

The following summary (including attachments, spreadsheets and charts), represents field data collected, analysis and display of data collected from SCID records, field flow measurements made, and seepage loss analysis and summary:

Step I. Attachment A, represents discussion on each flow measurement device on the Cloverdale Ditch.

Attachment B (spreadsheet), flow measurement were taken near the end of the pipeline (immediately downstream from the end of the backfill) just upstream from Camp Polk Road. An ultra sonic flow meter (by Elwin Ross) was used to measure the flow in the pipe. Kyle Gorman, Watermaster, provided a flow measurement in the ditch just downstream from Camp Polk Road. Measurements at all flowing turnouts were either observed or taken along the length of Cloverdale Ditch (by Marc Thalacker, Kyle Gorman & Elwin Ross, on 8-30-01; and Marc Thalacker, Bruce Estes, and Elwin Ross on 9-11-01).

- Step II Obtain daily and weekly field record sheets from SCID files. This data was used for inflow-outflow analysis for past years (1996 – 2000), and to determine seasonal total ditch loss. Summaries and analyses were developed using high, medium and low inflows for all years.
- Step III Attachment C, represents plots of flow vs time (years 1996 2000) for inflow into the Cloverdale Ditch at Watson Pond. These plots display the seasonal change in the inflow into the ditch throughout the season.

Attachment D, provides a summary of the estimated Cloverdale Ditch seepage loss in the reach from Watson Pond to Camp Polk Road.

Developed for DRC by: Elwin A. Ross, H & R Engineering, Inc., Redmond, OR

9-26-0

SEP 2 9 2003

WATER NESCURCES DEPT SALEM, OREGON

Corroborated by:

0

Bruce Estes, Estes Surveys, LLC, Bend, OR

Corroborated by:

Gorman, Watermaster, OWRD, Bend, OR

ATTACHMENT A

1.11

Flow Measuring Devices on Cloverdale Ditch^{1/}

All of the flow measuring devices that were operating and measurements taken or flow readings taken, on 8-30-01, were observed by Kyle Gorman, Watermaster, OWRD, and Elwin Ross, H & R Engineering. Marc Thalacker, SCID Manager, provided the flow measurements on the crest of the Cipolletti weirs using the SCID weir stick, with close observation by Kyle Gorman and Elwin Ross. The last flow in the ditch was being delivered to Long (on 8-30-01). Flow measurements were again taken on 9-11-01 with Marc Thalacker, SCID Manager, Bruce Estes, Estes Surveys, & Elwin Ross, H & R Engineering. The last flow in the ditch was to Leason #2 (on 9-11-01).

Landowner	Meter Type	Discussion
Mansker	Aquamaster	Good installation, and apparent full pipe flow condition, Not flowing on 8-30-01 or 9-11-01
Stengel	McCrometer	Good installation, however not working, questionable whether full pipe flow condition exists. Not flowing on 8-30-01 or 9-11-01.
Main Pipeline @ Camp Polk Road	Aquamaster	Unsatisfactory operation, probably due to excessive air or excessive turbulence in upper portion of pipe. Not operating on 8-30-01 or 9-11-01
Christensen	Aquamaster	Good installation, and full pipe flow condition exists. Flowing on 8-30-01 & 9-11-01. Could not check flow using ultra sonic flow meter due to locations of pipe valve and elbow.
Cyrus (Home Pond)	C-3.0 weir	Reasonably good installation, however needs grass removed on north side of weir and accumulated sediment removed. Weir is not completely perpendicular. Use of the weir stick compensates for the apparent increased velocity. Flowing on 8-30-01 & 9-11-01

Check Structure & Cipolletti weirs (2 @ 3.0 ft each) in the main ditch at Cyrus's turnout. Weirs are not fully contracted and approach velocity is a little high, however not too bad. South weir blade is not a sharp crested edge, this giving a non-true head reading. Also leakage exists through the flash boards below the weir blades. Consensus – do not use the flow measured from this structure for seepage loss analysis in the ditch. Instead, use flow data as measured at the end of pipe at Camp Polk Road and individual delivery records.

.

York	Aquamaster	Full pipe flow condition exists, howe accuracy of meter. Use operating sp count, at 5 gpm flow each, to provid sprinkler heads operating on 8-30-01 operating on 9-11-01. This flow is p	rinkler head e turnout flow. Five , seven heads
Hurtley South	McCrometer	Appears to be full pipe flow conditio properly. Flowing on 8-30-01 & 9-1	0
Hurtley Mid	Aquamaster	Meter not working at present. Use o count at 5 gpm each, to provide turne 8-30-01 but not flowing on 9-11-01	
Hurtley North	McCrometer	Appears to be full pipe flow condition properly. Flowing on 8-30-01 & 9-2	+
Taylor	Aquamaster	Full pipe flow condition. Not operat 11-01. Delivery is only at night.	ing on 8-30-01 or 9-
Lester	McCrometer	Appears to be full pipe flow conditio 8-30-01 or 9-11-01	n. Not operating on
Salmon	Weir – C-1.5	Weir may not have full contraction c little high, however not too bad. Flo 11-01. Good location to install a 4 structure in the main ditch.	wing on 8-30-01 & 9-
Leason #2	Aquamaster	Appears to be full pipe flow conditio properly. Flowing on 8-30-01 & 9-1	—
Leason#3	Weir - C-1.5	Needs reworked. Not flowing on 8-	30-01 or 9-11-01
Richardson	Weir – C-1.0	Definitely needs maintenance to clea stilling pool area. Flowing on 8-30-0	0
McDougle	Weir – C-1.5	Appears to be working adequately. I but not flowing on 9-11-01.	Flowing on 8-30-01,
Paulus & McDougle	Weirs - C-1.0	ea – Appears to work adequately. Flo but not flowing on 9-11-01.	wing on 8-30-01,
Long	Weir – C-2.0	Very turbulent, needs larger stilling weaking measurements with weir stick to deter Flowing on 8-30-01, but not flowing	several head ermine an average.
Jeffers	Weir – C-1.0	Appears to work adequately. Not flog flowing on 9-11-01.	Wing on 8-30-01, not RECEIVED
		flowing on 9-11-01.	SEP 2 9 2003
			WATER RESOURCES DEPT

Weirs - All of the weir installations on the Cloverdale Ditch do not meet exact standards for Cipolletti weirs, as to having fully contracted conditions on the bottom and sides, however, use of the "weir stick" for measuring head over the weir blade compensates to some degree the increase in velocity. A rise in water surface results, i.e. roll up, on the weir stick when it is set on the weir blade at a 45 degree angle to the flow. The top of the rise is then recorded and flow is taken from a standard weir flow table for the given crest length of the weir, i.e. at H = 0.5, for a 1.5 ft length weir blade, Q = 1.78 cfs (or 3.56 AF/24 hr day).

Aquamaster flow meters – Where Aquamaster flow meters are apparently not now working, they should be removed and serviced before next irrigation delivery season. Several were not working, including the one on the main pipeline at Camp Polk Road. To operate adequately, the flow in the pipe must not be turbulent and must not contain excessive air bubbles. The glacial silts existing in the ditch flow during the late season of Sept 2001, may effect the bearings on the impeller.

McCrometer flow meters - All of the McCrometer flow meters appear to be working adequately, however the operating conditions may not be 100% satisfactory. The pipe must flow full. Most installations appeared to be good.

1/ <u>Aquamaster</u> – A pipeline flow meter. Full pipe flow without turbulence and air is necessary. Reads both instantaneous flow in gpm and accumulated total flow. For low flows, i.e. less than 40 gpm, it is necessary to install a short section of small diameter pipe in order to increase the velocity in the pipe so the impeller works satisfactory.

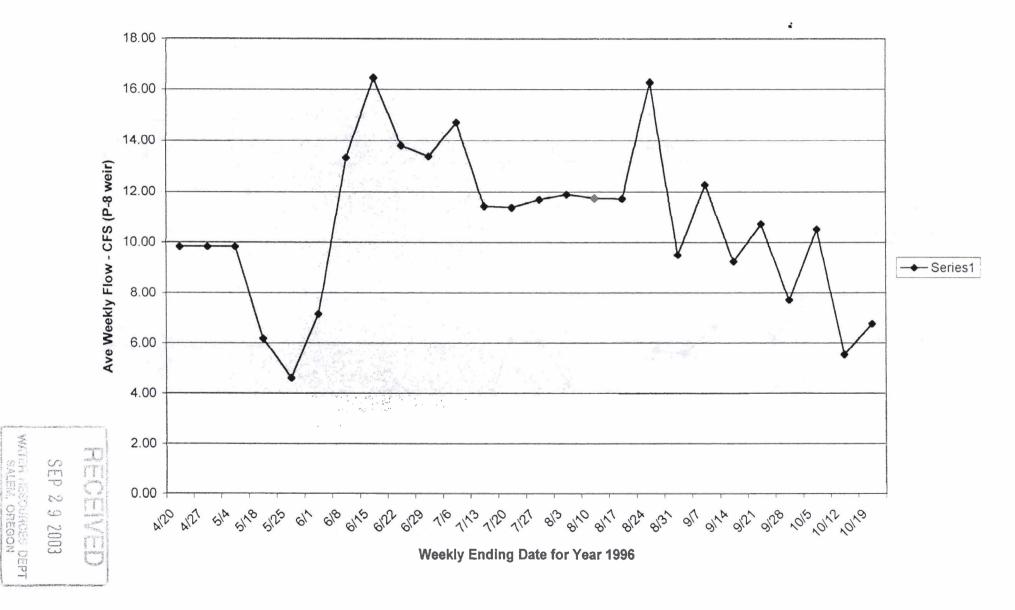
<u>McCrometer</u> – A pipeline flow meter, that measures velocity and then converts to gpm or cfs, and also accumulated total flow. Full pipe flow is necessary since the meter measures velocity in a full flowing pipe. Reads both instantaneous flow and accumulated total flow.

<u>Cipolletti Weir</u> – Sharp edged trapezoidal shaped weir. Standard condition requires a sharp edge, edges and bottom to be fully contracted, i.e. at 2 X head, and the head to be measured 4 X head upstream from weir blade. With less than 100% standard condition, excessive velocity generally occurs upstream from the weir blade. A "weir stick" can be used to measure head.

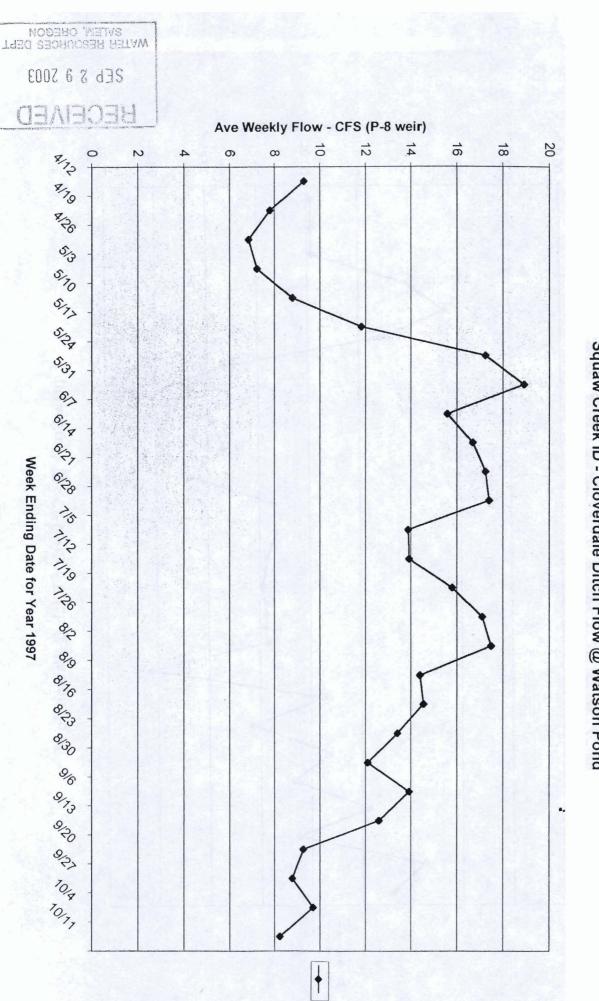
SEP 2 9 2003

Service and					ATTACHMENT B				9-18-01	
Sausau Cross	le luvia ati	on Distric								
Squaw Cree		on Distric	а <u>-</u>							
Cloverdale I	Jitch									
8/30/01						14.12.02				
	Actual	Turnout				Kyle Gorr Check usi				
	Inflow	Flow	Balance	Loss	Loss	Current m				
	cfs	cfs	cfs	cfs	%	cfs				
Flow at end	10.90			010		11.2				
of pipeline	-91									
	140									
Christenson		1.00	9.90	3					_	
Current		1.00	8.24			-				-
Cyrus		1.66	0.24						-	
Hurtley S		0.67	7.57	1						
		0.01		09070					-	
Hurtley M	1.11	0.06	7.51							
Hurtley N		0.79	6.62							
Salmon		0.35	6.37							
Saimon		0.35	0.37				+			
Leason		1.89	4.48							
					1. S. J. J. S. S.					
Richardson		0.07	4.41							
				1.9.2		16-11-1				
McDougle		0.07	4.34							
Paulus		0.58	3.76							
Faulus		0.50	5.70							
Long		0.35	3.41	3.41	31.3 %	-				
<u> </u>										ANE TEN
									13442	
Flow at end of								ows were n	neasured	
or observed usi										10317
Reference for C	Sipolietti we	IT NOW: USE	K, vvater M	easureme	in Manual,	2nd (Table	10) & 3rd I	Edition (Tat	DIE A/-5).	-
Distance from (Comp Doll	rood to L co	a turnout is	norovima	toly 24 900	H Aug L		6/1000 4		1

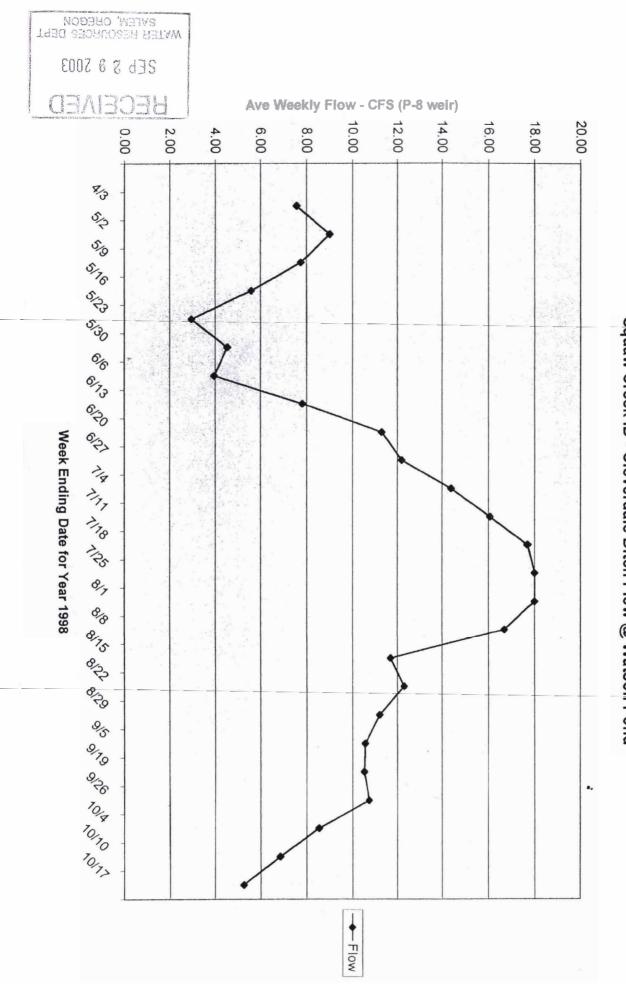
WATEN RESOURCES DEPT SALEN, CREGON RECEVED SEP 2 9 2003

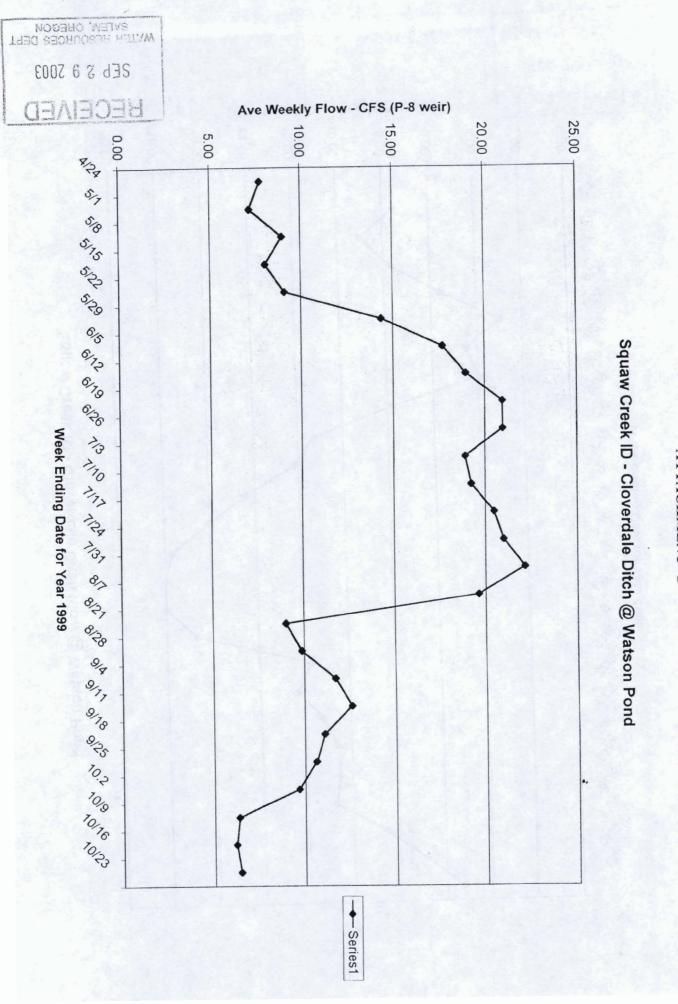

				E D		- 6-1	9-18-01
Squaw Creek Irrigation	rigatic	on District	t				
Cloverdale Ditch	Ч						
9/11/01							
A	Actual	Turnout					
L	Inflow	Flow	Balance	Loss			
2	cfs	cfs	cfs	cfs			
Flow at end 5	5.60						
of pipeline							
Christenson		0.50	5.10				
Cyrus		1.66	3.44				
Hurtley S		0.40	3.04				
Hurtley N		0.89	2.15				
Salmon	100	0.32	1.83				
Leason #2		1.00	0.83				
Bypass		0.05		0.88			
Flow at end of pipel	line was	measured	using a Trar	sit Time Ultrasc	Flow at end of pipeline was measured using a Transit Time Ultrasonic Flowmeter. All other flows were measured	sured	
or observed using e Reference for Cinol	EXISTING	ir flow 11SF	R Water M	asurement Mar	or observed using existing SUID procedures with Cipolietti weirs or pipeline flow meters. Reference for Cipolletti weir flow: USRR: Water Measurement Manual. 2nd (Table 10) & 3nd Edition (Table A7-5).	<u> </u>	

RECEIVED SEP 2 9 2003 WATER RESOURCES DEPT SALEM, OREGON

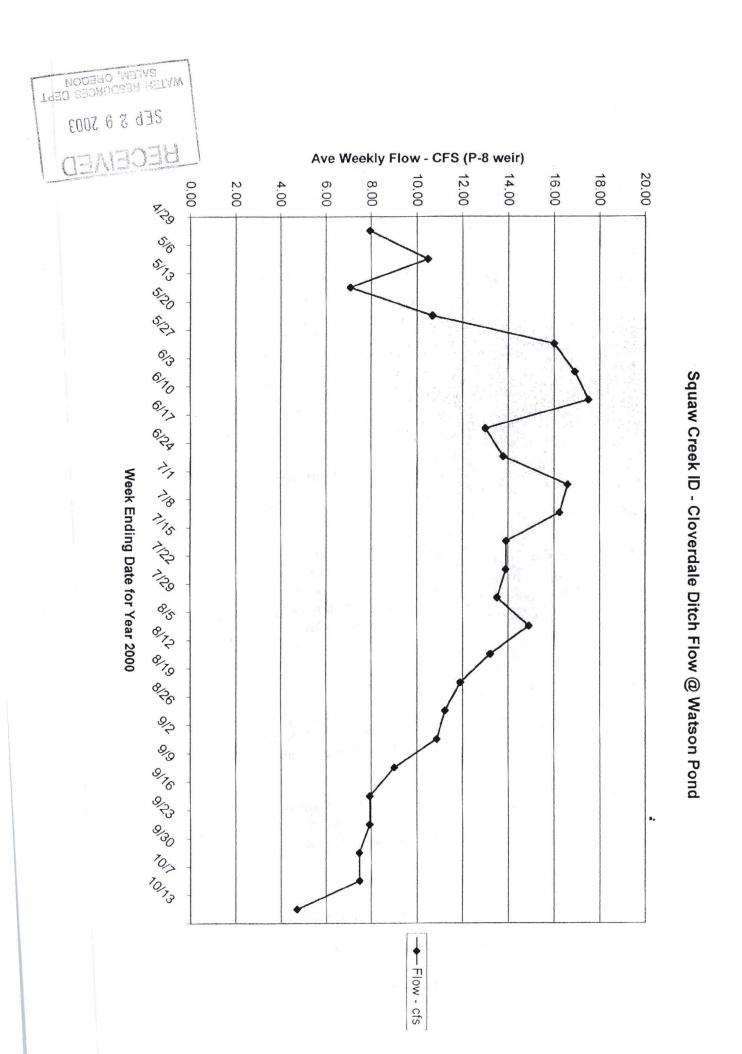

Attachment C

Plot of inflow into Cloverdale Ditch at Watson Pond for years, 1996, 1997, 1998, 1999, 2000


RECEIVED SEP 2 9 2003 WATEH HESOURCES DEPT SALEM, OREGON


Squaw Creek ID - Cloverdale Ditch @ Watson Pond

Squaw Creek ID - Cloverdale Ditch Flow @ Watson Pond



Squaw Creek ID - Cloverdale Ditch Flow @ Watson Pond

DRAFT 8-31-

ATTACHMENT C

ATTACHMENT D

Summary - Seepage Loss Estimate

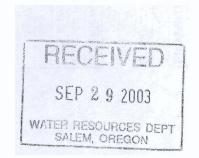
The following is the summary for determination and the conclusion of estimated loss in Cloverdale Ditch, based on flow measurements taken 8-30-01 & 9-11-01:

<u>8-30-01</u>	
Measured flow at end of pipeline at Camp Polk Road	10.90 cfs
Accumulated Flow at Turnouts in Ditch	-7.49 cfs
Balance (loss), based on inflow and turnouts	3.41 cfs
	(use 3.4)
<u>(9-11-01)</u>	
Measured flow at end of pipeline at Camp Polk Road	5.60 cfs
Accumulated Flow at Turnouts in Ditch	-4.77 cfs
Balance (loss), based on inflow and turnouts	0.83 cfs
Bypass	0.05
Total	0.88
	(user 0.9)

The 3.4 cfs (at medium flow range) and 0.9 cfs (at low flow range) values represent losses in the reach of the lower ditch (downstream from the end of the pipeline), at that specific measured inflow, for that day. These values were then used for the analysis of the estimated ditch loss in the pipeline reach. For lack of an actual flow measurement at the end of the pipeline at a high flow, the 3.4 cfs (used for medium flow range) loss is used for the high flow range analysis.

Average Loss Summary for Pipeline Reach:

Years of 1996 to 2000	Ave Flow	Average Loss
Low Flow	7.75 cfs	3.7 cfs
Medium Flow	11.95 cfs	2.8 cfs
High Flow	17.7 cfs	4.7 cfs
Weighted Average		3.9 cfs


	k Irrigation [and the second se		n 1 hand <u>aan bissen o</u> nstaan are di ^{ge}				· · · ·	9-18-01
Cloverdale [Ditch Loss A	nalysis		*	191 - Mar A				-
Summany: Esti	mated loss in th	e Cloverdale Di	tch in the nineli	ne reach				·	
Summary. LSu		e cloveldale Di	ton, in the pipen	ne reach	· · · · · · · ·				
1996		Range - cfs	Loss - cfs		anna an a stada - carabilitation anno anna a				
_ow Flow		5.5 - 9.8	2.8					2	The Physics and a second
Medium Flow -		10.5 - 12.3	2.0						+
ligh Flow		13.3 - 16.4	2.9						
1997									
ow Flow		6.8 - 9.7	3.8						
Medium Flow		11.8 - 13.4	3.9						
ligh Flow		13.9 - 18.9	5.6						
1998									
_ow Flow		5.6 - 9.0	3.2						
Medium Flow		10.5 - 12.3	1.7						
ligh Flow		14.4 - 18.0	2.6						
1999									
Low Flow		6.2 - 9.9	5.0						
Medium Flow		10.6 - 12.6	3.6						
High Flow		14.4 - 22.2	8.9						
2000									
Low Flow		7.1 - 9.9	3.6						
Medium Flow		10.5 - 13.0	3.0				ľ.		
High Flow		13.2 - 17.5	3.3						
									Weighte
SUMMARY		Ave	1996	1997	1998	1999	2000	Ave	Ave
-low Range	Range - cfs	cfs	Loss	Loss	Loss	Loss	Loss	Loss	Loss
_ow Flow	5.5 - 9.9	7.75	2.8	4.0	3.2	5.0	3.6	3.7	
Medium Flow	10.5 - 13.4	11.95	2.0	3.9	1.7	3.6	3.0	2.8	3.9
High Flow	13.3 - 22.2	17.7	2.9	5.9	2.6	8.9	3.3	4.7	
NOTE: Data us	sed for this anal	vsis included, So	CID's ditch rider	s records a	nd SCID de	livery recor	ds for the fi	ve vears a	nalvzed.
for both turnout	and delivery, th	us giving a tota	I ditch loss. Act	ual flow me	easurement	at the end	of the pipeli	ne dave a	n actual
loss value from	the end of the p	pipeline to the en	nd of the ditch.	The differe	nce provide	s the loss a	presented he	ere. It was	
decided to use	three different fl	ow ranges, as it	is assumed that	t losses are	e different a	t different fl	ow levels.		
for example, lo	sses are higher	at higher flows a	and lower at low	flows.					and the second sec
	d by actual flow				and 9-11.2	001.	h -		

SEP 2 9 2003 WATER RESOURCES DEPT

RECENTED

Appendix

Cloverdale Ditch loss analysis: 1996, 1997, 1998, 1999, 2000

Squaw Creek In	States and a state of the second states of the seco	The set of an and the set	Contraction of the second seco	1000000 0.0000 - 00000 - 0000 ⁰⁰ - 1100							9-	18-
Cloverdale Ditc	h Loss	Analysi	S						nerstaan aslan aan ah fa burd			
										4 		
This table represent	s an appr	oach that	one might	use to es	timate the	losses al	ong the C	overdale	ditch.	2		
There are, however	, limitatio	ns with this	s approacl	h. One ca	in make ai	n assumpt	tion about	the loss v	vith this ap	proach on	y	
at the particular flow	v level the	ey were ma	ade. We a	assume a	loss in the	lower po	rtion of the	e ditch, be	low Camp	Polk Road	d, to be 3.4 c	ofs
for medium flows, a	nd 0.9 cfs	s for low fl	ows. One	must proj	ect some	value to r	epresent h	igh flow r	anges.			
For lack of anything	better, th	e 3.4 cfs y	was used.									
1996										; 		
MEDIUM FLOWS -	Range 10	0.5 - 12.3	cfs									
Week ending	7/13	7/20	7/27	8/3	8/10	8/17	9/7	9/21	10/5			
Watson Ave Q	11.4	11.4	11.7	11.9	11.7	11.7	12.3	10.7	10.5			
Turnout - AF	158.8	160.0	163.8	166.6	164.4	163.6	176.1	151.0	149.6			
Delivery - AF	95.1	92.9	98.1	73.5	62.8	87.9	98.8	87.3	88.3			
Loss AF/day	9.1	9.6	9.4	13.3	14.5	10.8	11.0	9.1	8.8			
Loss ⁻ cfs	4.6	4.8	4.7	6.7	7.3	5.5	5.6	4.6	4.4			
Pipe length loss-cf	1.2	1.4	1.3	3.3	3.9	2.1	2.2	1.2	1.0	2.0		
HIGH FLOWS - Ra	nge 13.3	- 16.4 cfs										
Week ending	6/8	6/15	6/22	6/29	7/6	8/24	Ave					
Watson Ave Q	13.3	16.4	13.8	13.4	14.7	16.3						
Turnout - AF	187	231.2	193.4	191.6	211.4	229.1	9991 Windowskieling			1		
Delivery - AF	108	145.2	121.3	113.1	119.1	109.8						
Loss AF/day	11.3	12.3	10.3	11.2	13.2	17.0						
Loss cfs	5.7	6.2	5.2	5.7	6.6	8.6	er en rag ag pag a			-		
Pipe length loss-cf	2.3	2.8	1.8	2.3	3.2	5.2	2.9		=			
	ni isan genera maad		a-a tat 60- a tanan	anners of a scrady	an an an air air air an	arau) annad di	en ramps and co	*** **** *	nu v			1- dist 9 dist -
		· · · _ · ·					a and the same	10 6 million de contra dese menseus				

WATER RESOURCES DEPT SALEM, OREGON SEP 2 9 2003

Squaw Creek Ir	rigation	Distric	t								1.00 2.05	3.203	14	9-18-01	
Cloverdale Dito	h Loss	Analys	is								. Start				
· · · · · · · · · · · · · · · · · · ·															
This table represen	ts an appr	oach tha	t one migh	nt use to e	stimate th	ne losses	along the	Cloverda	le ditch.						
There are, howeve	r, limitation	ns with th	is approad	ch. One c	an make	an assum	ption abo	out the los	s with this	s approac	n only		<u> </u>		
at the particular flow	w level the	ey were m	nade. We	assume a	a loss in t	he lower p	ortion of	the ditch,	below Ca	mp Polk	Road, to I	be 3.4 cfs	·		
for medium flows, a	and 0.9 cfs	s for low t	lows. One	e must pro	oject som	e value to	represer	nt high flor	w ranges.						
For lack of anything	g better, th	ie 3.4 cfs	was used												
1997															
	Derge 11	10 10 1													
MEDIUM FLOWS - Week ending	5/17		8/23	9/13	Ave										
Natson Ave Q	5/17	8/30	13.4	9/13	Ave										
Furnout - AF	170.6	171.9	186.4	149.1											
Delivery - AF	76.9	68.6	44.5	84.5											
Loss AF/day	13.4	14.8	20.3	9.2											
Loss cfs	6.7	7.4	10.2	4.7					0.000						
Pipe length loss-cf:	3.3	4.0	6.8	1.3	3.9							1			
HIGH FLOWS - Ra	nge 13.9 -	- 18.9cfs													
Neek ending	5/24	5/31	6/7	6/14	6/21	6/28	7/5	7/12	7/19	7/26	8/2	8/9	8/16	9/6	Ave
Watson Ave Q	17.25	18.9	15.6	16.7	17.2	17.4	13.9	13.9	15.8	17.1	17.5	14.4	14.6	13.9	
Furnout - AF	244.1	264.6	212.3	234.5	241.3	244.5	194.3	194.6	165.6	240.7	245.7	201.8	203.8	193.5	
Delivery - AF	130.4	133.3	94.9	127.8	115.2	128.3	70.4	68.1	93.3	67.5	56.1	48.9	82.0	118.1	
oss AF/day	16.2	18.8	16.8	15.2	18.0	16.6	17.7	18.1	10.3	24.7	27.1	21.8	17.4	10.8	
Loss cfs	8.2	9.5	8.5	7.7	9.1	8.4	8.9	9.1	5.2	12.5	13.7	11.0	8.8	54	
Pipe length loss-cf	4.8	6.1	5.1	4.3	5.7	5.0	5.5	5.7	1.8	.9.1	10.3	7.6	5.4	20	
Come Co man															
2- 17 111													-		
hi D A															
2 9 2003			324242		al and a second	100		1	1.1.1.1.1.1.1				A STOR		
VI VI					8	127. 14	1 Ave					See. 14			
2003				į	14	5.00		1	- er						
ă Ol				1								i			

Squaw Creek Irr	rigatior	n Distric	t			/							9-1	8-01
Cloverdale Ditcl	h Loss	Analysi	is	1		[]								
										2				
This table represents	s an app	roach that	one migh	t use to es	stimate th	e losses a	long the	Cloverc	lale ditch					
There are, however,	, limitatic	ons with thi	is approac	h. One ca	an make a	an assumr	otion ab	out the lo	oss with th	nis approa	ach only			
at the particular flow	level th	ey were m	ade. We	assume a	loss in th	e lower po	ortion of	the ditch	n, below (Camp Pol	k Road, to	be 3.4 c	fs,	
for medium flows, ar	nd 0.9 cf	is for low f	iows. One	: must pro	ject some	value to	represe	nt high fl	ow range	S				
For lack of anything	better, t	he 3.4 cfs	was used.											
in an altern						-								
1998			1.500 2		1.1									
MEDIUM FLOWS -	Range 1	0.5 - 12.3	cfs			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-		i sere i					
Week ending	6/27	8/15	8/22	9/12	9/19	9/26	Ave		and a second		14-	-		
Watson Ave Q	12.2	2 11.69	12.3	11.6	10.5	5 10.7	1							
Turnout - AF	171.2	2 182.7	172.7	161.2	146.0	150.7								
Delivery - AF	112.2	2 95.7	85.3	100.6	80.2	2 89.7				2				
Loss AF/day	8.4	4 12.4	12.5	8.7	9.4	8.7							-	
Loss cfs	4.2	6.3	6.3	4.4	4.7	4.4	,							
Pipe length loss-cf:	0.8	3 2.9	2.9	1.0	1.3	3 1.0		1.7					4	
NY YEAR AND	215.)													
HIGH FLOWS - Rar	ige 14.4	- 18.0 cfs	4.4. Sep.											
Week ending	7/4	7/11	7/18	7/25	8/1	8/8	Ave			-				
Watson Ave Q	14.4		17.7	18.0	18.0	16.7								
Turnout - AF	204.7	7 247.7	248.3	252.0	252.0	232.6	1							
Delivery - AF	135.7	7 149.9	169.2	163.1	175.1	145.5					-			
Loss AF/day	9.9	9 14.0	11.3	12.7	11.0	12.4	,							
Loss cfs	5.0			6.4	5.5	5 6.3	,							
Pipe length loss-cf	1.6	5 3.6	2.3	3.0	2.1	1 2.9	1	2.6						
	24 () () () () () () () () () () () () ()			·						· · ·	· · ·			
	a mara		2010 0 1000000000	ļ		-						7.6	ana an	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1.) 		(a. *) (*) (*)				1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1					1		i lette disease cati
<u></u>														
	/	1	1 2	1	1	÷								

WATER RESOURCES DEPT SALEM, CREGON

Squaw Creek In							-					
Cloverdale Ditc	h Loss /	Analysis	;				al - Hapmani anna guideatha a ann a					
This table represent	s an appro	bach that o	one might	use to es	timate the	losses al	ong the Cl	overdale o	ditch.	100000		
There are, however,	limitation	s with this	approach	. One ca	in make ar	assumpt	tion about	the loss w	ith this ap	proach on	ly	1
at the particular flow	level the	y were ma	de. We a	ssume a	loss in the	lower por	rtion of the	ditch, bel	low Camp	Polk Road	d, to be 3.4	4 cfs,
for medium flows, an	nd 0.9 cfs	for low flo	ws. One	must proj	ect some	value to re	epresent h	igh flow ra	anges.			
For lack of anything	better, the	e 3.4 cfs w	as used.			2						
4000												
1999												
MEDIUM FLOWS -												
Week ending	9/4	5/20	9/11	8/19	Ave							
Watson Ave Q	11.7	12.6	11.1	10.6								
Turnout - AF	166.9	176.4	153.8	148.5								
Delivery - AF	67.2	82.4	60	46.7								
Loss AF/day	14.2	13.4	13.4	14.5								
Loss cfs	7.2	6.8	6.8	7.3								
Pipe length loss-cf:	3.8	3.4	3.4	3.9	3.6							
HIGH FLOWS - Rar	nge 14.4 -	22.2 cfs										
Week ending	5/29	6/5	6/12	6/19	6/26	7/3	7/10	7/17	7/24	7/31	8/7	Ave
Watson Ave Q	14.4	17.7	19	21.0	21.0	18.9	19.2	20.5	21.0	22.2	19.6	
Turnout - AF	203.7	250.6	266.2	294.0	294.0	261.7	268.5	287.7	294.0	310.1	199.9	
Delivery - AF	59.9	93.9	111.3	90.4	116.9	81.1	104.5	112.5	112.7	103.0	65.4	
Loss AF/day	20.5	22.4	22.1	29.1	25.3	25.8	23.4	25.0	25.9	29.6	19.2	1
Loss cfs	10.4	11.3	11.2	14.7	12.8	13.0	11.8	12.6	13.1	14.9	9.71	
Pipe length loss-cf	7.0	7.9	7.8	11.3	9.4	9.6	8.4	9.2	9.7	11.5	63	8.9
					-							
								ov	· · · · ·			
82942 #1										-		
7may					and a set of							
1 BOOM STORY	145 30.0			1.1.1	1997 A		Part -			1		C

WATER RESOURCES DEPT SALEM, OREGON

Squaw Creek Ir			stand links and in the second second second										9-18-
Cloverdale Ditc	h Loss	Analysi	5										
This table represent	ts an appr	oach that	one might	use to es	timate the	losses al	ong the Cl	overdale c	litch.		11 F 197 BF		
There are, however	, limitatior	ns with this	s approact	h. One ca	in make ar	n assumpt	ion about	the loss w	ith this ap	proach on	ly		
at the particular flow	v level the	y were ma	de. We a	assume a	loss in the	lower por	tion of the	e ditch, bel	ow Camp	Polk Roa	d, to be 3.	4 cfs.	
for medium flows, a	nd 0.9 cfs	for low flo	ows. One	must pro	ject some	value to re	epresent h	igh flow ra	inges.	f			
For lack of anything	better, th	e 3.4 cfs v	was used.										
													-
2000													
MEDIUM FLOWS -	Range 10).5 - 13.0 (ofs										
Week ending	5/6	5/20	6/17	8/19	8/26	9/2	Ave						
Watson Ave Q	10.5	10.7	13	11.9	11.2	10.9							;
Turnout - AF	147.0	147.7	178.4	166.7	158.5	152.2							
Delivery - AF	66.0	45.5	70.1	83.8	78.4	76.8						······································	:
Loss AF/day	11.6	14.6	15.5	11.8	11.4	10.8							
Loss cfs	5.8	7.4	7.8	6.0	5.8	5.4							
Pipe length loss-cf	2.4	4.0	4.4	2.6	2.4	2.0	3.0						
HIGH FLOWS - Ra	.nge 13.2 -	· 17.5 cfs											
Week ending	5/27	6/3	6/10	6/24	7/1	7/8	7/15	7/22	7/29	8/5	8/12	Ave	
Watson Ave Q	16	16.9	17.5	13.8	16.6	16.2	13.9	13.9	13.5	14.9	13.2		1
Turnout - AF	224.2	238.5	244.7	190.7	232.5	224.4	164.5	194.3	188.9	208.6	185.7		
Delivery - AF	103	128.8	122.9	124.3	119.3	133.4	102.9	107.9	96.9	123.7	115.5		
Loss AF/day	17.3	15.7	17.4	9.5	16.2	13.0	8.8	12.3	13.1	12.1	10.01		1
Loss cfs	8.7	7.9	8.8	4.8	8.2	6.6	4.4	6.2	6.6	6.1	5.1		
Pipe length loss-cf:	53	4.5	5.4	1.4	4.8	3.2	10	2.8	3.2	2.7	17	33	<u>.</u>
and a second sec													
					** * ** **** * **** ****								
									į.				911
											4		Į.
										(