PUBLIC INTEREST REVIEW FOR GROUND WATER APPLICATIONS

TO:		Water	r Rights S	ection				Dat	e August	7, 2006				
FROM	•	Grou	nd Water/	Hydrology	Section _	Mich	ael Zwart							
SUBJE		• •	cation G-			Su	-	eview of	July 11,	2005 Date of Re	view(s)			
OAR 69 welfare, to deter	90-310-1 , <i>safety a</i> mine who	30 (1) 7 nd healt ether the	The Depari th as descr presumpt	ibed in ORS ion is establ	resume the 537.525. I ished. OAF	at a propos Departmen R 690-310-	ed groundw t staff review 140 allows	w ground wat the proposed	ensure the prese er applications use be modified icies in place a	under OA d or condi	.R 690-31 itioned to	10-140 meet		
A. <u>GE</u>	NERAL	INFO	RMATI	<u>ON</u> : A	pplicant's l	Name:	Rowena I	Dell Water .	Assn. Co	ounty:W	√asco			
A1.	Applica	ınt(s) se	ek(s) <u>0.1</u>	671 cfs fro	m <u>three</u>	e well	` '	Hood	vla			_ Basin,		
A2. A3.				asi Municig		Seas	sonality:	year roun	d	under lo				
Well Logid Applicant's Proposed Proposed							Location C/R-S QQ-Q)	Location	n, metes : N, 1200' E	and boun				
1	WASC		1		CRB	0.055		12E-3 SW-S	_					
3	WASC WASC							75' N, 310' E fr SW cor S 3 600' N, 1545' E fr SW cor S 3						
4	***************************************				CIG	0.055	7 2111	12D-3 5D-5 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1, 1545 E	11 5 11 60	100		
5														
* Alluvii	um, CRB,	Bedrock												
Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Scal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	r Screens Yield		Test Type		
1	800	325	490	10/7/76	650	0-20	0-20	None	None	30	(ft) 0	P		
3	650 575	127 620	372 342	10/17/76 10/10/76	515 640	0-58 0-18	0-58	None	None	40	143	Air		
3	313	020	342	10/10/70	040	U-10	0-18	None	None	6	298	Air		
Use data	from app	l lication i	for proposed	l wells.				1						
A4.	Comme	ents: <u>W</u> appear	ASC 2787 s that it is	deepened: well #1 tha	WASC 27 t is deeper	93. This I led. Draw	og was also down estin	attached to nated from a	well #2, but b: ir test.	ised on th	<u>ie dates c</u>	<u>of</u>		
A5. 🗵	manage (Not all	ment of basin r	ules contai	ater hydrauli n <mark>such pro</mark> vi	cally conne isi on s.)	ected to su	rface water	are, or 🗵	o the developm	ent, class ated by th	ification :	and/or ation.		
A6. 🗍	Well(s) Name o		istrative ai	· , .	, ,		, ta	p(s) an aquif	er limited by ar	ı administ	rative res	striction.		

В. <u>GI</u>	ROUN	ND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070										
B1.	Bas	sed upon available data, I have determined that ground water* for the proposed use:										
	a.	is over appropriated, ☐ is not over appropriated, or ☒ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;										
	b.	■ will not or ■ will likely be available in the amounts requested without injury to prior water rights. * This fin is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;										
	c.	will not or will likely to be available within the capacity of the ground water resource; or										
	d.	 will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i.										
B2.	a.	Condition to allow ground water production from no deeper than ft. below land surface;										
	b.	Condition to allow ground water production from no shallower than ft. below land surface;										
	c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;										
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section. Describe injury—as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):										
В3.	sma 3.5 Ver Me wel	ound water availability remarks: Potential for water-level declines and overdraft of the resource exists virtually rywhere the Columbia River Basalt aquifers are developed, especially east of the Cascades where recharge is all. The attached hydrograph for well WASC 50012 displays declining water levels at a well in the vicinity (approximiles) of the subject wells. This well develops the Frenchman Springs Member of the Columbia River Basalt, we similar declines have been documented at other wells that develop ground water in the Frenchman Springs mber (Lite, personal communication). The subject wells may be hydraulically isolated from the above-mentioned is to the west by faulting. Another attached hydrograph for a well (WASC 2020) about 1.2 miles south displays nitively stable water levels. Therefore, a finding that the resource is over appropriated is not made here.										
	_											
	-											
	_											
	1											
	_											
	_											

continued

Date: August 7, 2006

Application G-16454

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
All	Frenchman Springs Member* of the Columbia River Basalt	\boxtimes	

Basis for aquifer confinement evaluation: Ground water in CRB aquifers is typically confined in this area. *The subject wells also are open to overlying Roza and Priest Rapids Members, but none obviously commingle, probably as a result of under-reporting of water-level information on the well logs. The Frenchmen Springs is therefore assumed to include the primary water-bearing zone.

C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Rowena Creek	310	620	650		
2	1	Rowena Creek	278	635	200		
3	1	Rowena Creek	233	560	150		
1	2	Columbia River	310	72	4200		
2	2	Columbia River	278	72	5100		
3	2	Columbia River	233	72	3800		

Basis for aquifer hydraulic connection evaluation: Rowena Creek is well above the head in the wells at the nearby reaches. The Columbia River is the likely discharge area for the water-bearing zones developed by the wells.

Water Availability Basin the well(s) are located within: Rowena Cr > Columbia R at mouth (30410531).

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked Sox indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
_ 1	2						*			g
2	2						*	ि		
3	2						*			
						1 10				

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

		III ODW WOO!						
SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: *See Dwight French memo of 12/6/2004 for water availability determinations for the Columbia River mainstem. Used Wozniak modification of the Hunt stream depletion model to determine interference at 30 days.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Distributed												
Well SW#	Jan	Feb	Mar	Apr	May	Jun	_ Jul	Aug	Sep	Oct	Nov	Dec
	1/0	%	%	%	%	%	%	%	%	%	%	1/1
Well Q as CFS			=						Ĭ			
Interference CFS		_										
Distributed We						_			_	_		_
Well SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	%	%	%	0/6	%	%	%	1/6	9/6	9/0	9/6	%
Well Q as CFS	<u> </u>											
Interference CFS												
	1/1	%	%	9/0	%	%	9/0	%	%	%	%	%
Well Q as CFS												
Interference CFS												
	Ψ,	%	%	%	%	%	9/10	⁰/₀	%	1/11	9/4	9/6
Well Q as CFS												
Interference CFS		Ì										
	9/6	9%	9/4	9/6	9/4	9%	6/1	8/0	%	9/10	%	"/"
Well Q as CFS												
Interference CFS												
	1%	-3%	2/4	1%	9/4	4%	47	407 7 0	665	96	95	95
Well Q as CFS							200 1110	110000		3.400.0		
Interference CFS												
	9%	9/6	9/6	1/4	1/6	9/6	11/0	9/0	1/0	%	9%	%
Well Q as CFS							-					
Interference CFS												<u></u>
(A) = Total Interf.							i					
(B) = 80 % Nat. Q									<u> </u>			
(C) = 1 % Nat. Q												
(D) = (A) > (C)	1	V	V	V	1	/	1	1	V	V	√	1
$(E) = (A / B) \times 100$	0/0	⁶ / ₀	1½a	%	%	%	%	9/0	%	0/0	0/6	9/0
(, (= , = , =			<u> </u>									

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:	
b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined Rights Section. i. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s) ii. The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s)	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s)	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
Rights Section. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	ned by the W
under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	
under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s) ii The permit should contain special condition(s) as indicated in "Remarks" below;	around water
i. The permit should contain condition #(s)	ground water
ii. The permit should contain special condition(s) as indicated in "Remarks" below;	
SW / GW Remarks and Conditions	
SW / GW Remarks and Conditions	
	* *******
	75
	17-
	W. 1-115-11
References Used: Local well logs: Recent reviews, especially G-16310; Ground Water Report #33 by Li hydrographs of nearby wells: personal communication with Ken Lite regarding recent water-level data c	te & Grondin
area.	meeten iii iii

Application (G- <u>16454</u> continued D	Date: August 7, 2006
D. WELL	CONSTRUCTION, OAR 690-200	
D1. Wel	ell #: Logid:	
a. b. c.	field inspection by report of CWRE	
a.	HE WELL construction deficiency: constitutes a health threat under Division 200 rules; commingles water from more than one ground water reservoir; permits the loss of artesian head; permits the de-watering of one or more ground water reservoirs; other: (specify)	
like Note for	HE WELL construction deficiency is described as follows: <u>In general, I stack whenever deep wells are constructed in CRB aquifers with minimal, or one that, in WASC 2792, the constructor reports multiple water-bearing zoner these separate zones. Enforcement Section staff previously found that the ound-water resource.</u>	near minimal, casing and seal depths. les but does not report any water levels
_		
D6. Roo	HE WELL a. □ was, or □ was not constructed according to the stand original construction or most recent modification. b. ☑ I don't know if it met standards at the time of construction oute to the Enforcement Section. I recommend withholding issuance of the pefiled with the Department and approved by the Enforcement Section and the Gro	tion. rmit until evidence of well reconstruction
THE SEC	CTION TO BE COMBLETED BY ENFORCEMENT DEDCOMMIN	
	CTION TO BE COMPLETED BY ENFORCEMENT PERSONNEL ell construction deficiency has been corrected by the following actions:	
D8. ☐ Rou	(Enforcement Section Signature) oute to Water Rights Section (attach well reconstruction logs to this page).	

Application G-16454

Superceded 8/7/06

PUBLIC INTEREST REVIEW FOR GROUND WATER APPLICATIONS

TO:		Wate	r Rights S	ection				Dat	e	July 11,	2005	,		
FROM	:	Grou	nd Water/	Hydrology	Section _		ael Zwart							
SUBJE	CT.	A1	:ti C	16454			iewer's Name			MT / A				
SUBJE	CI:	Appii	ication G-	10454		Su	persedes re	eview oi		N/A	Date of Re	view(s)		
OAR 69 welfare, to deter	90-310-1 safety a mine who umption NERAL	30 (1) and heal ether the criteria	The Depart th as descr e presumpt . This revi	ibed in ORS ion is estable ew is based	resume the 537.525. I ished. OAI upon avai	at a propos Departmen R 690-310- ilable infor	ted groundwited staff review 140 allows in the Rowena I (s) in the	eater use will w ground wat the proposed agency pol- Dell Water Hood	er app use be icies in Assn.	e the press lications t modified n place at	ervation of under OA or condi the time	of the pull R 690-31 tioned to	l 0-140 meet	
	_				_				_					
A2. A3.	Propose Well an	ed use:	<u>Ou</u> er data (att	<u>asi Municir</u> ach and nu	oal mber logs	Seas	sonality:	year round	d Lwalls	as such i	under lee	rid):		
<i>T</i> .5.	W CII ali	d aquii							i wens					
Well	Log	id	Applicant Well #		oposed quifer*	Propos Rate(c		Location /R-S QQ-Q)		Location 2250' N	i, metes a	and boun fr NW co	ds, e.g. r S 36	
1	WASC		1		CRB	0.055	7 2N/1	12E-3 SW-S	W	965' [N, 780' E	fr SW co	r S 3	
2	WASC		2		CRB	0.055	_	2N/12E-3 SW-SW			75' N, 310' E fr SW cor S 3 600' N, 1545' E fr SW cor S 3			
3 4	WASC	2794	3		CRB	0.055	0.0557 2N/12E-3 SE-SW			600' N	, 1545' E	Ir SW co	r S 3	
5				_		+								
	ım, CRB,	Bedrock	ζ						!					
Well 1 2 3	Well Elev ft msl 800 650 575	First Water ft bls 325 127 620	ft bls 490 372	SWL Date 10/7/76 10/17/76	Well Depth (ft) 650 515	Seal Interval (ft) 0-20 0-58	Casing Intervals (ft) 0-20 0-58	Liner Intervals (ft) None None	Or Non Non	e	Well Yield (gpm) 30 40	Draw Down (ft) 0	Test Type P Air	
3	3/3	020	342	10/10/76	640	0-18	0-18	None	Non	<u>e </u>	6	298	Air	
A4.	Commo	ents: <u>W</u>		deepened:				attached to			sed on th	e dates (of	
									-1×1			30		
A5. 🛚	manage (Not all	Provisions of the Hood Basin rules relative to the development, classification and/or management of ground water hydraulically connected to surface water are, or are not, activated by this application. (Not all basin rules contain such provisions.) Comments:												
A6. 🗌	Well(s) Name o Comme	f admin	istrative ar	ea:,		,	, ta	ıp(s) an aquif	er lim	ited by an	administr	rative res	triction.	

ROUN	ND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070
Bas	sed upon available data, I have determined that ground water* for the proposed use:
a.	is over appropriated, ☐ is not over appropriated, or ☒ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;
b.	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;
c.	will not or will likely to be available within the capacity of the ground water resource; or
d.	will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i. The permit should contain condition #(s) 7A ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below;
a.	Condition to allow ground water production from no deeper than ft. below land surface;
b.	Condition to allow ground water production from no shallower than ft. below land surface;
c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;
	issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Grout Water Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):
eve <u>sma</u> 3.5 <u>Ver</u> <u>Me</u> wel	rywhere the Columbia River Basalt aquifers are developed, especially east of the Cascades where recharge is all. The attached hydrograph for well WASC 50012 displays declining water levels at a well in the vicinity (appromiles) of the subject wells. This well develops the Frenchman Springs Member of the Columbia River Basalt. The similar declines have been documented at other wells that develop ground water in the Frenchman Springs mber (Lite, personal communication). The subject wells may be hydraulically isolated from the above-mentioned is to the west by faulting. Another attached hydrograph for a well (WASC 2020) about 1.2 miles south displays attively stable water levels. Therefore, a finding that the resource is over appropriated is not made here.
=	
<u> </u>	
_	

continued

Date: July 11, 2005

Application G-16454

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined		
All	Frenchman Springs Member* of the Columbia River Basalt	×			
1	Rock R 8				

Basis for aquifer confinement evaluation: Ground water in CRB aquifers is typically confined in this area. *The subject wells also are open to overlying Roza and Priest Rapids Members, but none obviously commingle, probably as a result of under-reporting of water-level information on the well logs. The Frenchmen Springs is therefore assumed to include the primary water-bearing zone.

C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Rowena Creek	310	620	650		
2	1	Rowena Creek	278	635	200		
3	1	Rowena Creek	233	560	150		
1	2	Columbia River	310	72	4200		
2	2	Columbia River	278	72	5100		
3	2	Columbia River	233	72	3800		

Basis for aquifer hydraulic connection evaluation: Rowena Creek is well above the head in the wells at the nearby reaches. The Columbia River is the likely discharge area for the water-bearing zones developed by the wells.

Water Availability Basin the well(s) are located within: Rowena Cr > Columbia R at mouth (30410531).

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	2						*		70	\boxtimes
2	2						*		68	×
3	2						**		70	\boxtimes
					1_					

Ann	lication	G-1	6454
AUD.	ncanor.	1 -D 1	ひサンサ

continued

Date: July	11, 2005	

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SV #	v	Qw > 5 cfs?	Instream Water RightID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: *See Dwight French memo of 12/6/2004 for water availability determinations for the Columbia River mainstem. Used Wozniak modification of the Hunt stream depletion model to determine interference at 30 days.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well	istributed SW#	Jan	Feb	Mar _	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	9/4	11/1	9/6	%	0/0	9/0	%	9/6	9/11	_%	9/0
Well Q	as CFS												
	nce CFS												
					!		'						
	uted Well												
Well	SW#	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		1/0	%	9/11	%	%	9∕n	%	%	%	%	%	%
Well Q	as CFS												
Interfere	nce CFS												
		%	1/6	9/6	%	9/0	1/0	%	9/0	%	9/0	9/0	%
Well Q	as CFS												
Interfere	nce CFS												
		9/0	1/0	0/6	%	1/0	9/0	%	%	9/0	9/0	%	1/0
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	0/4	0/0	9/0	%	1/6	9/4
Well Q	as CFS												7.
Interfere	nce CFS												
	ĺ	9/0	0/0	1/6	%	%	9/6	11/0	9/0	4/6	%	%	%
Well Q	as CFS												
Interfere	nce CFS												
		%	%	%	%	%	9/6	9/0	%	%	%	%	0/0
Well Q	as CFS												
Interfere	nce CFS												
(A) = To	tal Interf.												
	% Nat. Q												
	% Nat. Q												
(D) = (A) > (C)	A	A IF3	A	4	-A			杏	a.A.	is ^A	A	A
	/ B) x 100	%	9/0	%	%	%	%	%	9/11	%	9/6	9/4	%

cation G- <u>16434</u>	continued	Date: July 11, 2005
otal interference as CFS; (B) = WAB calculated natural flow at a	80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed ter than (C); (E) = total interference divided by 80% flow as percentage.
Basis for impact evalu	ation:	than (O), (E) – total interference divided by 80% flow as percentage.
2000-00-2000-00-00-00-00-00-00-00-00-00-		
690-09-040 (5) (b) Rights Section.	The potential to impair or detrin	mentally affect the public interest is to be determined by the W
If properly condition	ned, the surface water source(s) ca	an be adequately protected from interference, and/or ground water antially interfere with surface water:
i. 🔲 The perm	ait should contain condition #(s)_	n(s) as indicated in "Remarks" below;
	•	
V / GW Remarks and	Conditions	
11000	100	
		500 m
	- 46	
		3.3443
	100000000000000000000000000000000000000	11000
		Land to the second seco
eferences Used: Loca	l well logs; Recent reviews, espe	ecially G-16310; Ground Water Report #33 by Lite & Grondin
	vells; personal communication w	vith Ken Lite regarding recent water-level data collected in th
ea.		- V-100 - V-1

D. WI	ELL CONSTR	UCTION.	OAR 690-200	
D1.	Well #:		<u> </u>	
D2.	a. review b. field i c. report	v of the well nspection by of CWRE	<i></i>	n standards based upon:
D3.	b. comm c. permi d. permi	tutes a healt ungles water ts the loss of ts the de-wa	deficiency: h threat under Division 200 r from more than one ground fartesian head; tering of one or more ground	water reservoirs;
D4.	likely wheneve	er deep well VASC 2792	s are constructed in CRB a	follows: In general, I suspect that commingling is possible or equifers with minimal, or near minimal, casing and seal depths. Solution water-bearing zones but does not report any water levels
D5.	THE WELL	_	original construction or mos	acted according to the standards in effect at the time of st recent modification. ards at the time of construction.
D6.				hholding issuance of the permit until evidence of well reconstruction cement Section and the Ground Water Section.
THIS	SECTION TO	BE COM	PLETED BY ENFORCI	EMENT PERSONNEL
D7.	Well constructi	on deficienc	ey has been corrected by the f	following actions:
D8.			ion Signature)	ruction logs to this page).

Date: July 11, 2005

Application G-16454

____continued

Water Resources Department

M	IEMO								hly	12,2	003		
T	0-	A	pplicat	ion G	1645	4			- E				
F	ROM	G	:w: <u>/</u>	lichad	el Z	wart							
SI	U BJEC				-	ference		ation					
	Ye No	T	ne sourc	e of app	propriat	ion is w	ithin or	above a	a Scenie	c Water	way		
	Ye No	Us	e the So	cenic W	aterway	/ conditi	on (Co	ndition	7J).	577			
PR	EPOND	ERAN	CE OF	EVIDE	NCE F	INDINC	6: (Che	eck box	only if	stateme	ent is tru	e)	
v	7	At evi	this tin dence t face wa	ne the I hat the iter flow	Departn propos	nent is used use	inable of gro	to find	that th	ere is a	a prepor	iderance reduce the of a scen	
							1	10					
									of Evide	nce box	c is not d	checked)	
wat	rcise of erway b ace wate	by the f	ollowin	g amou	ed to red nts exp	duce mo ressed a	nthly f	lows in portion	of the c	onsum	ptive us	Sceni e by whic	c h
	.Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
					1								

Water-level data for State Well WASC 50012

9/23/04

Table showing water-level data for State Well WASC 50012

Water-level data for State Well WASC 2020

Table showing water-level data for State Well WASC 2020

7/15/2005

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

Output for Hi	unt Stream	m Depletion		Scenerio 2 (s2):	2):	Time pun	pump on = 3	30 days				
Days	30	09	66	120	150	180	210	240	270	300	330	360
Hunt SD s2	0.697	0.080	0.038	0.023	0.016	0.013	0.102	0.005	0.005	0.001	0.001	0.001
Qw, cfs	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
H SD s2, cfs	0.039	0.004	0.002	0.001	0.001	0.001	900.0	0.000	0.000	0.000	0.000	0.000

	•				
Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	0.0557	0.0557	0.0557	cfs
Distance to stream	а	4200	4200	4200	ft
Aquifer hydraulic conductivity	X	20	30	20	ft/day
Aquifer thickness	q	1000	1000	1000	ft
Aquifer transmissivity	T	20000	30000	20000	ft*ft/day
Aquifer storage coefficient	S	0.001	0.001	0.001	
Stream width	- MS	3000	3000	3000	ft

sd_hunt_1_1.xls

Streambed hydraulic conductivity	Ks	10.0	0.03	1	ft/day
Streambed thickness	sq	9	20	9	fl
Streambed conductance	spc	9	4.5	009	ft/day
Stream depletion factor (Jenkins)	sdf	0.3528	0.588	0.3528	days
Streambed factor (Hunt)	sbí	0.504	0.63	50.4	

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

		Jenkins s2	25		-	Hunt s1		I	쿠	Hunt s2		
		- Jenkins		nal	Hunt s3	funt s3		1	Hur	Hunt s2 residual	dual	
Output for Hunt Stream Depletion, Scenerio 2 (s2):	unt Stream	n Depleti	on, Scene	erio 2 (s		Time pump on = 30 days	лр оп = 3	0 days				
Days	30	09	06	120	150	180	210	240	270	300	330	360
Hunt SD s2	0.682	0.084	0.040	0.025	0.017	0.012	0.104	0.007	0.002	0.002	0.001	0.001
Qw, cfs	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
H SD s2, cfs	0.038	0.005	0.002	0.001	0.001	0.001	0.006	0.000	0.000	0.000	0.000	0.000

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	0.0557	0.0557	0.0557	cfs
Distance to stream	а	5100	2100	5100	ft
Aquifer hydraulic conductivity	Ж	20	30	20	ft/day
Aquifer thickness	q	1000	1000	1000	ft
Aquifer transmissivity	T	20000	30000	20000	ft*ft/day
Aquifer storage coefficient	S	0.001	0.001	0.001	
Stream width	ws	3000	3000	3000	ft

d_hunt_1_1.xls

Streambed hydraulic conductivity	Ks	0.01	0.03	1	ft/day
Streambed thickness	sq	9	20	5	ft
Streambed conductance	spc	9	4.5	009	ft/day
Stream depletion factor (Jenkins)	gdf	0.5202	0.867	0.5202	days
Streambed factor (Hunt)	sbf	0.612	0.765	61.2	

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

		- Jenkins sz	25		IS JUNE	TOTAL ST		ļ,		75 11JDL		
		- Jenkins		Inal	1	Hunt s3			Hur	Hunt s2 residual	dual	
Output for Hunt Stream Depletion, Scenerio 2 (s2):	unt Strea	m Depleti	lon, Scen	erio 2 (s;		Time pun	Time pump on = 30 days	0 days				i I
Days	30	09	90	120	150	180	210	240	270	300	330	360
Hunt SD s2	0.704	0.078	0.037	0.023	0.016	0.011	0.103	0.007	0.001	0.001	0.001	0.001
Qw, cfs	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
H SD s2, cfs	0.039	0.004	0.002	0.001	0.001	0.001	0.006	0.000	0.000	0.000	0.000	0.000

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	δ	0.0557	0.0557	0.0557	cfs
Distance to stream	w	3800	3800	3800	ft
Aquifer hydraulic conductivity	¥	20	30	20	ft/day
Aquifer thickness	q	1000	1000	1000	ft
Aquifer transmissivity	Τ	20000	30000	20000	ft*ft/day
Aquifer storage coefficient	S	0.001	0.001	0.001	
Stream width	WS	3000	3000	3000	ft

d_hunt_1_1.xls

Streambed hydraulic conductivity	Ks	0.01	0.03	-	ft/day
Streambed thickness	sq	5	20	3	14
Streambed conductance	spc	9	4.5	009	ft/day
Stream depletion factor (Jenkins)	sdf	0.2888	0.481333333	0.2888	days
Streambed factor (Hunt)	sbf	0.456	0.57	45.6	

Wells in the vicinity of application G 16454 Application well(s) in this 1/4-1/4 section-Well(s) identified in this 1/4-1/4 section from OWRD's well log database within 1 mi, radius of application well(s) Conditioned, permitted well(s) in this 1/4-1/4 section within 5 mi, radius of application well(s) Critical GW Area | Well(s) identified in this section from OWRD's wall log database within 1 mi. radius of application well(s) Regulated GW Area OWRD Observation well and well-id within 5 ms. radius of application well(a) Permitted well(s) in this 1/4-1/4 section within 1 mi, radius of application well(s) Revion Rowena 1 2 E Changaeth Cicel

```
99
     ABANDON:
RECONDITIONED:
                 102
                  73
    REPAIRED:
  CONVERSION:
                  0
  DEEPENINGS:
                  71
NEW CONSTRUCT:
                899
COMMUNITY USE:
                  30
 DOMESTIC USE:
                 893
INDUSTRIAL USE:
                  0
INJECTION USE:
                   0
IRRIGATION USE:
                  101
  THERMAL USE:
                   0
LIVESTOCK USE:
                   24
        ******************
        PERMITTED WELLS WITHIN 1 MILE OF APPLICATION G 16454
$RECNO
      APPLICATION PERMIT
                          CLAIM
                                   LOC-QQ
                                                     USE_CODE
                                  0 2.00N12.00E 3SWSW QM
    1
       G
           16454
                         0
    1
       G
           16454
                         0
                                  0 2.00N12.00E 3SWSW QM
    2
                         0
                                  0 2.00N12.00E 3SESW OM
        ****************
        CONDITIONED WELLS WITHIN 5 MILES OF APPLICATION G 16454
$RECNO
      APPLICATION PERMIT LOC-00
                                           CONDITION-CODE
       G
          13570 G 12411 2.00N12.00E17NWNW 7BG
    1
    1
       G
           13570 G 12411
                           2.00N12.00E17NWNW 7BR
           13570 G 12411
    1
       G
                            2.00N12.00E17NWNW 7DG
    1
       G
           13570 G 12411 2.00N12.00E17NWNW 7DR
    1
       G
          13570 G 12411 2.00N12.00E17NWNW 7BG
           13570 G 12411 2.00N12.00E17NWNW 7BR 13570 G 12411 2.00N12.00E17NWNW 7DG
    1
       G
    1
       G
    1
       G
           13570 G 12411 2.00N12.00E17NWNW 7DR
        **************
        APPLICATION G 16454 FALLS WITHIN THESE QUAD(S)
    LYLE
        ****************
The following OWRD Groundwater Management Areas are within the map extent:
$RECNO
       NAME1
                                  NAME2
                                                     SUB-AREA STATUS
    1
       POMONA
                                  PRIEST RAPIDS
                                                            WITH
    2
       THE DALLES
                                                            CRIT
        *************
```