WATER RESOURCES DEPARTMENT

MEM	10							27	August		200 <u>7</u>
TO:		Appli	cation (G- <u>168</u>	19						
FRO	M:	GW:	GERAL	о H.	GRONDIN	<u>. </u>					
SUBJ	ECT:	Sceni	,	eviewer's l rway In	Name) iterfere	nce Eva	luation	1 %			
	YES										
×	NO	The so	ource of	approp	riation i	s within	or abo	ve a Sce	nic Wa	terway	(0)
	_110										
	_YES										
	NO	Use th	e Sceni	c Water	way cor	ndition (Conditi	on 7J)			
	D O.	ng 200	025 4		1 777 .	a					
	interfe	rence v	835, the	ace wat	d Water er that c	Section	is able	to calcu Scenic V	ulate gro Waterwa	ound wa ay. The	iter
					ributed					- 3	
	Per Ol	RS 390.	835, the	Ground	d Water	Section	is unal	ble to ca	lculate	ground	water
	the De	epartme	e <mark>nt is u</mark> i	nable to	er that c	at ther	e is a pi	reponde	erance d	of evide	nce
					ieasura ree-flow						
										•	
	RIBUTI				ICE by mont	h and fill	in the tak	da balaw	W inton		was be
calcula	ted, per c	riteria in	390.835,	do not fit	ll in the to is unable	ible but c	heck the	"unable"	option a	bove, thu	5
					o reduc				oj Eviden		
Water	way by	the follo	owing a	mounts	express	ed as a p	proporti	on of th	e consu	mptive	Scenic use by
	surface										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUND WATER APPLICATIONS

TO:		Water	Rights S	ection				Date	27	August 2007		
FROM	;	Ground	d Water/l	Hydrology	Section _	Gerald	H. Grondi	n				
SUBJE	CT:	Applic	ation G-	16819			wer's Name ersedes rev	iew of	noi	10		
OAR 69 welfare, to deter the pres	90-310-13 safety an mine whe umption	30 (1) The state of the state o	he Depart i as descri presumpt This revi	ibed in ORS ion is establi ew is based	resume tha 537.525. I shed. OAF upon avai	t a propose Department R 690-310-1 lable infor	ed groundwa staff review 140 allows ti mation and	ground wate he proposed agency poli	er applica use be m cies in p	Date of R e preservation ations under O odified or con- lace at the tin	of the pub AR 690-3 ditioned to ne of evalu	10-140 meet aation.
A1.	Applica	nt(s) see	k(s) <u>(898</u>	3 gpm) 2.00	cfs fre	om <u>1</u>	well(s) in th	ne <u>N</u>	Malheur	Lake		_Basin,
	<u>I</u>	larney-l	Malhuer	Lakes		subb	asin Qua	ad Map: Ni	nemile S	lough & Cars	on Point	
A2.	Propose	d use: _	Irrigatio	on (prima	ry 80 acre	<u>s)</u>	Sea	sonality: <u>1</u>	March	- 31 October	(245 day	<u>s)</u>
A3.	Well an	d aquife	r data (att	ach and nu	mber logs	for existin	g wells; ma	rk proposed	wells as	such under l	ogid):	
Well	Log	id	Applicant' Well #	's Propose	d Aquifer*	Proposed Rate(cfs		Location (R-S QQ-Q)		ocation, metes 2250' N, 1200' E		
1	Not dr	illed	Well 1	Not ic	lentified	2.00		5E-sec 15D		1320' N, 858' V		
2			.			 						
4									_			
5												
* Alluvii	ım, CRB,	Bedrock										
Well	Well Elev ft msl 4126	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft) 300	Seal Interval (ft) =/>18	Casing Intervals (ft) = / > 18	Liner Intervals (ft)	Perfora Or Scr (ft	eens Yield	Draw Down (ft)	Test Type
Use data	from appl	ication fo	or proposed	wells.	<u> </u>					l		
A4.	Comme	nts:										
	The pro	posed p	umping I	rate of 2.00	cfs (898 gr	om) is grea	ter than th	e 1.00 cfs (44	19 gpm)	allowed for 8) acres.	
	Well is	propose	d, yet to l	be construct	ted.							
	Walker	(1979)	maps a							Greene and of Il sediment i		
A5. 🗌	manager (Not all Comme	nent of g basin ru nts:(ground wa les contain DAR 690	nter hydrauli n such provi	cally conne sions.) (see attac	ected to sur	face water	🛮 are, or 🗌	are not	elopment, clast, activated by	this applic	cation.
A6. 🗌	Name of	fadmini	strative ar	ea: , no admini			, tap(s) :	an aquifer lin	nited by	an administrati	ve restrict	ion.

B. <u>GR</u>	<u>OUN</u>	D WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070								
B1.	Bas	ed upon available data, I have determined that ground water* for the proposed use:								
	a.	is over appropriated, ☐ is not over appropriated, or ☒ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;								
	b.	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;								
c. will not or will likely to be available within the capacity of the ground water resource; or										
	d.	will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i. The permit should contain condition #(s)								
B2.	a.	Condition to allow ground water production from no deeper than ft. below land surface;								
	b.	Condition to allow ground water production from no shallower than ft. below land surface;								
	c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;								
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section.								
В3.	Gro	Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc): Dund water availability remarks:								
	Rec	commend conditions 7B, 7F, and 7N								
	Nin Leo	e proposed well site is located within Harney Valley in an area east of Burns and north of Malheur Lake between temile Slough and Malheur Slough. The area is surficially mapped as Qal by Piper and others (1939), Qal by mard (1970), and Qs by Greene and others (1972). Water well reports for neighboring wells show basin fill iment including gravel, sandstone, black sand and pumice.								
	the con gro sed	basin fill is generally unconfined and hydraulically connected to Malheur and Harney Lakes. Some local finement can occur where discontinuous low permeability layers are present. Leonard (1970) indicates confined und water occurs at depth in the basin in deep basin fill sediments and underlying Tertiary volcanic and imentary rocks. Hubbard (1975) indicates the ground water contribution to flow into Malheur Lake is small with lake perched above ground water in most areas.								
	bot 200 infl ann wat	e closest wells with ground water level trend data are wells HARN 547 in T23S/R32E-sec 07 (about 9.3 miles to the t) and HARN 741 in T23S/R34E-sec 31 (about 9.5 miles to the southeast). Both are completed in sediments, and h are in the same sub-basin as the applicant's well. The ground water level data for HARN 547 is from 1960 to 6 and for HARN 741 is from 1974 to 2006. The ground water level trend at each site show seasonal and climatic uences. A possible net decline of less than 5 feet may have occurred at both sites. Interestingly, no recovery of the usal trend is apparent from 1996 to 1999, a generally wetter than average period in Oregon. Seasonal ground are level fluctuations range from 10 to 40 feet. This could adversely impact the use of shallow wells, but likely not ersely impact the use of deeper wells.								
	_									
		2 Version: 08/15/2003								

Date: 27 August 2007

Application: G- 16819 continued

pplication:	G- <u>1</u>	6819 continued			I	Date: <u>27</u>	August 20	07	
. <u>GROUNI</u>) WAT	ER/SURFACE WATER CON	SIDERA	TIONS,	OAR 690-0	<u> 19-040</u>			
1. 690-09- 0	40 (1):	Evaluation of aquifer confinement:							
Well		Aquifer or Proposed A	quifer			Confined	Ī	Jnconfined	
1	Basi	n fill sediments							
	••								
Basis fo	r aquif	er confinement evaluation:							
<u>Availab</u>	le dața	including Piper and others (193	9), Leonar	rd (1970),	and water	well reports in	dicate gro	und water	r in the
<u>basin fi</u>	ll is ger	nerally unconfined and hydraulic	ally conn	ected to s	urface wate	r including M	alheur and	<u>d Harney</u>	Lakes.
Some lo	ocal con	finement can occur where disco	<u>itinuous l</u>	ow perme	ability lave	rs are present.	_ Leonard	<u>(1970) in</u>	<u>dicates</u>
		nd water occurs at depth in the locks. Hubbard (1975) indicates							
		water in most areas.	ground w	vater now	TITTO TATALLI	eur Lake is sii	ian with t	пе таке р	erenea
	, i o u i i d								
		4 4 4	70.000		36				
					100				
-									17
		hydraulically connected to the surfated for PS1. Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulic Connect YES NO AS	cally ed?	Potentia Subst. In Assum YES	al for iterfer. ned?
	1	Ninemile Slough & tributaries	4115	4120	4,700				NO.
1	2	Malheur Slough	4115	4120	8,400		8		X X X
1	3	Malheur & Harney Lakes	4115	4098	70,500				<u>⊠</u>
		•							
				ļ					
Basis fo	r aquif	er hydraulic connection evaluatio	n:						
(well lo	gs) indi	elevation data for the vicinity fo cate ground water elevations fro ter connection to surface water n	om 4110 t	o 4120 fe	<u>et_over_mu</u>	tiple decades	(0), and w	ater well i	reports lations.
Malhan	r I alsa	is the besin outlet for ground or	inton Com	(thuoal.	Out On a sen A! -	n) The later	Janatic	hour in C	u 1003
		is the basin outlet for ground w USGS 1:24,000 quadrangle map							
signific			3. Inc u	istance is	to the 170	5 silorenae,	ine silotei	me locati	on can
Water A	Availab	ility Basin the well(s) are located	within:_						
						MALHEUR SI			
						MALHEUR L		EMILE S	L _
				No WA	AB for Harn	ev & Malheur	Lakes		

lication:	G	16819	contir	nued				D	ate:	27 August 2007	
690-09-	-040 (4 ted and	l): Evaluat d less than	ion of str	eam impacts	for <u>each well</u> e water source	that hat Limit	is bed	en determine uation to ins	d or assun tream righ	ned to be hydrauli ts and minimum s	ically tream flows
										nder evaluation is	
										bility Basin (WAE	
										ed to have the pot	
		1 -	1					0.001	1	** I	
	sw	Well <	0	Instream	Instream	Qw	>	80%	Qw > 19		Potential
Well	5W	1/4 mile?	Qw > 5 cfs?	Water Right	Water Right Q	1%	5	Natural Flow	of 80% Natural	1 (70 4H 719VC	for Subst. Interfer.
	"	The same:	3 613:	ID	(cfs)	ISW:	R?	(cfs)	Flow?	(%)	Assumed?
1	1			None	N.A.			0.26		6.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	<u> </u>	<u> </u>	 								
		<u> </u>	┦┈┞┈						<u> </u>		<u> </u>
		Ш.	<u> </u>								
connec	ted and	d less than	1 mile fr		e water source	e. Com	plete			or assumed to be leed among wells.	
	sw		Ow>	Water	Water	Qw		Natural	of 80%	Interterence	for Subst
	#		5 cfs?	Right	Right Q	1%		Flow	Natural	@ 30 days	Interfer.
				ΙĎ	(cfs)	ISW	K?	(cfs)	Flow?	(%)	Assumed?
			 			<u> </u>					
-		1	 						 		
		1	 						⊢⊢		
\vdash	_		 			<u> </u>			<u> </u>		
		ļ		l		<u> </u>				ļ	<u> </u>
Potenti	tance		al interfe	erence mus		247				mile (4,700 feet	
					rfaranaa at	Ninom	ی دا:	lough and 6	-ibuta-ia	given the well	will likely
										e and appropria	
										consistent for E	
hasin f	ill tran	emissiviti	es noted l	hy Canthie	r (1985) and	tranca	<u>y vi</u> niccis	vity values d	erived fr	om specific capac	rity data fr
										642, HARN 645	
										491, HARN 5051	
										cient (0.001). 7	
					tary is 0.20 f						
					,						
3					:000		- 10	1000			
			– –					2 3200.000		- 2-25 960 6496.4 603	251
3		201					.2				- var
1			м —	2,170				50 Tu61984			ercess.
					10.00		0.00				
					25.79.0000				- 12 99		239270

4

Version: 08/15/2003

Application: G- 16819 continued	Date:	27 August 2007
---------------------------------	-------	----------------

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Dis	stributed V	Vells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2	10.8%	9.7%	4.9%	8.0%	10.4%	12.3%	13.9%	15.3%	16.6%	17.8%	14.6%	12.3%
Well Q	as CFS	0.00	0.00	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	0.00	0.00
Interference CFS		0.216	0.195	0.099	0.161	0.207	0.245	0.278	0.307	0.333	0.356	0.292	0.246
Distribu	ted Wells				·	42				_			
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS			1									
Interfere	nce CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q a	as CFS												
Interfere	nce CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q a													
Interfere	nce CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q a													
Interfere	nce CFS	_			_				-				
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q													
Interfere	nce CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q									!				
Interfere	nce CFS					<u> </u>				<u> </u>			
(A) = Tot	al Interf.	0.216	0.195	0.099	0.161	0.207	0.245	0.278	0.307	0.333	0.356	0.292	0.246
(B) = 80 °	% Nat. Q	1.10	3.72	10.90	14.00	9.83	5.80	1.18	0.41	0.24	0.20	0.38	0.75
(C) = 1 %	6 Nat. Q	0.011	0.037	0.109	0.140	0.098	0.058	0.012	0.004	0.002	0.002	0.004	0.008
(D) = (A)) > (C)	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
(E) = (A /		19.6%	5.2%	0.9%	1.2%	2.1%	4.2%	23.6%	74.9%	138.%	178.%	76.8%	32.8%
								1	I				

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed, as CFS; (C) = 1% of calculated natural flow at 80% exceed, as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:
The well site is more than 1 mile from Malheur Slough (8,400 feet).
Hunt (1999) was used to calculate the interference at Malheur Slough and tributaries given the well will likely no
penetrate the basin fill sediments. The values used for the calculations are conservative and appropriate until bette
values become available. The calculations used a transmissivity of 7,500 ft2/day which is consistent for Eastern Orego
basin fill transmissivities noted by Gonthier (1985) and transmissivity values derived from specific capacity data from
wells in T23S/R32.57E-sec 10, 13, 14, 15, 22, and 24 (HARN 564, HARN 641, HARN 642, HARN 645, HARN 648
HARN 649, HARN 650, HARN 651, HARN 657, HARN 1870, HARN 50054, HARN 50491, HARN 50514, and HARN
51204). Additionally, the calculation used an assumed intermediate storage coefficient (0.001). The hydrauli
conductivity assigned to the bed of the tributary is 0.20 feet/day.

5

Application: G	16819	continued	Date:	27 August 2007
----------------	-------	-----------	-------	----------------

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well	SW#	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
Dis	tributed W	'ells				· · · ·							
Well	SW#	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												<u> </u>
Interfere	ence CFS								i —				
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												i
Interfere	ence CFS												1
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS									14			
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												<u> </u>
Interfere	ence CFS	<u> </u>											
(A) = To	tal Interf.			1						_			
(B) = 80	% Nat. Q												
(C) = 1 %	% Nat. Q												
(D) = (A) > (C)												
	/B) x 100	%	%	9/0	9/0	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation: _

*** This analysis was not done given there is no WAB for Malheur and Harney Lakes.
Drawdown at Malheur and Harney Lakes was estimated using the Theis drawdown equation. The calculations used a
transmissivity of 7,500 ft2/day which is consistent for Eastern Oregon basin fill transmissivities noted by Gonthier
(1985) and transmissivity values derived from specific capacity data from wells in T23S/R32.57E-sec 10, 13, 14, 15, 22.
and 24 (HARN 564, HARN 641, HARN 642, HARN 645, HARN 648, HARN 649, HARN 650, HARN 651, HARN 657,
HARN 1870, HARN 50054, HARN 50491, HARN 50514, and HARN 51204). Additionally, the calculation used an
assumed intermediate storage coefficient (0.001). The estimated drawdown for continuous pumping at the full
proposed rate ranged from less than 0.01 feet at the end of 30 days to about 0.71 feet at the end of 245 days. The
estimated drawdown for continuous pumping at the full allowed rate ranged from less than 0.01 feet at the end of 30
days to about 0.36 feet at the end of 245 days. The estimated drawdown for a lower pro-rated pumping rate ranged
from less than 0.01 feet at the end of 30 days to about 0.18 feet at the end of 245 days.

6

Application: G- 16819 continued	Date: 27 August 2007
C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affer Rights Section.	ect the public interest is to be determined by the Water
C5. If properly conditioned, the surface water source(s) can be adequated under this permit can be regulated if it is found to substantially inte i. The permit should contain condition #(s) ii. The permit should contain special condition(s) as indice	rfere with surface water:
•	B, 7F, and 7N if a permit is issued.
The distance from owner proposed well 1 to Ninemile Slough and to substantial interference must be assumed given the proposed purpercent exceedance).	ributaries is less than 1 mile (4,700 feet). Potential for mping rate exceeds 1 percent of the natural flow (80
The proposed well site is located within Harney Valley in an are Malheur Slough and Ninemile Slough. The proposed well will likely	a east of Burns and north of Malheur Lake between y be completed in basin fill sediments.
Available data, including Piper and others (1939), Leonard (1970) basin fill is generally unconfined and hydraulically connected to Ma occur where discontinuous low permeability layers are present. Lat depth in the basin in deep basin fill sediments and underlying (1975) indicates the ground water contribution to flow into Malhe water in most areas.	alheur and Harney Lakes. Some local confinement can eonard (1970) indicates confined ground water occurs Tertiary volcanic and sedimentary rocks. Hubbard
There is a general and increasing local concern about ground water	availability in the Harney Valley.
The closest wells with ground water level trend data are wells HAWEST and HARN 741 in T23S/R34E-sec 31 (about 9.5 miles to the sare in the same sub-basin as the applicant's well. The ground water for HARN 741 is from 1974 to 2006. The ground water level trend possible net decline of less than 5 feet may have occurred at both apparent from 1996 to 1999, a generally wetter than average periorange from 10 to 40 feet. This could adversely impact the use of sideeper wells.	southeast). Both are completed in sediments, and both ter level data for HARN 547 is from 1960 to 2006 and at each site show seasonal and climatic influences. A sites. Interestingly, no recovery of the annual trend is d in Oregon. Seasonal ground water level fluctuations
References Used: Oregon Administrative Rules: OAR 690-51	2
Piper, A.M., Robison, T.W., and Park C.F. 1939. Geology and G USGS Water Supply Paper 841.	round Water Resources of the Harney Basin, Oregon.
Leonard, A.R. 1970. Ground-Water Resources in Harney Valley. Oregon Water Resources Department, Salem, Oregon.	, Harney County, Oregon. Ground Water Report 16.
Greene, R.C., Walker, G.W., and Corcoran, R.E. 1972. Geolo Miscellaneous Geologic Investigations Map I-680.	ogic Map of the Burns Quadrangle, Oregon. USGS
Hubbard, Larry. L. 1975. Hydrology of Malheur Lake, Harney C Investigation 21-75.	County, Southeastern Oregon. USGS Water Resources
Walker, G.W. 1979. Revisions to the Cenozoic Stratigraphy of 1475.	Harney Basin, Southeastern Oregon. USGS Bulletin
Gonthier, J.B. 1985. A Description of Aquifer Units in Eastern O 84-4095.	Pregon. USGS Water Resources Investigations Report
OWRD water well reports and/or hydrographs: HARN 547, HARN HARN 648, HARN 649, HARN 650, HARN 651, HARN 657, HARN HARN 51204	N 741, HARN 564, HARN 641, HARN 642, HARN 645, N 1870, HARN 50054, HARN 50491, HARN 50514, and

Ap	plica	tion: G	- 1081	9	continued	1				Date:		27 Augi	ust 2007	
D.	<u>WEI</u>	L <mark>L CO</mark>	NSTRU	CTION,	OAR 690	<u>0-200</u>								
D1.		Well#:	1			Logid:	1	not yet d	rilled				42	
D2.	•	a.	review of field instreport of	of the wel pection b f CWRE	l log; y	t well constr		NAME OF TAXABLE PARTY.				-04.60	Verify:	
D3.		a.	constitu commin permits permits	tes a heal gles wate the loss o the de-wa	r from mon f artesian l ntering of o	nder Division re than one g	round wa ground wa	ter reserv					387	
D4.		THE V				cy is describe		ows:						
D5.		THE W	/ELL	a. 🗌		was not co					in effe	ct at the	time of	
				ь. 🔲	I don't k	now if it met	standard	s at the ti	me of cor	struction				
D6.						. I recommer roved by the								econstruction
TH	IS S	ECTIO	ON TO E	E COM	PLETEI	D BY ENFO	RCEM	ENT PI	ERSONN	NEL				
D7.		Well co	nstruction	ı deficien	cy has bee	n corrected b	y the foll	owing ac	ctions:					
		-												
								100 10						
													85 <u>—</u> 3213	
							- 7							
		-												
				10 =										, 200
			(Enforce	ment Sec	tion Signa	iture)								
D8.		Route	to Water	Rights S	ection (at	tach well rec	onstruct	ion logs	to this pa	ge).				

8

Version: 08/15/2003

The Oregon Administrative Rules contain OARs filed through July 13, 2007

WATER RESOURCES DEPARTMENT

DIVISION 512

MALHEUR LAKE BASIN PROGRAM PROVISION

690-512-0040

Water Availability

- (1) Except as provided in section (3) of this rule, the Department shall not accept an application for permit, or issue a permit, for any use of surface water, or of groundwater the use of which has the potential to substantially interfere with surface water, in the Malheur Lake Basin unless the applicant shows, by a preponderance of evidence, that unappropriated water is available to supply the proposed use at the times and in the amounts requested. The evidence provided shall be prepared by a qualified hydrologist or other water resources specialist and shall include:
- (a) Streamflow measurements of gage records from the source or, for use of groundwater, the stream in hydraulic connection with the source; or
- (b) An estimate of water availability from the source or, for use of groundwater, the stream in hydraulic connection with the source which includes correlations with streamflow measure-ments or gage records on other, similar streams and considers current demands for water affecting the streamflows.
- (2) The criteria used in determining if the use of groundwater has the potential to substantially interfere with surface water shall be those established in OAR Chapter 690, Division 9.
- (3) This rule shall not apply to issuance of:
- (a) Instream water rights;
- (b) Permits for storage of water between March 1 and May 31 if the application is not required to be referred to the Commission under OAR 690-011-0080(2)(a)(C); or
- (c) Permits for use of water legally stored.

Stat. Auth.: ORS 536.300 & ORS 536.340

Stats. Implemented:

Hist.: WRD 3-1985, f. & cert. ef. 3-28-85; WRD 23-1990, f. & cert. ef. 12-14-90; Administrative

Renumbering 1-1993, Renumbered from 690-080-0120

The official copy of an Oregon Administrative Rule is contained in the Administrative Order filed at the Archives Division, 800 Summer St. NE, Salem, Oregon 97310. Any discrepancies with the published version are satisfied in favor of the Administrative Order. The Oregon Administrative Rules and the Oregon Bulletin are copyrighted by the Oregon Secretary of State. Terms and Conditions of Use

Alphabetical Index by Agency Name

Numerical Index by OAR Chapter Number

Search the Text of the OARs

Questions about Administrative Rules?

Link to the Oregon Revised Statutes (ORS)

Return to Oregon State Archives Home Page

RECONDIT	AIRE RSIC NING	D: D: N:	0 1 0 0 0 0	1141									
COMMUNI DOMEST INDUSTRI INJECTI IRRIGATI THERM LIVESTO	AL UON UON UON UON U	SE: SE: SE: SE:	0 5 0 0 5 0 3	****	***	****	***	:***	****	***	***	***	
	PE	RMITTED	WELLS WI	THIN	J 1	MILE	OF	AP	PLICA	MOIT	G	16	5819
\$RECNO	APP	LICATION	PERMIT	C	CLAI	M		23.	-QQ 00S32 00S32	.50E	11SF		USE_CODE
2 3 4	G	16820		0			0	23.	00532 00532 00532	.50E	9SI	ESE	IR
5		16819		0				23.	00S32	.50E	15SE	ESE	
6 7	G	16826		0			0		00S32 00S32				IR
	* *	*****	*****	****	***	****	* * *						
	CC	NDITIONE	D WELLS	WITH	HIN	5 MI	LES	OF	APPI	ICAT	ION	G	16819
\$RECNO 1 1	G G	LICATION 8800 12602	G 82 G 11	241 765	24. 24.	.0053 .0053	2.5	0E1 0E1	2SENE 2SENE	: 4KG			-CODE
											5 / 5 :		

APPLICATION G 16819 FALLS WITHIN THESE QUAD(S)

CARSON POINT

Table showing water-level data for State Well HARN 547, State Observation Well # 169

8/23/2007

Table showing water-level data for State Well HARN 741, State Observation Well # 172

8/23/2007

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

Well 1 (G-16819) to Ninemile Slough & Tributaries 1.0 0.9 0.8 (fraction of well discharge) 0.7 Stream depletion 0.6 0.5 0.4 0.3 0.2 0.1 0.0 30 60 90 120 150 210 240 270 300 330 360 Time since start of pumping (days)

_ — _J	enkins s2	ਰਤਰ ਜ਼ਰੂ:Hunt s1	Hunt s2
J	enkins s2 residual	Hunt s3	—— Hunt s2 residual

Output for H	unt Strea	m Deple	tion, Sce	nerio 2 (:	s2):	Time pu	mp on = :	245 days				
Days	30	60	90	120	150	180	210	240	270	300	330	360
Hunt SD s2	0.0632	0.0950	0.1184	0.1375	0.1537	0.1680	0.1808	0.1925	0.1468	0.1226	0.1074	0.0965
Qw, cfs	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
H SD s2, cfs	0.126	0.190	0.237	0.275	0.307	0.336	0.362	0.385	0.294	0.245	0.215	0.193

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	2	2	2	cfs
Distance to stream	а	4700	4700	4700	ft
Aquifer hydraulic conductivity	K	50	50	50	ft/day
Aquifer thickness	b	150	150	150	ft
Aquifer transmissivity	T	7500	7500	7500	ft*ft/day
Aquifer storage coefficient	S	0.001	0.001	0.001	
Stream width	ws	10	10	10	ft
Streambed hydraulic conductivity	Ks	0.2	0.2	0.2	ft/day
Streambed thickness	bs	25	25	25	ft
Streambed conductance	sbc	0.08	0.08	0.08	ft/day
Stream depletion factor (Jenkins)	sdf	2.945333333	2.945333333	2.945333333	days
Streambed factor (Hunt)	sbf	0.050133333	0.050133333	0.050133333	

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

Output for H	unt Strea	ım Deple	tion, Sce	nerio 2 (s	s2):	Time pu	mp on = 3	245 days				
Days	30	60	90	120	150	180	210	240	270	300	330	360
Hunt SD s2	0.0494	0.0804	0.1037	0.1227	0.1390	0.1534	0.1663	0.1781	0.1461	0.1230	0.1082	0.0973
Qw, cfs	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
H SD s2, cfs	0.099	0.161	0.207	0.245	0.278	0.307	0.333	0.356	0.292	0.246	0.216	0.195

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	2	2	2	cfs
Distance to stream	а	8400	8400	8400	ft
Aquifer hydraulic conductivity	К	50	50	50	ft/day
Aquifer thickness	b	150	150	150	ft
Aquifer transmissivity	Т	7500	7500	7500	ft*ft/day
Aquifer storage coefficient	S	0.001	0.001	0.001	
Stream width	ws	10	10	10	ft
Streambed hydraulic conductivity	Ks	0.2	0.2	0.2	ft/day
Streambed thickness	bs	25	25	25	ft
Streambed conductance	sbc	0.08	0.08	80.0	ft/day
Stream depletion factor (Jenkins)	sdf	9.408	9.408	9.408	days
Streambed factor (Hunt)	sbf	0.0896	0.0896	0.0896	

Drawdown Calcu	Drawdown Calculations Using Theis Equation	: Equation									
Theis Equation:	s = [O/(4*T*pi)][N/(u)] u = (r*r*S)/(4*T*t) W(u) = (-in u)-(0.5772157)+(w/1*t!)-(u*w/2*2!)+(u*u*u/3*3!)-(u*u*u*u/4*4!)+	u)] 72157)+(w1*1!)-(u*w2*2!)+(u*u	`u'u'u'u'u'u'u'u'u'u	<i>⊔</i> /4*4!)+						
	s = drawdown (L) T = transmissivity (L°L/T) S = storage coefficient (dimensionless) pi = 3.141592654	ריבת) ient (dimension	(ssa)		r = radial distance (L) t = time (T) u = dimensionless W(u) = well function	tance (L) valess iunction					
Transmissivity	Transmissivity	Storage	Pumping Rate Pumping R	Pumping Rate	Time	Distance	jd	ם	W(u)	Drawdown	Comments
T (gpd/ft)	T (ft2/day)	Coefficient	Q (gat/min)	(ft3/sec)	(days)	r (feet)				s (feet)	
								Note: W(u)	Note: W(u) calculation valid when u < 7.1	alid when u	<7.1
Note	Note: yellow grid areas are where values are calculated	are where valu	les are calculate	Ģ				7.0000	1.1545E-04		W(u) calculation test
Application G-16	Application G-16819 owner proposed well 1 to Malheur and Harney Lakes	d well 1 to Mal	heur and Hame	y Lakes							
56 103 90	7 500 00	0.00100	897.66	2.00	30.00	70.500.00	3.14	5.5225	90000	0.0011	Continuous Pumping at Proposed Full Rate
56,103,90	00'005'2	0.00100	897.66	2.00	90.09	70,500.00	3.14	2,7613	0.0177	0,0325	Continuous Pumping at Proposed Full Rate
56,103.90	2,500.00	0.00100	897.66	2.00	90.00	70,500.00	3.14	1.8408	0.0611	0.1120	Continuous Pumping at Proposed Full Rate
56,103.90	7,500.00	0.00100	997.66	2.00	120.00	70,500.00	3.14	1.3806	0,1197	0.2194	Continuous Pumping at Proposed Full Rate
56,103.90	7,500,00	0.00100	897.66	2.00	150.00	70,500.00	3.14	1,1045	0.1846	0.3385	Continuous Pumping at Proposed Full Rate
56,103.90	7,500,00	0.00100	807.66	2.00	210.00	70,500,00	3.14	0.9204	0.2312	0.4000	Continuous Furnifing at Proposed Full Rate
56,103.90	00.005,7	0.00100	897.66	2:00	240.00	70,500.00	3.14	0,6903	0.3807	0.6980	Continuous Pumping at Proposed Full Rate
56,103.90	7,500.00	0.00100	897.66	2.00	245.00	70,500.00	3.14	0.6762	0.3911	0.7171	Continuous Pumping at Proposed Full Rate
EE 102 DO	7 500 00	0.00100	448.83	700	30.00	70 500 00	3 14	5 5225	0.0008	ח חחח ח	Continuous Parmoing at Allowed Enll Rate
56.103.90	7.500.00	0.00100	448.83	1.00	90.09	70,500.00	3.14	2.7613	0.0177	0.0162	Continuous Pumping at Allowed Full Rate
56,103.90	7,500.00	0.00100	448.83	1,00	90.00	70,500.00	3.14	1,8408	0,0611	0.0560	Continuous Pumping at Altowed Full Rate
56,103.90	7,500.00	0.00100	448.83	1.00	120.00	70,500.00	3.14	1.3806	0.1197	0.1097	Continuous Pumping at Allowed Full Rate
56 103 90	00.006.7	0.00100	448.83	00.0	180.00	70,500,00	3.14	0.9204	0.2512	0.2302	Continuous Pumping at Allowed Full Rate
56,103.90	7,500.00	0.00100	448.83	1.00	210.00	70,500.00	3.14	0.7889	0.3169	0.2905	Continuous Pumping at Allowed Full Rate
56,103.90	2,500.00	0.00100	448.83	1,00	240.00	70,500.00	3.14	0.6903	0.3807	0.3490	Continuous Pumping at Allowed Full Rate
56,103.90	7,500.00	0.00100	448.83	1.00	245.00	70,500.00	3.14	0.6762	0.3911	0.3586	Continuous Pumping at Alfowed Full Rate
56,103.90	7,500.00	0.00100	221.67	0.49	30.00	70,500.00	3.14	5,5225	9000.0	0.0003	Pro-Rated Pumping Rate
56,103.90	2,500.00	0.00100	221.67	0.49	60.00	70,500.00	3.14	2,7613	0.0177	0.0080	Pro-Rated Pumping Rate
56,103.90	2,500.00	0.00100	221.67	0.49	90.00	70,500.00	3.14	1.8408	0.0611	0.0277	Pro-Rated Pumping Rate
56,103.90	7,500.00	0.00100	221.67	0.49	150.00	70,500,00	3.14	1.3806	0.1197	0.0542	Pro-Kated Pumping Kate
56.103.90	2,500.00	0.00100	221.67	0.49	180.00	70,500.00	3.14	0.9204	0.2512	0.1137	Pro-Rated Pumping Rate
56,103.90	7,500.00	0.00100	221.67	0,49	210.00	70,500.00	3.14	0.7889	0.3169	0.1435	Pro-Rated Pumping Rate
56,103.90	7,500.00	0.00100	221.67	0.49	240.00	70,500.00	3.14	0.6903	0.3807	0.1724	Pro-Rated Pumping Rate
56,103.90	7,500.00	0.00100	221.67	0.49	245.00	70,500.00	3.14	0.6762	0.3911	0.1771	Pro-Rated Pumping Rate