Groundwater Application Review Summary Form

Application # G- 17937 re-review #2 GW Reviewer <u>Travis Brown</u> Date Review Completed: <u>5/9/2023</u> **Summary of GW Availability and Injury Review:** Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form. **Summary of Potential for Substantial Interference Review:** There is the potential for substantial interference per Section C of the attached review form. **Summary of Well Construction Assessment:** The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section. This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

Version: 07/28/2020

WATER RESOURCES DEPARTMENT

MEM	O							_1	May 9, 2	2023_		
то:		Applica	tion G-	17937	re-reviev	w #2_						
FROM	I:	GW: <u>T</u>	ravis Bro Reviewer									
SUBJI	ECT: So	enic Wa	aterway	Interf	erence l	Evaluat	ion					
	YES NO		source o		-	is hydr	aulically	y connec	cted to a	a State S	Scenic	
	YES NO	Use	the Scer	nic Wate	erway C	Condition	n (Cond	ition 7J))			
	interfere	S 390.8 ence with ence is d	h surfac	e water	that con					_		
	interfere Departs propose	S 390.8 ence with ment is ed use in the fr	h surfac unable will me	e water to find easurab	that cor that the ly redu	ntributes ere is a p ace the	to a sce prepone surface	enic wat derance e water	erway; e of evic	therefo lence th	re, the at the	
Calcular per crite the Depo	te the perceria in 390 artment is	ON OF II centage of 0.835, do i unable to	consump not fill in make a l	tive use b the table Preponde	y month o but check rance of .	k the "und Evidence	ble" optio finding.	on above,	thus info	orming W		
Waterv	vay by t	s permit he follov low is re	wing an			-		-			use by v	which
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]
							~0					4

Version: 07/28/2020

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights Sec	ction					Date_	M	ay 9, 20	23		
FROM:	;	Groun	dwater Sec	ction										
SUBJE	CT:	Applic	cation G	17937 re-r	eview #2		ver's Nam ersedes		riew of	Ju	ne 18, 2	2015 Pate of Revi	ew(s)	
OAR 69 welfare, to determ	00-310-130 safety and nine whet	0 (1) To d health her the	he Departm h as describ presumptic	ed in ORS 5. on is establish	esume that 37.525. De hed. OAR	<i>a proposed</i> epartment s 690-310-14	d ground staff revi 40 allow	iew vs th	ter use will en groundwater ne proposed us agency polici	applica se be n	ations un nodified (der OAR or conditi	690-310 oned to r	-140 neet
A. <u>GEN</u>	NERAL 1	NFO	RMATIO	<u>N</u> : App	olicant's N	ame: <u>Robe</u>	ert J. an	d E	leanor E. Sc	hmidg	<u>all</u> Co	ounty: N	Marion	
A1.				7 cfs from					well(s) in the d Maps: Stay					
A2. A3.									April 1 – Oct k proposed v			nder logi	d):	
Well 1 2	Logic		Applicant' Well #	Propose	d Aquifer*	Propo Rate(c	cfs)		Location (T/R-S QQ-Q 07S/01W-6 SE-N)) NW	2250' N	n, metes a I, 1200' E i N, 505' W	fr NW cor	S 36
3 4														
5 * Alluviu	ım, CRB, B	edrock												
Well	Well Elev ft msl	First Wate ft bls	r ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft) 0-20	Casir Interv (ft)	als	Liner Intervals (ft)	Or S	orations Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type
	200	0.12	, 11	10/20/1/02	110	0 20					100			
	6 1:			11										
A4.	Commer A3 and the specifies	nts: <u>The</u> ne attace a maxi v is 38.	ched map ba mum rate o 93 acres *	on gives metonsed on a cor f 0.535 cfs (1/80 cfs per a	nparison o 240 gpm). acre = 0.48	f tax lots, C Since the p 7 cfs (219	Google I proposed gpm). T	Eartl d use here	undary. The long images, and is irrigation efore the review	of 38.9 of is b	plication 93 acres,	map. Th	e applica mum rate	tion we
A5. 🛛	(Not all b Commen	asin ru ts: <u>Th</u>	iles contain e applicant'	such provisi	ons.) ater than ½	mile from	a surfac		es relative to are, or are, a					
A6. 🗌	Name of	admini	istrative are	a:					(s) an aquifer				itive restr	riction.

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130; b. will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130; c. will not or will likely to be available within the capacity of the groundwater resource; or d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:	Bas	ed upon available data, I have determined that groundwater* for the proposed use:
is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130; c. will not or will likely to be available within the capacity of the groundwater resource; or d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:	a.	
d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. The permit should contain condition #(s) TC. Seven Year Minimum Measurement ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below; a. Condition to allow groundwater production from no deeper than ft. below land surface; b. Condition to allow groundwater production from no shallower than ft. below land surface; c. Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface; d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholdin issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury -as related to water availability - that is likely to occur without well reconstruction (interference w/senior water rights, not within the capacity of the resource, etc):	b.	
i. The permit should contain condition #(s)	c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
b. Condition to allow groundwater production from no shallower than	d.	 i. The permit should contain condition #(s) 7C, Seven Year Minimum Measurement ii. The permit should be conditioned as indicated in item 2 below.
c. Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. and ft. below land surface; d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury—as related to water availability—that is likely to occur without well reconstruction (interference w/senior water rights, not within the capacity of the resource, etc): Groundwater availability remarks: The area around the applicant's well is underlain by about 65 feet of Willamette Silt which is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land surface in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the well log) in the subject well. MARI 6106, was logged near the base of the Willamette Silt at depths of 56-62 feet below land surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl. Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at de	a.	Condition to allow groundwater production from no deeper than ft. below land surface;
land surface; d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury—as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc): Groundwater availability remarks: The area around the applicant's well is underlain by about 65 feet of Willamette Silt which is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land surface in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the well log) in the subject well, MARI 6106, was logged near the base of the Willamette Silt at depths of 56-62 feet below land surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl, Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	b.	Condition to allow groundwater production from no shallower than ft. below land surface;
to occur with this use and without reconstruction are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury—as related to water availability—that is likely to occur without well reconstruction (interference w/senior water rights, not within the capacity of the resource, etc): Groundwater availability remarks:—The area around the applicant's well is underlain by about 65 feet of Willamette Silt which is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land surface in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the well log) in the subject well, MARI 6106, was logged near the base of the Willamette Silt at depths of 56-62 feet below land surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl. Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
Groundwater availability remarks: The area around the applicant's well is underlain by about 65 feet of Willamette Silt which is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land surface in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the well log) in the subject well, MARI 6106, was logged near the base of the Willamette Silt at depths of 56-62 feet below land surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl. Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	d.	to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.
which is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land surface in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the well log) in the subject well, MARI 6106, was logged near the base of the Willamette Silt at depths of 56-62 feet below land surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl. Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease		
which is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land surface in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the well log) in the subject well, MARI 6106, was logged near the base of the Willamette Silt at depths of 56-62 feet below land surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl. Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease		
which is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land surface in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the well log) in the subject well, MARI 6106, was logged near the base of the Willamette Silt at depths of 56-62 feet below land surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl. Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease		
surface. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the Willamette Silt forms a broad terrace, locally at an elevation of approximately 200 feet amsl. Local streams cut progressively through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	whi surf	ch is underlain by a series of sands and gravels that are interbedded with silts and clays. The water table occurs near land ace in the Willamette Silt which acts as a regional confining unit. The shallowest gravel bed (called a conglomerate in the
through the terrace until they flow into the Willamette River at an elevation of about 55 feet amsl, well below the top of the upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	surf	ace. This corresponds to elevations of approximately 140-150 feet above mean sea level (amsl). The upper surface of the
upper gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are reasonably stable in this area. Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease		
Because the productive sand and gravel beds are confined, the cone of depression from the well will spread over a broad area and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	upp	er gravel layer noted in MARI 6106. Water levels in nearby observation wells suggest that groundwater levels are
and may interact with multiple surface water bodies. However, more than 20 feet of saturated Willamette Silt occurs between the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	reas	conably stable in this area.
the local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease	_	•
the efficiency of the groundwater/surface water connection.	the	local surface water bodies and the productive sand and gravel beds at depth. These fine-grained sediments will decrease
	the	efficiency of the groundwater/surface water connection.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

	Well	Aquifer or Proposed Aquifer	Confined	Unconfined
	1	Alluvium	\boxtimes	
Ī				
Ī				

Date: 5/9/2023

Basis for aquifer confinement evaluation: Reports indicate that the Willamette Silt is a regional confining unit which hosts the water table at shallow depths. This is consistent with information on the well log for MARI 6106, which shows a static water level approximately 22 feet above the top of the first productive gravel at 64 feet below ground surface.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO	
1	1	Pudding River	159	155-158	2,910			\boxtimes
		_						

Basis for aquifer hydraulic connection evaluation:	Published water	table maps and re-	ports indicate that th	e groundwater
flows towards, and discharges into, The Pudding Rive	er and other local	perennial streams.	Head data from MA	ARI 6106 and
nearby wells corroborate this.	•	*		

Water Availability Basin the well(s) are located within: WAB 152 (Pudding R > Molalla R -AB Howell Prairie).

C3a. **690-09-040 (4):** Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			MF 152A	10.00	\boxtimes	22.70	\boxtimes	<<25	×

C3b. **690-09-040 (4):** Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells.** Otherwise same evaluation and limitations apply as in C3a above.

•	· cercerero	11 011107 1	111111111111111111111111111111111111111	epprj de r	ii cou uco i e	•					
		SW #		Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: The Pudding River stream depletion at 30 days was estimated using the Hunt 2003 model. The presence of low permeability Willamette Silt between the aquifer and the beds of streams results in an inefficient connection between the aquifer and the stream, therefore the stream depletion at 30 days is much less than 25%. However, stream depletion will increase over time until all of the pumped water is balanced by reduced stream flow.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
Dietrib	uted Well	c											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	~	%	%	%	%	%	%	%	%	%	%	%	9/
Well Q	as CFS	, ,	, ,	,,	, ,	,,		,,,	, ,	,,			
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9/
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9,
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9/
	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9,
	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9/
	as CFS												
Interfere	ence CFS												
(A) = To	tal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = (.	(A) > (C)	√	√	√									
	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:

	09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Waterights Section.
	roperly conditioned , the surface water source(s) can be adequately protected from interference, and/or groundwater use er this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s)
	ii. The permit should contain condition #(s) iii. The permit should contain special condition(s) as indicated in "Remarks" below;
C6. SW / G	W Remarks and Conditions_
Hinkle, Report 2 Gannett	ces Used: Conlon, T. D., Wozniak, K. C., Woodcock, D., Herrera, N.B., Fischer, B.J. Morgan, D.S., Lee, K.K., and S.R., 2005, Ground-Water Hydrology of the Willamette Basin, Oregon: U. S. Geological Survey Scientific Investigations 2005-5168, 83 p. Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon Chington: U. S. Geological Survey Professional Paper 1424-A.
Herrera. water in	N.B., Burns, E.R., Conlon, T.D., 2014, Simulation of groundwater flow and the interaction of groundwater and surface the Willamette Basin and Central Willamette subbasin, Oregon: U. S. Geological Survey Scientific Investigations 2014-5136.
	, 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, February, 2003.
Iverson	Justin, 2002, Investigation of the hydraulic, physical, and chemical buffering capacity of Missoula Flood deposis for
	sality and supply in the Willamette Valley of Oregon: Corvallis, Oregon, Oregon State University, M.S. thesis.
	ard, Dennis BG., Gannett, Marshall W., and Vaccaro, John J., 1998 Hydrogeologic Framework of the Willamette Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-B.
	ject well (MARI 6106) and nearby well logs and water level data, especially MARI 17590, MARI 3510, MARI 58801,

Version: 08/01/2014

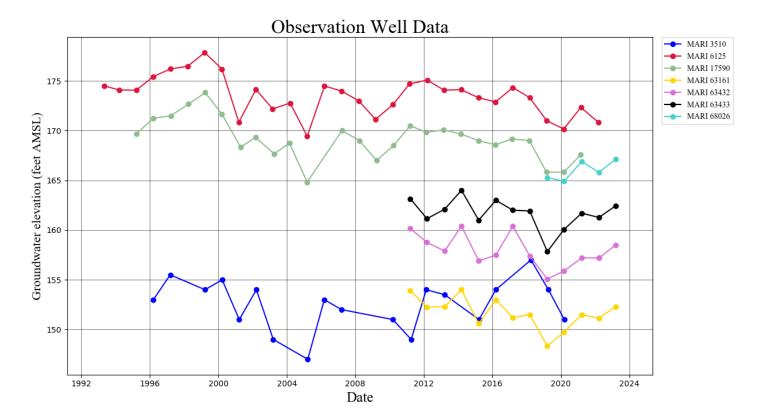
D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	1	Logid: _	MARI 6106	
D2.	a.	riew of the well log ld inspection by out of CWRE	o;	well construction standards based upon:	; ;
D3.	THE WEL	L construction de	ficiency or other co	comment is described as follows:	
D4. [Route to th	ne Well Construc	tion and Complianc	nce Section for a review of existing well construction.	

Version: 08/01/2014

9

Water Availability Tables

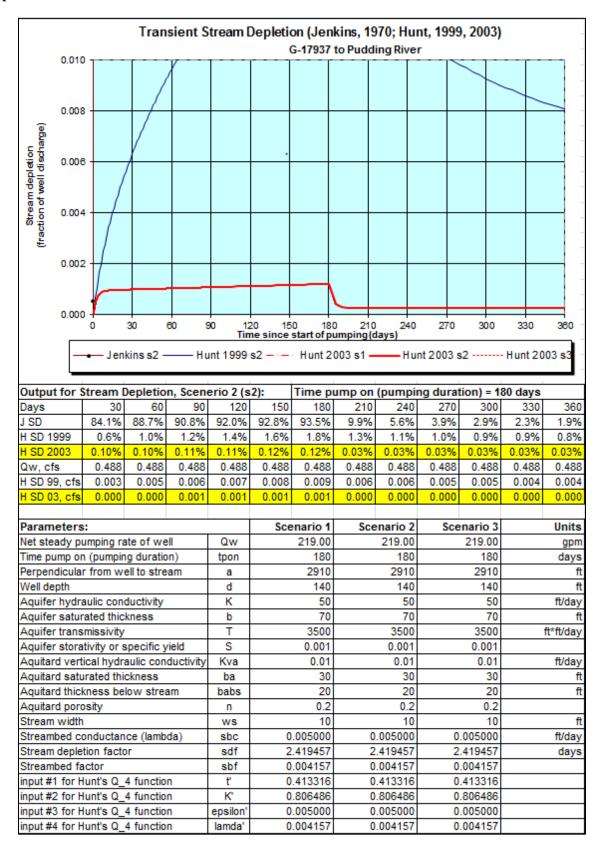

		DETAILED REPORT	ON THE WATER AVAILA	ABILITY CALCULATION	DN	
Watershed ID #: Time: 3:27 PM	152	PUDDING R	> MOLALLA R - AB HO Basin: WILLAMET			dance Level: 80 ate: 03/09/2015
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is	Monthly values a the annual amount at	are in cfs. 50% exceedance i	n ac-ft.	
JAN FEB MAR APR JUN JUL AUG SEP OCT NOV DEC ANN	603.00 649.00 587.00 451.00 235.00 111.00 43.60 24.70 22.70 38.90 233.00 608.00 385,000	69.60 60.80 42.90 24.40 17.10 32.20 47.80 40.20 25.30 7.35 18.50 63.60 27.100	533.00 588.00 544.00 427.00 218.00 78.80 -4.17 -15.50 -2.58 31.50 214.00 544.00 359,000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	523.00 578.00 534.00 417.00 208.00 68.80 -14.20 -25.50 -12.60 21.50 204.00 534.00

Version: 08/01/2014

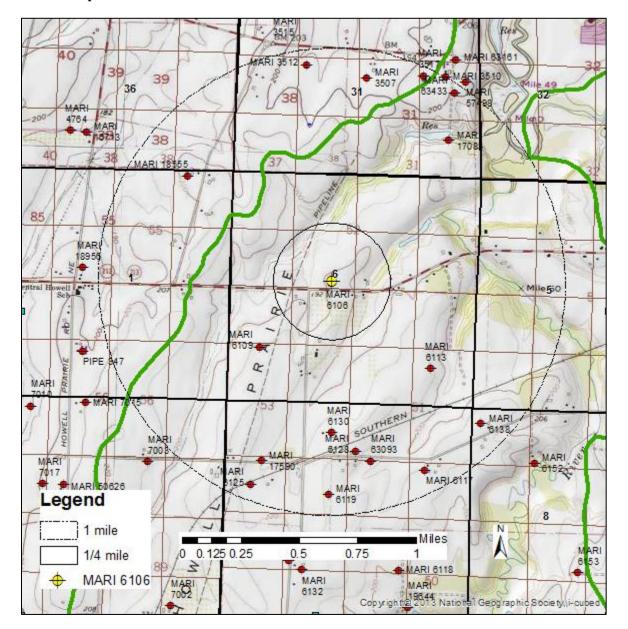
10

Date: 5/9/2023

Water Level Trends



Elevation Profile for Well, Nearby Wells and Local Surface Water Bodies


G-179	37 Schnida		5 W				
		Distance	Elevation			idth	
0	0	Dismin ce					
Bye Reservoir Pudding River Holden Reservoir		1, 700	165	165'-158'		70'	
1-099	ing Kiver	2,910		3.		01	
Hold	ien Keservoir	3,670	165'		10	001	
	111 6	2 21					
	Relative Eleva	tion Profiles					
	£ -2,195	. 4,65	3507				
	4	0 -	35				
	-8	MARI 6106	MARI	100	9	R. Les	
	GIOS	MAA	2	7	3	7	
200 1				Ser	res		
	6761 >			tx o	3	2	
	V			es.	Holden Reservo:	-0	
				Bye Reserveir	To	Pudding	
	CL			-			
		(L					
150' —							
		71487	CL	_			
		V	L.Sr.				
			5				
150'-	GR- counted		500			1	
	Charles	GR	D				
							willay
		22 3511					Silts
			41				
		-	GR.		E =	2 2 2	- App-Boun
		E .					
			SA.				
		<u></u>	G8				
	I GR	GR.	94				Mostl.
100' -	L F	E					(onfini
			"cong."				Allovia
		6	coil				Aq v. Pe
		2	1 168				
		E .					
		一首	Cong.				
	_[4	1 (4	1 1				
	/	GR -					
		CL	G GR + SA				
	(*						
Cal			1 1				
501-			Me .				
		\	\$ SA				
		1	宣				
		1					
		V /	(4)				
	Flow Zon	e 05 t	cı				
	indicated.	0.4					

12

Stream Depletion Model Results

Application Review Map

