Groundwater Application Review Summary Form

Application # G- <u>18783 re-review</u>

GW Reviewer <u>Travis Brown</u> Date Review Completed: <u>11/21/2022</u>

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

□ There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

November 21, 2022

TO: Application G- 18783 re-review

FROM: GW: <u>Travis Brown</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- □ YES The source of appropriation is hydraulically connected to a State Scenic Waterway or its tributaries
- □ YES
 □ Use the Scenic Waterway Condition (Condition 7J)
 □ NO
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>[Enter]</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO: FROM:		Wate: Grou	r Rights See ndwater See	ction		Travis F	Brown		Date	11/21/	<u>2022</u>			
11000		Grou				Review	ver's Nam	e						
SUBJE	CT:	Appli	cation G-1	8783		Supe	ersedes	revi	ew of 4/11	/2019				
		11				1					D	ate of Revi	ew(s)	
		DEC												
PUBLI	<u>C INTE</u>	RES	<u>r presun</u>	<u>IPTION; (</u>	<u> FROUND</u>	WATER		_		-				
<i>Welfare,</i> to deterr the press	<i>safety an safety an</i> nine whet	d heal her th riteria	the Departm th as describ e presumptio . This revie v	ent shall pre- bed in ORS 5 on is establis w is based u	37.525. De hed. OAR (pon availa	a proposed partment s 690-310-14 ble inforn	t ground taff revi 40 allow nation a	ew g ew g s the nd a	er use will en groundwater e proposed u gency polici	applica se be m ies in p	tions und odified o lace at t	der OAR or conditi he time o	690-310- oned to n	c -140 neet tion .
A. <u>GEN</u>	NERAL	INFO	RMATIO	<u>N</u> : Apj	plicant's Na	ame: <u>D</u>	avid an	d Na	ancy McKin	non	Co	ounty: <u>N</u>	Iarion	
A1.	Applicar	t(s) se	ek(s) <u>1.114</u>	4cfs from	2	well(s)) in the _	1	Willamette					Basin,
	N	lolalla	-Pudding			subbas	sin							
A2.	Proposed	l use _	Nurs	ery		Seaso	nality:	Yea	ar round					
A3.	Well and	aquif	er data (atta	ch and num	ber logs fo	or existing	wells; r	nark	c proposed v	wells as	s such ur	nder logi	d):	
Well	Logid Applicant's Well # Proposed Aquifer*			Propo Rate(c	sed (sfs)		Location (T/R-S QQ-Q))	Location 2250' N	n, metes a , 1200' E f	nd bounds r NW cor	s, e.g. S 36		
1	MARI 2	625	1	Al	luvium	1.11	4	4	5S/2W-23 NW-	SE	1750'	N, 15' E fr	S1/4 cor S	23
2	MARI 2	614	2	Al	luvium	1.11	4		5S/2W-23 SW-	SE	740'	N, 54' E fr	$S1/4 \operatorname{cor} S2$	23
* Alluviu	ım, CRB, I	Bedrocl	κ.											
	Well	Firs	st own	CIV/I	Well	Seal	Casin	g	Liner	Perfo	rations	Well	Draw	T (
Well	Elev	Wat	er SWL	SWL	Depth	Interval	Interv	als	Intervals	Or S	creens	Yield	Down	Tune
	ft msl	ft b	ls It bis	Date	(ft)	(ft)	(ft)		(ft)	(ft)	(gpm)	(ft)	туре
1	~189		19	3/13/1967	132	0-20	0-132	2				30	16	Bailer
2	~189	71	45	6/19/1989	152	0-19	+3-15	2		135	5-151	500+		Air
Use data A4.	from appli	cation nts: <u>T</u>	for proposed v	vells. POA are les	ss than 0.5	miles north	n of the	City	of Gervais, (<u>Dregon</u>	<u>.</u>			
A5. 🗌	Provisio	ons of	the	Willa	nette		Basin	rule	s relative to	the dev	velopmer	nt. classif	ication ar	nd/or
	managen	nent of	f groundwate	er hydraulica	ally connect	ted to surfa	ce wate	r [are. $or \boxtimes$	are not	t. activate	ed by this	applicat	ion.
	(Not all l	basin r	ules contain	such provisi	ions.)			_			,			
	Commer	ts: Th	ne proposed	POA would	produce wa	ter from a	confine	d aqu	uifer: therefo	re. per	OAR 69	0-502-02	40. the re	elevant
	Willame	tte Bas	sin rules (OA	R 690-502-	0140) do n	ot apply.		<u></u>		, <u>-</u>				
A6. 🗌	Well(s) #	ŧ	,	,		,	,	tap(s) an aquifer	limited	l by an a	dministra	tive restr	iction.
	Name of	admir	nistrative are	a: <u>N/A</u>										
	Commer	its:												

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. **is** over appropriated, **is not** over appropriated, *or* **cannot be determined to be** over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. **will not** *or* **will** likely to be available within the capacity of the groundwater resource; or
 - d. X will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 i. X The permit should contain condition #(s) <u>7n (annual measurement condition), large water use reporting;</u>
 - ii. \Box The permit should be conditioned as indicated in item 2 below.
 - iii.
 The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the <u>alluvial</u> groundwater reservoir between approximately ft. and <u>ft. and</u> ft. below land surface;
 - d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks:

The proposed POA produce water from 22 to 36 ft of sand and gravel within the alluvial Willamette Aquifer, which is overlain by 110 to 120 ft of fine-grained sediment (the "Willamette Silt") (Gannett and Caldwell, 1998). Reported static water levels compared to reported "first water" in nearby wells indicate that the Willamette Aquifer is predominantly confined in this area (see Well Statistics – Section 23, attached).

POA 2 (MARI 2614) is already an authorized POA under Certificate 89507 (which is still in the name of Edward Drescher and has not yet been assigned to the Applicant). Under Certificate 89507, POA 2 (MARI 2614) may divert groundwater for irrigation at a maximum rate of 0.48 cfs (~215 gpm) up to 95 af/year. If the requested allocation per this application were approved, POA 2 (MARI 2614) would be able to legally divert at a total maximum rate of 1.594 cfs (~715 gpm) up to 270 af/year, based on the combined rate and duty proposed in this application and authorized in Certificate 89507. At its proposed legally permissible rate, MARI 2614 could therefore pump for ~85.5 days continuously before exceeding its maximum annual volume.

Potential injury to other nearby groundwater rights was analyzed using the Theis equation for drawdown in a confined aquifer (Theis, 1935). Hydraulic parameters used for the analysis were derived from regional data and studies (Pumping Test Reports, Conlon et al., 2003, 2005; Iverson, 2002; McFarland and Morgan, 1996; Woodward et al., 1998) or are within a typical range of values for the parameter within the hydrogeologic regime (Freeze and Cherry, 1979; Domenico and Mifflin, 1965). The nearest known groundwater right to the proposed POA is MARI 2633, approximately 1,275 ft southeast of POA 2 (MARI 2614) (see Well Location Map, attached). Assuming a continuous pumping rate of 1.594 cfs (~715 gpm) for 85.5 days (the most conservative pumping scenario) under the most likely hydraulic parameters, results using the Theis equation indicate that pumping of MARI 2614 is not anticipated to affect another groundwater right such that said right would not be able to divert water to which it is legally entitled (see Theis Drawdown Analysis, attached).

Recent water levels for nearby observation wells do not indicate persistent or widespread declines in the Willamette Aquifer in this area (see Hydrograph, attached). Reported yields for nearby wells range from 20 to 700 gpm, with a median yield of 150 gpm. Although the requested rate under this application (1.114 cfs / 500 gpm) combined with the authorized rate under

Page | 5

Certificate 89507 (0.48 cfs / ~215 gpm) would exceed the reported yield of both MARI 2625 (30 gpm) and MARI 2614 (500 gpm) and is significantly higher than the median yield in this area, it would not be much outside the range of reported yields. Based on the preponderance of evidence, it cannot be stated that the proposed use would exceed available capacity of the groundwater resource in this area.

The conditions specified in B1(d)(i) and B2(c) are recommended to protect senior users and the groundwater resource.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium	\boxtimes	
2	Alluvium	\square	

Basis for aquifer confinement evaluation: <u>Reported static water levels for the proposed POA are above the noted water-bearing</u> zones and within the overlying fine-grained sediments, indicating confined conditions. Reported static water levels compared to reported "first water" in nearby wells indicate that the Willamette Aquifer is predominantly confined in this area (see Well Statistics – Section 23, attached).

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Sam Brown Creek	~170	~155	~7,645		
2	1	Sam Brown Creek	~145	~155	~6,840		

Basis for aquifer hydraulic connection evaluation: The nearest identified surface water source to the proposed POA is Sam Brown Creek (SW 1). Estimated surface water elevation at the perennial headwater of SW 1 is below or less than 10 ft above the estimated groundwater elevation in the proposed POA (WatershedSciences, 2009; USGS, 2013). Water table mapping in this area indicates that groundwater in the alluvial Willamette Aquifer in this area flows toward and discharges into local streams incised into the French Prairie plateau, including SW 1 (Gannett and Caldwell, 1998; Conlon et al, 2005). The available evidence is therefore sufficient to conclude hydraulic connection between the alluvial Willamette Aquifer and SW 1.

Water Availability Basin (WAB) the well(s) are located within:

<u>POA: MILL CR > PUDDING R – AT MOUTH</u> SW 1: PUDDING R > MOLALLA R – AB MILL CR

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Date: 11/21/2022

C3b. **690-09-040** (**4**): Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: <u>No surface water sources were identified within 1 mile of the proposed POA.</u>

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2	1	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %
Well Q	Q as CFS	0.242	0.242	0.438	0.438	0.438	0.438	0.438	0.438	0.438	0.438	0.242	0.242
Interfer	ence CFS	< 0.002	< 0.002	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.002	< 0.002
Distail		la.											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	Q as CFS												
Interfer	ence CFS												
		1	1		1	1	1	1					1
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	otal Interf.	< 0.002	< 0.002	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.002	< 0.002
(B) = 80	% Nat. Q	1,040	1,180	1,010	787	425	224	109	71	67.3	91.6	363	957
(C) = 1	% Nat. Q	10.4	11.8	10.1	7.87	4.25	2.24	1.09	0.71	0.673	0.916	3.63	9.57
		-	-	-	-	-	-	-	-	-	-	-	-
(D) = ((A) > (C)	\checkmark											
(E) = (A	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation: <u>Stream depletion of SW 1 due to pumping of POA 2 (MARI 2614) – being the nearest proposed</u> POA to SW 1 – was evaluated using the Hunt 2003 analytical stream depletion model (Hunt, 2003). Hydraulic parameters used for the analysis were derived from regional data and studies (Pumping Test Reports, Conlon et al., 2003, 2005; Iverson, 2002; McFarland and Morgan, 1996; Woodward et al., 1998) or are within a typical range of values for the parameter within the hydrogeologic regime (Freeze and Cherry, 1979; Domenico and Mifflin, 1965). The pumping rate was pro-rated based on the total permissible volume and season of use proposed in this application and authorized in Certificate 89507.</u>

Based on the Hunt 2003 model results, the depletion of SW 1 due to pumping of POA 2 (MARI 2614) within one year of pumping is anticipated to be much less than 1 percent of the proposed pumping rate. The anticipated depletion is also much less than 1 percent of the stream discharge that is equaled or exceeded 80 percent of the time as estimated for the PUDDING R > MOLALLA R – AB MILL CR WAB, which encompasses SW 1 (Sam Brown Creek) (see Water Availability Tables, attached). The low proportional rate of depletion is likely due to the significant distance between the proposed POA and SW 1 as well as the substantial quantity of low-permeability, fine-grained sediment underlying the stream channel.

Although SW 1 is the nearest identified surface water source, the proposed POA are actually located within the MILL CR > PUDDING R – AT MOUTH WAB, which has a significantly lower estimated 80 percent exceedance stream discharge (as little as 1.88 cfs). However, the nearest surface water source within that WAB is Mill Creek, located much further (greater than 11,000 ft) away from the proposed POA and at a higher elevation than SW 1, meaning that even more low-permeability, fine-grained sediment underlies Mill Creek than SW 1. As such, the anticipated depletion of Mill Creek due to pumping of the proposed POA is even less than that anticipated for SW 1, which is already less than 1 percent of the stream discharge that is equaled or exceeded 80 percent of the time as estimated for the MILL CR > PUDDING R – AT MOUTH WAB (see Water Availability Tables, attached).

Based on the preponderance of evidence and analysis, the proposed use of groundwater detailed in this application is not anticipated to substantially interfere with nearby surface water sources.

- C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
- C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:
 - i. \Box The permit should contain condition #(s)
 - ii. The permit should contain special condition(s) as indicated in "Remarks" below;
- C6. SW / GW Remarks and Conditions: <u>Based on the preponderance of evidence and analysis, the proposed use of</u> groundwater detailed in this application is not anticipated to substantially interfere with nearby surface water sources.

References Used:

Application File: G-18783

Certificate 89507

Pumping Test Files: MARI 1901, 2437, 2614, 2634, 2651, 2655, 2656, 2659, 2681, 18489, 18805, 53043

- Conlon, T.D., Lee, K.K., and Risley, J.R., 2003, Heat tracing in streams in the central Willamette Basin, Oregon, in Stonestrom, D.A. and Constantz, Jim, eds., Heat as a tool for studying the movement of groundwater near streams: U.S. Geological Survey Circular 1260, chapter 5, p. 29-34.
- Conlon, T.D., Wozniak, K.C., Woodcock, D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Groundwater hydrology of the Willamette Basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2005-5168.
- Domenico, P.A. and Mifflin, 1965, Water from low-permeability sediments and land subsidence: Water Resource Research, v. 1, no. 4, p. 563-576.
- Freeze, R.A. and Cherry, J.A., 1979, Groundwater, Prentice Hall, Englewood Cliffs, New Jersey, 604 p.
- Gannett, M.W. and Caldwell, R., 1998, Geologic framework of the Willamette Lowland aquifer system, Oregon and Washington: U.S. Geological Survey Professional Paper 1424-A, 32 p.
- Hunt, B., 1999, Unsteady Stream Depletion from Ground Water Pumping: Ground Water, January-February, Vol 37, p 98-102.
- Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, Vol 8, p. 12-19.
- Iverson, J., 2002, Investigation of the hydraulic, physical, and chemical buffering capacity of Missoula flood deposits for water quality and supply in the Willamette Valley of Oregon: Unpublished M.S. thesis, Oregon State University, 147 p.
- McFarland, W.D., and Morgan, D.S., 1996, Description of the Ground-Water Flow System in the Portland Basin, Oregon and Washington: U.S. Geological Survey Water Supply Paper 2470-A, 58 p.
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, American Geophysical Union Transactions, vol. 16, p. 519-524.
- United States Geological Survey, 2013, National Elevation Dataset (NED) [DEM geospatial data]. 1/9th arc-second, updated 2013.
- United States Geological Survey, 2017, *Gervais quadrangle*, Oregon [map], 1:24,000, 7.5 minute topographic series, U.S. Department of the Interior, Reston, Virginia.
- Woodward, D.G., Gannett, M.W., and Vaccaro, J.J., 1998, Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington: U.S. Geological Survey Professional Paper 1424-B, 82 p.
- Watershed Sciences, 2009, LIDAR remote sensing data collection, Department of Geology and Mineral Industries, Hood to Coast 2009, Portland, OR, May 27.

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:
D2.	THE WELL does not appear to meet of a. review of the well log; b. field inspection by	current well construction standards based upon: ; ;
D3.	THE WELL construction deficiency o	r other comment is described as follows:

D4. D4. Route to the Well Construction and Compliance Section for a review of existing well construction.

Well Location Map

G-18783 McKinnon

Service Layer Credits: Copyright: 2013 National Geographic Society, i-cubed Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community

Well Statistics – Section 23

Hydrographs

Water Availability Tables

Monthly Streamflow in Cubic Feet per Second

Annual Volume at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	1,040.00	124.00	916.00	0.00	36.00	880.00
FEB	1,180.00	114.00	1,070.00	0.00	36.00	1,030.00
MAR	1,010.00	75.70	934.00	0.00	36.00	898.00
APR	787.00	51.60	735.00	0.00	36.00	699.00
MAY	425.00	49.40	376.00	0.00	36.00	340.00
JUN	224.00	70.90	153.00	0.00	36.00	117.00
JUL	109.00	112.00	-2.75	0.00	36.00	-38.70
AUG	71.00	91.60	-20.60	0.00	36.00	-56.60
SEP	67.30	52.10	15.20	0.00	36.00	-20.80
OCT	91.60	11.00	80.60	0.00	36.00	44.60
NOV	363.00	48.30	315.00	0.00	36.00	279.00
DEC	957.00	118.00	839.00	0.00	36.00	803.00
ANN	706,000.00	55,400.00	650,000.00	0.00	26,100.00	627,000.00

Water Availability Analysis

Detailed Reports

MILL CR > PUDDING R - AT MOUTH WILLAMETTE BASIN									
	Water Availabilit	y as of 4/11/2019							
Watershed ID #: 30200901 (Map)		-	Exceedance Level: 80% ~						
Date: 4/11/2019			Time: 2:33 PM						
Water Availability Calculation	Consumptive Uses and Storages	Instream Flow Requirements	Reservations						
Water	Rights	Watershed Ch	aracteristics						

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Мо	onth Nati	ural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
	JAN	39.20	9.85	29.30	0.00	0.00	29.30
F	FEB	53.90	10.00	43.90	0.00	0.00	43.90
Ν	MAR	38.40	9.56	28.80	0.00	0.00	28.80
1	APR	27.60	7.13	20.50	0.00	0.00	20.50
Ν	MAY	13.70	5.68	8.02	0.00	0.00	8.02
	JUN	8.72	6.93	1.79	0.00	0.00	1.79
	JUL	3.79	10.60	-6.82	0.00	0.00	-6.82
A	AUG	2.09	8.63	-6.54	0.00	0.00	-6.54
	SEP	1.88	4.71	-2.83	0.00	0.00	-2.83
(OCT	2.39	1.24	1.15	0.00	0.00	1.15
1	VOV	6.05	7.24	-1.19	0.00	0.00	-1.19
[DEC	25.90	9.66	16.20	0.00	0.00	16.20
1	ANN	30 000 00	5 500 00	25 300 00	0.00	0.00	25 300 00

Theis Drawdown Analysis

Theis Time-Drawdown Worksheet v.3.00

Calculates Theis nonequilibrium drawdown and recovery at any arbitrary radial distance, r, from a pumping well for 3 different T values and radial distance, r, from a pumping well for 3 different T values and 2 different S values. Written by Karl C. Wozniak September 1992. Last modified December 30, 2014

Input Data:	Var Name	Scenario 1	Scenario 2	Scenario 3	Units	
Total pumping time	t		85.5		d	
Radial distance from pumped well:	r		1275.00		ft	Q conversions
Pumping rate	Q		715.4		gpm	715.39 gpm
Hydraulic conductivity	K	14	81	275	ft/day	1.59 cfs
Aquifer thickness	b		40		ft	95.64 cfm
Storativity	S_1		0.01000			137,721.60 cfd
	S_2		0.00100			3.16 af/d
Transmissivity Conversions	T_f2pd	540	3,255	11,000	ft2/day	
	T_ft2pm	0.3750	2.2604	7.6389	ft2/min	
	T_gpdpft	4,039	24,347	82,280	gpd/ft	

Use the Recalculate button if recalculation is set to manual

Application G-18783 re-review

Date: 11/21/2022

Stream Depletion Analysis: POA 2 – SW 1

Application number:	18783
Well number:	2
Stream Number:	1
Pumping rate (cfs):	0.242
Pumping duration (days):	365
Pumping start month number (3=March)	1

Application type:

Parameter	Symbol	Scenario 1	Scenario 2	Scenario 3	Units
Distance from well to stream	а	6840	6840	6840	ft
Aquifer transmissivity	т	540	3255	11000	ft2/day
Aquifer storativity	S	0.15	0.1	0.05	-
Aquitard vertical hydraulic conductivity	Kva	0.01	0.05	0.1	ft/day
Aquitard saturated thickness	ba	90	90	90	ft
Aquitard thickness below stream	babs	85	85	85	ft
Aquitard specific yield	Sya	0.2	0.2	0.2	-
Stream width	WS	10	10	10	ft

	Stream	dep	letion	for	Scenario	2:
--	--------	-----	--------	-----	----------	----

Days	10	30	60	90	120	150	180	210	240	270	300	330	360
Depletion (%)	0	0	0	0	0	0	0	0	0	0	0	0	0
Depletion (cfs)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

