Groundwater Application Review Summary Form

Application # G- <u>18748</u>

GW Reviewer <u>Grayson Fish</u> Date Review Completed: <u>8/14/2023</u>

Note: this re-review addresses the finding in section B1a in accordance with the 1/18/2023 clarification memo on the current policy for determining over-appropriation for new groundwater applications. No other modifications of findings from the 6/15/2022 review originally completed by Michael Thoma were made.

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

□ There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

L The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

8/14/2023

TO: Application G-<u>18748</u>

FROM: GW: <u>Grayson Fish</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- ✓ YES The source of appropriation is hydraulically connected to a State Scenic Waterway or its tributaries
- ☑ YES
 □ NO
 Use the Scenic Waterway Condition (Condition 7J)
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>Klamath</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
See attached memo "Analysis of Groundwater Pumping Impacts on Scenic Waterway											
Flows	" dated	: Febru	ary 19,	2013							

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights See	ction				Date	8/14/2023		_	
FROM		Ground	dwater Sec	ction		Grayson	ı Fish					
						Review	ver's Name					
SUBJE	CT:	Applic	ation G-	18748	S	Supersede	s review	of 6/15/2020				
			_			I				Date of Rev	iew(s)	
DI IRI I	C INTE	DEST	DDESIM	ΙΡΤΙΛΝ•	CROUND	WATED						
OAR 60	$0_{310_{13}}$	<u>REST</u> 0 (1) <i>Tl</i>	I KESUN	ant shall pr	osumo that	a proposa	: Laroundu	atar usa will a	nsura tha nra	arvation of	f the nubl	ic
walfara	safaty an	d hoalth	ie Depurin v as dascrib	eni snuli pro	537 525 De	n proposed	toff rovio	v groundwater	applications	under OAR	600 310	140
to deter	ning what	hor the	nrosumptic	e <i>u in</i> ORS . n is establis	had OAR	600 310 1	40 allows	the proposed u	applications	d or condit	ioned to 1	-140 moot
the pros	umption of	ner the	This roviou	v is based u	ncu. OAK	bla inforn	to allows	d aganay nalia	ise de mount	t the time	of avalue	tion
the pres	umption c	mena.		v 15 Daseu u	ipon avana			u agency poinc	les in place a	t the thire	UI EVAIUA	uuon.
A. GEN	NERAL	INFOI	RMATIO	N: Ap	plicant's Na	ame: G	rayson F	ish		County: 1	Klamath	
					•					-		
A1.	Applican	t(s) see	k(s) <u>6.27</u>	cfs from		well(s)) in the	Klamath				Basin,
	W	lood Ri	ver			subhas	sin					
		004 10	Ver			50000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
A2.	Proposed	luse	Supp	lemental Irr	igation (50	1.89 ac)	Se	asonality: Ap	ril 1 – Octobe	r 1 (214 da	vs)	
	r		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-8 (······································]~/	
A3.	Well and	aquife	r data (atta	ch and nun	nber logs fo	or existing	wells; ma	ark proposed	wells as such	under logi	id):	
W/-11	T:	1	Applicant'	S Durana	. J. A	Propo	sed	Location	Loca	tion, metes	and bound	s, e.g.
wen	Logi	1	Well #	Propose	a Aquiter*	Rate(c	cfs)	(T/R-S QQ-0	Q) 2250	' N, 1200' E	fr NW con	S 36
1	PROPOS	SED	1	В	edrock	6.27	7	33S/7.5E-33 NE	ENW 78	' S, 1319' E o	of NW cor S	333
2	CDD I											
* Alluviu	im, CRB, F	Bedrock										
	Well	First	CIT II	CIL II	Well	Seal	Casing	Liner	Perforation	Well	Draw	
Well	Elev	Water	SWL	SWL	Depth	Interval	Interval	s Intervals	Or Screens	Yield	Down	Test
	ft msl	ft bls	ft bls	Date	(ft)	(ft)	(ft)	(ft)	(ft)	(gpm)	(ft)	Type
1	4163	*	Artes.	*	690	0-510	+2-650		520-650	*		
Llas data	from on-1:	l		valla				<u> </u>				
Use data	from appli	cation fo	or proposed v	wents.								
	a											

Comments: <u>*The well is proposed with proposed well construction listed on the application; SWL is likely to be</u> A4. flowing-artesian based on well logs in the area of similar depths (few wells are as deep as what is proposed).

management of groundwater hydraulically connected to surface water \Box are, or \Box are not, activated by this application. (Not all basin rules contain such provisions.)

Comments: No such rules exist for the Klamath Basin.

A6. Well(s) # _____, ____, ____, ____, tap(s) an aquifer limited by an administrative restriction.

Name of administrative area: _____ Comments:

Page

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. is over appropriated, is not over appropriated, *or* cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. \Box will not or \Box will likely to be available within the capacity of the groundwater resource; or
 - d. 🛛 will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) 7J (Scenic); 7N (Annual SWL); Large Water-Use Reporting;
 - ii. \Box The permit should be conditioned as indicated in item 2 below.
 - iii. 🛛 The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than <u>510</u> ft. below land surface;
 - c. Condition to allow groundwater production only from the ______ groundwater reservoir between approximately______ ft. and ______ ft. below land surface;
 - d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. **Groundwater availability remarks:** <u>Water level data within the Wood River basin near the proposed POA are relatively</u> <u>limited.</u> Irrigation wells KLAM 56638, KLAM 57662, KLAM 58286, KLAM 59319 and KLAM 59916 located approximately 2 miles north of the proposed POA have water level data from permit condition reporting. KLAM 56638 and KLAM 57662 show relatively stable groundwater elevations (both are flowing artesian). It should be noted that KLAM 56638 was deepened (deepening report KLAM 59741) to 695 feet bls but is only sealed to 39 feet bls. Other wells noted are sealed to a minimum depth of 467 feet bls. Reported groundwater elevations for KLAM 58286, KLAM 59319 and KLAM 59916 show a ~6 foot decline between 2019 and 2022, losing flowing artesian conditions. The recent groundwater level declines reported in the above-mentioned wells do not meet the definition of excessively declining or excessively declined and, therefore, a preponderance of evidence does not exist to say that groundwater is over-appropriated.

There are also only a few existing groundwater rights in the area and the nearest is approx. 2 miles north of the proposed well. However, transmissivity in this part of the Wood River basin aquifer system is generally high and storativity is generally low so injury at 2 miles is possible but cannot be determined within a reasonable uncertainty to make a positive finding of injury, so in addition to static water level reporting, the Large Water-Use condition, and the special condition described below are recommended.

B1(d)-iii Special Condition:

<u>The well shall be equipped with an access port at the well head that is at least 1 in diameter and allows direct access to the water column. The permit holder shall allow Department staff access to the well for the purposes of obtaining water-level measurements and recording water use.</u>

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Pliocene Volcanic Deposits	X	

Basis for aquifer confinement evaluation: <u>Deeper wells in the Wood River subbasin typically encounter confined aquifer</u> conditions and often report flowing-artesian conditions.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H YES	Hydraulically Connected? YES NO ASSUME		Potential for Subst. Interfer. Assumed? YES NO	
1	1	Wood River	4163	4160-4165	5490	\boxtimes				\boxtimes
1	2	Sevenmile Creek	4163	4150	14,760	\boxtimes				Ø

Basis for aquifer hydraulic connection evaluation: <u>Groundwater elevations are estimated to be above or near surface water elevations implying that water is flowing between surface water and groundwater. The number of artesian wells in the area further implies that the deeper aquifer zones have sufficient pressure to drive water up to the land surface where is contributes to surface water flows; Conceptual hydrogeologic models and physically-based numerical groundwater flow models produced by USGS reports (Gannett et al., 2007; Gannett et al., 2012) concluded connection between deep aquifer systems in the Wood River Basin and surface water.</u>

Water Availability Basin the well(s) are located within: <u>LINK R > KLAMATR – AB UNN STR (ID# 31420305)</u> and also hydraulically connected to WOOD R > UPPER KLAMATH L – AT MOUTH (ID# 70829)

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

C3b. **690-09-040 (4):** Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: No surface water sources were evaluated less than one mile.

Page

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1	25 %	22 %	19 %	4 %	11 %	17 %	22 %	27 %	31 %	34 %	34 %	29 %
Well (Q as CFS	0	0	0	6.27	6.27	6.27	6.27	6.27	6.27	6.27	0	0
Interfer	ence CFS	1.58	1.35	1.18	0.23	0.67	1.07	1.41	1.69	1.92	2.12	2.13	1.84
Distrib	outed Well	ls	-	•			•	-	-		-	-	-
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
		4 50	4.05	1.10	0.00	0.6	4.07		1.60	1.0.0			1.0.4
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	otal Interf.	1.58	1.35	1.18	0.23	0.67	1.07	1.41	1.69	1.92	2.12	2.13	1.84
(B) = 80	% Nat. Q	314	309	315	334	379	375	371	347	334	335	328	312
(C) = 1	% Nat. Q	3.14	3.09	3.15	3.34	3.79	3.75	3.71	3.47	3.34	3.35	3.28	3.12
										1			
(D) =	$(\mathbf{A}) > (\mathbf{C})$	\checkmark											
(E) = (A	/ B) x 100	0.5%	0.44%	0.37%	0.07%	0.18%	0.29%	0.38%	0.49%	0.57%	0.63%	0.65%	0.59%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.
 Basis for impact evaluation: Stream-depletion was estimated using the Hunt (2003) stream-depletion model with parameter values informed by Gannett et al. (2012) and using methods previously used by the Department for estimating stream-depletion in the Klamath Basin.

Evaluation to Sevenmile Creek was not performed because the distance between the well and Sevenmile Creek is farther than to the Wood River so stream-depletion estimates would be lower. Additionally, the 80%-Exceedance flows for the WAB that Sevenmile Creek is in are higher than in the Wood River so PSI would be less likely.

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

- C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:
 - i. \Box The permit should contain condition #(s)_
 - ii. The permit should contain special condition(s) as indicated in "Remarks" below;
- C6. SW / GW Remarks and Conditions: <u>The applicant's proposed POA would be producing from an aquifer that has been found</u> to be hydraulically connected to surface water in the Klamath Basin, Wood River Subbasin, at a distance of greater than 1 mile. However, the proposed rate and estimated stream-depletion does not lead to an automatic assumption of PSI per OAR 690-009.

Page

References Used:

Gannett, M. W., B. J. Wagner, and K. E. Lite. 2012. *Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California*. USGS Scientific Investigations report 2012-5062.

Gannett, M. W., K. E. Lite, J. L. LaMarche, B. J. Fisher, and D. J. Polette. 2007. *Ground-water Hydrology of the Upper Klamath Basin, Oregon and California*. USGS Scientific Investigations Report 2007-5050

Hunt, B. 2003. Unsteady Stream Depletion when Pumping from a Semiconfined Aquifer. Journal of Hydrologic Engineering. Vol 8(1), pp 12-19

Sherrod, D. R., and L. B. G. Pickthorn. 1992. *Geologic Map of the West Half of the Klamath Falls* 1° by 2° *Quadrangle, South-Central Oregon*. USGS Miscellaneous Investigations Series Map I-2182.

OWRD Well Log Database - Accessed 08/14/2023

D. WELL CONSTRUCTION, OAR 690-200

D1. Well #: _____

Logid: _____

D2. THE WELL does not appear to meet current well construction standards based upon:

- a. \Box review of the well log;
- b. 🗌 field inspection by _____
- d. 🗌 other: (specify)

D3. THE WELL construction deficiency or other comment is described as follows:

Water Availability Tables

		Wate	r Availability A Detailed Reports	nalysis		
		LI	INK R > KLAMATH R - AB UNN KLAMATH BASIN	N STR		
Watershed IE Date: 8/14/20	0 #: 31420305 <u>(Map</u>))23		Water Availability as of 8/14/20	023	E	Exceedance Level: 80% ~ Time: 3:50 PM
	Nater Availability Calculation	Consumptive Uses and Sto Water Rights		Instream Flow Requirements	Reser	vations
		Month Annual	hly Streamflow in Cubic Feet pe I Volume at 50% Exceedance in	er Second n Acre-Feet		
Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	1,470.00	576.00	894.00	0.00	60.00	834.00
FEB	1,520.00	972.00	548.00	0.00	60.00	488.00
MAR	1,690.00	1,040.00	652.00	0.00	80.00	572.00
APR	2,220.00	1,120.00	1,100.00	0.00	80.00	1,020.00
MAY	2,100.00	1,280.00	815.00	0.00	83.00	732.00
JUN	1,670.00	1,510.00	160.00	0.00	74.00	86.10
JUL	1,180.00	1,370.00	-188.00	0.00	20.00	-208.00
AUG	914.00	1,060.00	-147.00	0.00	40.00	-187.00
SEP	830.00	827.00	3.06	0.00	30.00	-26.90
OCI	808.00	325.00	483.00	0.00	30.00	453.00
NOV	952.00	333.00	619.00	0.00	30.00	589.00
DEC	1,240.00	569.00	671.00	0.00	50.00	621.00
ANN	1,500,000.00	662,000.00	838,000.00	0.00	36,400.00	800,000.00

Water Availability Analysis

Detailed Reports

WOOD R > UPPER KLAMATH L - AT MOUTH

KLAMATH BASIN

Water Availability as of 8/14/2023

Watershed ID #: 70829 (Map) Date: 8/14/2023

Water Availability Calculation	Consumptive Uses and Storages	Instream Flow Requirements	Reservations
Wa	ter Rights	Watershed Chara	acteristics

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second

		An	nual volume at 50% Exceedan	ce in Acre-Feet		
Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	314.00	0.34	314.00	0.00	125.00	189.00
FEB	309.00	0.34	309.00	0.00	125.00	184.00
MAR	315.00	36.30	279.00	0.00	270.00	8.73
APR	334.00	80.30	254.00	0.00	286.00	-32.30
MAY	379.00	192.00	187.00	0.00	323.00	-136.00
JUN	375.00	249.00	126.00	0.00	352.00	-226.00
JUL	371.00	161.00	210.00	0.00	312.00	-102.00
AUG	347.00	95.80	251.00	0.00	277.00	-25.80
SEP	334.00	85.20	249.00	0.00	254.00	-5.23
OCT	335.00	60.90	274.00	0.00	255.00	19.10
NOV	328.00	0.34	328.00	0.00	263.00	64.70
DEC	312.00	0.34	312.00	0.00	125.00	187.00
ANN	281,000.00	58,300.00	222,000.00	0.00	179,000.00	57,100.00

Exceedance Level: 80% v

Time: 3:51 PM

Well Location Map

9

Page

Water-Level Measurements in Nearby Wells

Stream-Depletion Model Results

76 PyHunt stream depletion analysis tool

Application type:	G
Application number:	18748
Well number:	1
Stream Number:	1
Pumping rate (cfs):	6.27
Pumping duration (days):	214
oumping start month number (3=March)	4

Parameter	Symbol	Scenario 1	Scenario 2	Scenario 3	Units
Distance from well to stream	а	5490	5490	5490	ft
Aquifer transmissivity	Т	4250	20000	35825	ft2/day
Aquifer storativity	S	0.001	0.001	0.001	-
Aquitard vertical hydraulic conductivity	Kva	28.5	28.5	28.5	ft/day
Aquitard saturated thickness	ba	60	60	60	ft
Aquitard thickness below stream	babs	57	57	57	ft
Aquitard specific yield	Sya	0.1	0.1	0.1	-
Stream width	WS	20	20	20	ft

Stream depletion for Scenario 2:

Days	10	300	330	360	30	60	90	120	150	180	210	240	270
Depletion (%)	0	25	22	19	4	11	17	22	27	31	34	34	29
Depletion (cfs)	0.01	1.58	1.35	1.18	0.23	0.67	1.07	1.41	1.69	1.92	2.12	2.13	1.84

Appendix Memo: Analysis of Groundwater Pumping Impacts on Scenic Waterway Flows

State of Oregon Water Resources Department

Memorandum

To: Barry Norris – Administrator, Technical Services Division Dwight French – Administrator, Waterights Division Tom Paul – Deputy Director Doug Woodcock – Administrator, Field Services Division

From: Ivan Gall – Manager, Groundwater Section //,

Date: February 19, 2013

Subject: Analysis of Groundwater Pumping Impacts on Klamath Scenic Waterway Flows

In 1971 the Oregon Legislature created the Scenic Waterway Act, codified by Oregon Revised Statutes 390.805 to 390.925, to preserve for the benefit of the public Waldo Lake and selected parts of the state's free-flowing rivers. The Klamath Scenic Waterway was part of the Act and includes the Klamath River from the John Boyle Dam powerhouse downstream to the Oregon-California border. Under the Act, the Water Resources Commission is allowed to allocate small amounts of surface water for human consumption and livestock watering, as long as issuing the water right does not significantly impair the free-flowing character of these waters in quantities necessary for recreation, fish and wildlife, and the amount allocated may not exceed a cumulative total of one percent of the average daily flow or one cubic foot per second (cfs), whichever is less.

In 1995 the Scenic Waterway Act was modified to address the impact of groundwater uses that, based upon a preponderance of evidence, would measurably reduce the surface water flows within a scenic waterway. "Measurably reduce" means that the use authorized will individually or cumulatively reduce surface water flows within the scenic waterway in excess of a combined cumulative total of one percent of the average daily flow or one cfs, whichever is less. Page

In 2012 the United States Geological Survey (USGS), in cooperation with OWRD and the US Bureau of Reclamation, completed groundwater flow and management models for the Upper Klamath Basin. The 2012 groundwater flow model uses generally accepted hydrogeologic methods and the relevant field data to model the cumulative effects of groundwater pumping within the Klamath Scenic Waterway, and provides a comprehensive methodology for analyzing the relevant field data necessary to determine whether the cumulative use of groundwater in the Klamath Basin will measurably reduce the surface water flow necessary to maintain the freeflowing character of the Klamath Scenic Waterway.

In September 2012 the OWRD Groundwater Section conducted two model simulations. The two simulations used the 2012 USGS flow model, incorporating groundwater permits issued (61.96 cfs) since adoption of the 1995 Scenic Waterway Act amendment up through 2004. Each simulation was run to steady-state, where inflows and outflows for that model run balanced. An evaluation of the water budgets showed that groundwater discharge to the Klamath Scenic Waterway decreased by 5.88 cfs as a result of the 61.96 cfs of groundwater uses issued between 1995 and 2004. These results indicate to the OWRD that a preponderance of evidence exists to establish that groundwater development occurring in the Upper Klamath Basin in Oregon since 1995 has "measurably reduced" surface water flows within the Klamath Scenic Waterway.

In January 2013 the OWRD Groundwater Section conducted flow model simulations to evaluate impacts to streams from pumping groundwater within the Lost River subbasin. Groundwater pumping was simulated by placing wells in the model that correspond to the center of 39 townships in the southeast part of the Klamath Basin in Oregon. Each of the simulations was run to steady-state, where inflows and outflows for that model run balanced. These results indicate that the scenic waterway is impacted by pumping groundwater in all of the townships evaluated in Oregon in the Lost River subbasin. In summary, a preponderance of evidence exists to establish that groundwater development occurring in Oregon since 1995 in the Upper Klamath Basin and Lost River subbasin has "measurably reduced" surface water flows within the Klamath Scenic Waterway.

References:

Gannett, M.W., Lite, K.E., Jr., La Marche, J.L., Fisher, B.J., and Polette, D.J., 2007. Ground-water hydrology of the upper Klamath Basin, Oregon and California: U.S. Geological Survey Scientific Investigations Report 2007-5050, 84p.

Gannett, M.W., Wagner, B.J., and Lite, K.E., Jr., 2012. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California: U.S. Geological Survey Scientific Investigations Report 2012-5062, 92p.