Groundwater Application Review Summary Form

Application # G- <u>19288</u>

GW Reviewer <u>Grayson Fish</u> Date Review Completed: <u>9/11/2023</u>

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

□ There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

September 11, 2023

TO: Application G- 19228

FROM: GW: <u>Grayson Fish</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- ✓ YES The source of appropriation is hydraulically connected to a State Scenic Waterway or its tributaries
- ☑ YES
 □ NO
 Use the Scenic Waterway Condition (Condition 7J)
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>Klamath</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

JanFebMarAprMayJunJulAugSepOctNovDecSee attached memo "Analysis of Groundwater Pumping Impacts on Klamath ScenicWaterway Flows"; Dated February 19, 2013.

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section		Date	9/11/2023
FROM:	Groundwater Section	Grayson Fish		
		Reviewer's Name		
SUBJECT:	Application G- 19228	Supersedes review of		
	· · ·	·		Date of Review(s)

PUBLIC INTEREST PRESUMPTION; GROUNDWATER

OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation.

A. GENERAL INFORMATION: Applicant's Name: McKoen Family Trust County: Klamath

A1.	Applicant(s) seek(s) <u>2.6</u>	i8 cfs from	1	well(s) in the	Klamath	 Basin,
	Lost River- Tule L	Lake		subbasin		

A2. Proposed use <u>Irrigation</u> Seasonality:	September 2 - February 2	<u>.8/29</u>
---	--------------------------	--------------

A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid):

Well	Logid	Applicant's Well #	Proposed Aquifer*	Proposed Rate(cfs)	Location (T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	KLAM 53758	1	Bedrock	2.68	41S/11E-2 NW-SE	1500' N, 1800' W fr SE cor S 2
2						

* Alluvium, CRB, Bedrock

Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type
1	4075	79	73.71	3/30/2017	357	0 - 66	+2 - 66			2300		Air

Use data from application for proposed wells.

A4. Comments: The proposed POA/POU is located within the Tule Lake Valley, approximately 4.5 miles west-northwest of the City of Malin, OR. The applicant proposes to use an existing well KLAM 53758 to irrigate 224.2 acres at a maximum rate of 2.68 cfs. Note the requested irrigation season is different than customary due to crop type.

The proposed POA KLAM 53758 already serves as an authorized POA under Permit G-15075 for the same POU of 224.2 acres at a rate of 2.68 cfs and a duty of 3.0 af/ac between March 1 though September 1.

A5. A Provisions of the Klamath Basin rules relative to the development, classification and/or

management of groundwater hydraulically connected to surface water \Box	\Box are, <i>or</i> \boxtimes are not, activated by this application.
(Not all basin rules contain such provisions.)	
Comments:	

A6. Well(s) # _____, ____, ____, ____, tap(s) an aquifer limited by an administrative restriction.

Name of administrative area: Comments: _____

4

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. is over appropriated, is not over appropriated, *or* cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. \boxtimes will not or \square will likely to be available within the capacity of the groundwater resource; or
 - d. uill, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) 7J; 7N; Large Water Use Reporting
 - ii. \Box The permit should be conditioned as indicated in item 2 below.
 - iii. \Box The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the ______ groundwater reservoir between approximately______ ft. and ______ ft. below land surface;
 - d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. **Groundwater availability remarks:** The applicant's proposed POA is in an area where water levels have been observed to have declined over 30 feet since 2001 with approximately 20 feet of decline occurring since 2020 alone. There are several existing water rights in the immediate vicinity of the proposed POA that have permit condition requiring discontinued or reduced use if water level records show 25 ft or more decline. If additional water use were to be allowed under this proposed right, that use would have the potential to contribute to declines and lead to permit conditions being triggered on existing rights. This would preclude the perpetual use of the aquifer by limiting the rights of existing users , therefore, new additional use (volume) would not be within the capacity of the resource.

Given the relatively high transmissivity and thickness of the volcanic rock/sediment aquifer the proposed POA sources water from, use from this well at the requested rate would be unlikely to result in injury to nearby senior water rights. If this right were to be approved, the conditions in B1(d)(i) should be applied.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Mixed Volcanic/Sediment	\boxtimes	

Basis for aquifer confinement evaluation: <u>Wells in the area typically produce from volcanic rock layers buried beneath fine</u> sediments that produce some level of confinement.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H YES	Iydrau Conne NO	ilically ected? ASSUMED	Potentia Subst. Int Assum YES	al for terfer. .ed? NO
1	1	Tule Lake (California)*	~4000	~4033	*					

Basis for aquifer hydraulic connection evaluation: <u>*The nearest point of hydraulic connection to the proposed aquifer is in</u> California and not subject to review.

Water Availability Basin the well(s) are located within: <u>N/A</u>

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

C3b. **690-09-040** (**4**): Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:

5

Page

6

Page

C4a. **690-09-040** (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	rence CFS												
Distrib	outed Well	ls	-	-	-	-	-			-	-	-	-
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfei	rence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfei	rence CFS												
			1	1	1	1	1	1	1	1	1	1	1
$(\mathbf{A}) = \mathbf{T}$	otal Interf.												
$(\mathbf{B}) = 80$) % Nat. Q												
(C) = 1	% Nat. Q												
(D) =	(A) > (C)	\checkmark											
(E) = (A	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS;
 (B) = WAB calculated natural flow at 80% exceed. as CFS;
 (C) = 1% of calculated natural flow at 80% exceed. as CFS;
 (D) = highlight the checkmark for each month where (A) is greater than (C);
 (E) = total interference divided by 80% flow as percentage.
 Basis for impact evaluation:

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

- i. \Box The permit should contain condition #(s)____
- ii. The permit should contain special condition(s) as indicated in "Remarks" below;

C6. SW / GW Remarks and Conditions:

The applicants proposed POA would be producing from an aquifer where the nearest point of hydraulic connection to surface water is outside the State of Oregon and not subject to OAR 690-009.

Regardless, use from the proposed POA has the potential to draw water from parts of the regional Lost aquifer system that would have otherwise flowed toward the Klamath River and supported flows in the Klamath State Scenic Waterway and so the attached memo titled "Analysis of Groundwater Pumping Impacts on Klamath Scenic Waterway Flows"; dated February 19, 2013, is applicable.

C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:

Page

References Used:

Gannett, M. W., B. J. Wagner, and K. E. Lite. 2012. Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California. USGS Scientific Investigations report 2012-5062.

Gannett, M. W., K. E. Lite, J. L. LaMarche, B. J. Fisher, and D. J. Polette. 2007. Ground-water Hydrology of the Upper Klamath Basin, Oregon and California. USGS Scientific Investigations Report 2007-5050

Grondin, G. H. 2004. Ground Water in the Eastern Lost River Sub-Basin, Langell, Yonna, Swan Lake, and Poe Valleys of Southeastern Klamath County, Oregon. OWRD Ground Water Report No 41. Oregon Water Resources Department.

Leonard, A. R. and A. B. Harris. 1974. Ground Water in Selected Areas in the Klamath Basin, Oregon. Ground Water Report No. 21. Oregon State Engineer

OWRD Well Log Database, Accessed 9/11/2023 [https://apps.wrd.state.or.us/apps/gw/well_log/Default.aspx]

OWRD Groundwater Information System Database, Accessed 9/11/2023 [https://apps.wrd.state.or.us/apps/gw/gw_info/gw_info_report/gw_search.aspx]

Sherrod, D. R., and L. B. G. Pickthorn. 1992. Geologic Map of the West Half of the Klamath Falls 1° by 2° Quadrangle, South-Central Oregon. USGS Miscellaneous Investigations Series Map I-2182.

Thoma, M. J. 2019. Annual Report Regarding OWRD Technical Assistance for the U. S. Bureau of Reclamation Pilot Water Bank in the Upper Klamath Basin. Oregon Water Resources Department.

D1.	Well #:	Logid:
D2.	THE WELL does not appear to meet a. □ review of the well log; b. □ field inspection by	t current well construction standards based upon: ; ;
D3.	THE WELL construction deficiency	or other comment is described as follows:
D4.	Route to the Well Construction and	I Compliance Section for a review of existing well construction.

Page

Well Location Map

G-19228

Service Layer Credits: Sources: Esri, HERE, Gamin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S. Census Bureau TIGER/Line data; USFS Road Data; Natural Earth Data; U.S. Department of State

9

Water-Level Measurements in Nearby Wells

Attached Memo

11

State of Oregon Water Resources Department

Memorandum

To: Barry Norris – Administrator, Technical Services Division Dwight French – Administrator, Waterights Division Tom Paul – Deputy Director Doug Woodcock – Administrator, Field Services Division

From: Ivan Gall – Manager, Groundwater Section //

Date: February 19, 2013

Subject: Analysis of Groundwater Pumping Impacts on Klamath Scenic Waterway Flows

In 1971 the Oregon Legislature created the Scenic Waterway Act, codified by Oregon Revised Statutes 390.805 to 390.925, to preserve for the benefit of the public Waldo Lake and selected parts of the state's free-flowing rivers. The Klamath Scenic Waterway was part of the Act and includes the Klamath River from the John Boyle Dam powerhouse downstream to the Oregon-California border. Under the Act, the Water Resources Commission is allowed to allocate small amounts of surface water for human consumption and livestock watering, as long as issuing the water right does not significantly impair the free-flowing character of these waters in quantities necessary for recreation, fish and wildlife, and the amount allocated may not exceed a cumulative total of one percent of the average daily flow or one cubic foot per second (cfs), whichever is less.

In 1995 the Scenic Waterway Act was modified to address the impact of groundwater uses that, based upon a preponderance of evidence, would measurably reduce the surface water flows within a scenic waterway. "Measurably reduce" means that the use authorized will individually or cumulatively reduce surface water flows within the scenic waterway in excess of a combined cumulative total of one percent of the average daily flow or one cfs, whichever is less.

12

In 2012 the United States Geological Survey (USGS), in cooperation with OWRD and the US Bureau of Reclamation, completed groundwater flow and management models for the Upper Klamath Basin. The 2012 groundwater flow model uses generally accepted hydrogeologic methods and the relevant field data to model the cumulative effects of groundwater pumping within the Klamath Scenic Waterway, and provides a comprehensive methodology for analyzing the relevant field data necessary to determine whether the cumulative use of groundwater in the Klamath Basin will measurably reduce the surface water flow necessary to maintain the freeflowing character of the Klamath Scenic Waterway.

In September 2012 the OWRD Groundwater Section conducted two model simulations. The two simulations used the 2012 USGS flow model, incorporating groundwater permits issued (61.96 cfs) since adoption of the 1995 Scenic Waterway Act amendment up through 2004. Each simulation was run to steady-state, where inflows and outflows for that model run balanced. An evaluation of the water budgets showed that groundwater discharge to the Klamath Scenic Waterway decreased by 5.88 cfs as a result of the 61.96 cfs of groundwater uses issued between 1995 and 2004. These results indicate to the OWRD that a preponderance of evidence exists to establish that groundwater development occurring in the Upper Klamath Basin in Oregon since 1995 has "measurably reduced" surface water flows within the Klamath Scenic Waterway.

In January 2013 the OWRD Groundwater Section conducted flow model simulations to evaluate impacts to streams from pumping groundwater within the Lost River subbasin. Groundwater pumping was simulated by placing wells in the model that correspond to the center of 39 townships in the southeast part of the Klamath Basin in Oregon. Each of the simulations was run to steady-state, where inflows and outflows for that model run balanced. These results indicate that the scenic waterway is impacted by pumping groundwater in all of the townships evaluated in Oregon in the Lost River subbasin. In summary, a preponderance of evidence exists to establish that groundwater development occurring in Oregon since 1995 in the Upper Klamath Basin and Lost River subbasin has "measurably reduced" surface water flows within the Klamath Scenic Waterway.

References:

Gannett, M.W., Lite, K.E., Jr., La Marche, J.L., Fisher, B.J., and Polette, D.J., 2007. Ground-water hydrology of the upper Klamath Basin, Oregon and California: U.S. Geological Survey Scientific Investigations Report 2007-5050, 84p.

Gannett, M.W., Wagner, B.J., and Lite, K.E., Jr., 2012. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California: U.S. Geological Survey Scientific Investigations Report 2012-5062, 92p.