-							
Name OR Dept. of Fish & Wildlife By Randy Fisher, Director Address PO Box 59 or 2901 SW First Avenue Portland, OR 97207	Applicat Per Certifica Strear	tion No	FW	Date 	FEES I Amou	PAID int F Fee UNDEI	eceipt No.
Date filedMarch.21, 1990				Date	Amou	int C	neck No.
Priority Action suspended until	Date	ASS To Whom	SIGNMENTS	Address		Volume	Page
Return to applicant			-		••••		
Date of approval							
CONSTRUCTION			REMARKS				
Date for beginning							
Date for completion							
Extended to							
Date for application of water							
Extended to							
PROSECUTION OF WORK							
Form "A" filed							
Form "B" filed				••••••	••••••		
Form "C" filed						••••••	
FINAL PROOF							
Blank mailed							
Proof received							
Date certificate issued							

INST

-

SP*70900-119

1025 Certificate No. Instream Apolication No - N STATE OF OREGON 12821 1993 WATER RESOURCES DEPARTMENT Application for Instream Water Right OREGC ti .eeu oldud to vien by a State Agency TR-AR There is no fee required for this application. A. Applicant: _____ Randy Fisher _____ for Oregon Dept. of Fish & Wildlife (Agency) (Director) Mailing Address: 2501 S.W. First Ave., P. O. Box 59 229-5400 Ext. 438 97207 OR Portland State Phone No. Zip City for _____ B. Applicant: (Agency) (Director) Mailing Address: _ Zp Phone No. State City

C. Applicant:	for
(Director)	(Agency)
Mailing Address:	

State

Zip

Phone No.

a tributary or source (if lake) of ______ John Day River______

City

2. The public use(s) this instream water right is based upon include:

Upstream passage of adult and juvenile fish including summer steelhead and resident rainbow trout.

Instream Application No. _

7025

Certificate No. _

3. The amount of water needed by month and/or year for each category of public use. If more space is needed, use a separate sheet of paper.

List	quantiti	ies in ei	ther c	fs, acr	e-feet, o	r lake	elevati	on abo	ve Mea	an Sea	Level	31 5%
Use(s)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Migration	of Anac	iromous	fish	and r	esident	fish	vo en en	e bipo i v	all starts		•	
								Chi and			WIRE T	
	34	57	57	57	57	34	34	34	34	34	34	34
		- Stand P	1					PARA	1			
												-
										82910	OV CIUT	1.24.1
·				1000				-				
							-					

4. The reach of the stream identified for an instream water right is from the:

upstream end at	USGS Guaging	station	@ White	Park (Statio	on #14047390)
River Mile (if known) _RM 40.0				
within the <u>NE</u>	_ 1/4 of the	SW	1/4 of		
Section36	_ Township _	3S	Ra	nge22	2E W.M.,
CountyGillia	m				
				· ····································	
downstream end a	atThe_m	outh			
River Mile (if known)	0.0				
within theNE	1/4 of the	SW	1/4 of		
Section	_ Township _	1N	Ran	nge198	W.M.,
CountyGilli	am			mithad	1
Lake identified for ar	instream wate	er right is		allound	'ly
within the	1/4 of the		1/4 of	Rech 635	-
Section	Township _		Rai	400-015	(9) V.M.,
County		<u> </u>		nu	1

5. Method(s) used to determine the requested amounts: <u>Flow required to operate proposed fish passage facilities during migration</u> <u>period for adults and juveniles.</u> <u>Required flows are based on engineering determinations</u> <u>using USGS data and passage facility design.</u> Instream Application No. _

Certificate No.

6. When were the following state agencies notified of the intent to file for the instream water right?

Department of Environmental Quality D Department of Fish and Wildlife D Parks and Recreation Division D

0251

Date	2-7-90		
Date			
Date	2-7-90	i min vinion of a su	
		and the second se	

7. If possible, include recommendations for measuring locations or methods:

Measure @ USGS station 14047390 and by staff gauge @ the mouth RM 0.0

 If possible, include recommendations for assisting the Water Resources Department (WRD) in measuring and monitoring procedures:

Local watermaster will measure w/ periodic assistance from ODEW. Monitoring plan to be developed.

 If possible, include other recommendations for methods or conditions necessary for managing the water right to protect the public uses (see OAR 690-77-020 (5)(c)): Monitoring plan to be developed.

Remarks: <u>The Department of Fish and Wildlife is aggressively persuing the</u> <u>completion of a series of passage facilities at eight existing irrigation diversion</u> <u>structures. Once adult steelhead have access to the upper reaches of Rock Creek</u> <u>we expect an annual return of 1000 adults. Upstream passage of juvenile fish will be</u> a critical component of the passage facilities function.

This application must be accompanied by a basin map with the applicable lake or stream reach identified.

An instream water right may be allowed for an instream beneficial use of water subject to existing water rights with an effective date prior to the filing date of this application.

This type of beneficial use is for the benefit of the public and a certificate issued confirming an instream water right shall be held in trust by the Water Resources Department for the people of the State of Oregon, pursuant to ORS 537.341.

3/21/90 Date

Oregon Dept. of Fish & Wildlife Agency

Mancy M. Machush Signature

Assistant Director Title

Instrume Acator is Al	20251	Company A marine
Instream Application No.		Certificate No
	Date	doint? Department of Environmental Quality
This is to certify ting maps and da	that I have examined the fore ta, and return them for:	going application, together with the accompany-
	abadian na anita. I palaga	win tot en utolitie managen obukeni jeldiset ett. "T
In order to retain Department with	n its priority, this application corrections on or before	on must be returned to the Water Resources, 19
Date:	, 19	
		Water Resources Department
		Title
· · ·		Auntone Auntone A
This document wa the <u>21⁵¹</u> da	as first received at the Water ay of	Resources Department in Salem, Oregon, on _, 19 20 , at $2:50$ o'clock 2 M.
	WATER RESOURCE 3850 Portian SALEM, OREC	S DEPARTINE d Road NE SON 97310

Date: November 25, 1995

OREGON WATER RESOURCES DEPARTMENT

SATISFACTORY REPORT OF TECHNICAL REVIEW

FOR AN INSTREAM WATER RIGHT APPLICATION

OBJECTIONS TO THE PROPOSED WATER INSTREAM WATER RIGHT TECHNICAL REVIEW REPORT, AS DESCRIBED BELOW, MUST BE RECEIVED IN WRITING BY THE OREGON WATER RESOURCES DEPARTMENT, 158 12th ST NE, SALEM, OREGON 97310, ON OR BEFORE 5 PM: February 1, 1995

1. APPLICATION FILE NUMBER - IS 70251

2. APPLICATION INFORMATION

Application name/address/phone:

Oregon Department of Fish and Wildlife P.O. Box 59 Portland, Oregon 97207 503-229-5400

Date application received for filing and/or tentative date of priority: 3/21/1990

Source: ROCK CR tributary to JOHN DAY R

County: GILLIAM

Purpose: UPSTREAM PASSAGE OF ADULT AND JUVENILE FISH INCLUDING SUMMER STEELHEAD AND RESIDENT RAINBOW TROUT.

The amount of water (in cubic feet per second) requested by month:

JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC1st1/234.057.057.057.034.034.034.034.034.034.034.034.034.02nd1/234.057.057.057.057.034.034.034.034.034.034.034.034.0

To be maintained in:

ROCK CREEK FROM USGS GAGING STATION AT WHITE PARK RM 40.0 (NESW, SECTION 36, T3S, R22E); TO THE MOUTH OF ROCK CREEK RM 0.0 (NESW, SECTION 11, T1N, R19E)

3. TECHNICAL REVIEW

The application is complete and free of defects.

The proposed use is not restricted or prohibited by statute.

The following supporting data has been submitted by the applicant:

- (a) Fish and Wildlife Resources of the John Day Basin, Oregon, and Their Water Requirements; September, 1979.
- (b) Determining Minimum Flow Requirements for Fish, ODFW Report January 20, 1984.
- (c) Developing and Application of Spawning Velocity and Depth Criteria for Oregon Salmonids, Alan K. Smith, Transactions of the American Fisheries Society, April 1973.
- (d) Determining Stream Flows for Fish Life, Oregon State Game Commission Report, March 1972.

An assessment with respect to conditions previously imposed on other instream water rights granted for the same source has been completed.

An assessment with respect to other Commission administrative rules, including but not limited to the applicable basin program has been completed.

An evaluation of the information received from the local government(s) regarding the compatibility of the proposed instream water use with land use plans and regulations has been completed.

The level of instream flow requested is based on the methods of determining instream flow needs that have been approved administrative rule of the agency submitting this application.

The evaluation of the estimated average natural flow available from the proposed source during the time(s) and in the amounts requested in the application is described below. The recommended flows take into consideration planned uses and reasonably anticipated future demands for water from the source for agricultural and other uses as required by the standards for public interest review:

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1sty	34.0	57.0	57.0	57.0	57.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0
2nd ¹ ₂	34.0	57.0	57.0	57.0	57.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0 REQUESTED
	36.0	77.7	125	116	32.0	11.0	4.7	3.09	2.47	2.72	6.67	21.8 AVG FLOW
1st1/2	35.0	35.0	50.0	50.0	50.0	35.0	20.0	10.0	10.0	10.0	20.0	35.0
2nd ¹ / ₂	35.0	50.0	50.0	50.0	50.0	35.0	10.0	10.0	10.0	10.0	20.0	35.0 MIN FLOW

4. REPORT CONCLUSIONS

The proposed water use, as conditioned, passed this technical review. The information contained in the application along with the supporting data submitted by the applicant indicate that the flow levels set out in this report are necessary to protect the public use.

The supporting data states that the recommended flows are necessary to meet the biological requirements for spawning and rearing of salmonids and resident game fish. Consideration of habitat type, stream depth and water velocity were considered by the applicant in development of the flow levels. (See Determining Minimum Flow Requirements for Fish, ODFW Report January 20, 1984.) The recommended flow volumes are necessary to ensure appropriate levels of dissolved oxygen, turbidity, pH and temperature.

The listed flows would provide desirable levels of natural fish production for fishery management purposes.

5. PROPOSED CERTIFICATE CONDITIONS

[The following proposed conditions will apply to water use and will appear on the face of the certificate.]

 The right is limited to not more than the amounts, in cubic feet per second, during the time periods listed below:

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
34	57	57	57	32	11	4.7	3.09	2.47	2.72	6.67	21.8

- The water right holder shall measure and report the in-stream flow along the reach of the stream or river described in the certificate as may be required by the standards for in-stream water right reporting of the Water Resources Commission.
- This instream right shall not apply to permits for appropriation for domestic or livestock use or to use of water legally stored or legally released from storage.
- The instream flow allocated pursuant to this water right is not in addition to other instream flows created by a prior water right or designated minimum perennial stream flow.

Oregon Water Resources Department Water Rights/Adjudication Section

Water Right Application Number: IS 70251

1-12

Proposed Final Order

Summary of Recommendation: The Department recommends that the attached draft certificate be issued with conditions.

Application History

On 3/21/90, the Oregon Department of Fish and Wildlife submitted an application to the Department for the following instream water right certificate.

Source: ROCK CR tributary to JOHN DAY R

County: GILLIAM

Purpose: UPSTREAM PASSAGE OF ADULT AND JUVENILE FISH INCLUDING SUMMER STEELHEAD AND RESIDENT RAINBOW TROUT

The amount of water (in cubic feet per second) requested by month:

JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC1st½34.057.057.057.034.034.034.034.034.034.034.02nd½34.057.057.057.034.034.034.034.034.034.034.034.0

To be maintained in:

ROCK CREEK FROM USGS GAGING STATION AT WHITE PARK RM 40.0 (NESW, SECTION 36, T3S, R22E); TO THE MOUTH OF ROCK CREEK RM 0.0 (NESW, SECTION 11, T1N, R19E)

The Department mailed the applicant notice of its Technical Review on November 25, 1995, determining that the requested flows exceeded the estimated average natural flow during some months but that flows at a reduced amount, with exceptions for human and livestock consumption, are appropriate. The objection period closed February 1, 1995. Objections and comments were received (from A DAVID CHILDS, OREGON DEPT OF FISH AND WILDLIFE, WATER FOR LIFE, WATERWATCH OF OREGON).

The following supporting data was submitted by the applicant:

- Engineering determined by using USGS data and passage facility design.
- (b) A letter dated April 5, 1996, stating that the flows requested in this application are the minimum amount necessary to restore, protect and enhance populations and habitats of native wildlife species at self-sustaining levels

In reviewing applications, the Department may consider any relevant sources of information, including the following:

- comments by or consultation with another state agency
- any applicable basin program
- any applicable comprehensive plan or zoning ordinance
- the amount of water available
- the proposed rate of use
- pending senior applications and existing water rights of record
- the Scenic Waterway requirements of ORS 390.835
- applicable statutes, administrative rules, and case law '
- any comments received

An assessment with respect to conditions previously imposed on other instream water rights granted for the same source has been completed.

An evaluation of the information received from the local government(s) regarding the compatibility of the proposed instream water use with land use plans and regulations has been completed.

The level of instream flow requested is based on the methods of determining instream flow needs that have been approved by administrative rule of the agency submitting this application.

Findings of Fact

The John Day Basin Program allows the proposed use.

Senior water rights exist on this source or on downstream waters.

The source of water is not above a State Scenic Waterway.

The source of water is not withdrawn from appropriation by order of the State Engineer or legislatively withdrawn by ORS 538.

The estimated average natural flow for the lower end of the requested reach is as follows (in cubic feet per second):

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 36.0 77.7 125 116 32.0 11.0 4.7 3.09 2.47 2.72 6.67 21.8

Water is NOT available for further appropriation (at a 50 percent exceedance probability) for the period May, June, July, August, September, October, November and December.

The flows available for further appropriation are shown below:

JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC35.8277.5123.8110.824.221.53-8.0-7.41-4.57-0.436.482L62

Conclusions of Law

· · · · · ·

Under the provisions of ORS 537.153, the Department must

presume that a proposed use will not impair or be detrimental to the public interest if the proposed use is allowed in the applicable basin program established pursuant to ORS 536.300 and 536.340 or given a preference under ORS 536.310(12), if water is available, if the proposed use will not injure other water rights and if the proposed use complied with rules of the Water Resources Commission.

The proposed use requested in this application is allowed in the John Day Basin Plan.

No preference for this use is granted under the provisions of ORS 536.310(12).

The proposed use will not injure other water rights.

The proposed use complies with rules of the Water Resources Commission.

The proposed use complies with the State Agency Agreement for land use.

The proposed instream flows do not fully appropriate this source of water year round. Water is available for additional storage.

While the proposed use meets the other tests, the full amount of water requested is not available during some months of the year.

Water is not available for the proposed use at the amount requested during May, June, July, August, September, October, November and December because the unappropriated water available is less than the amounts requested during these months.

For these reasons, the presumption set forth in ORS 537.153, as discussed above, has not been established. The application therefore has been processed without the statutory presumption.

"When instream water rights are set at levels which exceed current unappropriated water available the water right not only protects remaining supplies from future appropriation but establishes a management objective for achieving the amounts of instream flows necessary to support the identified public uses." OAR 690-77-015(2).

"The amount of appropriation for out-of-stream purposes shall not be a factor in determining the amount of an instream water right." "The amount allowed during any time period for the water right shall not exceed the estimated average natural flow ..." (excerpted from OAR 690-77-015 (3) and (4)).

Because the proposed use exceeds the available water, it can not be presumed to be in the public interest. However, under the direction of OAR 690-77-015 (2)(3) and(4), the proposed use is in the public interest up to the limits of the estimated average natural flow.

Oregon law allows certain uses of water to take precedence over other uses in certain circumstances. When proposed uses of water are insufficient for all who desire to use them, preference shall be given to human consumption purposes over all other uses and for livestock consumption over any other use (excerpted from ORS 536.310 (12)).

The Department therefore concludes that

- the proposed use, as limited in the draft certificate, will not result in injury to other water rights,
- the proposed use, as limited in the draft certificate, will not impair or be detrimental to the public interest as provided in ORS 537.170.
- the proposed use, as limited in the draft certificate, for purposes of water distribution, this instream right shall not have priority over human or livestock consumption.
- the flows are to be measured at the lower end of the stream reach to protect necessary flows throughout the reach.
- the stream flows listed below represent the minimum flows necessary to support the public use.

N JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC taken from IR 34 57 57 57 57 57 11 4.7 3.09 2.47 2.72 6.67 21.8-taken from IR N 1996 37.50 74.20 120 120 124 39.5 14 3.13 1.56 1.61 2.74 8.92 20.60 new 50% exceedence

The Department recommends that the attached draft certificate be issued with conditions.

DATED AUGUST 20, 1996

Steven P. Applegate Administrator Water Rights and Adjudications Division

Protest Rights

Under the provisions of ORS 537.153(6) or 537.621(7), you have the right to submit a protest against this proposed final order. Your protest must be in writing, and must include the following:

- Your name, address, and telephone number;
- A description of your interest in the proposed final order, and, if you claim to represent the public interest, a precise statement of the public interest represented;
- A detailed description of how the action proposed in this proposed final order would impair or be detrimental to your interest;
- A detailed description of how the proposed final order is in error or deficient, and how to correct the alleged error or deficiency;

- Any citation of legal authority to support your protest, if known; and
- If you are not the applicant, the \$200 protest fee required by ORS 536.050.
- Proof of service of the protest upon the applicant.

· · · ·

Your protest must be received in the Water Resources Department no later than October 4, 1996.

After the protest period has ended, the Director will either issue a final order or schedule a contested case hearing. The contested case hearing will be scheduled *only* if a protest has been submitted *and* if

- upon review of the issues the director finds that there are significant disputes related to the proposed use of water, or
- the applicant requests a contested case hearing within 30 days after the close of the protest period.

DRAFT STATE OF OREGON

· · · · ·

CERTIFICATE OF WATER RIGHT

THIS CERTIFICATE ISSUED TO

STATE OF OREGON WATER RESOURCES DEPARTMENT SALEM, OREGON 97310

The specific limits for the use are listed below along with conditions of use.

Source: ROCK CR tributary to JOHN DAY R

County: GILLIAM

Purpose: UPSTREAM PASSAGE OF ADULT AND JUVENILE FISH INCLUDING SUMMER STEELHEAD AND RESIDENT RAINBOW TROUT

To be maintained in:

ROCK CREEK FROM USGS GAGING STATION AT WHITE PARK RM 40.0 (NESW, SECTION 36, T3S, R22E); TO THE MOUTH OF ROCK CREEK RM 0.0 (NESW, SECTION 11, T1N, R19E)

The right is established under Oregon Revised Statutes 537.341.

The date of priority is 3/21/90.

The following conditions apply to the use of water under this certificate:

 The right is limited to not more than the amounts, in cubic feet per second, during the time periods listed below:

 JAN
 FEB
 MAR
 APR
 MAY
 JUN
 JUL
 AUG
 SEP
 OCT
 NOV
 DEC

 34
 57
 57
 57
 57
 11
 4.7
 3.09
 2.47
 2.72
 6.67
 21.8

- The water right holder shall measure and report the in-stream flow along the reach of the stream or river described in the certificate as may be required by the standards for in-stream water right reporting of the Water Resources Commission.
- For purposes of water distribution, this instream right shall not have priority over human or livestock consumption.
- The instream flow allocated pursuant to this water right is not in addition to other instream flows created by a prior water right or designated minimum perennial stream flow.
- The flows are to be measured at the lower end of the stream reach to protect necessary flows throughout the reach.

Witness the signature of the Water Resources Director affixed this 1st day of _____, 19____

Water Resources Director

Recorded in State Record of Water Right Certificate number _____.

IS70863

BEFORE THE WATER RESOURCES DEPARTMENT OF OREGON WATER RIGHTS DIVISION

In the Matter of Surface Water Application) IS 70251 in the Name of Oregon Water Resources)	PROTEST TO
Department for Instream Water Use,)	PROPOSED FINAL
Gilliam County	ORDER

Protestant A. David Childs, in accordance with ORS 537.153 (6) and OAR 690-77-043, submits the following Protest to Proposed Final Order for Application IS 70251.

I. INTRODUCTION

Protestant's address is 1806 Thompson Street, The Dalles, Oregon 970558; phone number (541) 298-1499. Protestant is a landowner in the Rock Creek subbasin, where the instream water right has been applied for.

Protestant asserts that the Proposed Final Order ("PFO") by the Water Resources Department ("WRD" or "Department") is defective and in error and that there are elements of the water right as approved that will impair or be detrimental to the public interest, based on the facts and issues set forth below. The action proposed in the Proposed Final Order if not modified will result in excessive and unrealistic instream flows, set at quantities that do not and have not historically flowed in Rock Creek to the detriment of the Protestant.

The Protestant's interest as a landowner and user of Rock Creek for recreational and aesthetic purposes would be impaired by instream water rights granted in excessive amounts unrelated to the true flows of the stream. The Protestant is interested in the restoration of Rock Creek and possible upstream reservoir development for stream enhancement. In order for restoration work to be carried forward for Rock Creek, instream water rights must reflect the true conditions in the stream and actual flows available. If excessive quantities are granted that are not attainable, the restoration of Rock Creek will suffer as a result and flows would not be available for possible storage projects for stream enhancement.

II. ODFW'S APPLICATION IS DEFECTIVE AND SHOULD BE REJECTED

The application filed by the Oregon Department of Fish & Wildlife ("ODFW") should be rejected by the WRD due to the deficiencies set forth below.

A. METHOD USED BY ODFW IS UNACCEPTABLE METHODOLOGY FOR INSTREAM WATER RIGHT APPLICATION

ODFW's application under part 5. as to the "Method(s) used to determine the requested amounts" states: "Flow required to operate proposed fish passage facilities during migration period for adults and juveniles. Required flows are based on engineering determi (sp) using USGS data and passage facility design." (emphasis added). The flows requested are not based on any acceptable methodology for determining a flow rate for an instream water right application under the rules of the applicant agency, the Oregon Department of Fish & Wildlife. See OAR 635-400-015 for the "Instream Flow Measurement Methodologies" that are acceptable.

The Water Resources Department's rules governing instream applications require that "all applications for instream water rights shall be based on methods of determining instream flows needs that have been approved by administrative rule of the agencies submitting the applications." OAR 690-77-020 (3). Therefore the application submitted is defective and should be rejected by the Department since the application is based on a *proposed* fish passage facility.

Any assertion that ODFW's request represents a methodology acceptable under OAR 635-400-015 (9) is not valid. First, there is no information or data in the WRD file to indicate that ODFW conducted any "Site-specific studies...to determine flows necessary for...maintaining passage for fish migration or other specific requirements." The only information in support of ODFW's specific request is a letter from Al Mirati of ODFW to Michael Mattick of WRD dated November 15, 1994 with attached material regarding a proposed fishway in response to a WRD information request (Exhibit 1). That Exhibit reveals that the sole basis for the requested flows is a <u>proposed</u> "functional design for the Harper Dam Fishway on Rock Creek" (Exhibit 1 at 2). A design for a proposed fishway is not the same as a site-specific study, it is simply a proposed design for a fishway and nothing more.

Secondly, the information submitted on the proposed design shows that "the fishway is designed to accommodate passage" when adult steelhead are expected to be present "during the months of February through May..." (Exhibit 1 at 5). Therefore, at most, the requested flows are only valid for the months of February through May and there is <u>no supporting data whatsoever for the months of June through</u> <u>January</u>. Moreover, the design information makes it clear that 34 cubic feet per second is the "minimum" flow supposedly needed for the fishway to function. Since ORS 537.332 (2) sets forth that the standard for instream water rights is the "minimum quantity of water necessary to support the public use requested by an agency", 34 cfs is the highest amount that should be granted.

The requested flows are also obviously defective and the "methodology" is flawed, however, since the <u>"proposed" fish passage</u> <u>facility was never constructed</u>. Instead of the designed fishway on which the instream water right application is based, the fish ladder constructed at Harper Dam (aka Baird Dam) is of a different design. The fishway actually constructed does not require flows anywhere near even the 34 cfs minimum requested by ODFW. See Exhibit 2, Photocopy of picture of Harper fish ladder taken on August 31, 1996 by the Protestant.

B. BASIN INVESTIGATION FLOW REQUIREMENT NOT FOLLOWED BY ODFW

As noted above, ODFW's application is based solely on proposed design flows of a fishway that was not constructed. The flow requests were not based on the John Day River Basin Investigation. ODFW's own rules require that "Instream flow requirements in the OSGC Environmental Basin Investigation Reports <u>shall be used</u> to apply for instream water rights for waterways listed in the reports." (emphasis added; OAR 635-400-015 (13)). This mandatory requirement was not followed by ODFW. The failure by ODFW to follow the requirement contained in its rules to use the Basin Investigation Reports again results in a application whereby the agency failed to follow the "methods of determining instream flow needs that have been approved by administrative rule of the agencies submitting the applications." OAR 690-77-020 (3). The application should be rejected on this basis.

If the Department chooses instead to modify the instream water right allowed, the flow rates granted should at least be reduced for January through April to the minimum flows recommended by ODFW's predecessor in the Basin Investigation for the John Day River Basin. These amounts are as follows: January - 35 cfs; February - 35/50 cfs; March - 50 cfs; April - 50 cfs.

C. ODFW FAILED TO COMPARE FLOWS REQUESTED WITH EXISTING GAGING DATA

ODFW failed to compare the flows it requested with existing gaging data, as required by OAR 635-400-015 (10). Subsection (a) of that same administrative rule requires ODFW to further evaluate their instream flow requests: "Instream flow requirements greater than 70 percent or less than 30 percent of the naturally occurring stream flows...for any given time period shall be evaluated for appropriateness of the requirement in relation to naturally occurring stream flows or water surface elevations."

Despite the availability of gaging data at both the Whyte Park gage (#14047390) and the Cayuse Canyon gage (#14047400) ODFW failed to gather the information and make any comparisons or evaluations. This additional failure by ODFW to follow its own rules on instream applications results in submission of a defective application to the WRD.

D. NO TECHNICAL DATA OR SUPPORTING INFORMATION SUBMITTED BY ODFW

Where applicable, ODFW must also submit supporting data to show that the standards and criteria contained in their rules has been followed. OAR 690-77-020 (4)(g). No such submission was made to the WRD in this case, with the possible exception of the information on the "proposed" fishway and design flows for it. Therefore, Application IS-70251 failed to include sufficient technical data or information to support the flow rates requested by said agency, as required by OAR 690-77-020 and ORS 537.336. OAR 690-77-020 (4)(g) requires an application to include at a minimum "a description of the <u>technical data</u> and methods used to determine the requested amounts;" (emphasis added). The only information submitted in support of the application was the flow rate amounts set forth in ODFW's application. ODFW later submitted information regarding the proposed fish ladder, including designed flows rates for that specific fishway. Since the proposed fishway was never constructed, it is obvious that there is no validity as to the "technical data" submitted. Even if the fishway had been constructed, the design flows were only applicable to the months of February through May (Exhibit 1 at 5). No technical data or supporting information whatsoever was submitted for the months of June through January.

In this case, the Department under OAR 690-77-020 (7) requested "additional information needed to complete the review". The additional information submitted by ODFW (Exhibit 1) was still defective and incomplete as noted above. Therefore, ODFW's application is defective and incomplete and should be returned to them for resubmission in accordance with OAR 690-77-027 (1): "If the Department determines that the application is incomplete or defective, the Department shall return the application."

II. "EANF" CALCULATIONS ARE DEFECTIVE and INCOMPLETE

....

A. LACK OF INFORMATION IN WRD FILE TO SUPPORT "EANF" CALCULATIONS

There are no calculations or information in the WRD file to show what "ratios" were used or how adjustments were made to any gaged flows to determine the estimated average natural flows ("EANF"). See OAR 690-77-010 (11) . Particularly where the "EANF" review under OAR 690-77-015 (4) is literally the only analysis of the requested flows by the WRD, it is critical that the basis for the "EANF" calculations be available for review. The only information available are the *conclusions* of what the WRD has determined the "EANF" flows are. There is also no information in the WRD file or the Technical Review to show the type of statistics or model used, the actual figures used to calculate "EANF", or any adjustments that were made (see "Methods for Determining Streamflows and Water Availability in Oregon", <u>Robison</u>, p. 22 and 23). The Protestant maintains that the EANF calculations are defective, resulting in high EANF levels and thus allowing excessive recommended flows by the WRD.

B. REVISED "EANF" CALCULATIONS NOT USED IN WRD'S ANALYSIS

The "EANF" flows calculated by WRD and used in the PFO review were revised by WRD staff. Nevertheless, the revised "EANF" calculations were not used to analyze the application and prepare the PFO (Personal communication with Rick Cooper, WRD, October 1, 1996). The Protestant asserts that the latest, revised "EANF" calculations must be used as required by OAR 690-77-015 (4). Protestant also requests that a copy of the revised "EANF" flows and the basis thereof be provided to counsel, since no such information was included in the WRD file.

PROTEST TO PROPOSED FINAL ORDER - PAGE 4

C. GAGED INFORMATION and MISCELLANEOUS MEASUREMENTS NOT UTILIZED FOR "EANF" REVIEW: HIGHLIGHT ZERO STREAMFLOWS IN SUMMER MONTHS

The "EANF" calculations done by WRD staff utilized gaged flow information for Rock Creek from the Whyte Park gage at river mile 40.8 (#14047390); the review did not, however, utilize additional gaged flow information from the Cayuse Canyon gage (#14047400), approximately 5 miles downstream from Whyte Park (Personal communication with Rick Cooper, WRD, October 1, 1996). There is no Cayuse Canyon gage information in the WRD file.

The 13 years of information from the Cayuse Canyon gage is important to the determination of "EANF" because it provides a clear picture of Rock Creek flows and the behavior of the stream without any out-of-stream diversions. A review of the Cayuse Canyon gage information shows a clear pattern of <u>zero flow during significant</u> <u>stretches of time and mean flows that are much lower than the "EANF"</u> <u>calculations for most months.</u> For example, the mean flows in July, August and September are well below the "EANF" figures for 12 out of the 13 years of record; for June, 11 out of the 13 years are lower than "EANF" and for May 9 out of 13 years are lower. See Exhibit 3, Cayuse Canyon Gage #14147400, State Engineer-Water Resources Department, 1966-1978. These gaged flows establish that the "EANF" figures used in the PFO are higher than the actual flows in Rock Creek and therefore must be adjusted.

A comparison of the gaged flows from the two gages also shows that during the summer months, stream flow downstream is equal to or <u>lower</u> than the flow upstream (Exhibit 3). Thus, the normal assumption of increasing flow as one proceeds downstream with added flow from tributaries is shown not to be true for Rock Creek.

The Cayuse Canyon gage fall within the "base period" of 1958-1987 used by the WRD to calculate "EANF" and overlaps with the Whyte Park gage for comparison purposes. The Cayuse Canyon gage also meets the criteria noted by the WRD in its "Water Availability File" dated January 25, 1994 (Memo on "A Methodology for Estimating Water Availability Based on Mean Daily Flows", January 26, 1994 in that it measured "unregulated streamflow", was "unaffected by large diversions" and had "at least three years of record (mean daily flows)".

That Rock Creek flows do not necessarily increase from tributaries as it flows downstream, is further buttressed by documentation in the John Day River Basin Report, Water Resources Department, November 1986, at page 193: "The Lower Subbasin can be characterized as an area that receives water, as opposed to one that produces it. Most streams in the subbasin are nearly ephemeral, almost ceasing to flow in summer." (Exhibit 4 at 5). Note the statement that "Generally, streams tributary to the John Day are already dry or nearly dry by the time regulation for minimum flows is required." (Exhibit 4 at 6). For other information regarding "tributary streams" which "dry up in summer months" see <u>Rock Creek</u>

PROTEST TO PROPOSED FINAL ORDER - PAGE 5

Watershed Improvement Plan, Soil and Water Conservation District of Gilliam Morrow and Wheeler Counties, (May 22, 1991), Exhibit 8 at 7.

These general statements regarding streamflow in Rock Creek's subbasin are also supported by the Protestant's personal knowledge from diary entries which, for example, note that during the years 1959 through 1974 Rock Creek went dry every year (ranch location below French Charlie). The earliest date the creek went dry during that period was April 2nd and the latest was June 27th (diary entries not submitted at this time).

A comparison of flow at the two gages clearly highlights the fact that the flow of Rock Creek in the summer does not increase as it flows downstream. See <u>Water Availability for Oregon's Rivers and Streams: Volume 2; Technical Guide and Appendixes</u>, E. George Robison, May 1991, Appendix B, Table 5, page 23 and Appendix F, Table 5, page 16 (Exhibit 5), which shows comparisons of the Whyte Park and Cayuse Canyon gaged flows.

WRD's file for Application IS-70251 does contain miscellaneous flow measurements of the flow of Rock Creek, most of which are within the "base period" of 1958-1987 used for "EANF" calculations (see Exhibit 6, Miscellaneous Measurements, Rock Creek). Apparently these flow measurements were not used to calculate or adjust the "EANF" A comparison of the miscellaneous flows with WRD's figures. calculations of "estimated average natural flow" ("EANF") provides evidence that the EANF calculations are too high. A substantial number of these actual miscellaneous flows recorded are significantly lower than the EANF flows eventually used by the Department to analyze the application. Since the EANF flows are the only analysis or review conducted by the Department to determine whether requested flows meet the criteria for instream water rights, it is critical that EANF flows not be calculated at excessive levels. The Protestant maintains that these miscellaneous measurements should have been used to adjust the "EANF" calculations.

The other pattern that is abundantly clear when one scrutinizes all the gage records is that sudden heavy rainstorms will often drastically skew the averages higher. "Sudden severe convectional storms in summer months can lead to extreme localized flood peaks." <u>Rock Creek Watershed Improvement Plan</u>, Soil and Water Conservation District of Gilliam Morrow and Wheeler Counties, (May 22, 1991), Exhibit 8 at 4. A perfect example of this is shown by the miscellaneous gage readings for gage #14047480 (not in WRD file) for the year 1965 (Exhibit 9 at 7). The flow of Rock Creek, having just gone through nearly two months of zero flow in July and August, spikes up to 148 cfs on August 22nd and 128 cfs on August 23rd. The next day the flow drops all the way to 4.7 cfs. The result is a mean flow of 9.39 cfs for the month of August, despite the fact that 24 out of 31 days had zero flow.

The unmistakable pattern of flows *lower* than the "EANF" calculations, especially in the summer months, plus periods of zero streamflow is also shown in Exhibit 9. That exhibit contains twelve

sets of gage flow readings from various locations in the proposed 40 mile reach, for five different years. See also Exhibit 10 at 2, John Day Project, Department of the Interior, U.S. Reclamation Service (February 1916) for discharge readings in 1905 and 1911. These readings along with all the other gaged information should be taken into account when the WRD attempts to determine "EANF" figures.

D. ADDITIONAL INFORMATION - ACTUAL FLOWS ARE LOWER THAN "EANF"

The John Day River Basin Report, Water Resources Department, November 1986 provides further evidence that the "EANF" flows as calculated are too high and need to be adjusted. Section IX on the Lower Subbasin of the John Day River, which includes Rock Creek, furnishes important information on climate, land cover and surface water that apparently were not considered when the "EANF" flows were calculated. In particular, information contained on page 193 regarding surface water flows in Rock Creek notes that Rock Creek's "mean monthly flows range from 120 cfs in March to <u>less than 1 cfs in</u> <u>September</u>." (emphasis added; Exhibit 4 at 5). By contrast, "EANF" for September was calculated at 2.47 cfs (PFO at 2).

Another area of concern is the use of an irrigation add-back utilized by the WRD staff to calculate "EANF" in this case (Personal communication, Rick Cooper, WRD, October 1, 1996). Part of the "EANF" flow figure was generated by adding to the gaged flows from the Whyte Park gage, in order to arrive at the estimate of the "EANF" flows at the mouth of Rock Creek. In most streams, such an add-back for irrigation use makes sense. For Rock Creek, however, one must be extremely cautious in utilizing an add-back for irrigation use since regulation of water use in Rock Creek "normally begins in May and June." (John Day River Basin Report, Exhibit 4 at 6).

Exhibit 7, Watermaster's Compilation for Rock Creek, shows normal cut-off dates for irrigation water rights in Rock Creek. Since no specific information regarding the irrigation add-back amounts was contained in the WRD file, it is impossible for the Protestant to ascertain if the add-back accurately reflects the true situation in Rock Creek. It is clear, however, from the Watermaster's Compilation that there should be little or no add-back for the months of July through October, since the regulation of even the earliest right on the stream (1868 priority) begins by August 1st (Exhibit 7). In fact, the John Day River Basin Report at page 193 states that "Rock Creek's flow stopped at some point nine years of the same period [13 year period]....Generally, no-flow conditions last from August through September." (Exhibit 4 at 5).

The <u>Final Environmental Impact Statement</u>, Rock Creek Watershed Project, Soil Conservation Service, U.S. Dept. of Agriculture (April 1975), contained the following information regarding Rock Creek flows:

"It [Rock Creek] is an unmodified perennial stream for approximately 20 miles in its upper reaches, an <u>unmodified</u> <u>intermittent stream</u> for 21 miles, and a modified intermittent stream for 30.7 miles in its lower reaches where it passes through cropland... Rock Creek has a typical snowmelt runoff pattern of high spring flows and low to nonexistent surface flows during the summer and fall... Rock Creek averages no flow for 30 days each year in the vicinity of Cayuse Canyon. In the seven years of record at this location the dry period ranged from 0 to 80 days. (17) In the lower reaches of Rock Creek the <u>stream</u> is essentially dry from June through November on the average."

(emphasis added; Exhibit 11 at 2, 3). The EIS also includes a table of average monthly stream discharges at three locations which shows zero flow during several months at two of the locations, including the mouth of Rock Creek (Exhibit 11 at 3).

The <u>Rock Creek Watershed Improvement Plan</u>, Soil and Water Conservation Districts of Gilliam, Morrow and Wheeler Counties, (May 22, 1991) also provides evidence that "[L]ate season baseflow has become unreliable and, in fact, is nonexistent through much of the summer." (Exhibit 8 at 2). "Summer flows for irrigation and instream use is minimal to nonexistent. Stream hydrographs shown in Appendix A reinforce what irrigators know: during much of the summer, there is no water available in Rock Creek." (Exhibit 8 at 5; see also page 6).

The Water Resources Department itself noted the problem with "late season water shortages. This situation is most serious along smaller tributaries [to the John Day River] because late summer flows are often extremely low or nonexistent." John Day River Basin, State Water Resources Board, March 1962, page 35 (Exhibit 12 at 2).

E. POTENTIAL PROBLEMS WITH REVISED EANF CALCULATIONS

As noted above, no specific information regarding the basis for the "EANF" calculations is contained in the WRD's file. Thus, it is not possible to adequately review the "EANF" calculations and determine their accuracy for Rock Creek. One of the problems for Rock Creek is that the stream flow is heavily dependent, if not entirely based, on large spring flows in the summer months. As noted in the WRD report discussing poor performance of regression models at page 24, "The Water Availability Program - A Progress Report - 1993" (April 1993): "The reason for much of the poor performance apparently is related to hydrologic processes (i.e. large spring flow) that cannot be accounted for in the existing models." Therefore, if a regression model is used for Rock Creek, problems can be expected due to the makeup of summer flows.

III. FLOW PROPOSED FOR MAY INADVERTENTLY EXCEEDS "EANF" FLOW

Although the WRD calculated in May the "estimated average natural flow" for Rock Creek was 32 cubic feet per second, the PFO failed to limit the flow for May to that amount. In accordance with OAR 690-77-015 (3) and (4), the flow rate for May should be reduced to 32 cfs. The Technical Review dated November 25, 1995 did comply with the "EANF" limitation and proposed a flow in May of 32 cfs.

IV. PROPOSED FLOW RATES ARE IN EXCESS OF MINIMUM QUANTITY NECESSARY

The instream water right flow rates proposed are excessive and unnecessary for the use applied for. The flow rates proposed are higher than the <u>minimum quantity of water necessary</u> for the public use of the instream water right, and are, therefore, contrary to the definition of "In-stream flow" of ORS 537.332 (2) and OAR 690-77-010 (14). Water use of the instream right, if approved, would adversely affect the Protestant and potential water users from the stream by appropriating excess quantities of water and preventing any other new appropriations of water.

The flow rates granted must be reduced to the minimum quantity of water necessary for the fishery purpose of the application. At the very least, the flow rates should be reduced to the lesser of: (1) the revised "EANF" flow rates (see part II.B. above); or (2) the minimum flows recommended in the John Day River Basin Investigation (see part I.B. above).

V. WRD FAILED TO ANALYZE FLOW NEEDS

.

The flow levels approved by the Proposed Final Order are not based on any analysis of the need for the flows requested. ORS 537.332 (2) sets out the definition of "In-stream flow" which the Department is supposed to follow when determining instream water rights: the "minimum quantity of water necessary to support the public use requested by an agency". The Proposed Final Order does not address the minimum quantity of water or flow levels necessary to support the uses applied for: fishery needs. Fish passage was the sole basis for the ODFW application; the WRD unfortunately relied on a "proposed" fishway design that never was built.

A review of the WRD file shows that no analysis of any kind regarding flow needs occurred. The only review undertaken by the WRD was a check to see if the requested flows are less than the average estimate natural flow ("EANF"; OAR 690-77-015 (4)).

VI. REACH PROBLEMS - INTERMITTENT FLOW IN SUMMER MONTHS

The fact that spring flows at limited locations provide all of the flow of Rock Creek and that a dry streambed exists for the great majority of Rock Creek during low flow season must be taken into account by the WRD. Granting instream water rights for a 40 mile reach of stream, when the only flow in summer is provided in short stretches fed by springs, fails to account for the actual streamflow that exists. A detailed discussion and documentation of facts regarding the reach of the application and the variance of stream flows from upstream to downstream locations is set forth above under part II. C. and D.

OAR 690-77-015 (9) contains the requirement that the "amount, timing and location" of the instream water right shall serve a public use or uses. The specific circumstances regarding Rock Creek need to be viewed in light of this requirement. A 40 mile reach has been proposed. In the summer, evidence exists to show that the surface flow of Rock Creek often ceases for the majority of the stream (see above); the only flow exists in small sections of Rock Creek where water from springs feeds the streambed. This variance of surface flow at different locations in Rock Creek was also measured and noted by Watermaster Bob Main in a letter to Walter N. Perry of the State Engineer's Office on June 6, 1975 (Exhibit 13). As noted in the Rock Creek Watershed Improvement Plan, Soil and Water Conservation District of Gilliam Morrow and Wheeler Counties, (May 22, 1991), "near the mouth of Rock Creek a spring in the streambed produces flow continuously, whereas except for several springs, no water may be found upstream until above the town of Olex." (Exhibit 8 at 3). Any instream right granted for Rock Creek should be limited accordingly and note the likelihood of dry streambed throughout most of the reach.

CONCLUSION

.

This Protest is filed in accordance with OAR 690-77-043. The issues raised should be considered as part of a contested case hearing. The WRD's Proposed Final Order is inadequate and defective and has failed to follow applicable rules. A thorough review of the application is necessary to determine the minimum quantity of water necessary to support the public uses applied for.

For the reasons set forth above, the protestant asserts that the application is defective and should be returned to the applicants. The flow levels requested are excessive and are not necessary to support the public uses proposed. Flow levels set at the rates proposed will interfere with future maximum economic development of the waters of the State of Oregon. Excessive flow rates for instream water rights represent a wasteful and unreasonable use of the water involved (ORS 537.170 (8)(e)).

Based on the points discussed above, the Proposed Final Order should deny the application for a permit or modify the Proposed Final Order accordingly.

Respectfully submitted this 4th day of October, 1996.

By: Dovid C. Moon

David C. Moon Attorney for Protestant

CERTIFICATE OF FILING AND SERVICE

I hereby certify that on the 4th day of October, 1996 I filed the original of the foregoing Protest to the Proposed Final Order on the Water Resources Department by causing said original to be personally delivered to the Water Resources Department at the address set forth below. I further certify that on the 4th day of October, 1996 I served a true and accurate copy of the foregoing Protest to the Proposed Final Order on the applicant by mailing said copy by first class mail, postage prepaid, by depositing said copy in the United States Post Office in Eugene, Oregon, addressed as set forth below:

Oregon Water Resources Department Commerce Building 158 12th Street N.E. Salem, Oregon 97310-0210

1

Oregon Department of Fish & Wildlife 2501 SW First Avenue P.O. Box 59 Portland, Oregon 97207

By:

David C. Moon Attorney for Protestant

70251

no moter - cost

50% Exceedance Streamflows for Some Watersheds in the John Day Basin

Natural streamflows and water availability for the John Day basin were first calculated in late 1994. At that time 5 watersheds with ISWR applications were analyzed: 69960, 70250, 70251, 70263, and 70648. The natural streamflows for these ungaged watersheds were estimated by an area - precipitation ratio with similar gaged watersheds. Estimates for these five watersheds were revised in 1996. A regression analysis was used to make these new estimates. At that time, additional streamflow data for Bridge Creek were incorporated. Streamflows for all other watersheds with ISWR applications in the John Day basin also were estimated in 1996.

Natural streamflows for 5 original watersheds calculated from area - precipitation ratio (Late 1994)

69960	654.00	1250.00	1850.00	3200.00	3460.00	1630.00	346.00	157.00	140.00	168.00	243.00	494.00
1 _70250	6.23	13.50	21.60	20.10	5.54	1.90	0.81	0.54	0.43	0.47	1.16	3.77
0 70251	36.00	77.70	125.00	116.00	32.00	11.00	4.70	3.09	2.47	2.72	6.67	21.80
-70263	5.08	11.00	17.60	16.40	4.52	1.55	0.66	0.44	0.35	0.38	0.94	3.07
70648	93.40	138.00	166.00	385.00	891.00	697.00	128.00	56.00	49.30	53.70	65.80	75.30

Natural streamflows for 5 original watersheds calculated from regression analysis and incorporating additional gage information for Bridge Creek (Early 1996)

	69960	652.00	1250.00	1830.00	3180.00	3480.00	1640.00	359.00	164.00	144.00	171.00	243.00	492.00
Cert	- 10250	7.25	6.23	10.00	20.80	31.50	28.80	6.41	2.95	4.69	4.45	4.80	5.05
	70251	38.50	79.20	120.00	88.40	39.50	24.00	3.13	1.56	1.61	2.74	8.92	20.60
CENT		6.41	6.02	9.94	16.80	15.90	12.30	2.75	1.36	2.00	2.02	3.13	4.48
ier T	70648	112.00	135.00	163.00	547.00	1310.00	701.00	155.00	69.60	58.60	67.60	86.30	105.00

Natural streamflows for remaining watersheds with ISWR applications (Early 1996)

150

69949	11.60	11.70	15.90	32.30	47.80	28.20	13.20	7.62	8.18	10.40	12.20	11.50
69951	8.08	7.84	10.40	21.40	34.40	21.70	10.50	5.97	6.33	7.92	8.91	8.18
69958	13.10	15.40	19.10	76.80	194.00	70.90	13.10	4.10	4.00	5.57	9.26	12.10
69959	7.10	8.90	11.40	43.70	92.80	37.90	6.38	2.31	2.04	2.95	4.09	6.39
69961	4.40	4.70	0.31	20.50	33.40	26.00	4.82	3.38	3.01	3.49	4.25	3.99
69963	4.47	5.41	9.51	14.80	12.80	8.19	2.33	0.55	0.37	1.74	3.31	4.03
70640	9.92	8.95	10.59	19.40	36.20	28.40	16.60	9.20	9.57	11.50	11.90	10.30
70641	5.11	4.45	5.28	10.00	20.20	16.00	9.07	5.10	5.18	6.18	6.33	5.38
70642	3.76	3.34	4.19	8.31	16.10	11.60	5.97	3.46	3.47	4.24	4.53	3.91
70643	2.47	3.10	6.32	15.60	20.40	11.10	2.88	1.32	1.06	1.38	2.05	2.43
70644	4.76	5.83	11.90	29.40	41.90	24.60	6.63	2.55	2.10	2.73	4.11	4.65
70645	7.03	10.10	20.30	45.10	50.20	25.10	6.77	3.02	2.45	3.23	4.92	6.78
70646	2.93	3.14	3.76	5.54	7.15	9.85	2.63	1.88	1.24	1.48	2.01	2.60
70647	16.70	15.40	15.80	32.70	210.00	260.00	72.60	36.30	28.60	28.20	23.50	15.70
70649	2.88	3.19	4.25	18.20	45.00	19.10	3.11	0.97	0.83	1.21	1.81	2.59
70650	6.06	6.00	7.29	19.60	109.00	97.20	20.30	10.20	8.27	8.46	7.80	5.60
70651	3.79	8.26	18.00	29.00	17.30	7.94	1.53	0.78	0.55	0.76	1.07	2.72
70652	5.91	7.50	12.80	29.60	43.80	27.60	5.50	3.97	3.73	4.30	5.09	5.24
70653	7.76	11.30	19.50	42.30	57.00	36.40	7.47	4.56	4.27	5.06	5.41	6.52
70654	3.77	5.01	8.65	18.20	24.40	11.20	2.79	0.69	0.76	0.91	2.15	2.94
70655	1.96	2.82	4.93	7.98	7.04	2.49	0.85	0.13	0.09	0.45	1.24	1.69

4-30-13 NEWLOT EANE for These are the best latest numbers quailable Send little t g/2 +/s w/ duft FO MM

Water Availability Analysis

http://apps.wrd.state.or.us/apps/wars/wars_display_wa_tables/display_wa_details.aspx?ws_...

Water Availability Analysis Detailed Reports

ROCK CR > JOHN DAY R - AT MOUTH JOHN DAY BASIN Water Availability as of 4/29/2013

Watershed ID #: 70251 Date: 4/29/2013 Exceedance Level: 50% Time: 11:16 AM

Natur Availa siller Caleniadon	Consumptive Uses and Storages	Instream Flow Requirements	Reservations			
Water	Rights	Watershed Characteristics				

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second

Annual Volume at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	t Net Water Available
JAN	3 <mark>6.</mark> 10	0.01	36.10	10.00	34.0	0. \ -7.95
FEB	7 <mark>8.</mark> 00	0.02	78.00	21.70	57.0	-0.71
MAR	12 <mark>3.</mark> 00	5.29	118.00	33.60	57.0	27.10
APR	75.60	8.10	67.50	18.80	57.0	0 -8.27
MAY	33.10	20.70	12.40	3.45	33.1 57.0	-48.00 - 24.15
JUN	12.60	16.70	-4.13	0.00	11.0	0 -15.10
JUL	<mark>3.6</mark> 9	5.58	-1.89	0.00	4.7	0 -6.59
AUG	2.29	2.23	0.06	0.00	3.0	9 -3.03
SEP	2.24	1.15	1.09	0.00	2.4	7 -1.38
OCT	3. <mark>2</mark> 6	0.56	2.70	0.00	2.7	2 -0.02
NOV	8. <mark>6</mark> 1	0.01	8.60	2.39	6.6	7 -0.46
DEC	19. <mark>1</mark> 0	0.00	19.10	5.31	21.8	0 -8.01
ANN	23,800.00	3,660.00	20,500.00	5,700.00	18,900.0	0 1,660.00

Patricia McCarty

From: Sent: To: Subject: Patricia McCarty Thursday, August 29, 2013 3:35 PM 'Pagel, Martha' RE: Instream Water Right Applications

Any time after 8 is fine.

Patricia

From: Pagel, Martha [mailto:MPagel@SCHWABE.com] Sent: Thursday, August 29, 2013 3:02 PM To: Patricia McCarty Subject: RE: Instream Water Right Applications

Patricia,

Can I call you tomorrow morning to talk more about this? I'm still trying to develop a proposal for Mr. Childs as to what I might be able to help him achieve, and I will also need to have a follow-up conversation with John Sample at PacifiCorp.

What would be a good time to call you? Thanks.

MARTHA O. PAGEL | Attorney at Law SCHWABE, WILLIAMSON & WYATT Direct: 503-540-4260 | Fax: 503-796-2900 | Cell: 503-507-7293 | Email: mpagel@schwabe.com

From: Patricia McCarty [mailto:patricia.e.mccarty@state.or.us] Sent: Thursday, August 29, 2013 9:21 AM To: Pagel, Martha Subject: Instream Water Right Applications

Martha,

I've discussed your question to the department regarding instream water right applications and the impacts on storage opportunities. Dwight and Tim have informed me that the department is not currently contemplating a change to the water availability exceedance value used in processing instream water right applications.

I also discussed your proposal to the department to bring interested parties together to have a policy exploration/discussion about the same topic. A settlement discussion between the department, ODFW and protestants for the purpose of resolving a protest on an application is something I will be able to arrange, but the broader policy discussion is beyond the protest program's reach. Let me know if you would like for me to work on setting up a meeting with ODFW on either the Rock Creek application or on the applications protested by PacifiCorp.

Also, thank you for the reference to ORS 537.352 and Div. 77. Tim, Dwight and I are looking at that now, and will welcome your input on how it can be applied. We will need to look at the legislative history, as it is not entirely clear to us how it fits in with a Division 33 recommendation from ODFW, among other things.

I will be out of the office September 2nd through the 13th. I will be back in September 16th. I look forward to talking with you then.

Patricia

From: Pagel, Martha [mailto:MPagel@SCHWABE.com] Sent: Monday, August 26, 2013 11:53 AM To: Patricia McCarty Subject: RE: Instream Water Right Applications

Thank you.

FYI – I spent some time reviewing the statutes and rules and was reminded of ORS 537.352, which could help address the concern about preserving the ability to approve new storage in the future. However, I was surprised to see OAR 690-077—0100, which seems to be contrary to the statute in allowing discretion for the Water Resources Commission to deny a request for "precedence." It could go a long way to address protest concerns if instream water right certificates were issued with reference to the statutory requirement of 537.352, but I'm worried about the rule provision...

Martha

MARTHA O. PAGEL | Attorney at Law SCHWABE, WILLIAMSON & WYATT Direct: 503-540-4260 | Fax: 503-796-2900 | Cell: 503-507-7293 | Email: mpagel@schwabe.com

From: Patricia McCarty [<u>mailto:patricia.e.mccarty@state.or.us</u>] Sent: Monday, August 26, 2013 11:35 AM To: Pagel, Martha Subject: RE: Instream Water Right Applications

Here is the list

Patricia

From: Pagel, Martha [mailto:MPagel@SCHWABE.com] Sent: Monday, August 26, 2013 9:41 AM To: Patricia McCarty Subject: Instream Water Right Applications

Hi Patricia,

Do you have a list of all the pending instream water right applications that were protested? Could I get a copy?

Thanks, Martha

MARTHA O. PAGEL | Attorney at Law SCHWABE, WILLIAMSON & WYATT 530 Center St. NE, Ste. 400, Salem, OR 97301 Direct: 503-540-4260 | Fax: 503-796-2900 | Cell: 503-507-7293 | Email: <u>mpagel@schwabe.com</u> Assistant: Karen Donohue| Direct: 503-540-4262 | <u>kdonohue@schwabe.com</u> Legal advisors for the future of your business@ www.schwabe.com

70251									
1994 EANF -used in IR									
J	F	М	А	М	J	J	А	S	0
36	77.7	125	116	32	11	4.7	3.09	2.47	2.72
1996 EANF									
J	F	М	А	М	J	J	А	S	0
38.5	79.2	120	88.4	39.5	14	3.13	1.56	1.61	2.74
Current EA	NF-should	use for Cer	t on 70251						
J	F	М	А	М	J	J	А	S	0
36.1	78	123	75.6	33.1	12.6	3.69	2.29	2.24	3.26
IS70251 ar	nount appl	ied for							
J	F	M	A	М	J	J	A	S	0
34	57	57	57	57	34	34	34	34	34
Max allow	ed for cert	based amo	unt applied	for					
J	F	М	А	М	J	J	A	S	0
34	57	57	57	33.1	12.6	3.69	2.29	2.24	3.26
									and a second

N	D				
6.67	21.8				
N	D				
8.92	20.6				
N	D				
8.61	19.1				
N	D				
. 34	34				
N	D				
8.61	19.1				

Water Resources Department North Mall Office Building 725 Summer Street NE, Suite A Salem, OR 97301-1271 503-986-0900 FAX 503-986-0904

August 5, 2013 - via first class mail

David Childs 1806 Thompson St. The Dalles, OR 97058

Re: Protest to ODFW Instream Water Right Application S-70251

Dear Mr. Childs,

The Oregon Department of Fish and Wildlife filed numerous applications for instream water rights in 1990 on various streams across Oregon. You protested Application # 70251 for Rock Creek.

After a review of the issues raised in the protest Water Resources has determined that a certificate should be issued. The estimated average natural flow in Rock Creek has been revised since 1996 and the proposed certificate reflects those changes. The instream certificate priority date is March 21, 1990, junior to all other existing surface water rights on Rock Creek and its tributaries in the vicinity of the instream reach.

You will receive a copy of the Final Order on the application. Enclosed is a draft of the final order and certificate. If you still have concerns regarding the proposed order and certificate please let me know by contacting me directly at the number or email below.

Sincerely,

Patricia Mc Carty

Patricia McCarty Protest Program Coordinator Water Right Services Division 503-986-0820

Oregon Water Resources Department Water Right Services Division

> Instream Water Right Application Number IS 70251

Final Order

Application History

On March 21, 1990, the Oregon Department of Fish and Wildlife submitted an application to the Department for an instream water right. On August 20, 1996, the Department issued a Proposed Final Order proposing to issue the certificate with conditions. The amount requested in the application exceeds the estimated average natural flow. Pursuant to OAR 690-077-0015(4) the amounts allowed during any time period were reduced to amounts not exceeding the estimated average natural flow occurring from the drainage basin.

On October 4, 1996, David Childs submitted a protest to the Proposed Final Order.

The findings of fact and conclusions of law in the Proposed Final Order are incorporated into this Final Order. After the issuance of the Proposed Final Order the Department updated the values for the estimated average natural flow for the reach of Rock Creek in which this right is to be maintained. The right as described in the certificate is therefore limited to the amount requested, further limited to an amount not exceeding the current estimated average natural flow.

The proposed use would not impair or be detrimental to the public interest.

NOTICE OF RIGHT TO PETITION FOR RECONSIDERATION OR JUDICIAL REVIEW

This is an order in other than a contested case. This order is subject to judicial review under ORS 183.484. Any petition for judicial review must be filed within the 60-day time period specified by ORS 183.484(2). Pursuant to ORS 183.484, ORS 536.075 and OAR 137-004-0080, you may petition for judicial review or petition the Director for reconsideration of this order. A petition for reconsideration may be granted or denied by the Director, and if no action is taken within 60 days following the date the petition was filed, the petition shall be deemed denied.

Application IS 70251

Page 1 of 2

Order

IT IS HEREBY ORDERED that Application IS 70251 be approved as provided in the attached certificate.

Issued _____

Dwight W. French Water Right Services Administrator, for Phillip C. Ward Director

Application IS 70251

Page 2 of 2
STATE OF OREGON

CERTIFICATE OF WATER RIGHT

THIS CERTIFICATE ISSUED TO

OREGON WATER RESOURCES DEPARTMENT 725 SUMMER ST NE, STE A SALEM, OREGON 97301

The specific limits for the use are listed below along with conditions of use.

Source: ROCK CREEK TRIBUTARY TO JOHN DAY RIVER

County: GILLIAM

Purpose: UPSTREAM PASSAGE OF ADULT AND JUVENILE FISH INCLUDING SUMMER STEELHEAD AND RESIDENT RAINBOW TROUT

To be maintained in:

ROCK CREEK FROM USGS GAGING STATION AT WHYTE PARK RM 40.0 (NESW, SECTION 36, T3S, R22E); TO THE MOUTH OF ROCK CREEK RM 0.0 (NESW, SECTION 11, T1N, R19E)

The right is established under Oregon Revised Statutes 537.341.

The date of priority is MARCH 21, 1990.

The following conditions apply to the use of water under this certificate:

- 1. The right is limited to not more than the amounts, in cubic feet per second, during the time periods listed below:
- JAN
 FEB
 MAR
 APR
 MAY
 JUN
 JUL
 AUG
 SEP
 OCT
 NOV
 DEC

 34
 57
 57
 57
 33.10
 12.6
 3.69
 2.29
 2.24
 3.26
 8.61
 19.10

Application IS 70251

Page 1 of 2

Certificate 87XXX

- The water right holder shall measure and report the in-stream flow along the reach of the stream or river described in the certificate as may be required by the standards for in-stream water right reporting of the Water Resources Commission.
- For purposes of water distribution, this instream right shall not have priority over human or livestock consumption.
- 4. The instream flow allocated pursuant to this water right is not in addition to other instream flows created by a prior water right or designated minimum perennial stream flow.
- 5. The flows are to be measured at the lower end of the stream reach to protect necessary flows throughout the reach.

Issued _

Dwight W. French Water Right Services Administrator, for Phillip C. Ward Director

Application IS 70251

Page 2 of 2 Recorded in State Record of Water Right Certificates numbered 87XXX

WATER

RESOURCES

DEPARTMENT

August 30, 1996

DAVID CHILDS 1806 THOMPSON ST THE DALLES OR 97058

RE: Instream Water Right Application IS-70251

Dear Mr. Childs,

Thank you for your interest in the above referenced application.

After a careful review of the situation regarding the mailing of the notice and the protest date we have decided not to extend the protest deadline which is 5:00 pm, Friday, October 4, 1996, for this application.

However, we will accept comments up to 5:00, October 14, 1996. Further, if you file a protest by the deadline (October 4, 1996), we will allow you to file supplementary information until 5:00, October 14, 1996.

I'm sorry for any inconvienience this may have caused you. It is our intent to give concerned citizens a fair opportunity to participate in the water rights review process.

If you have any more questions regarding the water rights review process or this application in particular, please give Mike Mattick or myself a call. I can be reached toll free from within Oregon at 1 (800) 624-3199 extension 268. Mike's extension is 276.

Sincerely

Dwight French Water Rights Section Manager

cc: file

Commerce Building 158 12th Street NE Salem, OR 97310-0210 (503) 378-3739 FAX (503) 378-8130 COPY CHECK-OFF SHEET FOR PROPOSED FINAL ORDERS

CC: FILE # IS 70251

WATERMASTER # KELLY RISE

REGIONAL MANAGER: KENT SEARLES

ODF&W - County: GILLIAM

DEQ

PARKS

OTHER STATE AGENCY IF NECESSARY:

DIVISION 33 LIST: ____ COLUMBIA RIVER INTERTRIBAL FISH COMMISSION; U.S. FISH & WILDLIFE; (CHECK ONLY IF APPLICABLE) NORTHWEST POWER PLANNING COUNCIL & NATIONAL MARINE FISHERIES

POWER BUILDER UPDATER; FRONT COUNTER

WATER FOR LIFE (TODD HEIDGERKEN)

OTHER ADDRESSES OF PEOPLE WHO PAID THE \$10 FEE:

PEOPLE WITH OBJECTIONS, COMMENTS OR REQUESTED COPY W/O \$10 (SEND THE \$10 LETTER):

CASEWORKER : CINDY SMITH

PFO AND FO NOTIFICATION LIST FOR FILE NUMBER:

IS-70251 BASIN # 6

A DAVID CHILDS ,1806 T	HOMPSON ST	THE DALLES	,OR,97058
GILLIAM COUNTY SOIL AND WA, PO BOX	206	CONDON	,OR,97823
MORROW COUNTY SOIL AND WAT, PO BOX	127	HEPPNER	,OR,97823
OREGON DEPT OF FISH AND WI, PO BOX	59	PORTLAND	, OR, 97207
WATER FOR LIFE , PO BOX	12248	SALEM	, OR, 97309
WATERWATCH OF OREGON , 213 SW	ASH SUITE 208	PORTLAND	, OR, 97204

For some with long names or addresses, the complete name and address are located in the file. Those who receive the Departments weekly public notice do not receive additional notice.

RECEIVED

FEB -1 1995

WATER RESOURCES DEPT. SALEM, OREGON

A David Childs 1806 Thompson St The Dalles, OR 97058 January 31 1995 503/ 298/1499

Mr Mike Mattick Instream Water Rights Water Resources Department Commerce Building 158 12 th Street NE Salem, Oregon, 97310-0210

Dear Mike.

The proposed instream water right, (application No. 70251) for Rock Creek Gilliam County is seriously flawed.

1 / The forty mile stream-reach described for the Instream Water Right is dry for much of its distance during August, September, and October.

2 / The stream reach above The Gage Station is also dry for much of its distance up to the divide during this period.

3./ The period of summer dry-up with no water was about 30 days at our former ranch below French Charlie In the era of 1900.

Interview (1976) and visit with Ethel Sprinkel. She was born on the ranch in 1888, and lived there until 1906. I asked, "When you were here, the creek never went dry did it?" She responded, " It went dry every August for about a month.

My father came to Rock Creek in 1903, lived with his mentor-family, Tip and Mrs Mobley, until 1910. Tip settled on Rock Creek near Olex in 1867. Father ranched In the community until his death in 1946. I was born in 1923 and started fishing with my Dad in 1927. I rode horseback for 3 miles and forded the creek twice each day riding to school at Olex. My mother, myself, and children went to grade school at Olex. My grandfather came to the area in 1881 and retired in his "new" home along its banks in 1898. (Earl Weatherford ranch 2 miles below Olex bridge.)

Rock Creek now is dry for long reaches every year with no water for any use. see notes and Photos.

Rock Creek reaches go dry every year:

From Wolf Hollow to near the Harper fish ladder (Mile 29 to mile 25)

From Olex bridge to a mile below French Charlie. (Mile 17 to mile 9)

From Rock Creek Station to Welp's Spring, about a mile above the mouth, the stream is dry annually . (Mile 7 to Mile 1)

Rock Creek goes nearly dry to dry every year in the five mile Reach between Whyte Park Gage, mile 40, and former Cayuse Gage station, mile 35, downstream. There are no out-of-stream withdrawals between these gage locations Both gages were in operation at the same time for the years 1976 to 1978. The Cayuse gage was installed in cooperation with the State Engineer in 1965 and operated through 13 years. It was taken out after the gage was operating at Whyte park.

Enclosed are copies and synopsis of the Cayuse records showing months that flows were not met. I've also included miscellaneous data and pictures.

My thinking and reasons for submitting objections to using the proposed flows for instream rights are:

First; these flows haven't existed in the last 60 years, if ever.

Second; I believe Rock Creek can again become a viable Trout and Steelhead rearing stream, but in order to get the cooperative effort, in the magnitude necessary, we will have to truly picture conditions as they are.

I would be happy to discuss the instream or additional proposals further.

Sincerely, Nauf Sale

Rock Creek	stopped flowing	Rock Creek started flowing
Year		
1957		Prior to Dec 6
1959	June 21	Dec 12
1960	June 23	
1961	June 16	Dec 25
1962	June 20	
1963	June 15	
1964	June 22	Dec 10
1965	June 10	Nov 3
1966	May 4	Nov 18
1967	June 12	Last week Jan 1968
1968	April 2	Nov 19
1969	June 27	Dec 3
1970	May 20	
1971	June 24	
1972	June 8 'waterspout'	After Nov 24
	June 15	
1973	May 10	
1974	June 12	

David Childs' ranch below French Charlie: Notes from diary

MAP OF THE LOWER SUBBASIN

Environmental Considerations.

· · · · · · ·

51

Rock Creek is intermittently dry in its lower reaches for several months during the summer and fall. Conversely, large fluctuations in runoff occur during the winter and early spring. During the dry period, water supplies for wildlife become very limited, and there is little available fish habitat either due to high water temperatures or the lack of flowing water.

From: Rock Creek Watershed Work Plan 1974 Gilliam and Morrow Counties, Oregon U.S. Department of Agriculture Soil Conservation Service

in the second Work Sheet

ž

Table indicates number of days per month proposed flows were met at Cayuse gage five miles downstream from Whyte gage within the 40 mile reach.

D 658	Propose	μ0 m.					/
(Mile 407 Flows	4.7 July	3.09 Aug	2.47 SEDT	2.72 Oct		
	1966	2	0	0	0		
	1967	0	0	0	0		
	1968	0	0	0	0		
	1969	0	.0	0	0		
	1970	0	0	0	0		
(1971	4	0	0	0	τ.	
	1972	D	D .	0	0		
	1973	0	0	0	0		
	1974	0	0	0	0		
	1975	Cu.	0	0	0		
	1976	0	25	25	0		
(1977	0	1	0	0		
	1978	0	/	0	0		

5-1

STATE OF OREGON

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474." Rock Creek above Cayuse Canyon, near Condon, Oreg.

Location .-- Lat 45°20'15", long 120°03'40", in MM4SW4 sec.3, T.3 S., R.22 E., on left bank about 200 ft below

county road bridge, 15 miles northeast of Condon, Gilliam County.

Records available .- April 12, 1965, to Sept. 30, 1966.

Gage. -- Water-stage recorder.

Extremes. -- Maximum discharge, 364 cfs Mar. 14 (gage height, 2.48 ft); no flow at times.

1965, 1966: Maximum discharge, that of Mar. 14, 1966; no flow at times.

Remarks .- Records good except for period of no gage-height record, which are poor.

CAYUSE 66-78

Discharge, in cubic feet per second for the year ending September, 30, 19..66

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	2.9	3.9	8.3	6.1	12	19	174	9.7	3.3	1.9	. 0.2	0
2	2.9	4.1	8.0	9.7	11	17	158	9.3	3.8	4.1	:1	0
3	2.9	4.3	0.9	12	12	14	121		3.8	3.8	0	0
	2.9	i 5.1	0.9	12	11	14	98	1 (8.2	5.8	2.8	Ō	0
5	3.2	5.1	8.0	16	11	14	63	1 20	3.0	2.1	0	0
6	2.8	5.1	8.3	26	11	16	74	7.1	3.8	1.6	0	0
7	3.1	5.1	8.3	33	12	4 16	65	7.1	4.1	1.9	0	0
8	3.1	5.3	5.1	29	12	* 21	58	6.7	4.1	1.6	0	0
9	3.1	5.5	a 5.5	30	11	64	52	6.4	4.1	1.4	C	0
10	3.1	# 5.5	a 5.5	23	11	#2.02	- 51	5.5	3.8	1.3	0	0
11	3.1	5.5	a 5.5	21	10	114	- 50	5.5	3.8	1.3	0	0
12	* 3.2	5.8	a 5.5	19	10	109	* # 45	5.2	3.8	1.1	0	0
13	3.4	6.9	a 5.5	18	10	217	• 41	- 5.0	3.6,	1.3	.1	0
14	3.4	8.6	a 5.5	17	10	266	. 58	5.0	3.3	11	.1	0
15	3.5	8.3	a 5.5	17	10	* 234	- 20	5.0	2.5	6.7	.1	.4
16	3.5	8.6	a 5.5	17	9.7	165	· 29	5.0	2.4	a 4	* .1	.6
17	3.5	8.3	a 5.5	15	# 10	104	. 27	5.0	1.9	a 3	.1	.6
18	3.7	8.3	a 6	14	10	94	- 26	4.4	1.9	a 2	0	.6
19	3.9	7.6	a 6	14	10	89	. 23	# 4.1	1.9	a 1	C	.6
20	3.9	7.2	a 6.5	# 13	11	81	. # 22	3.8	1.6	a 1	0	.6
21	3.9	7.2	* 6.7	13	11	69	- 21	3.6	1.6	a .5	0	.4
22	3.9	7.2	5.5	14	12	58	- 21	3.3	1.6	a .5	0	.4
23	3.9	7.6	4.7	13	14	58	. 20	3.3	1.6	a .5	0	.2
24	3.9	8.6	7.8	13	16	59	· 18	3.3	1.9	a .4	0	.2
25	3.9	10	6.4	13	18	87	- 16	3.1	1.9	a .4	0	.2
26	3.9	10	6.7	13	21	144	• 14	2.6	1.6	a .2	0	.2
27	3.9	9.6	7.1	13	20	198	- 13	2.6	# 1.4	a .2	.1	.2
28	3.9	8.6	7.4	13	20	230	. 12	2.6	1.3	* .1	.1	.2
29	3.9	0.9	7.4	13		2 34	. 11	2.6	1.1	.2	.1	.2
20 1	3.91	0.3	1.4	13		2 30	- 10	2.8	1.1	.6	* .1	= .2
31	3.9		7.8	13	-	195		+ 3.3		.5	.1	
	1 080		2 C 4 9		346.7		1.4 C1		80.5	and the second se	1.3	
	Tech	5 C 8.9		5 C 5.P		3.4 32		1 5 7.4		59.0		5.8
Mean	3.48	6.96	6.61	16.3	12.4	111	46.7	5.08	2.68	1.90	0.04	0.19
Acre	21/1	414	406	1,000	688	6,810	2,780	312	160	117	2.6	12
Calend	ar year	1965	Max	-	Min	-	Mean	-	Acre-ft	-		
Period Water :	rear	1965-66	Max	266	Min	0	Moan	17.8	Acre-ft	12,910		

. Discharge measurement made on this day.

a No gage-height record.

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

5-2

14-0474. Rock Creek above Cayuse Canyon, near Condon, Creg.

Location .-- Lat 45°20'15", long 120"03'40", in Nw1SW1 sec. 3, T.3 S., R.22 E., on left bank about 200 ft downstream

from county bridge, 15 miles northeast of Condon, Gilliam County.

Records available .-- April 12, 1962, to Sept. 30, 1967.

Gage .-- Water-stage recorder.

84

Extremes .-- Maximum discharge during year, 832 cfs Jan. 28 (gage height, 3.27 ft); no flow at times.

1965-67: Maximum discharge, that of Jan. 28, 1967; no flow at times.

Remarks .-- Records good except for period of no gage-height record, which are poor.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	0.4	1.4	25	32	* 2 3 6	48	63	240	21	2.0	0.2	0
2	.4	1.4	58	32	195	51	89	240	19	1.9	2. 44	C
3	.4	1.4	51	* 30	169	47	1 C 4	SCE	16	1.6		C
4	.4	1.6	47	29	156	39	117	179	13	1.2		0
5	.4	1.0	52	35	142	39	119	153	12	a 1.2	.1	0
6	.4	2.4	* 52	36	119	41	125	1 38	5.5	1 1 1	.1	č
7	.4	2.4	50	25	110	30	1 50	1 2 3	5.5	1 1	1	õ
8	.4	2.4	46	22	100	30	1 2 1	1 1 4	22	11	.1	õ
9	.2	2.4	40	30	95	42	1 10	112	6.4	1.1	.1	C
10	.4	2.0	4 1	31	E 3	42	140	112	45	0	.1	0
11	.4	2.5	70	36	71	38	125	9.9	EI	£	.1	C
12	.4	a 7	256	30	70	42	110	94	9	.5	.1	0
1.3		a1 C	290	81	66	38	104	80	5.7	.5	.1	.1
15	, o	a15	142	142	59	34	1 C O	70	5.0	.5	.1	.1
16	9	aze	100	181	54	34	96	62	4.7	.4	1	.1
17		a15	79	123	54	91	91	54	4.1	.4	0	.1
18	1.0	alC	67	94	66	100	94	49	3.4	.4	0	.1
19	9	240	61	76	58	87	69	45	3.1	.4	0	-1
20	.0	a1 50	57	69	46	60	78	40	2.5	.4	0	.1.
21	1.3	a 70	57	1 06	51	95	71	3 30	2.4	-4	č	-1
22	1.6	a 50	46	19	44	110	60		10	4	ö	.1
23	1.6	a 40	35	64	* 51	1 04	75	15	76	.3	č	.1
24	1.6	asc	37	65	51	87	145	23	57	.3	č	.1
25	1.6	azo	51	62	51	76	#153	21	4.7	.2	C	.1
26	* 1.6	a 20	26	70	43	71	166	18	4.1	.2	0	.1
21	1.4	- 15	25	368	45	68	175	18	3.8	.2	C	.1
20	1.4	# 19	32	731		75	148	21	3.1	.2	0	.1
20	1.4	24	35	483		78	145	22	2.5	.2	0	.2
31	1.4		32	3 C 5		*76		21		.2	0	
Total	27.4		2.033		2.4 1 1		3.3 56		2 1 9.9		2.0	
		6 C 6.2		3.6 1 0		1.943		2.576		21.6		1.8
Mean	0.88	20.2	65.6	116	86.1	62.7	112	83.1	7.33	0.70	0.06	0.06
Max	1.6	150	290	731	236	110	175	240	21	2.0	.2	0.2
Min	0.2	1.4	25	29	43	34	68	16	2.5	0.2	0	0
Ac-ft	54	1,200	4,030	7,160	L,780	3,850	6,660	5,110	L36	43	4.0	3.6
Cal yr	1966	Mean	23.7	Max	290	Min	0	Ac-ft	17,170			
ktr yr	1967	Hean	46.0	Max	290	Min	0	Ac-ft	33,340			

Discharge, in cubic feet per second for the year ending September, 30, 1967 ...

Discharge measurement made on this day. ** Field estimated made on this day. a No gage-height record.

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

Location -- Lat h5*20'15", long 120*03'h0", in NW4SW4 sec.3, T.3 S., R.22 E., on left bank about 200 ft downstream from

county bridge, 15 miles northeast of Condon, Gilliam County.

Records available .-- April 12, 1965, to Sept. 30, 1968.

Gage .--- Water-stage recorder.

·, · · · · 90

Extremes .-- Maximum discharge during year not determined; no flow at times.

1965-68: Maximum recorded discharge, 832 cfs Jan. 28, 1967; no flow at times.

Remarks .- Records good except for periods of ice effect or no gage-height record, which are poor.

Revisions .-- The maximum daily discharge for water year 1967 is corrected to 731 cfs.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1 2 3 4 5 6 7 8 9 10 11 12 13	е е е е е е е е е е е е е е е е е е е	a 0.9 a 9 a 9 a 9 a 9 a 9 a 9 a 10 a 10 a 111 a 112 a 12 a 12	a 1.4 a 1.6 a 2.0 a 2.3 * 2.8 a 2.5 a 2.5 a 2.5 a 2.5 a 1.5 a 1.5 a 1.4 a 1.2	a 7 a 6 *b 5 a 4 *b 25 b 3.0 b 3.0 b 3.0 b 3.5 b 4.0 b 4.5 b 4.5 6.3	165 * 157 290 225 225 225 225 225 225 225 23 24 29 25 25 25 25 25 25 25 25 25 25 25 25 25	374 29 * 275 224 221 221 221 221 221 221 221 221 221	* 9.6 10 9.6 10 9.6 9.6 9.2 8.0 7.1 6.3 6.3 6.3	4.2 3.8 3.4 3.1 3.4 3.4 3.1 2.8 2.4 2.4 2.4 2.4	3.1 3.1 3.1 * 2.8 2.4 2.2 2.4 2.0 2.0 2.0 1.7 1.9 2.0 1.9	* 0.6 a a 3 a a 2 a a 1 a a 1 a a 1 a a 0		
14 15	a 2 a 2	a 1.2 a 1.2	a 1.0	. 18	a 11 a 11	18	5.9	/ 2.4	1.7	a 0 /		
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	a 22 a 22 a 22 a 22 a 23 a 24 a 5 a 5 a 5 a 6 a 6 a 6 a 15 a 15 a 11	a 13 a 13 a 13 a 13 a 13 a 13 a 13 a 13	a 8 a 8 a 9 a 10 a 13 a 16 a 22 a 26 a 40 a 17 a 25 a 15 a 10 a 90	49 31 22 19 16 25 70 46 36 30 b12 b 9 b10 b12 b14	a 11 a 12 a 14 a 17 a 25 a 120 a 280 a 90 a 280 a 90 a 60 a 55 a 50 a 45 a 40	16 b 14 b 13 b 13 15 14 14 13 12 12 14 14 16 14 13 12 14	5.9 5.9 5.6 5.6 5.6 5.6 5.6 5.9 5.6 5.6 5.6 5.6 5.6 4.8 4.5	2.0 2.0 1.9 5.2 4.2 4.5 3.8 4.2 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	15 15 13 13 13 13 11 10 11 11 11 11 13 6 .5 .5 .6 .6			
Total Mean Max Min Ac-ft	12.2 0.39 1.5 0.2 24	34.8 1.16 1.3 0.9 69	1 2 6.0 4.06 25 0.8 250	4 9 1.8 15.9 70 2.5 975	1.162 li0.1 280 11 2,300	5 6 8 18.3 37 10 1,130	2 0 5.9 6.86 10 4.5 408	1 0 5.6 3.41 5.2 1.9 209	4 8.6 1.62 3.1 0.5 96	3.0 0.10 0.6 0 6.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Cal 77 Wir 77	1967 : 1 1968 : 1	Mean 39.2 Mean 7.5	2 Max	731 280	M M	a 0 a 0	Ac-	n 28, n 5,	390 470			

Discharge, in cubic feet per second for the year ending September 30, 1968.

* Discharge measurement made on this day.

a No gage-height record.

STATE OF OREGON OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

91

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION.--Lat 45°20'15", long 120°03'40", in NWESWE sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

PERIOD OF RECORD. -- April 12, 1965, to current year.

GAGE.--Water-stage recorder.

EXTREMES.--Current year: Maximum discharge, 1,010 cfs June 10 (gage height, 3.69 ft); minimum observed, 0.1 cfs Oct. 2 (gage height, 0.67 ft); and may have been no flow sometime Oct. 1.

Period of record: Maximum recorded discharge, 1,010 cfs June 10, 1969 (gage height, 3.69 ft); no flow at times. REMARKS .-- Records good except for periods of no gage height record, which are poor.

Discharge, in cubic feet per second for the year ending September 30, 1969

Day	Uct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	a .1	a .5	a 1 0	b 2.0	b 24	65	* 665	8 5	10	* 7.7	.4	.3
2	* 2	a .8	a 1 3	b 2.0	b 24	62	542	82	8	7.7	.4	.3
3	.3	a 1.5	a 1 8	b 2.0	b 26	65	415	75	7.4	7.4	.4-	.3
4	a .3	a .9	*23	b 2.5	b 30	62	390	70	6.5	6.8	.4	.3
	<u>a .3</u>	a .7	24	b 3.0	- 35	6.8	440	61	5.9	6.8	.4	3
6	a .4	a .7	24	b 4.0	30	18	446	54	5.9	6.8	••	.3
7	a .4	a ./	23	D 7.0	. 40	7 1	395	49	21.9	5.6	.4	.3
8	a .4	*1.1	29	D 9.1	42	7 0	350	44	+ 27	5.5	.4	.3
9	a .2	a 5.0	71	b 30	4.5	65	175	34	127	5.0	.4	
- 10	<u>a .2</u>	<u>a</u> 4.)	1 4 5	b 60	111	7.0	320	31	121	4.4		
11	a .0	2 50	85	105	442	6.6	296	28	a 20	30		
12	a 2.0	a 4.5	62	130	282	71	268	26	a 17	3.6		
14	a 1.0	a 4.0	52	171	204	80	228	25	a 14	3.6		
15	a 9	a 3.5	4 5	119	165	8 9	199	28	a 12	3.3	.3	
16	a 9	a 4.5	4 5	107	148	130	172	26	a 10	2.8	.3 '	4
17	a .9	a 5.6	38	99	140	218	163	22	a 9.0	* 2.5	3	.4
18	a .9	a 8.0	34	76	128	436	232	20	a 9.0	2.2	* .3	3.0
19	a .9	a12	29	80	115	274	181	* 27	a 8.0	2.0	.3	2.0
20	a .9	a10	26	7 1	101	242	155	33	* 6.8	1.7	.3	1.7
21	a .9	a 9.0	12	* 65	93	282	* 1 4 0	30	6.2	1.5	.3	1.3
22	a .8	a 7.0	b15	36	78	358	135	25	6.2	1.5	.3	* 1.1
23	· a .8	a 5.0	b 2 0	b 32	78	481	132	19	7.7	1.3	.3	1.1
24	a .7	a 5.0	b 2 5	b 30	60	406	148	16	10	1.3	.3	.9
25	a .7	a 4.0	b30	b 28	6 ?	*376	148	14	12	1.1	.3	.9
26	a .5	a 3.0	b15	b 26	60	495	118	15	9.2	.9	.3	.9
27	a .4	a 3.0	b 8.0	b 25	53	632	100	18	8.6	.9	.3	.9
28	a .4	a 3.0	b 7.0	b 24	* 65	221	92	19	8.0	.8	.3	.9
29	a .4	a 4.0	b 5.0	b 24		696	125	16	8.0	.8	.)	.9
30	a .4	a 7.0	b 4.0	D 24		136	100	14	8.6	.6	.3	.9
31	a .4		1.9	b 24		194		12		.4	.3	
Total	100	1289	9849	1.4375	2731	8.172	7.8 5 5	1.0 5 7	4 4 5.9	1044	102	21.8
Mann	0.64	4.30	31.8	46.4	97.5	264	262	34.1	14.9	3.37	0.33	0.73
Max	2.0	12	145	171	442	794	665	85	127	7.7	0.4	3.0
tin	0.1	0.5	1.9	2.0	24	62	92	12	5.9	0.4	0.3	0.3
Ac-ft	39	256	1,950	2,850	5,420	16,210	15,580	2,100	884	207	20	43
Cal yr	1968 :	Mean 10	.2 Max	x 280) Mi	in C	Ac-	rt 7,38	0	an an an a		1 4 - 1 81 - 1 4

* Discharge measurement made on this day.

a No gage height record.b Stage-discharge relation affected by ice.

STATE OF OREGON

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION.--Lat 45°20'15", long 120°03'40", in NW1SW1 sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

PERIOD OF RECORD. -- April 12, 1965, to current year.

GAGE.--Water-stage recorder.

· ..

EXTREMES.--Current year: Maximum discharge, 2,420 cfs Jan. 23 (gage height, 4.73 ft); minimum, 0.1 cfs Aug. 25, 26

(gage height, 0.73 ft).

Period of record: Maximum recorded discharge, 2,420 cfs Jan. 23, 1970 (gage height, 4.73 ft); no flow at times. REMARKS.--Records good.

LI p M d

and the state of the

5-5

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sent.
1	0.9	3.3	4.4	8.6	157	67	93	4 3	7.5	26	0.5	0.0
2	.9	3.3	4.2	8.0	138	74	87	39	6.8	2.0	0.5.	0.2
3	1.1	3.3	3.9	6.2	128	72	79	35	5.8	2.4		
4	1.1	3.6	4.2	6.8	107	70	74	33	4.8	29	.0	
5	1.1	4.4	4.4	4.4	101	72	72	32	4.1	2.2		
6	1.1	4.7	4.4	7.1	112	97	74	29	4.1	1.8	4	
7	1.1	4.7	4.7	7.1	203	355	76	29	4.8	1.6		1.0
8	1.1	4.7	4.4	8.0	192	350	72	27	6.5	1.6	4	1.0
9	1.1	4.7	4.4	22	172	234	67	35	7.5	1.6	4	1.0
10	1.1	4.4	4.4	78	154	186	72	39	-8-0	1.4	4	12
11	1.1	4.4	5.0	52	148	160	76	35	8.4	1.2	3	12
12	1.1	4.4	5.6	121	145	157	67	33	8.4	1.2	3	12
13	.9	4.4	5.9	53	365	157	60	36	10	. 1.4		12
14	.9	4.4	6.2	58	3 0 5	217	56	31	11	1.2	2	14
15	.9	4.4	6.5	55	242	281	52	26	12	1.0	2	1.4
16	1.5	4.4	7.1	60	* 217	* 234	47	23	*	1.0	2	1.4
17	1.5	4.4	6.8	60	317	224	47	20	. 9.2	.8	* 2	1 4
18	1.5	* 4.4	7.7	157	228	189	4 3	19	7.5	.6	2	1.4
19	1.3	4.4	8.0	232	178	160	46	18	6.1	.6	2	1.4
20		4.4	10	* 3 3 2	160	145	48	16	5.5	* .6	.1	1.4
21	1.3	4.2	21	242	145	135	# 46	14	4.4	.5	.1	1.6
22	1.3	4.2	34	1000	1 3 0	120	43	*13	* 3.5	.5	i	1.4
23	. 1.3	4.2	* 28	1.090	114	112	41	12	3.2	.6	.1	* 16
24	1.5	4.2	21	640	105	105	39	1	32	.6	.1	1.6
25	1.2	4.4		040	91	99	40	(9.8)	2.9	.8	.1	1.6
26	1.1	4.4	13	680	91	91	42	er	2.6	.8	.1	1.6
27	* 2.0	4.4	13	+165	87	93	4 7	8.0	2.9	1.0	.1	1.6
28	2.2	4.4	14	325	0 ?	91	4 5	1.5	2.0	.8	.1	1.6
29	2.2	4.4	10	245		89	4 2	8.C	2.0	.8	.1	1.4
30	2.0	4.4	10	200		93	4 2	8.4	2.9	.8	.2	1.4
31	3.0		9.2	200		107		8.4		.6	.2	
	127	1293	3014	01000	4622	4622	1720	7000				
	- 3.1	1 20	0.72	0.102.2	4.0 2 3	4.0 3 3	1.1.3.9	1 0 6.5	179.9	3 8.1	8.0	3 6.2
can	1.41	4.20	9.12	264	165	149	58.0	22.8	6.00	1.23	0.26	1.21
	3.0 1	4.1	34	1,660	365	355	93	43	12	2.9	0.6	1.6
	0.9	3.3	3.9	4.4	85	67	39	7.5	2.6	0.5	0.1	0.2
and 1	. 8/	· 254	DA8	16,230	9,170	9,190	3,450	1,400	357	76	16	72

* Discharge measurement made on this day.

5-6 93

STATE OF OREGON

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION.--Lat 45°20'15", long 120°03'40", in NWESWE sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

DRAINAGE AREA. -- 350 sq mi.

PERIOD OF RECORD. -- April 12, 1965 to current year.

GAGE .-- Water-stage recorder.

AVERAGE DISCHARGE .-- 6 years (1965-71), 37.7 cfs (27,310 acre-ft per year).

EXTREMES.--Current year: Maximum discharge, 774 cfs Jan. 20 (gage height, 3.52 ft); no flow Aug. 6-27.

Period of record: Maximum recorded discharge, 2,420 cfs Jan. 23, 1970 (gage height, 4.73 ft); no flow at times. REMARKS .-- Records good.

Discharge, in cubic feet	per second for	the year ending	September 30,	1971
--------------------------	----------------	-----------------	---------------	------

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	1.4	2.4	11	12	117	30	142	58	20	2.6	0.1	0.2
2	1.4	2.4	13	6.8	101	25	133	54	22	2.3	.1	.3
3	1.4	2.6	13	b 6.0	77	33	126	50	18	1.8	.1	• .3
4	1.2	2.6	11	b 5.4	74	30	122	44	18	1.5	.1	.4
5	1.2	2.9	11	b 5.0	59	25	145	40	16	1.3	.1	
6	1.2	3.2	11	b 5.8	44	25	126	38	14	1.3	0	.4
7	1.4	3.8	19	ь 7.0	, 43	28	124	34	12	1.0	0	.5
8	1.0	4.1	48	510	43	24	103	30	11	.9	0	5
9	1.0	4.1	39	13	4 3	26	99	27	10	1.0	0	.5
10	1.0	4.1	29	24	4.8	25	97	25	10	2.0	0	
11	1.4	5.8	24	33	67	2 A	90	22	10	2.0	0	
12	1.4	5.8	20	29	6.2	44	84	20	10	1.5	0 .	.5
13	1.4	6.5	15	22	60	50	76	55	9.6	1.0	0	.4
14	1.4	6.5	18	28	59	43	69	23	8.3	.8	0	
15	1.4	6.5	18	32	67	.4 3	65	21	7.4	• .8	0	.4
16	1.4	* 5.8	18	89	64	31	60	22	6.7	./	0	.4
17	1.4	5.8	16	480	24	34	65	20	5.0	.7	0	.4
18	1.7	6.5	11	610	50	* 32	70	18	6.7	7	0	.4
19	1.4	6.2	12	214	40	32	65	11		.6	0	.4
20	1.0	6.1	14	218	43	33	* 28	10	1.4	0. *	0	
21	1.0	0.0	* 13	232	10	31	69	10	5.0	-2	0	
22	1.6	2.2	13	1 28	* 40	4 8	93	12	20	.4	0	* -
23	1.6	0.1	1.2	1 3 1	4.3	140	101	1 9	0.5	.4	0	
24	1.0		12	113	4 4	330	101	1 2	2.6	.4	0	-
25	1.0	10	12	99	4 3	210	92	* 1 2	* 3.0		0	
26	2.0	10	1 2	* 7 .	25	"5 00	93	27	2.2		0	.0
27	2.0	11	12	95	10	310	83	27	2.2		0	
28	* 2.0		12	70	50	216	14	20	3.3	2		
29	2.0		11	8.2		219	0 9	12	3.0	.2		-
30	22	1.1	12	111		216	0 2	1.4	3.3	-<		
31	6.4		12			177	-	1 4		.1	.1	
otal	4 8.4	201.4	501.8	3.7 8 4.0	1.5 2 4	3,116	2.7 5 8	784	272.6	2 8.4	0.9	1 4.1
fean	1.56	6.71	16.2	122	54.4	101	91.9	25.3	9,10	0.92	0.01	0.43
fax	2.2	16	48	610	117	500	145	58	22	2.6	0.1	0.1
tin	1.2	2.4	9.8	5.0	30	24	58	12	3.3	0.1	0	0.1
c-ft	96	399	995	7,510	3,020	6,180	5.470	1,560	541	56	1.8	21
					-10-00		-1.00	.,		201	1.0	
al yr	1970 : 7	Mean 57	.3 Mas	× 1.66	0 MI		Ac-ft	41.4	50			
tr vr	1071 : 2	Mean 3	7 May		0 11		40.0	25.0	150			

Discharge measurement made on this day.
 b Stage-discharge relation affected by ice.

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION.--Lat 45°20'15", long 120°03'40", in NW±SW± sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

DRAINAGE AREA. -- 350 sq mi.

PERIOD OF RECORD. -- April 12, 1965 to current year.

GAGE.--Water-stage recorder.

AVERACE DISCHARGE. -- 7 years (1965-72), 41.6 cfs (30,140 acre-ft per year).

EXTREMES .-- Current year: Maximum discharge, 12,500 cfs June 8 (gage height, 8.57 ft); no flow at times.

Period of record: Maximum recorded discharge, 12,500 cfs June 8, 1972 (gage height, 8.87 ft); no flow at times. REMARKS. -- Records good.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	8.0	2.0	43	ь 18	b 4 4	278	80	40	6.8	a 0.5	0	О
2	.7	2.0	34	b 1 7	4 5	218	78	3 9	6.1	a .5	0	0
3	.7	2.0	32	16	4 5	395	74	3:	6.1	a .5	2	0
4	.7	2.3	28	15	60	294	72	30	6.1	a .5	0	0
5	.7	2.3	28	b 1 6	80	290	78	28	6.1	a .5	0	2
6	.7	2.3	147	618	88	* 3 1 4	80	25	20	a .6	0	0
7	.6	2.6	101	P 55	86	266	32	23	1. 2. 0.4	a .7	0	0
8	.6	2.6	69	. 21	* 90	222	74	30	1.200	a 1.0	0	0
9	.6	2.6	500	0 20	80	218	00	4.7	3.640	a .8	0	0
10	0.	7.0	650	+ 27	0 /	298	57	26	a 30	a ./	0	0
11	.0	10	645	1 27	55	330	50	20	a 20	a .0	0	0
12	.7	4.3	542	b 27	. 72	550	6 4	25	3 80	a # .0	0	0
1.5	.1	43	630	b 28	92	136	72	22	2 60	a .0	0	0
15		4.6	b 3 8	b 28	84	310	8.6	19	a + 5.0	- 5	0	0
16	.0	5.0	# 3.8	b 29	145	278	92	18	3.8	a .5	0	0
17	.9	5.3	35	31	270	266	98	16	3.2	a .4	ő	0
18	.9	* 5.C	37	34	278	2 5 0	90	17	2.2	a .4	0	õ
19	1.0	5.0	38	74	258	212	84	18	1.5	.4	0.6	õ
20	* 1.C	5.0	38	148	335	185	78	16	1.0	5		õ
21	1.0	5.0	37	687	250	167	74	10	1.3	.6	1.1	0
22	1.3	5.0	35	425	212	158	7 ?	33	.8	.5	.7	0
23	1.5	5.3	46	270	185	161	66	32	.7	.5	.6	0.3
24	1.5	5.6	50	179	155	142	6 ?	* 25	.8	.5	* 5	.5
25	1.5	6.3	50	142	1 3 5	128	59	23	.8	.5	.1	.6
26	1.3	7.9	50	96	126	116	55	19	.6	.4	0	*.6
27	1.3	20	38	43	128	108	51	16	.6	.4	0	.6
28	1.5	28	27	6 4 2	350	105	47	13	.6	.4	0	.6
29	1.3	24	b 2 3	D 41	4 2 5	* 94	45	11	.5		0	.6
30	1.5	43	621	0 4 1		8 8	44	9.5	a .5	.1	0	.6
31	2.0		620	044		84		1.1		0	0	
Total	30.5	219.1	1.379	2.6 6 2	4.290	7.3 4 8	2.099	7 5 8.2	5.001.1	1 5.5	43	4.4
Mean	0.98	7.30	44.5	85.9	148	237	70.0	24.5	167	0.50	0.14	0.15
Max	2.0	43	147	687	425	550	98	45	3,640	1.0	1 1	0.15
Min	0.6	2.0	20	15	44	84	44	7.7	.5	0		.0
Ac-ft	60	435	2,740	5,280	8,510	14,570	4,160	1,500	9,920	31	8.5	8.7
Cal yr	1971 : 1	Mean 38	.1 Max	6	10 MI	n 0	Ac-f	27,	590			
Wtr yr	1972 : 1	Mean 65	.1 Max	3,64	40 MI	n 0	Ac-f	47,	230			

Discharge, in cubic feet per second for the year ending September 30, 1972

* Discharge measurement made on this day. a No gage height record. b Stage-discharge relation affected by ice.

5-8

97

STATE OF OREGON

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION.--Lat 45°20'15", long 120°03'40", in NWESWE sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

(60 m) downstream from county bridge, and 15 mi (24 km) northeast of Condon. DRAINAGE AREA.--350 mi² (906 km²).

PERIOD OF RECORD. -- April 12, 1965 to current year.

GAGE.--Water-stage recorder.

··· · · ·

AVERAGE DISCHARGE.--8 years (1965-73), 37.2 ft³/s (1.05 m³/s), 26,950 acre-ft/yr (33.2 hm³/yr).

EXTREMES.--Current year: Maximum discharge undetermined; no flow June 30 to Sept. 23.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft

(2.704 m); no flow at times.

REMARKS. -- Records good.

REVISIONS (WATER YEARS).--1972. Revised figures of discharge, in cubic feet per second, for the water year 1972, superceding those published in 1972, are given herewith:

Date	Discharge	Month	ft ³ /s-days	Maximum	Mean	Acre-ft
June 9, 1972	300 ·	June 1972	1,661.1	1,200	55.4	3,290
	Water year	ft ³ /s-days	Maximum	Mean	Acre-ft	
	1972	20,471.1	1,200	55.9	40,600	

Discharge, in cubic feet per second for the year ending September 30, 1973

and an other states of the		11011	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	16	1.1	5.1	21	1.6	124	4.4	9,0	1.2			
2	.6	1.2	5.1	17	17	120	42	9,9	1.2			
3	.6	16	5.0	15	17	121	35	7.9	1.2			0
4	.6	2.4	4.5	1 1	16	87	33	P.4	1.1			i
5	.6	2.6	4.0	1?	1 =	74	35	07	1.0			2
6	.6	2.6	3.0	11.	2.0	6 8	37	P.A	1.2	1000		
7	.6	3.0	2.0	10	17	64	34	7.3	1.0	1. 1. 1. 1.		3
8	.6	3.0	5.8	1)	15	57	31	6.7	1.0			
9	.6	3.2	2.P	1)	10	57	30	-	.9			O
10	.7	3.2	2.8	13	1 8	61	50	5.9	.8	1		2
11	1.0	3.4	?.E	20	1 .	76	50		.8			3
12	1.0	3.4	3.5	35	1 0	53	5 0	4.1	1.2)
13	1.5	3.4	2.8	66	1 4	54	31	4.1				
14	1.2	3.4	2.0	113	1	40	32	25	-1			C
15	1.0	3.0	1.8		2.0	4.6	24	2.2	.0	Report of the second		1
16		4.1	1.2	2.12	24	4 3	24	21	0.			
17		4.1	26	132	25	47	26	2.0				
18	.7	4.1	24	82	25	4 1	20	1.8	.0			
19		4.1	24	55	251	4 1	20	1.6	.0			
20	 G	4.1	12	4 0	24	41	20	1.4	.5			
	.8	3.5	84	35	21	42	25	1.2	.5		1000	
	.8	3.8	7 2	30	24	40	23	12	.5			
24	c	3.P	74	34	24	37	21	1.7	.4			1
25	0	3.F	64	32	2 11	42	1.9	2.0	.7		1	1
26	.9	3.8	47	14	40	4 2	14	2.0	.5			.1
27	1.0	4.3	4 ?	16	57	4 0	12	1.8	.4			.1
28	1.1	5.1	40	22	64	35	11	1.8	.2		10-0-10 3	.1
2.9	1.1	5.1	32	26		34	10	1.7	.1			.1
30	1.1	5.1	2 R	26		34	0.6	1.3	0.0		1.1	.1
31	1.1		25	21		40		1.2				
	240	1040	6 8 2 0	1 4 3 3 1	676	1 7 7 0	0.18.6	1244	215			
Total	2 6.5	1044	0.030	1.4 3 3	010	1.774	9.75.6	1 2 4.4	21.5			1.7
Mean	0.87	3.47	21.9	45.3	24.1	57.4	26.9	4.01	0.72	2		0.02
Max	1.5	5.1	84	200	64	129	44	9.2	1.2	;		0.1
Min	0.6	1.1	2.8	10	15	34	9.6	1.2	0			0
Ac-ft	53	206	1,350	2,780	1,340	3,530	1,600	247	43	4		1.4
Cal yr Wir yr	1972 : 1973 :	Mean 5: Mean 1	3.7 Max 5.4 Max	1,.	200 Mi 200 Mi	n 0 n 0	Ac-f	38	980 1,150			

50-43700-119

-

5-9

105

STATE OF OREGON

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION .-- 45°20'15", long 120°03'40", in NWtSWt sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

(60 m), downstream from county bridge, and 15 mi (24 km) northeast of Condon.

DRAINAGE AREA.--350 mi² (906 km²).

PERIOD OF RECORD .-- April 12, 1965 to current year.

GAGE.--Water-stage recorder.

1 5

いたかかないないの

AVERAGE DISCHARGE.--9 years (1965-74), 45.7 ft³/s (1.29 m³/s), 33,150 acre-ft/yr (40.9 hm³/yr).

EXTREMES.--Current year: Maximum discharge, 6,050 ft³/s (171 m³/s), Jan. 18, gage height, 6.87 ft (2.094 m); no flow Oct. 9.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s), June 8, 1972, gage height, 8.87 ft

(2.704 m); no flow at times.

REMARKS .-- Records good.

REVISIONS (WATER YEARS) .-- 1972. See 1973 publication.

-	-	-	-						and the second se			
Day	Oct.	· Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	0.1	0.9	854	75	145	108	365	116	12	0.7	0.4	0.1
2	.1	.9	380	70	118	112	3 3 2 2	110	11	.7	.4	.1
3	.1	.8	179	7 0	104	92	246	96	10	.7	.4	.1
4	.1	.9	113	7 0	102	94	222	86	11	.7	.3	.1
5	.1	1.1	76	70	98	90	229	78	11	.7	.3	.1
G	.1	1.2	49	70	80	102	254	70	14	.8	.3	.1
7	.1	1.7	626	70	96	56	218	62	13	.'		.1
8	.1	2.6	250	70	98	70	191	59	0,9	0.		-1
9	0	1 1 4 0	170	70	94	70	170	50	77	.9	2	.1
10		155	149	70	75	70	161	4 8	71	.0		2
11		312	1 32	70	8.8	92	152	41	64	1.1	2	2
1.		208	108	80	82	102	135	3.8	59	1.3	2	2
14		118	90	200	82	120	130	37	5.9	1.2	2	2
15	.1	96	88	1.000	90	120	126	38	4.8	1.2	.2	2
16	.1	155	143	2120	161	286	124	36	4.6	• 1.1	.2	2
17	.1	155	266	2.050	182	430	116	36	4.1	1.2	.2	2
18	.1	113	330	2.620	152	345	114	37	3.8	1.4	.2	2
19	.1	86	197	2.590	222	286	118	37	3.6	1.4	.2	2
20	.1	78	155	806	194	212	106	37	. 3.4	1.3	.2	2
21	.2	68	936	442	167	191	96	34	3.2	1.2	2	.2
22	.2	63	562	322	135	191	90	30	3.0	1.1	-1	2
23	-2	57	342	254	124	182	122	27	2.8	.9	-1	2
24	-2	24	224	220	120	170	204	26	2.6	.8	.1	2
25	.2	25	101	209	114	1/3	230	24	2.4	.7		.2
26	2	4 9	BA	101	100	20.9	176	22	1.8	.6		2
27	2	70	124	1 2 0	100	274	176	21	1.2	.6		2
28	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	400	121	128	2.0	246	148	16	1.1	.0		2
25		782	96	118		518	124	15				4 2
30	.5	102	82	118		460		13	.7		.i-	
	.0											
Total	4.7	3.322.1	7.671	14.581	3.34 A	5.774	5.289	1.402	1787	27.4	6.3	5.1
Mean	0.15	111	247	470	120	186	176	45.2	5.96	0.88	0.20	0.17
Max	0.6	782	854	2,620	222	538	365	116	14	1.4	0.4	0.2
Min	0	0.8	82	70	82	70	90	13	0.9	0.4	0.1	0.1
Ac-ft	9.3	6,590	15,220	28,920	6,640	11,450	10,490	2,780	354	54	12	10
Cal yr	1973 :	Mean 43.3	Max	200	MI	n 0	Ac-f	31,350	-			
Wtr Jr	1974 :	Mean 114	Max	2,620	MI	n 0	Ac-f	82,530	-			

Discharge, in cubic feet per second for the year ending September 30, 1974

STATE OF OREGON

WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION.--Lat 45°20'15", long 120°03'40", in NWsSWs sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft (60 m) downstream from county bridge, and 15 mi (24 km) northeast of Condon.

DRAINAGE AREA.--350 mi² (906 km²).

PERIOD OF RECORD .-- April 1965 to current year.

GAGE.--Water-stage recorder.

··· · · ··

....

AVERAGE DISCHARGE.--10 years (1965-75), 45.8 ft³/s (1.30 m³/s), 33,180 acre-ft/yr (40.9 hm³/yr).

EXTREMES.--Current year: Maximum discharge, 496 ft³/s (14.0 m³/s) Mar. 2, gage height, 3.20 ft (0.975 m); no flow at times.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft (2.704 m); no flow at times.

REMARKS. -- Records good.

REVISIONS (WATER YEARS).--1972. See 1973 publication.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	2	1.4	3.8	59	4.0	175	254	164	21	2.4	0.1	0.2
2	2	1.4	3.8	5.4	38	395	218	152	22	2.2	.1	2
3	.3	1.4	4.1	5.6	20	278	236	152	22	1.8		.2
4	.3	1.4	4.1	6.1	2 5	206	218	148	21	1.6	.11	2
5	.3	1.4	4.1	6.1	23	167	179	130	15	1.5	.1	.2
6	.3	1.5	4.1	6.1	21	132	176	114	13	1.2	.1	.1
7	.4	1.8	4.1	6.4	21	114	176	108	10	1.2	.1	.1
8	.4	2.0	4.3	7.3	2.2	104	173	104	8.0	1.3	.1	.1
9	.4	1.8	4.3	6.4	18	132	164	98	7.0	4.9	.1	.1
10	.4	1.8	4.3	6.4	26	124	173	100	6.0	15	.1	.1
11	.5	2.0	4.6	6.1	2.8	104	179	100	5.0	40	.1	.1
12	.5	2.0	4.6	5.9	4 3	86	250	92	4.0	. 2.4	.1	.1
13	.5	1.8	4.6	7.7	212	78	365	8 2	3.4	1.3	.1	.1
14	.5	1.8	4.6	8.6	179	66	350	72	3.0	.7	0	.1
15	.6	1.8	4.8	9.9	110	64	274	62	2.5	.6	.)	.1
16	.6	1.8	4.8	15	102	64	246	51	2.1	.5	0	.1
17	.6	2.0	4.8	18	72	65	212	4 5	2.0	.5	2	.1
18	.7	2.6	4.8	43	6 2	62	197	41	2.0	.5	0	.1
19	.7	2.6	4.8	50	53	130	212	37	2.4	.4	.1	.1
20	.7	2.6	4.8	41	92	126	218	37	2.8	.4	.2	.1
21	./	2.6	5.6	34	591	108	215	36	3.4	.4	.2	-1
22	.8	2.8	6.1	25	64	88	222	32	3.6		.2	-1
23	0.	3.0	2.9	23	60	90	218	28	3.2		-2	-1
24	.0	3.4	2.0	23	23	94	226	26	2.8	4	.2	-1
25	0.	3.4	3.9	108	- 22	1 2 8	393	2.4	2.6	-4	.2	
26	1.0	3.4	0.1	213	5 7	148	200	22	2.6	2	2	-1
27	1.2	3.4	0.1	100	1 2 4	1 2 6	240	21	2.4	47	4	
28	1 4	3.4	5.4	04	134	1 2 0	200	19	2.4		4	
20 1	1 4	3.41				266	170	20	2.2		2	
30	1 31	101	5.4	261		200	112	20	2.4			·
- 11	1.2		7.4	20		340		20				
Tatal	232	603	1528	9750	1.1.6.1	4577	6801	2156	2018	827	2.0	15
Mann	0.65	2 21	1 02	21 5	62.0	140	227	60 5	201.0	2 67	0.10	0.10
Mean	0.05	2.31	4.33 6 A	215	212	205	205	164	0.73	2.07	0.12	0.12
Max	0.2	1.0	2.9	5 4	10	595	164	104	2 2	40	0.2	0.2
Acatt	0.2	127	3.0	1 040	2 400	9 670	13 400	1 290	2.2	1.64	7 6	0.1
Acon]	40]	13/ 1	303]	1,940	3,490	0,0/0]	15,490	4,200	400	104	1.5	0.9
Cal yr	1974 : :	Mean 84.5	Max	2,620	Mi	0.1	Ac-f	61,200				
Wir Jr	1975 : 1	Mean 46.0	Max	395	Mit	• 0	Ac-f	33,320				

5-10

STATE OF OREGON

WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION.--Lat 45°20'11", long 120°03'40", in NWsSWs Sec.3, T.3 S., R.22 E., Gilliam County, on left bank 200 ft (60 m) downstream from county bridge, and 9 mi (14 km) northeast of condon.

DRAINAGE AREA.--350 mi² (906 km²).

PERIOD OF RECORD. -- April 1965 to current year.

GAGE.--Water-stage recorder.

AVERAGE DISCHARGE.--11 years (1965-76), 44.2 ft³/s (1.252 m³/s), 32,020 acre-ft/yr (39.5 hm³/yr). EXTREMES.--Current year: Maximum discharge, 302 ft³/s (8.55 m³/s) Apr. 9, gage height, 2.83 ft (0.863 m); no flow at times.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft

(2.704 m); no flow at times. REMARKS .-- Records good.

REVISIONS (WATER YEARS) .-- 1972. See 1973 publication.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	0.1	2.2	5.9	23	37	36	96	51	9.5	0.8	0	4.1
2 !	.1	2.2	6.1	- 1 8	35	37	90	47	9.9	.7	0	3.5
21	.:	2.4	7.7	33	34	34	104	44	9.5	.7	.1	3.6
4	.1	2.4	9.0	34	17	16;	114	41	8.6	.6	.1	3.4
5	2	2.6	9.5	37:	14	27	145	37	8.2	.5	.1	3.0
6	2	3.0	9.0	35.	17	30;	209	32	7.3	.5	2	2.8
7	.3	3.4	9.5	33	20	32	185	29	6.8	.5	10	2.6
8	.3	3.4	9.9	106	25	28	176	25	5.9	.4	14 !	2.6
9	.3	3.4	11	116	25	28	266	23	5.9	.4	6.8	22
10	.3	4.1	10	82	22	34	203	20	5.9	.4	5.6	12
11	.4	4.1	9.5	66	20	38	179	18	5.6	.)	4.6	.6
12	.4	4.1	9.0	57	21	34	173	18	5.4	.3	4.1	.4
13	.4	4.1	9.0	4 4	23	37	176	14	4.6	3	3.8	3
14	.4	4.1	7.7	4 5	26	41	152	11	4.3	2	4.3	1.0
15	.5	4.1	7.7	74	301	41	138	10	4.1	21	5.9	2.8
16	.5	4.3	8.6	167	29	47	130	9.5	3.8	-2	7.3	3.6
17	.5	4.3	8.6	179	45!	94	116	9.0	3.4	2	12	3.4
18	.5	4.3	8.2	152	501	173	114	8.6	3.2	2	11	3.2
19	.5	4.3	8.2	112	50	202	102	8.6	3.0	.1	9.5	3.0
20	.5	4.3	7.7	8.6	40	126	108	9.0	2.4	.1	8.6	2.8
21	.6	4.3	7.3	68	33	110	110	9.5	2.2	.1	7.7	2.8
22	.7	4.3	7.3	59	32	110	94	8.6	2.0	.1 (6.8	3.2
23	.8	4.6	7.7	59	29.	108	98	8.2	1.7	.1	6.4	3.2
24	.8	4.6	9.9	51	2 5	114	70	7.3	1.7	-1	8.1	3.4
25	1.0	4.6	11	4 3	32	150	84	7.3	1.5	0	8.2	3.4
26	1.6	5.1	13	37	41	114	76	6.8	1.5	0	7.7	3.2
27	2.4	6.4	45	37	55	102	70	6.4	1.2	0	6.8	3.2
28	2.6	6.4	45	36	66	98	66	6.4	1.0	0	6.1	3.2
29	2.4	6.1	40	4 4	55	84	64	6.4	.8	0	5.6	3.0
20	2.2	5.9	59	45		541	39	6.8	.9	0	5.1	2.8
31	2.0	1		40		100		7.7		c	4.6	
Total	2 3.7	123.4	4 6 7.0	2.018	951	2329	3.767	5 4 6.1	1 3 1.8	8.0	181.1	81.8
Mean	0.76	4.11	15.1	65.1	32.8	75.1	126	17.6	4.39	0.26	5.84	2.73
Max	2.6	6.4	59	179	66	202	266	51	9.9	0.8	14	4.1
Min	0.1	2.2	5.9	18	14:	27	59	6.4	0.8	0	0	0.3
Ac-ft	47	245	926	4,000	1,890	4,620	7,470	1,080	261	16	359	162
Cal yr	1975 :	Mean 47.0 Mean 29.0	Max Max	395 266	Min	0	Ac-ft Ac-ft	34,060				

Discharge, in cubic feet per second for the year ending September 30, 1976

5-11

WATER RESOURCES DEPARTMENT

5-12

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION.--Lat 45°20'11", long 120°03'40", in NW½SW½ sec.3, T.3 S., R.22 E., Gilliam County, on left bank

200 ft (60 m) downstream from county bridge and 9 mi (14 km) northeast of Condon.

DRAINAGE AREA. -- 350 mi² (906 km²).

PERIOD OF RECORD.--April 1965 to current year.

GAGE.--Water-stage recorder.

AVERAGE DISCHARGE.--12 years (1965-77), 41.1 ft³/s (1.164 m³/s), 29,780 acre-ft/yr (36.7 hm³/yr).

EXTREMES.--Current year: Maximum discharge, 112 ft³/s (3.17 m³/s) April 6, gage height, 2.25 ft (0.686 m); no flow July 16 to Sept. 30.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft

(2.704 m); no flow at times.

REMARKS. -- Records good.

REVISIONS.-- 1972, see 1973 publication.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	2.8	2.0	3.6	4.6	5.4	8.2	1.8	4.6	6.1	.2		
2	2.8	3.0	4.1	4.5	5.1	8.6	20	4.8	6.1	.2	1	
3	2.6	3.0	4.3	4.8	5.1	9.5	20	5.4	5.6	.2	1	
4	2.6	3.0	4.6	4.3	5.1	9.9	37	5.4	5.6	.2		
5	2.6	3.0	4.6	3.0	5.0	9.0	64	5.6	5.1	.2		
6	2.6	3.0	4.6	2.8	4.9	8.6	88	5.9	4.6	.2		
7	2.6	3.0	4.6	2.7	4.8	9.5	78	7.3	3.8	2		
8	2.6	3.2	4.6	2.6	4.8	11	64	7.7	3.4	.2		
3 !	2.6	3.0	4.6	2.6	4.8	16	44	7.7	3.0	.2		
10 1	2.6	3	4.6	2.8	4.9	18	35	9.9	2.8	.2		
11	2.6	3.6	4.8	3.0	5.1	17	28	35	2.4	.1		
12	2.4	3.6	4.8	3.3	, 5.4	16	24	35	2.4	.1		
13	2.2	3.6	4.8	3.7	5.9	16	21	34	2.2	.1		
14	2.2	3.6	4.6	4.0 !	6.4	13	20	26	2.2	.1		
15	2.2	3.6	4.8	4.5	6.8	13	17	27.	1.7	.1		-
16	2.2	4.3	4.8	5.2	6.4	12	16	21	1.5	0		
17	2.2	4.3	4.8	5.9	6.1	12	14	19	1.3	0		
18	2.4	4.3	4.8	5.9	6.1	12	13	18	1.3)		
19	2.6	4.6	4.8	5.9	6.1	12	12	16	.8	0.		
20	2.6	4.6	3.8	5.6	6.1	12	11	15	.8	0		_
21	2.6	4.8	4.8	5.4	6.4	12	9.9	13	.8	0		
22	2.4	4.8	4.6	5.4	6.4	11	9.5	11	.7	0		
23	2.4	4.8	5.1	5.4	6.8	12	8.2	10	.6	0		
24	2.4	4.6	4.6	5.4	6.4	14	6.8	11	.5	0		
25	2.6	4.7	5.1	5.4	6.4	16	6.1	11	.4	C		
26	2.6	4.8	4.8	4.6	6.4	16	5.9	11	.3	3		
27	2.6	4.1	4.8	4.8	6.4	17	5.6	9.5	.3	0		
2.8	2.6	4.6	4.6	5.1	7.3	18	5.1	9.5	.3	0		
29	2.8	3.6	4.8	4.8		18	4.8	9.0	.2	0		
30	2.8	3.6	4.8	4.6		18	4.6	8.2	.2	0		
31	2.8		4.8	4.8		17		7.3		0		
ul	7 8.6	11 6.3	1 4 4.0	1 3 7.5	162.8	412.3	710.5	4 20.8	6 7.0	2.5	0	
AD	2.54	3.88	4.65	4.44	5.81	13.3	23.7	13.6	2.23	0.08	0	1
x	28	4.8	5.1	5.91	7 3	18	88	35	61	0.2	0	
n	2.2	3.0	3.6	2.6	4.8	8.2	4.5	4.6	0.2	0.0	0	
-ti	156	231	286	273	323	818	1.410	835	133	5.0 1	õ	
- malan		00.0	and a star				-1					
n 19	976 : Me	an 28.3	Max	266	Min	0	Ac-ft	20,530				

bischarge, in cubic feet per second for the year ending September 30, 1977

5-13 LAST POGE

JOHN DAY RIVER BASIS

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONCON, SPES.

LOCATION.--Lat 45/20111", long 120°03'40", in NMISWE sec.3, T.3 S., R.22 E., Gilliam Iburty, on left bank

200 ft (60 - downstream from county bridge and 9 mi (14 km) nontheast of Condon.

DRAINAGE AREA. -- 350 mi² (906 km²).

PERIOD OF RECORD.--Abril 1965 to current year.

GAGE.--Water-stage recorder.

AVERAGE DISCHARGE.--13 years (1965-78), 41.2 ft³/s (1.167 m³/s), 29,850 acre-ft pr (36.3 m³/yr).

EVIREMES.--Current year: Maximum discharge,478 ft³/s (13.5 m³/s) Feb. 7, gane height, 2-18 ft (0.969 m); no flow

Oct. 1-19.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft (2.704 m); no flow at times.

REMARKS .-- Records good except for August which are fair.

REVISIONS. -- 1972, see 1973 publication.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sep
1	0	0.3	28	8.4	64	145	74	66	15	4.3	0.2	1.
2 1	0	.3	23	9.9	66	124	96	55	1.1	4.6	2	1
3	C	3	29	13	64	108	76	48		7 3	2	1
4	0	3	28	1 26	72	106	58	0.0		10	1 .2	1 1
5	C	.4	23	82	80	104	64	44	1.1	9.9	2	1
6	0		19	90	135	112	62	40		77	2	1
-	0	1 4	17	62	218	118	70	36	5 1	6.1	2	1 . 1
.	0	5	16	50	365	152	65	20	1 0	8.0	2	1
	0		10	114	240	200	57	27	4.0	12	.2	1 1
	0		12	170	104	210	33	20	7.5	15		1
10	0		13	1/0	194	240	40	27		9.5	1 2	1 1
	0	.0	13	142	150	203	40	21	4.2	1.3		1
12	0	.0	15	135	118	185	31	25	4.3	0.4		1. 1.
13	0		18	1 142	120	164	30	25	4.5	5.4	.2	1 1.
14	0	./	130	188	106	142	35	24	5	4.6	-2	1.
15	0	.5	185	310	104	125	33	33	5.6	3.8	.2	1.
16	0	.8	118	335	84	116	35	40	5.1	3.6	.2	1.
17	0	.9	80	282	80	110	37	30	4.8	3.6	.2	1 1.
18	0	1.2	55	197	84	110	36	26	4.3	3.4	.2	2.
19	0 .	1.4	37	182	102	102	32	23	3.8	3.0	.2	2.
20	.1	1.1	28	158	135	96	29	19	3.2	2.5	.2	2.
21	.1	1.4	25	132	140	90	28	17	1.5	2.2	1.0	2.
22	.1	1.5	24	124	135	86	27	16	1.0	1.8	4.0	2.
3 1	.1	1.6	23	102	138	84	28	18	1.8	1.6	3.0	2
24	1	2.8	23	82	140	106	28	17	3.0	1.4	2.0	2
	1	9.8	24	76	164	90	26	17	3.5	1 2	1 1 4	2
16	1	56	26	62	170	76	71	17	3.6	1.0	1.4	2
-	2	44	24	68	194	66	170	16	3.0	1.0	1.0	2
. 1		25	22	66	161	50	122	16	2.0		-/	2.
		20	22	64	101	53	94	15	1 12			2.
.9	. 4	22	21	70		50	76	13	13			2.
10	. 4	32	- 10	60		50	10	13	1.6		.0	C.
1	.3		19	08		50		16		.6	1.5	
tal	1.8	225.9	1,140	3,619.3	3,823	3,677	1,694	862	151.3	135.3	20.4	52.6
an	0.06	7.53	36.8	117	137	199	56.5	27.8	5.05	4.37	0.66	1.7
*	0.3	56	185	335	365	298	170	66	1 13	13	4.0	2.1
	0	0.3	13	8.4	64	50	26	12	1 1.0	0.2	0.2	1 1
	3.6	448	2,260	7,180	7.580	7.290	3.360	1.710	300	268	40.5	104
-11	5.0	110	-1200	1,100	1,000	1,200	5,500	1,710	500	200	40.5	104

CAMAS PRAIRIE

D

1140

. pus . 5.4 . . . 1

to a statistical a starting

1월 MILES ABOVE OLEX AXEL OLSEN PLACE 9-19-85

1호 MILES BELOW FRENCH CHARLIE

12-25-75

8-10-75

WOLF HOLLOW BRIDGE 8-10-75

LOWER ROCK CREEK 1½ MILES BELOW FRENCH CHARLIE

8-10-75

. : 3.

DEBRIS 1974

4

1/19/24

BETTENCOURT SPRING

4

8

JANUARY 13, 1979

5

OLEX JANUARY 13,1979

2 . .

MARVEL BRIDGE 3/4 MILE ABOVE FRENCH CHARLIE

JANUARY 13, 1979

MOUTH OF ROCK CREEK JANUARY 1979

SPRING NEAR MOUTH OF ROCK CREEK

6

AUGUST 30, 1989

RECEIVED

NOV 1 6 1994

DEPARTMENT OF

OCT 4 1996

RECEIVED

NATER RESOURCES DEPT. SALEM, OREGON

WATER RESOURCES DEPT. SALEM, OREGON

FISH AND

WILDLIFE

HABITAT CONSERVATION DIVISION

November 15, 1994

Mike Mattick Water Resources Department 158 12th Street, NE Salem, OR 97310

RE: Instream Water Right 70251; supporting information

Dear Mike:

Attached is the subject material you requested. Hopefully it will serve to support our application for sufficient water to operate the fishway at Harper Dam on Rock Creek (John Day River).

Sincerely,

5 addunt.

Albert H. Mirati, Jr. Fish Passage Coordinator

Burchfield c:

EXHIBIT _____ PAGE ____ OF ____

2501 SW First Avenue PO Box 59 Portland, OR 97207 (503) 229-6967

Koor VL, pur ony

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RECEIVED NATIONAL MARINE FISHERIES SERVICE ENVIRONMENTAL & TECHNICAL SERVICES DIVISION 1002 NE HOLLADAY STREET - ROOM 620 PORTLAND. OREGON 97232 503/230-5400

IWR 20251

January 24, 1990

NATER RESOURCES DEPT F/NWRALEM. OREGON

NOV 1 6 1994

Sharon Conyers Oregon Department of Fish and Wildlife 506 S.W. Mill Street P.O. Box 59 Portland Or. 97207

Dear Ms. Convers,

Attached is the functional design for the Harper Dam Fishway on Rock: (Enclosed). This is the second fishway of a series of upwards of 6 that is needed to insure safe and efficient adult anadromous fish passage into the upper basin of Rock Creek in the John Day River Basin. It is our understanding that the Oregon Department of Fish and Wildlife (ODFW) plans to construct the Harper Fishway during the summer of 1990 with funds carried over from FY89.

As you recall the National Marine Fisheries Service (NMFS) volunteered to help design the first couple of fishways to expedited the project. The first fishway at Ramsey Dam was designed by NMFS last September and ODFW personnel constructed it in October.

Please have your engineering staff review the enclosed functional design for the Harper Fishway. Detailed structural design is required before construction can begin on this fishway. The NMFS is not prepared to do the structural design for the Harper Dam site so the ODFW will need to either do the structural design or contract it out to a private engineering firm. As nearly \$18,000 in engineering related funding was provided to ODFW by NMFS for this project, the design costs should be covered.

Technical comments or questions on the design should be directed to Mr. Randy Lee at 230-5411. Any other comments or questions can be directed to Mr. Mike Delarm of my staff at 230-5412. We look forward to moving ahead with this project.

Sincerely

Robert Z./Smith Director, Columbia River Fisheries Development Program

EXHIBIT / PAGE 2 OF 10

RECEIVED

Harper Dam Fishway Rock Creek John Day River Basin NOV 1 6 1994 NATER RESOURCES DEPT. SALEM, OREGON

Background

Rock Creek enters the John Day River at river mile 21.6. The Oregon Department of Fish and Wildlife (ODFW) personnel indicated that 75 miles of habitat would be opened by correcting passage problems on Rock Creek. According to ODFW, steelhead is the only' species of anadromous fish which utilize the Rock Creek drainage. Steelhead currently utilize the lower 25 miles of the creek:

There are six irrigation dams within a 20 mile creek reach. The dams are located at creek miles 7 (Ramsey Dam), 19.75 (#2), 23.5 (Irby Dam), 25.5 (Harper Dam), 27 (McCoin Dam), and 28 (#6). Steelhead passage is entirely blocked at the Harper damsite, but all the other dams probably delay or blocks passage during low to moderate flows (possibly during higher flows).

In October of 1989, ODFW constructed a fishway designed by the National Marine Fisheries Service (NMFS) at the Ramsey damsite. In general, the fishway consists of two pools with a vertical slot insert placed between the pools.

The following presents a functional design for providing safe and efficient passage of adult steelhead at Harper Dam.

EXHIBIT / PAGE <u>3</u> OF 10

Harper Dam Fishway Rock Creek John Day River Basin

Summary

•.

13+1+

- Location: Approximate creek mile 25.5 T2S, R22E, Sec. 5 Gilliam County, Oregon
- Fishway type: Vertical Slot Floor slope 1 vertical to 8 horizontal 7 vertical slots with one 15-inch entrance Pool dimensions 6 foot wide by 8 foot long Vertical slot either can be formed concrete or inserts.

Design Flows: 57 cfs maximum 47 cfs normal 34 cfs minimum

EXHIBIT / PAGE 4 OF 10

RECEIVED

NOV 1 6 1994

NATER RESOURCES DEPT. SALEM, OREGON

Hydraulic Design

The proposed fishway at the Harper Dam is a vertical slot type with each slot having a width of one foot. Field surveys by ODFW taken May 4, 1988 indicated a head of approximately 8 feet will need to be managed by the fishway. This results in a fishway with 7 vertical slots and one 15-inch wide entrance to satisfactorily manage the 8 foot drop. Due to cost and space limitations, the fishway proposed is to have a slope of 1 vertical to 8 horizontal and have pool dimensions of 6 foot wide by 8 foot long. This is considered to be minimum dimensions for this type of fishway. Vertical slots can be either formed concrete or fabricated metal inserts which may be constructed offsite and installed in the flume when completed.

It is expected that adult steelhead will be present during the months of February through May, therefore, the fishway is designed to accomodate passage during this period. Design flows for the fishway are as follows: 57 cubic feet per second (cfs) maximum, 47 cfs normal and 34 cfs minimum. From high water marks, there appears to be 4 feet of head over the dam crest. Using the standard weir formula, this converts to a streamflow of approximately 1259 cfs. At this streamflow the effectiveness of the fishway entrance flow to attract fish is negligible without auxiliary water, however, at this high streamflow it appears fish may choose to pass over the dam or wait and use the fishway when streamflows subside.

Stoplogs at the entrance are utilized to control the discharge from the fishway. To increase operational flexibility and ease of adjustments, a gate may be considered. Adjustments to the logs or gate will be necessary to insure a hydraulic drop of 1.25 feet across the entrance. This will result in and entrance jet velocity of approximately 9 feet per second. A short flow deflecting wall is constructed between the entrance pool and the first slot upstream from the fishway entrance. The purpose of this wall is to dissipate the energy from the oncoming jet. Additionally, for dewatering purposes, stoplog slots are located at the exit. A coarse trashrack is also located at the exit. To allow passage of fish past the trashrack, the spacing between vertical rack bars are 9 inches and the spacing between horizontal members are 2 feet. To facilitate cleaning of debris from the rack, the rack face is set at a slope or 4 vertical to 1 horizontal. To insure safety, it is recommended the fishway be covered by the use of metal walkway grating.

	- U.
	EXHIBIT PAGE 6_0
SHEET NO.	TITLE
1	INDEX TO DRAWINGS
2	PLAN
3	SECTION
. 4	HYDRAULIC PROFILE
5	DETAILS
	PRELIMINARY FOR REVIEW NATIONAL MARINE FISHERIES SERVICE 1002 NE HOLLADAY STREET - RM 520 PORTLAND. OREGON 97232 HARPER DAM FISHWAY INDEX TO DRAWINGS

• •

.

EXHIBIT _2 PAGE _1_ OF _1_

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-Oh74." Rock Creek above Cayuse Canyon, near Condon, Oreg.

Location .-- Lat 45*20'15", long 120*03'40", in MM4SW4 sec.3, T.3 S., R.22 E., on left bank about 200 ft below

county road bridge, 15 miles northeast of Condon, Gilliam County.

Records available .- April 12, 1965, to Sept. 30, 1966.

Gage .--- Water-stage recorder.

Extremes. -- Maximum discharge, 36h cfs Mar. 1h (gage height, 2.48 ft); no flow at times.

1965, 1966: Maximum discharge, that of Mar. 14, 1966; no flow at times.

Remarks .-- Records good except for period of no gage-height record, which are poor.

CAYUSE 66 - 78

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	2.9	3.9	8.3	6.1	12	19	174	9.7	3.3	1.9	5.0	0
2	2.9	4.1	8.0	9.7	11	17	158	9.3	3.8	4.1	:1	0
3	2.9	4.3	0.9	12	12	14	121		3.8	3.8	0	0
	2.9	5.1	8.0	12	11	14	96	1 (8.2	5.2	2.8	0	0
5	3.2	5.1	<u>P.0</u>	16	11	14	83		3.8	2.1	0	0
6	2.8	5.1	P.3	20	11	16	1 14	7.1	3.8	1.6	0	0
1	5.1	5.1	8.5	22	12	* 16	60	67	4.1	1.9	0	0
0	3.1	5.5	5.1	30	11	a 21	52	64	4.1	1.0	0	0
10	3.1	* 55	a 3.5	23	11	#2 64	- 51	. 55	3.0	1.4	0	0
11	31	5.5	4 5.5	21	10	114	50	55	3.0	1.5	0	
12	* 3.2	5.8	a 5.5	10	10	1 0 9	* * 45	5.2	3.6	1.1	ő	0
13	3.4	6.9	0 55	19	10	217	- 41	5.0	36	1.3	1	ő
14	3.4	8.6	a 5.5	17	10	266	. 28	5.0	3.3	11	.1	ő
15	3.5	8.3	a 5.5	17	10	# 234	. 20	5.0	2.8	6.7	.1	.4
16	3.5	8.6	a 5.5	17	9.7	165	· 29	5.0	2.4	a 4	* .1	.6
17	3.5	8.3	a 5.5	15	# 10	104	. 27	5.0	1.9	a 3	.1	.6
18	3.7	8.3	a 6	14	10	94	- 26	4.4	1.9	a 2	0	.6
19	3.9	7.6	•a 6	14	10	89	· 23	* 4.1	1.9	a 1	C	.6
20	3.9	1.2	a 6.5	* 13	11	81	· # 22	3.8	1.6	a 1	0	• .6
21	3.9	7.0	* 6.7	13	11	69	. 21	5.6	1.6	a .5	0	.4
22	5.9	76	5.5	14	12	58	- 21	5.5	1.6	a .5	0	.4
23	3.9	9.6	4.1	13	14	58	- 20	2.2	1.6	a .5	0	5.
24	3.9	10	6.6	13	10	59	. 16	31	1.9	a .4	0	2
20 .	3.9	10	67	13	21	1 1 4 4	• 14	2.6	1.4	a .4	0	.4
27	3.9	9.6	7.1	13	20	190	- 13	2.6	# 14	a 2	1	2
28	3.9	8.6	7.4	13	20	230	. 12	2.6	1.3	+ .1	.1	2
20	3.0	0.9	7.4	13		2 34	. 11	2.6	1.1	.2	.1	.2
20	3.9	0.3	1.4	13		230	- 10	2.8	1.1	.6	* 3	= 2
31	3.0	Martin Contra	7.8	13		195		* 3.3		.5	.1	
	1 CP.0	Second Second	2 C 4.9		346.7		1.4 C 1	a second	80.5		1.3	
		5 C B 9		5 C 5.P		3.4 32		1 5 7.4		59.0		5.8
Mean	3.48	6.96	6.61	16.3	12.4	111	46.7	5.08	2.68	1.90	0.04	0.19
Acre	21h	կուն	406	1,000	688	6,810	2,780	312	160	117	2.6	12
Calend.	ar year	1965	Max	-	Min	-	Mean	-	Acre-ft	-		
Period Water	rat	1965-66	Hax	266	Min	0	Noan	17.8	Acre-ft	12,910		

Discharge in cubic feet per second for the year ending Sentember 30, 19, 66

. Discharge measurement made on this day, a No gage-height record.

Water year

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

11-Oh7h. Pock Creek above Cayuse Canyon, near Condon, Creg.

Location .-- Lat 45*20'15", long 120*03'40", in NW15W1 sec.3, T.3 S., R.22 E., on left bank about 200 ft downstream

from county bridge, 15 miles northeast of Condon, Gilliam County.

Records available .-- April 12, 1962, to Sept. 30, 1967.

Gage .-- Water-stage recorder.

1,3

Extremes. -- Maximum discharge during year, 832 cfs Jan. 28 (gage height, 3.27 ft); no flow at times.

1965-67: Maximum discharge, that of Jan. 28, 1967; no flow at times.

Remarks .-- Records good except for period of no gage-height record, which are poor.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	0.4	1.4	25	32	* 2 36	4 8	83	.5 4 C	21	2.0	0.2	0
2	.4	1.4	56	32	1 9 5	51	6.9	240	19	1.4	99 .Z	C
3	.4	1.4	51	* 50	169	30	1 6 4	201	16	1.0	.4	0
2	.4	1.0	50	35	156	30	111	1 53	15	1.2		C C
6	.4	24	# 52	36	1 1 0	41	1 25	1 30	10	# 1.0		C
7		2.4	50	35	1 10	40	130	125	RE	1.1	.1	č
8	4	2.4	46	33	1 00	39	121	114	F.0	1.1	.1	õ
9	2	2.4	40	31	93	39	110	1 (4	7.2	1.1	.1	0
10	.4	2.6	41	30	F 3	42	110	112	6.9	1.1	.1	C
11	.4	3.3	62	31	76	42	1 4 0	112	45	.º	.1	0
12 .	.4	a 5	70	36	,71	38	125	96	(é.1)	P. (.1	С
13	.5	a 7	2.56	39	70	42	110	94	5.1	.5	.1	0
14	.6	alC	5 5 0	F1	66	38	104	60	5.7	.5	.1	.1
15	٩,	a15	142	142	59	34	100	70	5.0	.5	.1	.1
10	.9	aze	100	1 1 1 1	54	01	99	02	4.7	.4	.1	-1
18	.0	815	67	123	54	1 00	51	54	9.1	.4	0	-1
19	1.0	240	61	76	50	87	80	45	3.1	4	ŏ	
20	.4	11 50	57	89	46	80	78	40	25	.4	č	.1
21	1.3	a 70	57	1 6	51	93	71	33	3.4	.4	0	.1
22	1.6	a 5 0	46	79	48	94	73	* 30	6.5	.4	c	.1.
23	1.6	a 4 0	39	64	* 51	110	68	27	10	.4	0	.1
24	1.6	a 3C	31	65	51	1 C 4	75	25	7.6	.3	C	.1
25	1.6	a 25	37	65	51	87	145	23	5.7	3	C	.1
26	* 1.6	a 20	21	62	4 8	16	#153	21	4.7	2	C	.1
27	1.4	R 16	26	70	43	1 1	166	18	4.1	2	0	.1
28	1.4	a 15	25	36H	45	25	1 / 5	16	3.8	2.	C	.1
29	1.4	* 19	35	1 21		70	144	21	3.1	2	0	.1
30	1.4	£."	32	3 0 5		*76	1-5	21	2.5	2		.6
Total	274		2033	200	2411	1	3356	~ 1]	2199		20	
		6 C E.2		3.6 1 0		1.943		2.576	E 1 2.0	21.6		1.8
Mean	0.88	20.2	65.6	116	86.1	62.7	112	83.1	7.33	0.70	0.06	0.06
Max	1.6	150	290	731	236	110	175	240	21	2.0	12	0.2
Min	0.2	1.4	25	29	43	34	68	16	2,5	0.2	0	0
Ac-ft	54	1,200	4,030	7,160	4,780	3,850	6,660	5,110	436	43	4.0	3.6
Cal yr	1966	Mean	23.7	Max	290	Hin	0	Ac-ft	17,170			
htr vr	1967	Hean	46.0	Max	290	Min	0	Ac-ft	33, 340			

Discharge, in cubic feet per second for the year ending September, 30, 1967 ...

Discharge measurement made on this day. ** Field estimated made on this day. *

EXHIBIT _____ PAGE ____ OF ____

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

Location .-- Lat 45°20'15", long 120°03'40", in NW45W4 sec.3, T.3 S., R.22 E., on left bank about 200 ft downstream from

county bridge, 15 miles northeast of Condon, Gilliam County.

Records available .-- April 12, 1965, to Sept. 30, 1968.

Gage .-- Water-stage recorder.

99

.

Extremes .-- Maximum discharge during year not determined; no flow at times.

1965-68: Maximum recorded discharge, 832 cfs Jan. 28, 1967; no flow at times.

Remarks .- Records good except for periods of ice effect or no gage-height record, which are poor.

Revisions .-- The maximum daily discharge for water year 1967 is corrected to 731 cfs.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
Day 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17	0ct. 0.2 2 * a 2 2 a 2 2	Nov. a 0.9 a .9 a .9 a .9 a .9 a .9 a .9 a .9 a .9 a .9 a .10 a 1.1 a 1.1 a 1.2 a 1.2 a 1.2 a 1.3	Dec. a 1.4 a 1.6 a 2.0 a 2.3 * 2.8 a 2.5 a 2.5 a 2.5 a 2.2 a 2.0 a 1.5 a 1.4 a 1.6 a 2.0 a 2.3 * 2.8 a 2.0 a 2.3 * 2.8 a 2.0 a 2.5 a 2.0 a 2.5 a 2.5 a 2.0 a 2.5 a 2.5 a 2.0 a 2.5 a 2.5 a 2.0 a 2.5 a 2.5 a 2.5 a 2.0 a 2.5 a 2.5 a 2.5 a 2.5 a 2.5 a 2.0 a 2.5 a 2.5 a 2.5 a 2.5 a 2.0 a 2.5 a 2.5 a 2.5 a 2.5 a 2.5 a 2.5 a 2.5 a 1.5 a 1.6 a 1.6 a 2.0 a 2.5 a 2.5 a 2.5 a 2.5 a 2.5 a 2.5 a 1.5 a 1.5 a 1.6 a 1.6 a 1.6 a 1.8 a 1	Jan. a 7 a 6 *b 5 a 4 *b 2.5 b 3.0 b 3.5 b 4.0 c 5 c 5 c 6 c 7 c 7 c 7 c 7 c 7 c 7 c 7 c 7	Feb. 16 15 15 17 24 29 28 a 25 a 21 a 19 a 16 29 28 a 25 a 21 a 19 a 14 a 12 a 11 a 11 a 12	Mar. 37 34 29 * 27 25 24 21 21 21 21 21 21 21 21 21 21	April 1 C 9.6 9.6 9.6 9.6 9.2 8.0 7.1 6.3 6.3 5.9 5.9 5.9 5.9	May 4.2 3.8 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	June 3.1 3.1 3.1 3.2 2.8 2.4 2.2 2.4 2.0 2.0 1.7 1.9 1.7 1.5 1.5	July * 0.6 a .5 a .4 a .3 a .2 a .2 a .2 a .2 a .1 a .1 a .1 a 0 a 0 /	Aug.	Sept.
18 19	a 2 a 2	a 1.3 a 1.3	a .9	22	a 14 a 17	b 13 b 13	5.6 5.2	1.9	1.3 1.3	00		
20 21 22 23 24 25 26 27 28 29 30 31	a .2 a .3 a .4 a .5 a .5 a .6 a .6 a .6 a .6 a .1.5 a 1.4 a 1.1	a 1.3 a 1.3	a 1.0 a 1.3 a 1.6 a 2.2 a 2.6 a 4.0 a 8.0 a 17 a 25 a 15 a 10 a 8.0 a 8.0	16 25 70 46 36 30 b12 b 8 b 9 b10 b12 b14	a 25 a 120 a 280 a 90 a 70 a 55 a 50 a 45 a 40	15 14 14 13 12 12 14 16 14 13 11 10	5.2 5.6 5.6 5.9 5.6 5.6 5.6 5.6 5.6 4.8 4.5	5.2 4.2 4.5 3.8 4.2 4.8 4.8 4.8 4.8 4.8 4.5 4.2 3.8 3.4	1.3 1.1 1.0 1.1 1.1 1.1 5.5 .5 .5 .6 .6 .6			
Total Mean Max Min As-fi	1 2.2 0.39 1.5 0.2 24	34.8 1.16 1.3 0.9 69	1 2 6.0 4.06 25 0.8 250	4 9 1.8 15.9 70 2.5 975	1 1 6 2 10.1 280 11 2,300	568 18.3 37 10 1,130	2 0 5.9 6.86 10 4.5 108	1 0 5.6 3.ltl 5.2 1.9 209	4 8.6 1.62 3.1 0.5 96	3.0 0.10 0.6 0 6.0	000000000000000000000000000000000000000	0 0 0 0
Wir yr	1968 :	Mean 7.5	i Max	280	M		Ac-	n 5,	470			

EXHIBIT _3 PAGE _3_OF_13

Discharge, in cubic feet per second for the year ending September 30, 1968.

* Discharge measurement made on this day.

a No gage-height record.

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION.--Lat 45°20'15", long 120°03'40", in NWYSWY sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

PERIOD OF RECORD .-- April 12, 1965, to current year.

GAGE.--Water-stage recorder.

EXTREMES.--Current year: Maximum discharge, 1,010 cfs June 10 (gage height, 3.69 ft); minimum observed, 0.1 cfs Oct. 2

(gage height, 0.67 ft); and may have been no flow sometime Oct. 1.

Period of record: Maximum recorded discharge, 1,010 cfs June 10, 1969 (gage height, 3.69 ft); no flow at times. REMARKS .-- Records good except for periods of no gage height record, which are poor.

Discharge,	in cubic	feet p	er second	for	the year	ending	September	30,	1969	
------------	----------	--------	-----------	-----	----------	--------	-----------	-----	------	--

Day Oct. Nev. Dec. Jan. Feb. Mar. April May June July Aug. Sep 1 a 1.1 a 5 a 1.0 b 2.0 b 2.4 65 * 6.65 8.5 1.0 * 7.7 .4 3 a 1.3 a 1.8 b 2.0 b 2.6 653 4.15 7.5 7.4 7.4 .4 4 a .7 2.4 b 2.7 1.3 6.6 5.4 5.9 6.8 .4 4 a .7 2.4 b 7.0 1.3 6.5 1.4 .3 6.8 2.1 3.5 4.4 .7 .4 .3 .4 .4 .7 .4 .3 .4 .4 .7 .4 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3						The second part		1	I selected				
1 a 1 a 5 a 10 b 2.0 b 2.4 6.5 * 6.6 5 10 * 7.7 .4 3 a 1.5 a 1.8 b 2.0 b 2.6 6.5 4.15 7.5 7.4 7.4 7.4 7.4 4 a 3 a 7 2.4 b 3.0 1.5 6.8 4.4 7.5 7.4 7.4 7.4 7.4 5 a .4 a .7 2.4 b 3.0 1.5 6.8 4.4 1.5 6.8 4.4 1.5 6.8 4.4 2.1 5.3 5.6 4.4 7.7 4.4 4.5 5.9 5.6 4.4 2.1 5.3 5.0 4.6 b 2.0 4.5 7.0 4.6 5.9 6.8 1.2 7.3 3.4 2.1 2.3 5.0 4.4 2.6 2.7 7.3 3.4 2.2 3.5 4.2 3.3 3.5 4.2 3.3 3.5	Day	Uct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
$\begin{array}{c} \mathbf{s} & \mathbf{t} & $	1	a .1	a .5	a 1 0	b 2.0	b 24	65	* 665	85	10	* 7.7	.4	.3
*	2	* 2	a .8	a 1 3	b 2.0	b 24	62	542	82	8	7.7	.4	.3
3 a 3 a 3 7 2 4 b 2.0 b 3.0 6 6 2 3.90 7.0 6.5 6.8 .4 4 a .7 2 4 b 4.0 1 3.9 7 6 4 4.0 5.9 6.8 .4 7 a .4 a .7 2.3 b 7.0 .4 0 8 3 9.5 4 4 5.9 6.8 .4 1 a .5 a 5.0 .4 2 71 3 8 5 4 2.0 7.1 3.85 5 4 4 2.1 5.3 .4 4 3.9 4 2.3 5.0 .4 .4 .3 .4 .3 .4 .2 .3 .3 .4 .3 .4 .2 .3 .3 .3 .4 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	3	.3	a 1.5	a 1 8	b 2.0	b 26	65	415	75	7.4	7.4	.4.	.3
* • 2 4 b 3.7 2.4 b 3.7 1. 3.5 6.8 4.4 6 1 5.9 6.8 .4 7 a .4 a .7 2.3 b 7.0 .4 0 8.3 3.9 5 4.9 5.9 5.6 .4 1 a .4 a .7 2.3 b 7.0 .4 0 8.3 3.9 5 4.9 5.9 5.6 .4 a .5 a .5 .4 .7 1 3.0 4.1 6.5 3.7 5 3.4 4.2 7.1 3.6 4.4 2.7 4.4 .3 5 4.2 7.1 3.6 3.7 1.1 3.5 4.2 7.1 3.6 3.9 3.1 1.1 3.5 4.2 7.3 3.6 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9		a .3	a .9	*23	b 2.5	E 30	62	390	70	6.5	6.8	.4	.3
a a a a a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a c b a c		<u>a .3</u>	a .7	24	b 3.0	1. 35	68	440	61	5.9	6.8	.4	
a A * 1.1 2.3 b 2.0 4.0 0 0.3 3.3 3.5 4.4 4.4 2.1 5.3 4.4 s a 5.0 4.46 b 2.0 4.5 7.0 3.8 0.5 3.4 4.2 7.1 3.4 1.27 4.4 3.1 11 a .6 a 3.5 1.4.5 6.0 1.11 7.0 3.20 3.1 a 3.5 4.2 .3 11 a .6 a 4.5 6.2 1.30 2.8 2 7.1 2.6.8 2.0 3.9 .3 <td>6</td> <td>a .4</td> <td>a .7</td> <td>24</td> <td>b 4.0</td> <td>10</td> <td>18</td> <td>446</td> <td>24</td> <td>5.9</td> <td>6.8</td> <td>••</td> <td></td>	6	a .4	a .7	24	b 4.0	10	18	446	24	5.9	6.8	••	
a a b 20 45 70 350 36 42 50 44 a a a 42 71 b 30 44 65 375 34 127 44 34 11 a a a 43 b 60 111 70 320 31 a 35 42 33 12 a 10 a 45 62 130 282 71 266 28 a 20 39 3 33 44 35 442 33 34 17 3.6 33 36 42 33 34 17 3.6 33 36 42 33 34 17 16 36 22 20 80 22 20 80 22 43 34 17 16 36 22 20 80 22 43 35 41 36 33 4 12 14 130 17 22 20 20 20 20 2		8.4	a ./	20	b 90	. 40	71	385	49	21	5.0	.4	
in a <		a .4	- 50	46	b 20	45	70	350	30	+ 27	5.0	.4	
11 a b a 5.6 0 1 1 70 520 51 a 5.5 42 33 11 a 1.0 a 4.5 6.2 1.30 2.96 2.8 a 2.0 3.9 .3 13 a 1.0 a 4.5 6.2 1.30 2.82 7.1 2.6.8 2.5 a 1.4 .3.6 .3 14 a .9 a 4.5 4.5 1.0 7.6 1.2.8 8.0 2.2.8 2.5 a 1.4 .3.6 .3 16 a .9 a 4.5 1.0 7.6 1.2.8 1.6.2 2.6 a 1.0 2.2 2.0 a 9.0 2.2 .3 .3 18 a .9 a 1.0 2.6 7.1 1.0.1 2.4.2 1.55 .3 a 6.2 1.5 .3 .4 19 a .9 a.1.0 .2.6 7.1 1.0.1 2.4.2 1.55 </td <td>10</td> <td>a .5</td> <td>a 4.5</td> <td>71</td> <td>b 30</td> <td>41</td> <td>65</td> <td>375</td> <td>34</td> <td>127</td> <td>4.4</td> <td></td> <td></td>	10	a .5	a 4.5	71	b 30	41	65	375	34	127	4.4		
it a 2.0 a 5.0 8 5 1 0 5 4 4 2 6 6 2 9 6 2 8 a 2 0 3.9 3.3 it a .9 a 4.0 5 2 1 7 1 2 0 4 8 0 2 2 8 2 5 a 1 4 3.6 3 is a .9 a 4.5 4 5 1 0 7 1 4 8 1 3 0 1 7 7 2 66 a 1 2 3.3 3 is a .9 a 4.5 4 5 1 0 7 1 4 8 1 3 0 1 7 7 2 66 a 1 2 3.3 3 is a .9 a .43 4 5 1 0 7 1 4 8 1 3 0 1 7 7 2 66 a 1 2 3.3 3 is a .9 a .10 2 6 7 1 1 0 1 2 4 2 1 8 1 6 3 2 2 2 4 3.0 3 is a .9 a .0 b 2 0 b 3 2 7 8 3 5 8 1 3 5 2 5 6 2 1.5 3 3 * is a .9 a .0 b 2 0 b 3 2 7 8 4 8 1 1 3 2 1 6 1 0 1 3 3	11	a .8	a 5.4	145	b 60	111	70	320	21	a 35	4.2	.3	
iii a 1.0 a 4.5 6.2 1.30 2.82 7.1 2.68 2.6 a 1.7 3.6 3 iis a .9 a 3.5 4.5 1.19 1.65 8.9 1.9 2.8 a 1.2 3.3 3 iis a .9 a 4.5 4.5 1.07 1.48 1.00 1.72 2.6 a 1.0 2.33 3 iis a .9 a 4.5 4.5 1.07 1.48 1.00 1.72 2.6 a 1.0 2.25 .3 iis a .9 a 1.2 2.9 8.0 1.5 2.7 4 1.81 4.2 2.0 2.2 4.3 2.2 4.3 iii a .9 a 1.2 2.9 8.0 1.5 2.7 4 1.81 ± 2.5 3.3 4 6.8 1.7 3.3 iii a .9 a 1.0 2.6 7.1 1.01 2.4.2 ± 1.55 3.3 4 6.8 1.7 3.3 5 iii a .70 b 1.5 3.6 7.6 <	12	a 2.0	a 5.0	85	105	442	66	296	28	a 20	3.9	.3	.3
14 a. 9 a. 4.0 5.2 1.7 1 2.0.4 8.0 2.2 8 a. 1.4 .3.6 .3 15 a. 9 a. 4.5 4.5 1.0.7 1.4.8 1.30 1.7.2 2.6 a. 1.4 .3.6 .3 17 a. 9 a. 4.5 4.5 1.0.7 1.4.8 1.30 1.7.2 2.6 a. 1.0 2.6 .3 18 a. 9 a. 8.0 3.4 7.6 1.2.8 4.3.6 2.2.2 2.0 a. 9.0 2.2.2 *.3 19 a. 9 a.10 .2.6 7.1 1.0.1 2.4.2 1.5.5 3.3 *.6.6 1.7 .3 11 a. 9 a. 9 a.10 .2.6 7.1 1.0.1 2.4.2 1.5.5 3.3 *.6.6 1.7 .3 .3 *.7 12 a. 8 a.7.0 b.15 3.6 7.8 3.5.8 1.3.5 2.5 6.2 1.3 .3 *.7 13 a.7 a.4.0 b.3.0 b.2.8 6.2 4.9.1 1.2	13	a 1.0	a 4.5	62	130	282	71	268	26	a 17	3.6	.3	.3
is a. g a. 3.5 4.5 1 1 9 1 6.5 8.9 1 9 9 2.8 a. 12 3.3 .3 is a. 9 a. 5.6 3.8 9.9 1 4.0 2.18 1 6.3 2.2 a. 9.0 * 2.5 .3 is a. 9 a. 12 2.9 8.0 3.4 7.6 1 2.8 2.7 4.18 1.63 2.2 a. 9.0 * 2.5 .3 is a. 9 a. 12 2.9 8.0 3.4 7.6 1.2.8 2.7 4.18 1.81 * 2.7 a.80 2.0 .3 .3 is a. 9 a. 9.0 1.2 * 6.5 0.1 2.8.2 * 1.40 3.0 6.2 1.5 .3 it a. 8 a.7.0 b.15 3.6 7.8 3.58 1.35 2.5 6.2 1.5 .3 .4 it a. 8 a.7.0 b.2.0 b.2.4 6.5 5.1 3.2 6.2 1.8 1.5 9.2 9.3 3.3 it a. 4 a	14	a .9	a 4.0	52	171	204	80	228	25	a 14	. 3.6	.3	3
is a. 9 a. 4.3 4.5 1.6 7 1.4 1.7 2.1 8 1.6 3 2.2 3.3 3.3 is a. 9 a. 0.0 3.4 7.6 1.2.8 4.3.6 2.3.2 2.0 a. 9.0 2.2.2 +.3.3 is a. 9 a.10 .2.6 7.1 1.0.1 2.42 1.5 3.3 * 6.8 1.7 .3 is a. 9 a.9.0 1.2 * 6.5 9.1 2.4.2 1.5 3.3 * 6.8 1.7 .3 it a. 8 a.7.0 1.2 * 6.5 9.1 2.8.2 * 1.40 3.0 6.2 1.5 .3 it a. 8 a.7.0 b.2.5 b.3.0 6.0 4.8.1 1.3.5 2.5 6.2 1.5 .3 * it a.7 a.4.0 b.2.0 b.2.8 6.2 * 3.7.6 1.4.8 1.4.6 1.0 1.3 .3 it a.7 a.4.0 b.2.6 5.3 0.6.0 4.9.5 1.8 <t< td=""><td>15</td><td>a .9</td><td>a 3.5</td><td>45</td><td>119</td><td>165</td><td>89</td><td>199</td><td>2.8</td><td>a 12</td><td>3.3</td><td>.3</td><td>.3</td></t<>	15	a .9	a 3.5	45	119	165	89	199	2.8	a 12	3.3	.3	.3
17 a. 9 a. 7.0 3.4 7.6 1.2.6 4.3.6 2.3.2 2.2.2 a. 9.0 * 2.2.3 .3.3 18 a. 9 a. 1.2 2.9 8.0 1.1.5 2.7.4 1.8.1 * 2.7 a. 8.0 2.0 .3.3 19 a. 9 a. 1.0 .2.6 7.1 1.0.1 2.4.2 1.5.5 3.3 * 6.8 1.7.7 .3.3 11 a. 9 a. 9.0 1.2 * 6.5 9.1 2.8.2 * 1.4.0 3.0 6.2.2 1.5 .3 12 a. 8 a. 7.0 b.1.5 3.6 7.8 3.5.8 1.3.5 2.5 6.2 1.5 .3 13 a. 7 a. 5.0 b.2.0 b.3.2 7.6 4.4.8 1.4 1.2 1.1 .3 14 a. 7 a. 3.0 b.1.5 b.2.6 6.2 * 3.7 6.3 2.2.7 1.3.3 * 15 a. 7.7 a. 3.0 b.2.4 6.2 * 3.7 6.6 1.4.8 1.4.4 1.2 1.1.3 .3	16	a .9	a 4.5	45	107	14 R	130	172	26	a 10	2.8	.3	.4
18 a9 a. 0.0 2.4 7.6 1.1.5 2.7.4 1.8.1 2.7.6 1.8.1 2.7.6 a. 8.0 2.2.0 3.3 20 a9 a. 10 2.6 7.1 1.0.1 2.4.2 1.5.5 3.3 * 6.8 1.7.7 .3 zt a9 a. 7.0 b.1.5 3.6 7.8 3.5.8 1.3.5 2.5 6.2 1.5.5 .3 * zt a8 a. 5.0 b.2.0 b.3.2 7.8 4.8.1 1.3.2 1.9 7.7 1.3 .3 * zt a8 a. 5.0 b.2.5 b.3.0 6.0 4.9.5 1.1.8 1.5 .9.2 .9 .3 * zt a7 a. 4.0 b.3.0 b.2.8 6.2 * 3.7.6 1.4.8 1.4 1.2 1.1.1 .3 .3 zts a7 a. 4.0 b.5.0 b.2.6 6.0 4.9.5 1.0.6 .9 .3 zts a4 a. 3.0 b.7.0 b.2.4 * 6.5<	17	a .9	a 2.6	30	99	1 4 0	210	2 3 2	22	a 9.0	* 2.5	.3	.4
iso a. g a. 10 2.6 7.1 1.0.7 2.4.2 1.5.7 1.3 1.3 ii a. g b. g c <thc< th=""> c <thc< th=""> <thc< th=""></thc<></thc<></thc<>	18	a .9	a 0.0	20	0	115	274	181	\$ 27	a 9.0	2.2	* .3	3.0
10 a 9 a 9 1	19	4 .9	a10	26	71	101	242	155	33	* 68	1.7		2.0
11 a .8 a 7.0 b 1.5 3.6 7.8 3.5.8 1.3.5 2.5 6.2 1.5 .3. * 12 a .8 a 5.0 b 2.0 b 3.2 7.8 4.81 1.3.5 2.5 6.2 1.5 .3. * 13 a .7 a 4.0 b 3.0 b 2.8 6.2 * 1.6 7.7 1.3. .3. .3 * 14 a .7 a 4.0 b 3.0 b 2.8 6.2 * 3.7.6 1.4.8 1.4 1.2 1.1 .3 .3 * 15 a .4 a 3.0 b 8.0 b 2.5 5.3 6.3.2 1.00 1.8 1.5 .9 .3	- 21	a .7	a 9.0	12	* 65	91	282	* 1 4 0	30	6.2	1.5		1./
13 a .6 a 5.0 b 20 b 3.2 7.8 4.81 1.92 1.0 7.7 1.3 .3 14 a .7 a 4.0 b 30 b 2.8 6.2 * 3.7 6 1.48 1.6 1.0 1.3 .3 15 a .7 a 4.0 b 2.0 1.48 1.6 1.0 1.3 .3 15 a .7 a 4.0 b 2.0 1.48 1.6 1.0 1.3 .3 17 a .4 a 3.0 b 8.0 b 2.5 5.3 6.32 10.0 1.8 6.6 .9 .3 18 a .4 a 3.0 b 7.0 b 2.4 6.5 5.5 1.92 1.9 8.0 .8 .3 19 a .4 a 7.0 b 2.4 7.3 6 10.0 1.4 8.6 6.6 .3 .3	22	a .8	a 7.0	b15	3.6	78	358	135	25	6.2	1.5	3	* 1 1
11 a .7 a 5.0 b 30 60 406 148 16 10 1.3 .3 15 a .7 a 4.0 b 30 b 28 62 *376 148 14 12 1.1 .3 .3 16 a .5 a 3.0 b 15 b 26 600 495 118 15 92 .9 .3 17 a .4 a 3.0 b 7.0 b 24 * 65 551 92 19 8.0 .8 .3 18 a .4 a 4.0 b 5.0 b 24 * 65 551 92 19 8.0 .8 .3 19 a .4 a 7.0 b 24 794 12 .4 .3 .3 19.9 12 8.9 9 8.4.9 1.4.3 7.5 2.7.3 1 8.1 72 7.9 55 1.0 5 7 4.4 5.9	23	· a .8	a 5.0	620	b 32	78	481	1 3 2	19	7.7	1.3		1.1
15 a .7 a 4.0 b 30 b 28 6 2 * 37 6 1 4 8 1 4 1 2 1.1 .3 16 a .5 a 3.0 b 15 b 26 60 495 1 1 8 15 92 .9 .3 17 a .4 a 3.0 b 8.0 b 25 53 63 2 100 18 15 92 .9 .3 18 a .4 a 3.0 b 8.0 b 25 53 63 2 100 18 16 6.6 .9 .3 29 a .4 a 4.0 b 2.4 # 65 55 1 92 19 6.0 .8 .3 30 a .4 a 1.9 b 2.4 7.94 100 14 8.6 6 .3 31 a .4 a a 1.7 2.731 8.172 7.855 1.057 4.45.9 10.4.4 10.2<	24	a .7	a 5.0	b25	b 30	60	406	148	16	10	1.3	.3	9
16 a .5 a 3.0 b 1.5 b 2.6 6.0 4.9.5 1.1.8 1.5 9.2 .9 .3 17 a .4 a 3.0 b 8.0 b 2.5 5.5 1.1.8 1.5 9.2 .9 .3 18 a .4 a 3.0 b 7.0 b 2.4 # 6.5 5.5.1 9.2 1.9 8.0 .8 .3 19 a .4 a 0.0 b 2.4 # 6.5 6.5 1.25 1.6 8.0 .8 .3 30 a .4 a 7.0 b 2.4 7.3.6 1.00 1.4 8.6 .6 .3 31 a .4 0.0 b 2.4 7.3.6 1.00 1.4 8.6 .6 1.3 32 a .4 a 7.5 2.7.3.1 8.1.7.2 7.8.5.5 1.0.5.7.7 4.4.5.9 1.0.4.4 10.2 2 2 <t< td=""><td>25</td><td>a .7</td><td>a 4.0</td><td>b 3 O</td><td>b 28</td><td>6 ?</td><td>* 376</td><td>148</td><td>14</td><td>12</td><td>1.1</td><td>.3</td><td>.9</td></t<>	25	a .7	a 4.0	b 3 O	b 28	6 ?	* 376	148	14	12	1.1	.3	.9
17 a .4 a 3.0 b 8.0 b 2.5 5.3 6.3.2 10.0 1.8 6.6 .9 .3 18 a .4 a 3.0 b 7.0 b 2.4 # 6.5 5.51 9.2 1.9 1.9 8.0 .8 .3 29 a .4 a 4.0 b 5.0 b 2.4 # 6.5 6.6 1.2 1.6 8.0 .8 .3 30 a .4 a 7.0 b 2.4 7.9.4 1.2 1.6 8.0 .6 .3 31 a .4 1.9 b 2.4 7.9.4 1.2 .4 .3 Total 1.9.9 1.2 8.9 9.8.4.9 1.4.3 7.5 2.7.3 1 8.1 7.2 7.8.5 5 1.0 5.7 4.4 5.9 1.0 4.4 10.2 2 Mean 0.64 4.30 31.8 46.4 97.5 264 262 34.1 14.9 3.37 0.33 0.3<	26	a .5	a 3.0	b15	b 26	60	495	118	15	92	.9	.3	.9
13 a .4 a 3.0 b 7.0 b 2.4 # 6.5 5.5 1 9.2 1.9 8.0 .8 .3 13 a .4 a 4.0 b 5.0 b 2.4 7.3 6.96 1.2.5 1.6 8.0 .8 .3 30 a .4 a 7.0 b 2.4 7.3 6.96 1.2.5 1.6 8.0 .8 .3 30 a .4 a 7.0 b 2.4 7.3 6.10.0 1.4 8.6 .4 .3 31 a .4 a 7.5 2.7 3.1 8.1 7.2 7.8 5.5 1.0.5 7 4.4 5.9 1.0.4.4 1.0.2 2 Mean 0.64 4.30 31.8 46.4 97.5 2.64 262 34.1 1.4.9 3.37 0.33 0.3 Mean 0.1 0.5 1.9 2.0 2.4 62 92 12 5.9 0.4 0.3 0.3 0.3	27	a .4	a 3.0	b 8.0	b 25	5)	632	100	18	(8.6)	.9	.3	.9
13 a .4 a 4.0 b 2.4 0 9 6 1 2.5 1 6 8.0 .8 .3 30 a .4 a 7.0 b 4.0 b 2.4 7 7 6 1 0.0 1.4 8.6 .6 .3 .3 31 a .4 1.9 b 2.4 7 7.9.4 1 2 .4 .3 Total 1.9.9 1.2.8.9 9.8.4.9 1.4.3 7.5 2.7.3.1 8.1 7.2 7.8.5.5 1.0.5.7 4.4.5.9 1.0.4.4 1.0.2 2 Mean 0.64 4.30 31.8 46.4 97.5 2.64 2.62 34.1 1.4.9 3.37 0.33 0.37 0.33 0 Max 2.0 1.2 1.4.2 7.94 665 85 12.7 7.7 0.4 0.3 0 Min 0.1 0.5 1.9 2.0 2.4 62 92 12 5.9 0.4 0.3 <td>2.8</td> <td>a .4</td> <td>a 3.0</td> <td>b 7.0</td> <td>b 24</td> <td>* 65</td> <td>221</td> <td>92</td> <td>19</td> <td>8.0</td> <td>.8</td> <td>.3</td> <td>.9</td>	2.8	a .4	a 3.0	b 7.0	b 24	* 65	221	92	19	8.0	.8	.3	.9
30 a .4 a .3 Total 1 9.9 1 2 8.9 9 8 4.9 1.4 3 7.5 2.7 3 1 8.1 7 2 7.8 5 5 1.0 5 7 4 4 5.9 1 0 4.4 1 0.2 2 0 .33 0 .33 0 .33 0 .33 0 .33 0 .33 0 .33 0 .4 0 .3 0 .4 0 .3 0 .4 0 .3 0 .4 0 .3 0 .4 0 .3 0 .4 0 .3 0 .4 0 .3 0 .4 0 .3 0	29	a .4	a 4.0	b 5.0	D 24		776	120	10	8.0	.8	.3	.9
11 a .4 1.9 0 2.4 1.9.4 1.2 .4 .3 Total 1.9.9 1.2.8.9 9.8.4.9 1.4.3 7.5 2.7.3 1 8.1.7 7.8.5 1.0.5 7 4.4.5.9 1.0.4.4 1.0.2 2 Mean 0.64 4.30 31.8 46.4 97.5 264 262 34.1 14.9 3.37 0.33 0.3 Max 2.0 12 145 171 442 794 665 85 127 7.7 0.4 0.3 0.3 Min 0.1 0.5 1.9 2.0 24 62 92 12 5.9 0.4 0.3 0.4 Min 0.1 0.5 1.9 2.0 2.4 62 92 12 5.9 0.4 0.3 0.3 Cal yr 1969 : Mean 10.2 Max 280 Min 0 Ac-ft 7,380 Wir yr 1969 : Mean 62.9 Max 794 Min 0.1	30	a .4	a 7.0	0 4.0	b 24		794	100	1 2	0.0	.0	.J	.9
Total 1 9.9 1 2 8.9 9 8 4.9 1.4 3 7.5 2.7 3 1 8.1 7 2 7.8 5 5 1.0 5 7 4 4 5.9 1 0 4.4 1 0.2 2 Mean 0.64 4.30 31.8 46.4 97.5 264 262 34.1 14.9 3.37 0.33 0.33 0.33 0.44 3.37 0.33 0.44 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 20 20 2.850 5.420 16.210 15.580 2.100 884 207 20<	11	a .4		1.9	0 24		1 2 4		12		.4		
Mean 0.64 4.30 31.8 46.4 97.5 264 262 34.1 14.9 3.37 0.33 0.33 Min 0.1 0.5 1.9 2.0 24 62 92 12 5.9 0.4 0.3 0.37 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0	Total	1 9 9	128.9	984.9	1.4 3 7.5	2.7 3 1	8.172	7.8 5 5	1.0 5 7	4 4 5.9	104.4	10.2	21.8
Mix 2.0 12 145 171 442 794 665 85 127 7.7 0.4 0.3 Min 0.1 0.5 1.9 2.0 24 62 92 12 5.9 0.4 0.3 0.3 Ac-ft 39 256 1.950 2.850 5.420 16.210 15.580 2.100 884 207 20 <td< td=""><td>Mean</td><td>0.64</td><td>4.30</td><td>31.8</td><td>46.4</td><td>97.5</td><td>264</td><td>262</td><td>34.1</td><td>14.9</td><td>3.37</td><td>0.33</td><td>0.73</td></td<>	Mean	0.64	4.30	31.8	46.4	97.5	264	262	34.1	14.9	3.37	0.33	0.73
Min 0.1 0.5 1.9 2.0 24 62 92 12 5.9 0.4 0.3 Ac-ft 39 256 1,950 2,850 5,420 16,210 15,580 2,100 884 207 20 Cal yr 1968 : Mean 10.2 Max 280 Min 0 Ac-ft 7,380 Wir yr 1969 : Mean 62.9 Max 794 Min 0.1 Ac-ft 45,560 * Discharge measurement made on this day. a No gage height record. EXHIBIT 3 b< Stage-discharge relation affected by ice. 5 4 0 0 0	Max	2.0	12	145	171	442	794	665	85	127	7.7	-0.4	3.0
Ac-ft 39 256 1,950 2,850 5,420 16,210 15,580 2,100 884 207 20 Cal yr 1968 : Mean 10.2 Max 280 Min 0 Ac-ft 7,380 Wir yr 1969 : Mean 62.9 Max 794 Min 0.1 Ac-ft 45,560 * Discharge measurement made on this day. a No gage height record. PAGE 40F b Stage-discharge relation affected by ice. 5 5 7 0	Min	0.1	0.5	1.9	2.0	24	62	92	12	5.9	0.4	0.3	0.3
Cal yr 1968 : Mean 10.2 Max 280 Min 0 Ac-ft 7,380 Wir yr 1969 : Mean 62.9 Max 794 Min 0.1 Ac-ft 45,560 * Discharge measurement made on this day. a No gage height record. b Stage-discharge relation affected by ice. EXHIBIT 3 PAGE 4 OF	Ac-ft	39	256	1,950	2,850	5,420	16,210	15,580	2,100	884	207	20	43
Cal yr 1968 : Mean 10.2 Max 280 Min O Ac-ft 7,380 Wir yr 1969 : Mean 62.9 Max 794 Min 0.1 Ac-ft 45,560 * Discharge measurement made on this day. a No gage height record. b Stage-discharge relation affected by ice. EXHIBIT 3 PAGE 4 OF		· · · · · ·	and a set		and an and	and a service second	and state of the later of the		which the ball at			Sal and Artista	· · · · · · · ·
Wir yr 1969 : Mean 62.9 Max 794 Min 0.1 Ac-fi 45,560 * Discharge measurement made on this day. a No gage height record. b Stage-discharge relation affected by ice. EXHIBIT 3 PAGE 4 OF	Cal yr	1968 :	Mean 10	.2 Ma	* 280) M	In 0	Ac-	n 7,38	0			
* Discharge measurement made on this day. a No gage height record. b Stage-discharge relation affected by ice. EXHIBIT PAGE _4OF.	Wir gr	1969 :	Mean 62	.9 Ma	× 794	MU	n 0.	1 Ac-	45,56	0	-		7
* Discharge measurement made on this day. a No gage height record. b Stage-discharge relation affected by ice. PAGE <u>4</u> OF.											FXI	IIRIT	2
a No gage height record. b Stage-discharge relation affected by ice. PAGE <u>4</u> OF.	* Dis	charge mea	surement m	ade on this	s day.						LAI	IIDIT _	Concentration of the
b Stage-discharge relation affected by ice.	a No	gage heigh	it record.								PAC	F 4	NE 13
	b S'ta	ge-dischar	ge relatio	n affected	by ice.						inc	the main	01

b Stage-discharge relation affected by ice.

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION .-- Lat 45°20'15", long 120°03'40", in NW±SW± sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

PERIOD OF RECORD .-- April 12, 1965, to current year.

CAGE.--Water-stage recorder.

EXTREMES.--Current year: Maximum discharge, 2,420 cfs Jan. 23 (gage height, 4.73 ft); minimum, 0.1 cfs Aug. 25, 26

(gage height, 0.73 ft).

Period of record: Maximum recorded discharge, 2,420 cfs Jan. 23, 1970 (gage height, 4.73 ft); no flow at times. REMARKS. -- Records good.

LI p M d

97

			Discha	ige, in cub	ic reet per	Second for	the year of	ending septe	ember 30, 19	10		
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	0.9	3.3	4.4	B.6	157	67	93	4 3	7.5	2.6	0.5.	0.2
2	.9	3.3	4.2	8.0	138	74	87	39	6.8	2.6	.5	.3
1	1.1	3.3	3.9	0.2	128	12	79	1 35	2.8	2.4	.6	.3
		3.0	4.2	4.4	101	7 2	72	1 2 2	4.0	2.9	.5	.F.
		4.4	4.4	7.1	112	07	74	20	4.1	2.2	4	
7	1.1	4.7	4.7	7.1	203	355	76	29	4.8	1.6	.4	.8
8	1.1	4.7	4.4	8.0	192	350	72	27	6.5	1.6	.9	1.0
9	1.1	4.7	4.4	22	172	234	67	35	7.5	1.6		1.2
10	1.1	4.4	4.4	78	154	186	72	39	-8-0	1.4	.4	12
11	1.1	4.4	5.0	52	148	160	76	35	8.4	1.2	.3	12
12	1.1	4.4	5.6	121	145	157	67	33	8.4	1.2		12
13	.9	4.4	5.9	53	365	157	60	36	10	· 1.4	.3	1.2
14	.9	4.4	6.2	28	305	217	26	31		1.2	.2	1.4
-15		4.4	6.5	60	242	281	22	26		1.0	.2	1.4
10	1.5	44	6.8	60	317	224	47	20	61	1.0	.2	1.4
18	15	* 4.4	77	157	228	189	4 3	19	1.5	.8	* .2	1.4
19	1.3	4.4	8.0	232	178	160	46	18	6.1	.0	2	1.4
20	1.3	4.4	10	*332	160	145	48	16	5.5	* 6	-2	1.4
21	1.3	4.2	21	542	145	132	* 46	14	4.4	.5		1.4
22	1.3	4.2	34	630	1 3 0	120	4 3	*13	* 3.5	.5		1.0
23	. 1.3	4.2	* 2 8	1.0 9 0	114	112	4 1	12	3.2	.6	.1	* 1.6
24	1.5	4.2	21	1.660	105	105	39	11	3.2	.6	.1	1.6
25	1.5	4.4	17	640	97	99	40	(9.8)	2.9	.8	.1	1.6
26	1.7	4.4	11	680	91	91	42		2.0	.8	.1	1.6
27	* 2.0	4.4	12	*465	85	9 1	45	7.5	2.5	1.0	.1	1.6
28	2.4	4.4	11	325	0 / .	8 9	45	8.0	2.6	.8	.1	1.6
10	2.0	4.4	10	245		91	45	8.4	2.9	.8	.1	1.4
11	1.0		9.2	200		107		8.4		.0	-2	1.4
	7.0						THE PROPERTY			0.	.2.	
Total	4 3.7	1 2 8.3	301.4	8.182.2	4.6 2 3	4.6 3 3	1.7 3 9	7 0 6.5	179.9	3 8.1	8.0	3 6.2
Mean	1.41	4.28	9.72	264	165	149	58.0	22.8	6.00	1.23	0.26	1.21
Max	3.0	4.7	34	1,660	365	355	93	• 43	12	2.9	0.6	1.6
Min	0.9	3.3	3.9	4.4	85	67	39	7.5	2.6	0.5	0.1	0.2
Ac-ft	.87	254	598	16,230	9,170	9,190	3,450	1,400	357		16	72
Cal	1969 :	Mean 61.	1 Ma	794		0.1	Ar	ft 44 25	0			
Wir Tr	1970 :	Mean 56.	5 Ma	1,660	Mi	n 0.1	Ac	11 40.90	0	-		3
				and the second						FXH	IBIT	2
+ D!-	charge me	asurement m	ade on this	day.						En contra		
DIS		Cardel Control Control Control Control								PAG	- 5	DF/3
										110	And an and a second	

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION .-- Lat 45°20'15", long 120°03'40", in NWESWE sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

DRAINAGE AREA. -- 350 sq mi.

PERIOD OF RECORD. -- April 12, 1965 to current year.

GAGE .-- Water-stage recorder.

AVERAGE DISCHARGE.--6 years (1965-71), 37.7 cfs (27,310 acre-ft per year).

EXTREMES. -- Current year: Maximum discharge, 774 cfs Jan. 20 (gage height, 3.52 ft); no flow Aug. 6-27.

Period of record: Maximum recorded discharge, 2,420 cfs Jan. 23, 1970 (gage height, 4.73 ft); no flow at times. REMARKS. -- Records good.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	1.4	2.4	11	12	117	30	142	. 58	20	2.6	0.1	0.
2	1.4	2.4	13	6.8	101	25	133	54	22	2.3	.1	
3	1.4	2.6	13	b 6.0	77	33	126	50	18	1.8	.1	• •
4	1.2	2.6	1 1	b 5.4	74	30	122	44	18	1.5	.1	
5	1.2	2.9	11	b 5.0	59	25	145	40	16	1.3	.1	
6	1.2).2	11	b 5.8	4 4	25	126	38	14	1.3	0	
7	1.4	3.8	1 9	ь 7.0	. 43	28	124	34	12	1.0	0	
	1.6	4.1	4 8	610	4 3	24	103	30	11	.9	0	
9	1.6	4.1	39	1 3	43	26	99	27	10	1.0	0	
10	1.6	4.1	29	24	48	25	97	25	10	2.0	0	
11	1.4	5.8	24	33	67	2 9	90	22	10	2.0	0	
12	1.4	5.8	20	29	6 2	4 4	84	20	10	1.5	0 .	
13	1.4	6.5	15	2 2	60	50	76	22	9.6	1.0	0	
14	1.4	6.5	18	2.8	59	43	69	23	8.3	.8	0	
15	1.4	6.5	18	32	67	.4 3	65	. 21	7.4	· .8	0	
16	1.4	* 5.8	18	8 9	64	37	60	22	6.7	.7	0	
17	1.4	5.8	16	480	54	34	65	20	5.0	.7	0	
18	1.4	6.5	1 1	610	50	* 32	70	18	6.7	.7	0	
19	1.4	6.5	12	574	46	32	65	17	1.1 8	.6	0	
20	1.6	6.1	14	518	. 4 3	33.	* 58	16	7.4	* :6	0	
21	1.6	6.8	* 13	232	JB	37	69	16	5.6	.5	0	
22	1.6	5.5	1 3	158	* 40	4 8	93	15	5.0	.4	0	
21	1.6	6.1	12	1 3 1	4 3	140	103	14	(33)	.4	0	
24	1.6	11	12	113	4 4	3 3 0	101	12	2.0	.4	0	
25	1.8	16	12	99	4 3	276	9 ?	* 12	* 3.6	.3	0	
26	1.8	16	9.8	* 92	10	*5 0 0	91	18	J.J	.3	0	
27	2.0	13	12	90	35	310	8 3	27	3.3	.3	0	
28	* 2.0	11	12	86	30	216	74	23	3.3	.2	.1	
29	2.0	11	12	79		219	69	20	3.6	.2	.1	
30	2.0	11	11	83		216	6 ?	12	3.3	.2	.1	
11	2.2		12	111		177		14		.1	.1 -	
	4 8 4	2014	5018	17 0	1524	22.2.4	2758	784	2726	284		
al		2 0 1 .4		and to water		3.116	6,1 7 0	104	2 . 2.0	2 0.4	0.9	14.
na:	1.56	6.71	16.2	122	54.4	101	91.9	25.3	9.10	0.92	0.03	0.4
IX	2.2	16	48	610	117	500	145	58	22	-2.6	0.1	0.
	1.2	2.4	9.8	5.0	30	24	58	12	3.3	0.1	0	0.
-ft	96	399	995	7,510	3,020	6,180	5,470	1,560	541	56	1.8	2
77	1970 : *	fean 57	.3 Mas	1.66	0 Mir	0.1	Ac-ft	41.4	50			
1		(ean	7 Mar		o Mir		Ac.ft	75.0	150			

Discharge measurement made on this day.
 b Stage-discharge relation affected by ice.

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION .-- Lat 45°20'15", long 120°03'40", in NW15W1 sec.3, T.3 5., R.22 E., Gilliam County, on left bank about 200 ft

downstream from county bridge, and 15 miles northeast of Condon.

DRAINAGE AREA. -- 350 sq mi.

PERIOD OF RECORD. -- April 12, 1965 to current year.

GAGE .-- Water-stage recorder.

AVERAGE DISCHARGE.--7 years (1965-72), 41.6 cfs (30,140 acre-ft per year).

EXTREMES .-- Current year: Maximum discharge, 12,500 cfs June 8 (gage height, 8.67 ft); no flow at times.

Period of record: Maximum recorded discharge, 12,500 cfs June 8, 1972 (gage height, 8.87 ft); no flow at times. REMARKS. -- Records good.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	8.0	2.0	4 3	b 1 8	544	27A	8 3	4 0	6.8	a 0.5	O	С
2	.7	2.0	34	b 17	4 5	218	78	39	6.1	a .5	0	0
3	.7	2.0	32	16	45	395	74):	6.1	a .5	2	0
4	.7	2.3	28	15	60	294	72))	6.1	a .5	0	0
5	.7	2.3	28	516	8 0	290	78	28	6.1	a .5	0	С
6	.7	2.3	147	b 1 A	88	* 314	6 B	25	2.5	a .6	0	0
7	.6	2.6	101	P 2 5	86	266	8 ?	23	6.4	a .7	0	0
	.6	2.6	69	27	* 90	222	74	30	1.200	a 1.0	0	0
9	.6	2.6	6.0	b 2 6	6 8	218	66	4 5	3.640	a .8	0	0
10	.6	2.8	650	26	6 2	298	60	41	a 50	a .7	0	0
11	.6	3.1	b 4 5	* 27	55	3 3 0	57)6	a 20	a .6	0	0
12	.7	3.9	b 4 2	b 27	55	390	59	29	a 10	a * .6	0	0
13	.7	4.3	b40	b 27	. 72	550	64	25	a 8.0	a .6	0	0
14	.7	4.3	b 3 9	b 28	9 ?	4 3 6	72	22	a 6.0	a .5	0	0
15	.8	4.6	b 3 R	b 28	月 4	310	86	19	a + 5.0	a .5	0	0
16	.8	5.0	* 38	b 29	145	278	9 ?	1.8	3.8	a .5	0	0
17	.9	5.3	35	31	270	266	98	16	3.2	a .4	0	0
8	.9	* 5.C	37	34	278	250	90	17	2.2	a .4	0	0
9	1.0	5.0	38	74	258	212	84	18	1.5	.4	0.6	0
10	* 1.C	5.0	38	148	3 3 5	185	78	16	1.0	.5	.7	0
1	1.0	5.0	37	687	250	167	74	10	1.3	.6	1.1	0
2	1.3	5.0	35	4 2 5	212	158	7?	33	.8	.5	.7	0
3	1.5	5.3	4 6	273	185	161	66)2	.7	.5	.6	0
4	1.5	5.6	50	179	155	142	6 ?	* 25	.8	.5	* .5	
5	1.5	6.3	50	142	1 3 5	128	59	23	.8	.5	.1	
6	1.3	7.9	50	96	126	116	55	19	.6	.4	0	*
7	1.3	20	38	43	128	108	51	16	.6	.4	0	
	1.5	28	27	6 4 2	350	103	47	13	.6	.4	0	
9	1.3	24	623	6 4 1	4 2 5	* 94	45	11	.5		0	
0	1.5	43	b 2 1	641		88	4 4	9.5	a .5	.1	0	
1	2.0		620	642		84		7.7		0	0	
	30.5	219.1	1.379	2.6 6 2	4.290	7.3 4 8	2.099	7 5 8.2	5.001.1	15.5	4.3	4
	0.98	7.30	44.5	85.9	148	237	70.0	74.5	(167)	0.50	0.14	0
	2.0	43	147	687	425	550	98	45	3.650	1.0	1.1	0.
	0.6	2.0	20	15	44	84	44	7.7	5,040	0		
	60	435	2.740	5,280	8.510	14.570	4 160	1.500	9,920	11	A S	8
IN	00	455		51100	01010		4,100	1,000	1,120	31	0.5	0

* Discharge measurement made on this day.

a No gage height record. b Stage-discharge relation affected by ice.

96

OFFICE OF STATE ENGINEER-WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14-0474. Rock Creek above Cayuse Canyon, near Condon, Oreg.

LOCATION.--Lat 45"20'15", long 120"03'40", in NWtSWt sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

(60 m) downstream from county bridge, and 15 mi (24 km) northeast of Condon.

DRAINAGE AREA. -- 350 mi² (906 km²).

PERIOD OF RECORD .-- April 12, 1965 to current year.

GAGE. -- Water-stage recorder.

AVERACE DISCHARGE. -- 8 years (1965-73), .37.2 ft³/s (1.05 m³/s), 26,950 acre-ft/yr (33.2 hm³/yr).

EXTREMES. -- Current year: Maximum discharge undetermined; no flow June 30 to Sept. 23.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft (2.704 m); no flow at times.

REMARKS .-- Records good.

J

REVISIONS (WATER YEARS) .-- 1972. Revised figures of discharge, in cubic feet per second, for the water year 1972, superceding those published in 1972, are given herewith:

Date	Discharge	Honth	ft /s-days	Maximum	Hean	Acre-ft
ne 9, 1972	300 ·	June 1972	1,661.1	1,200	55.4	3,290
	Water year	ft ³ /s-days	Maximum	Hean	Acre-ft	
	1972	20,471.1	1,200	55.9	40,600	

Day	Oct.	Nov.	Dec	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	16	1.1	5.1	21	1.6	124	4.4	0.0	1.2			o ep a
2	.6	1.2	5.1	17	17	120	4.2	0,0	1.2			
3	.6	16	5.0	15	17	121	35	7.9	1.2			5
4	.6	2.4	4.5	11	1.6	8 7	33	9,4	1.1			1
5	.6	?.6	4.0	1?	.l =	74	35	02	1.0			2
6	.6	2.6	3.0	11.	2 0	6 4	3.5	5, a	1.2			•
7	.6	3.0	2.9	10	17	64	34	7.3	1.0			1
	.6	1.0	2.8	1)	15	50	31	6.7	1.0			•
9	.6	2.2	2.0	1 3	10	57	30		.9			Э
10	.7	3.6	3.5	13	1 1	61	50					2
11	1.0	3.4	2.5	20	1 .	16	20	17				2
11	15	3.4	2.8	6.6	1.0	51	21	4.1	1.2			3
11	12	3.4	2.8	111	1.8	10	12	12	7			
1.	1.0	1.6	2.8	9.2	1 0	4.6	28	2.5				5
16	C	1.6	4.0	161	20	43	24	2.2	.0			
17	c	4.1	10	200	2.4	47	24	2.1	.6			
18	.9	4.1	2.6	132	25	47	2.6	2.5	6			
19	.0	4.1	24	82	25	4 4	2 "	1.8	.6			
20	.9	4.1	24	55	25	4 3	2.9	1.6	.5			2
21	.9	4.1	33	20	24	4 3	Su	1.4	.5			,
22	8.	3.5	84	35	21	4 ?	25	1.2	.5			;
23	.8	3.6	7 ?	3 "	24	40	23	1.2	.5		i	.1
24	.c	1.5	74	34	24	37	21	1.7	.4			.1
25	.º.	3.5	64	3?	5	4 2	10	5.0	.7			.1
26	.9	1.8	47	1 4	4 9 1	4 2	14	5.0	.5			.1
27	1.0	4.3	42	1.6	21	4 3	12	1.P	.4			.1
28		51	12	26	0.4	321	10	1.7	-2			.1
29		5.1	28	26-		14	0	1.4	20			.1
30 1		2.1	24	21 -		10	0.0	1.2	1.6		-	
31	1.1					a.j		1.4				
	260	104.0	582.0	1.4.2.3	576	1.7.7.8	9156	1244	215	,		
-	0.87	1.47	21.9	45.3	26 1	57 /	26.0	1.01	0.72	j		
iean .	1.5	5.1	84	200	64	129	20.9		0.72	1		0.02
	0.6	1.1	2.8	10	15	36	0.6	1.2	1.2	2		0.1
e.ft	53	206	1.350	2.780	1.340	3, 530	1,600	267	43	3	:	
te-in			11330		1,540	5,550	1,000		43			1.4
al yr	1972 : 1	Mean 53	.7 Max	1,2	00 Mile	0	Ac-II	38,	980			
u sr	19/3 : 1	15		2	00 344	0	Ac-11	11,	150	-		2
										-X	HIRIT	
0.00-114										LA	IIDII	
										DA	CE 8	OF
										E A	175 ()	

SP+43700-119

JOHN DAY RIVER BASIN

14-0474. ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION .-- 45°20'15", long 120°03'40", in NW15W1 sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft

(60 m), downstream from county bridge, and 15 mi (24 km) northeast of Condon.

DRAINAGE AREA. -- 350 m1² (906 km²).

PERIOD OF RECORD .-- April 12, 1965 to current year.

CACE .-- Water-stage recorder.

AVERAGE DISCHARGE.--9 years (1965-74), 45.7 ft³/s (1.29 m³/s), 33,150 acre-ft/yr (40.9 hm³/yr).

EXTREMES.--Current year: Maximum discharge, 6,050 ft³/s (171 m³/s), Jan. 18, gage height, 6.87 ft (2.094 m); no flow Oct. 9.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s), June 8, 1972, gage height, 8.87 ft

(2.704 m); no flow at times.

REMARKS .-- Records good.

REVISIONS (WATER YEARS).--1972. See 1973 publication.

Day	Oct.	· Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	0.1	0.9	854	75	145	1 D R	365	116	12	0.7	0.4	0.1
2	.1	.9	380	70	118	112	3 3 2 2	110	11	.7	.4	.1
3	.1	.8	179	7 0	104	92	246	96	10	.7	.4	.1
4	.1	.9	113	7 0	102	94	222	86	11	.7		.1
5	.1	1.1	16	7 3	9 R	90	229	78	11	.7		
6	.1	1.2	49	70	80	102	254	70	14	.8		.!
7	-1	1.7	6 2 6	10	96	50	218	62	1 3	-1		-1
	.1	2.6	258	70	90	70	1 8 5	59	8.6	0.		-
9	0.	140	170	70	90	70	170	50	7.7	.5	2	
10		155	140	70	8.8	70	161	4 0	71	.0		~ ~
		312	1 1 2	7 2	8.8	92	152	41	6.4	1.1	2	42
11		208	108	8.0	82	102	135	3.8	5.9	1.3	2	2
14		118	90	20.0	82	120	130	17	5.9	12	2	2
15		96	88	1.0 0 0	90	120	126	38	4.8	1.2	.2	2
16	.1	155	143	2.120	161	286	124	16	4.6	· 1.1	2	2
17	.1	155	266	2.050	182	430	116	36	4.1	12	2	2
18	.1	113	330	2.620	152	345	114	37	3.6	1.4	.2	2
19	.1	86	197	2.590	222	286	118	37	3.6	1.4	2	2
2.0	.1	78	155	906	194	212	106	37	. 3.4	1.3	.2	2
21	2	68	956	442	167	191	96	34	3.2	1.2	2	2
22	.2	63	295	322	135	191	90	30	3.0	1.1	-1	2
23	-2	57	347	254	124	182	122	27	2.8	.9		2
24	-2	24	224	220	120	170	224	26	2.6	.0		-2
2.5	.2	25	107	209	114		230	24	2.4	.7		2
26	-2	49	8.6	101	100	200	176	22	1.8	.6		2
27	2	70	124	1 4 2	0.0	274	176	21	1.5	.6		2
2.8	2	400	121	128	3.0	246	148	16	1.4	.0		~
29		782	96	118		538	124	15	1.1	.2		40
30	5	102	82	118		460		11	.7			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 11	0.											
	47	3.1221	7671	14.581	3.348	5774	5.289	1.4 3 2	1787	274	6.3	51
LOCAL	0.15	111	247	470	120	186	176	45.2	5.96	0.86	0.20	0 17
Man	0.6	782	854	7.620	222	538	365	116	-14	1.4	-0.4	0.2
Min	0	0.8	82	70	82	70	90	13	0.9	0.4	0.1	0.1
Acatt	9.3	6,590	15,220	28,920	6,640	11,450	10,490	2,780	354	54	12	10
Cal ar	1973 .	Mean 43.3	Max	200	MI	a 0	Ac-I	1 31,350	-			
Wir Tr	1974 1	Mean 114	Max	2,620	ML	. 0	Ac-f	82,530	-			

Discharge, in cubic feet per second for the year ending September 30, 1974

WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION .-- Lat 45°20'15", long 120°03'40", in NWsSWs sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft (60 m) downstream from county bridge, and 15 mi (24 km) northeast of Condon.

DRAINAGE AREA .-- 350 m12 (906 km2).

PERIOD OF RECORD .-- April 1965 to current year.

GAGE.--Water-stage recorder.

AVERAGE DISCHARGE.--10 years (1965-75), 45.8 ft³/s (1.30 m³/s), 33,180 acre-ft/yr (40.9 hm³/yr). EXTREMES.--Current year: Maximum discharge, 496 ft³/s (14.0 m³/s) Mar. 2, gage height, 3.20 ft (0.975 m); no flow at times.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft (2.704 m); no flow at times.

REMARKS .-- Records good.

REVISIONS (WATER YEARS), -- 1972. See 1973 publication.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	
1	.2	1.4	3.8	5.9	4 0	375	254	164	21	2.4	0.1	0.2	
2	.2	1.4	3.8	5.4	38	395	218	152	22	2.2	.1	2	
3	.3	1.4	4.1	5.6	30	278	236	152	22	1.8	.1	.2	
4	.3	1.4	4.1	6.1	28	206	218	148	21	1.6	.1:	.2	
5	.3	1.4	4.1	6.1	23	167	179	1.3.0	15	1.5	.1	.2	
6	.3	1.5	4.1	6.1	21	1 3 2	176	114	13	1.2	.1	.1	
7	.4	1.8	4.1	6.4	21	114	176	108	10	1.2	.1	.1	
	.4	2.0	4.3	7.J	2 2	104	173	104	8.0	1.3	.1	.1	
9	.4	1.8	4.3	6.4	1 8	132	164	98	7.0	4.9	.1	.1	
10	4	1.8	4.3	6.4	26	124	173	120	6.0	15	.1	.1	
11	.5	2.0	4.6	6.1	28	104	179	100	5.0	40	.1	.1	
12	.5	2.0	4.6	5.9	4 3	86	250	92	4.0	. 2.4	.1	.1	
13	.5	1.8	4.6	7.7	212	78	165	8 2	3.4	1.3	.1	.1	
14	.5	1.8	4.6	8.6	179	66	350	72	3.0	.7	0	.1	
15	.6	1.8	4.8	9.9	110	6.4	274	6.2	2.5	.6	.)	.1	
14	.0	1.8	4.8	12	102	64	246	51	2.1	.5	0	.1	
17	.0	2.0	4.0	18	12	6 2	212	45	2.0	.5	2	.1	
18	.1	2.0	4.0	4 3	02	62	197	4 1	2.0	.5	0	.1	
19		2.0	4.0	20	231	130	212	37	2.4	.4	.1	.1	
20	.1	2.01	4.C		9 2 :	126	218	37	2.8	.4	.2	.1	
	.'	2.0	1.0	26	39	108	215	36	3.4	.4	.2	.1	
"	.0	2.0	5.01	2 2	0 4	5 8	222	35	3.6		.2	.1	
	.0	3.0	5.4	23	0 3	90	218	28	3.2		.2	.1	
	.0	2.4	5.0	100	5 6	94	220	26	2.8	.2	.2	.1	
	0	1.4	61	215	5.0	1 2 8	395	24	2.6	.2	.2	.1	
	1.0	14	61	136	57	1 4 0	200	22	2.6	.2	.2	.1	
	1.2	14	6.4	6.4	111	1 2 8	240	21	2.4	2	.2	.1	
	1.4	3.4	8.2	5 3	1.7.4	1 5 0	200	19	2.4	-2	-2	.1	
10 1	14	16				2 4 4	170	19	2.2		.2	.1	
	1 3	10	5.4	i.t		200		201	2.4		.2		
				20		140		20			.2		
1.1	23.2	601	1528	9750	1161	4573	6001	2154		8.2.7			
	0.55	2 21	1 02	21 5			0.501	2156	201.8	0 2.1	3.8	3.5	
	0.05	2.51	4.93	31.5	02.9	148	22/	69.5	6.73	2.67	0.12	0.12	
	0.2	3.0	2.4	215	212	395	395	164	22	40	0.2	0.2	
	0.2	127	3.8	3.4	18	50	104	19	2.2	0.1	0	0.1	
m	40	13/	303	1,940	3,490	8,670	13,490	4,280	400	164	7.5	6.9	
	1074	84 5	Max	2 620		0.1		61 200					
1 77	1075	46.0	Mar	305	Alle	0.1	Acti	32,220					-
. 11	13/3 : 140	40.0		333	200	0	Ac-fi	33,320			EVILLE	TIC	2
											EAHIE	511	0
											DAOF	100	F
											DALL	10 0	

99

WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION.--Lat 45°20'15". long 120°03'40", in NW4SW4 sec.3, T.3 S., R.22 E., Gilliam County, on left bank about 200 ft (60 m) downstream from county bridge, and 15 mi (24 km) northeast of Condon.

DRAINAGE AREA.--350 m1² (906 km²).

PERIOD OF RECORD .-- April 1965 to current year.

GAGE.--Water-stage recorder.

AVERAGE DISCHARGE.--10 years (1965-75), 45.8 ft³/s (1.30 m³/s), 33,180 acre-ft/yr (40.9 hm³/yr). EXTREMES.--Current year: Maximum discharge, 496 ft³/s (14.0 m³/s) Mar. 2, gage height, 3.20 ft (0.975 m); no flow at times.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft (2.704 m); no flow at times.

REMARKS .-- Records good.

REVISIONS (WATER YEARS).--1972. See 1973 publication.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-		Discharge, in	cubic feet pe	er second for	the year end	ing Septembe	er 30, 1975			
1 2 1.4 3.6 5.5 4 0 3.7 5 2.5 4 1.6.4 2.1 2.4 0.1 0.2 3 3.1 1.4 4.1 5.6 3.0 2.7.6 2.1.6 1.5 2.2 2.2 1.1 2.3 4 3.1 1.4 4.1 6.1 2.3 2.7.6 1.4 4.6 1.2 1.7.9 1.1.0 1.5 1.1.3 1.4 4.1 6.1 2.3 1.6 1.1 1.1 1.1 2.1 1.4 1.2 1.1 1.1 2.1 1.4 1.1 2.1 1.4 1.3 2.2 1.4 1.3 2.2 1.4 1.3 1.2 1.1	Day	Oct.	Nov.	Dec.	Jan,	Feb.	Mar.	April	May	June	July	Aug.	Sept.
a 2 1.4 3.8 5.4 3.8 1.9 5 2.1 6 1.5 2.2 2.2 2.1 3.2 a 3.3 1.4 4.1 6.1 2.8 2.0 6 2.1 6 1.5 2.2 1.6 1.3 1.4 4.1 6.1 2.3 6 1.5 2.2 1.6 1.3 1.4 4.1 6.1 2.2 a 1.3 1.4 4.1 6.1 2.1 1.1 1.4 1.1 1.2 1.1 2.1 1.1 2.1 1.1 2.1 1.1 1.2 1.1 1.2 1.1 1.1 1.2 1.1 <th< td=""><td>1</td><td>.2</td><td>1.4</td><td>3.8</td><td>5.9</td><td>40</td><td>375</td><td>254</td><td>164</td><td>21</td><td>2.4</td><td>0.1</td><td>0.2</td></th<>	1	.2	1.4	3.8	5.9	40	375	254	164	21	2.4	0.1	0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	.2	1.4	3.8	5.4	38	395	218	152	22	2.2		2
4	3	.3	1.4	4.1	5.6	30	278	236	152	22	1.8		2
3	•	.3	1.4	4.1	6.1	28	206	218	148	21	1.6	.11	2
4 .3 1.5 4.1 6.1 21 1 J 2 1 7 6 1 1 4 1 3 1.2 1 1 1 4 1.8 4.1 6.4 21 1 1 4 1 7 6 1 1 4 1 3 1.2 1 1 1 4 1.8 4.3 6.4 2 6 1 2.4 1 7 3 1 0.4 9.0 1.3 1 1 1 4 1.8 4.3 6.4 2 6 1 2.4 1 7 3 1 0.0 6.0 1.5 1 1 1 1 4 1.8 4.3 6.4 2 6 1 2.4 1 7 3 1 0.0 6.0 1.5 1	5	.3	1.4	4.1	6.1.	23	167	179	130	15	1.5	.1	.2
7 .4 1.8 4.1 6.4 21 1 1 4 1 7 6 1 0 8 1 0 1.2 1 1 9 .4 1.8 4.3 6.4 1 9 1 3 2 1 6 4 9 8 7.0 4.9 1 1 1 10 .4 1.8 4.3 6.4 2 6 1.24 1 7 3 1 0 0 6.0 1.5 1 1 1 11 .5 2.0 4.6 6.1 2 8 1 0 4 1 7 9 1 0 0 5.0 4 0 .1 .1 .1 11 .5 2.0 4.6 5.9 4 8 6 2 5 0 9 2 4.0 .2.4 .1 .1 .1 11 .5 1.8 4.6 5.0 1 7 9 6 6 3 5 0 7 2 .0 .7 0 .1 .1 .1 .1 .1 .1 .5 0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	6	.3	1.5	4,1	6.1	21	1 3 2	176	114	13	1.2	.1	.1
i .4 2.0 4.3 7.3 2.2 1 0.4 1 7.3 1 0.4 8.0 1.3 .1 .1 i .4 1.8 4.3 6.6 2.6 1.6 4 9.8 7.0 4.9 3.1 .1 .1 ii .5 2.0 4.6 6.1 2.8 1 0.4 1.7.9 1 0.0 5.0 4.0 .1 .1 iii .5 2.0 4.6 6.1 2.8 1 0.4 1.7.9 1 0.0 5.0 4.0 .2.4 .1 .1 iii .5 2.0 4.6 6.1 7.7 2.1.2 7.8 3.6.5 7.7 2.30 .7 0 .1 <t< td=""><td>7</td><td>.4</td><td>1.8</td><td>4.1</td><td>6.4</td><td>21</td><td>114</td><td>176</td><td>108</td><td>10</td><td>1.2</td><td>.1</td><td>.1</td></t<>	7	.4	1.8	4.1	6.4	21	114	176	108	10	1.2	.1	.1
* .4 1.8 4.1 6.4 2.6 1.24 1.7.3 1.0.0 6.0 1.5 .1 .1 11 .5 2.0 4.6 6.1 2.8 1.0.4 1.7.9 1.0.0 6.0 1.5 .1 .1 11 .5 2.0 4.6 6.1 2.8 1.0.4 1.7.9 1.0.0 5.0 4.0 .1 .1 13 .5 1.8 4.6 7.7 2.1.2 7.8 3.6.5 8.2 3.4 1.3 .1 .1 14 .6 1.8 4.6 8.6 1.7.9 6.6 3.5.0 7.2 3.0 .7 0 .1 .1 15 .6 1.8 4.8 9.0 1.1.0 6.4 2.4.6 5.1 2.1 .5 0 .1 <td></td> <td>.4</td> <td>2.0</td> <td>4.3</td> <td>7.3</td> <td>22</td> <td>104</td> <td>173</td> <td>104</td> <td>8.0</td> <td>1.3</td> <td>.1</td> <td>.1</td>		.4	2.0	4.3	7.3	22	104	173	104	8.0	1.3	.1	.1
10 1 1.5 2.0 4.6 6.1 2.8 1.0.4 1.7.3 1.0.0 6.0 1.5 .1 .	9	.4	1.8	4.3	6.4	1 8	132	164	98	7.0	4.9	.1	.1
11 .5 2.0 4.6 6.1 2.8 1.0 4 1.7 9 0.0 5.0 4.0 .1	10	.4	1.8	4.3	6.4	26	124	173	100	6.0	15	.1	.1
11 1.5 2.0 4.6 5.9 2.1 7.8 3.6 5.5 7.2 3.4 1.1 1.1 14 .5 1.8 4.6 8.6 1.7.9 6.6 3.50 7.2 3.4 1.3 1.1 1.1 14 .5 1.8 4.6 8.6 1.7.9 6.6 3.50 7.2 3.0 7.7 0 1.1 14 .5 1.8 4.6 8.6 1.7.9 6.6 3.50 7.2 3.6 .7 0 .1 14 .6 1.8 4.8 1.8 7.2 6.2 2.1 2.5 0 .1 17 2.6 4.8 1.8 7.2 6.2 2.1 2.0 .5 0 .1 18 .7 2.6 4.8 5.0 5.3 1.1.0 2.0 .5 0 .1 18 .7 2.6 4.8 5.0 5.3 1.3.0 2.1.2 3.7 2.8 .4 .1.2 .1 .1 .1	11	.5	2.0	4.6	6.1	28	104	179	100	5.0	40	.1	.1
11	12	.5	2.0	4.6	5.9	4 3	86	250	92	4.0	. 2.4	.1	.1
11 3.6 1 7 9 6 3 50 7 2 3.0 7 0 13 1.8 4.8 9.9 1 10 6 4 2 7 4 6 2 2.5 0 14 1.0 2 6.4 2 7 4 6 2 2.5 0 14 1.0 2 6.4 2 4.6 4.1 2.0 1.1 15 0 2.1 2.1 2.1 0 1.1 16 0 5.5 1.1 0.2 1.2 2.1 2.1 2.1 2.1 1.1 18 1.0 8 2.1 3.1 2.0 3.1 1.1 2.1 1.1 14 </td <td>13</td> <td>.2</td> <td>1.8</td> <td>4.6</td> <td>7.7</td> <td>212</td> <td>78</td> <td>365</td> <td>8 2</td> <td>3.4</td> <td>1.3</td> <td>.1</td> <td>.1</td>	13	.2	1.8	4.6	7.7	212	78	365	8 2	3.4	1.3	.1	.1
18 .	14		1.8	4.0	5.6	1/9	66	350	7 2	3.0	.7	0	.1
17 .6 2.6 4.8 1 9 7 2 6 2 6 2 2 1 2 3 1 2.1 .3 0 .1 18 .7 2.6 4.8 4 3 6 2 6 2 1 9 7 4 1 2.0 .5 0 .1 19 .7 2.6 4.8 5 0 5 3 1 10 2 1 2 3 7 2.4 .4 .1 .1 19 .7 2.6 4.8 5 0 5 3 1 10 2 1 2 3 7 2.4 .4 .1 .1 11 .7 2.6 4.8 5 0 5 3 1 0 8 2 1 2 3 7 2.4 .4 .1 .1 11 .7 2.6 .6.1 2.5 .6.4 8 8 2 2 2 3 6 3.4 .2 .1 .1 .1 .1 12 .8 3.4 5.6 2.3 5.5 1 5 8 3 9.5 2.4 2.6 2.2 .1 13 .9 3.4 6.1 2.6 5.7 1 3.2	-15	.0	1.0	4.0	9.9	1 2 2	64	274	62	2.5	.6	.)	.1
11 .7 2.6 4.8 4.3 6.2 6.2 1.9 7 4.4 3 1.1 13 .7 2.6 4.8 5.0 5.3 1.30 2.12 3.7 2.4 4.4 1.1 1.1 14 .7 2.6 4.8 5.0 5.3 1.30 2.12 3.7 2.4 4.4 1.1 1.1 14 .7 2.6 4.8 5.0 5.3 1.30 2.12 3.7 2.4 4.4 1.1 1.1 14 .7 2.6 5.6 4.4 5.9 1.2.6 2.1.8 3.7 2.4 4.4 .2 1.1 14 .7 2.6 5.6 1.4 5.9 1.2.6 2.1.5 3.6 3.4 .2.2 1.1 13 .8 2.8 6.1 2.5 6.4 8.8 2.2.2 3.2 3.2 1.1 14 .8 2.6 6.2 2.6 2.2 2.4 2.6 2.2 2.1 1.1 15 </td <td>17</td> <td>.0</td> <td>20</td> <td>4.0</td> <td>1 2</td> <td>7 2</td> <td>6 4</td> <td>240</td> <td>21</td> <td>2.1</td> <td>.2</td> <td>0</td> <td>-!</td>	17	.0	20	4.0	1 2	7 2	6 4	240	21	2.1	.2	0	-!
19 .7 2.6 4.8 5.0 5.1 1.30 2.1 2 3.7 2.4 4.4 1.1 1.1 10 .7 2.6 4.8 4.1 92 1.2.6 2.1.8 3.7 2.8 .4 2.1 1.1 11 .7 2.6 4.8 4.1 92 1.2.6 2.1.8 3.7 2.8 .4 2.1 1.1 11 .7 2.6 4.8 4.1 92 1.2.6 2.1.8 3.7 2.8 .4 2.1 1.1 121 .7 2.6 4.8 5.9 2.1 5.8 2.2 3.6 3.4 4.4 2.2 1.1 121 .8 3.0 5.9 2.1 6.0 9.0 2.1.8 2.8 3.2 .3 2.2 .1 123 .8 3.4 5.6 2.3 5.5 1.5.8 3.9 2.4 2.6 2.2 2.1 1.1 124 .8 2.1 1.4 8 2.6 2.2 2.4 2.6<	18	.7	26	4.8	4 1	62	67	107	4 2	2.0	.2	5	
10 17 2.6 4.2 4.1 9.2 1.2.6 2.1.8 3.7 2.8 .4 2.1 1 11 .7 2.6 5.6 3.4 5.9 1.0.8 2.1.5 3.6 3.4 .4 .2 .1 12 .8 3.0 5.9 2.3 6.0 9.0 2.1.8 2.2.3 2.3.6 .3.3 .2 .1 13 .8 3.4 5.9 2.3 6.0 9.0 2.1.8 2.8 3.2 .3.3 .2 .1 14 .8 3.4 5.9 2.3 6.0 9.0 2.1.8 2.8 3.2 .3 .2 .1 15 .8 3.4 5.9 1.0.8 5.5 1.5.8 3.9.5 2.4 2.6 2.2 2.1 16 .9 3.4 .6.1 1.0.6 5.7 1.3.2 2.4 0 2.1 2.6 2.2 .1 18 1.2 3.4 6.4 6.4 1.3.4 1.2.8 2.0.0 1.9 2.4	19	.7	26	4.8	50	5 1	110	212	4 1	2.0		0	• 1
1 .7 2.6 5.6 1 .7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 </td <td>20</td> <td>.7</td> <td>2.6</td> <td>4.8</td> <td>4 1</td> <td>92</td> <td>126</td> <td>218</td> <td>37</td> <td>2.4</td> <td></td> <td>.1</td> <td></td>	20	.7	2.6	4.8	4 1	92	126	218	37	2.4		.1	
11 .8 2.8 6.1 2.5 6.4 3.8 2.2.2 3.2 3.6 .3 .2 .1 11 .8 3.0 5.9 2.3 6.0 9.0 2.1.8 2.8 3.2 .3 .2 .1 12 .8 3.4 5.6 2.3 5.3 9.4 2.2.6 2.6 2.8 .2 .2 .1 13 .8 3.4 5.9 1.0.8 5.5 1.5.8 3.9.5 2.4 2.6 .2 .2 .1 14 .8 3.4 6.1 2.1.5 5.9 1.4.8 2.6.6 2.2 2.6 .2 .2 .1 14 1.2 3.4 6.1 1.0.6 5.7 1.3.2 2.4.0 2.1 2.4.4 .2 .2 .1 18 1.2 3.4 5.4 5.4 5.3 1.5 1.7.6 1.9 2.2 .1 .2 .1 10 1.4 3.6 6.4 2.6 3.4.0 2.1 2.2 .1 <td>21</td> <td>.7</td> <td>2.6</td> <td>5.6</td> <td>14</td> <td>591</td> <td>128</td> <td>215</td> <td>16</td> <td>2.0</td> <td></td> <td></td> <td></td>	21	.7	2.6	5.6	14	591	128	215	16	2.0			
11 .8 3.0 5.9 2.3 6.0 9.0 2.1 8 2.8 3.0 .3 .2 .1 14 .8 3.4 5.6 2.3 5.3 9.4 2.2 6 2.6 2.6 2.8 .2 2.2 .1 15 .8 3.4 5.6 2.3 5.5 1.5 8 3.9.5 2.4 2.6 2.2 2.4 2.6 2.2 2.2 .1 10 3.4 6.1 2.1.5 5.9 1.4 8 2.6.6 2.2 2.4 2.6 2.2 2.1 1.1 11 1.0 3.4 6.1 1.0.6 5.7 1.3.2 2.4 2.2 2.2 .1 12 1.4 3.4 5.4 5.3 1.5.8 3.9.5 1.7.6 1.9 2.2.4 2.2 2.1 1.1 12 1.4 3.4 5.4 2.6 3.4.0 2.0 1.1 2.2 1.1 13 1.4 3.4 2.6 3.4.0 2.1 2.6.6	22	.8	2.8	6.1	25	64	8.8	222	12	1.4		.4	
14 .8 3.4 5.6 2.3 5.3 9.4 2.2.6 2.6 2.6 2.4 2.2 2.2 1 15 .8 3.4 5.9 1.0.8 5.5 1.5.8 3.9.5 2.4 2.6 2.2 2.4 2.6 2.2 2.2 1 16 .9 3.4 6.1 2.1.5 5.9 1.4.8 2.6.6 2.2 2.6 2.2 2.4 2.2 2.1 1 17 1.0 3.4 6.1 1.0.6 5.7 1.3.2 2.4.0 2.1 2.4 2.2 2.1 1 18 1.2 3.4 6.4 6.4 1.3.4 1.2.8 2.0.0 1.9 2.4 .2 2.1 1 11 1.3 5.4 2.6 3.4.0 2.0 2.0 2.4 .1 .2 .1 12 1.3 5.4 2.6 3.4.0 2.0 2.0 .1 .2 .1 13 1.4 3.6 6.7.9 3.4.0 2.1 6.9.0.1	23	.8	3.0	5.9	23	6 0	90	218	28	12	3	.2	
15	24	.8	3.4	5.6	23	5 3 1	94	226	26	28	.2	2	
26 .9 3.4 6.1 215 59 148 266 22 2.6 .2 .2 .1 27 1.0 3.4 6.1 106 57 132 240 21 2.4 .2 .2 .1 28 1.2 3.4 6.4 64 134 128 200 19 2.4 .2 .2 .1 28 1.4 3.4 5.4 53 134 152 176 19 2.2 .1 .2 .1 30 1.4 3.6 12 2.66 17.2 20 .1 .2 .1 31 1.3 5.4 2.6 340 200 .1 .2 .1 .2 .1 31 1.3 5.4 2.6 340 200 .1 .2 .1 .2 .1 31 1.3 4.93 31.5 62.9 148 227 69.5 6.73 2.67 0.12 0.12 0.12 0.2 0.2 0.1	25	.8	3.4	5.9	108	55	158	195	24	2.6	2	2	ï
27 1.0 3.4 6.1 1 0 6 5 7 1 3 2 2 4 0 2 1 2.4 2 .2 .1 24 1.2 3.4 6.4 6.4 1 3 4 1 2 8 2 0 0 1 9 2.4 .2 .2 .1 25 1.4 3.4 5.4 5.3 1 5 2 1 7 6 1 9 2.2 .1 .2 .1 20 1.4 3.6 .1 1 2 2 6 1 7 3 2 0 .1 .2 .1 31 1.3 5.4 2.6 3 4 0 20 .1 .2 .1 31 1.3 5.4 2.6 3 4 0 20 .1 .2 .1 31 1.3 5.4 2.6 3 4 0 20 .1 .2 .1 31 1.3 5.4 2.6 3 4 0 2.1 5 6 2 0 1.8 8 2.7 3.8 3.5 Mean 0.65 2.31 4.93 31.5 62.9 148 227 69.5 6.73 2.67 0.12	26	.9	3.4	6.1	215	59	148	266	22	2.6	.2	2	
11 1.2 3.4 6.4 6.4 1 3 4 1 2 8 2 0 0 1 9 2.4 .2 .2 .1 12 1.4 3.4 5.4 5.3 1 5 2 1 7 6 1 9 2.4 .2 .2 .1 10 1.4 3.6 .1 1 2 8 1 7 6 1 9 2.2 .1 .2 .1 11 1.3 5.4 2.6 3 4 0 20 .1 .2 .1 11 1.3 5.4 2.6 3 4 0 20 .1 .2 .1 11 1.3 5.4 2.6 3 4 0 20 .1 .2 .1 12 1.3 5.4 2.6 9 7 5.9 1.7 6 1 4.5 7 3 6.9 0 1 2.1 5 6 2 0 1.8 8 2.7 3.8 3.5 Mean 0.65 2.31 4.93 31.5 62.9 148 227 69.5 6.73 2.67 0.12 0.12 0.12 Min 0.2 1.4 3.8 5.4 18	27	1.0	3.4	6.1	106	57	1 3 2	240	21	2.4	2	2	
25 1.4 3.4 5.4 5.3 152 176 19 2.2 1 .2 1 30 1.4 3.6 .1 12 266 173 20 2.4 .1 .2 .1 31 1.3 5.4 26 340 20 2.4 .1 .2 .1 7561 2.0.2 6.9.3 152.8 975.9 1.761 4.573 6.901 2.156 201.8 82.7 3.8 3.5 Mean 0.65 2.31 4.93 31.5 62.9 148 227 69.5 6.73 2.67 0.12 0.12 0.12 Mean 1.4 3.6 6.4 215 212 395 395 164 22 40 50.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0 0.1 Ac-rtt 40 137 303 1.940 3.490 8.670 13.490 4.280 400 164 7.5 6.9 Cat rr 1974 : Mean	2.8	1.2	3.4	6.4	64	134	128	200	19	2.4	.2	2	
30 1.4 36 12 266 173 20 2.4 .1 2 .1 .1 2 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1<	25	1.4	3.4	5.4	53		152	176	19	2.2	.1	2	i.i
31 1.3 5.4 2.6 3.4.0 2.0 .1 .2 Total 2.3.2 6.9.3 1.5.2.8 9.7.5.9 1.7.6.1 4.5.7.3 6.9.0.1 2.1.5.6 2.0.1.8 8.2.7 3.8 3.5 Mean 0.65 2.31 4.93 31.5 62.9 148 227 69.5 6.7.3 2.67 0.12 0.12 Max 1.4 3.6 6.4 215 212 395 395 164 22 40 50.2 0.2 0.2 0.2 0.12 0.12 0.2 0.2 0.4 1.4 3.8 5.4 1.8 62 164 19 2.2 0.1 0 0.1	30	1.4	16		12		266	173	20	2.4	.1	2	
Total 2 3.2 6 9.3 1 5 2.8 9 7 5.9 1.7 6 1 4.5 7 3 6.8 0 1 2.1 5 6 2 0 1.8 8 2.7 3.8 3.5 Mean 0.65 2.31 4.93 31.5 62.9 148 227 69.5 6.73 2.67 0.12 0.12 Max 1.4 3.6 6.4 215 212 395 164 22 40 50.2 0.2 0.2 0.2 0.2 0.12 0.2 0.2 0.1 0 <td>31 .</td> <td>1.3</td> <td></td> <td>5.4</td> <td>26</td> <td></td> <td>340</td> <td>1 Contraction of the</td> <td>20</td> <td></td> <td>.1 j</td> <td>.21</td> <td>·</td>	31 .	1.3		5.4	26		340	1 Contraction of the	20		.1 j	.21	·
Mate 0.65 2.31 4.93 31.5 62.9 148 227 69.5 6.73 2.67 0.12 0.12 0.12 Max 1.4 3.6 6.4 215 212 395 164 22 40 50.2 0.2 0.2 0.12 0.12 0.12 0.2 0.4 1.4 3.8 5.4 18 62 164 19 2.2 0.1 0 0.12 0.2 0.4 0.1 <td< td=""><td></td><td>222</td><td>601</td><td>1528</td><td>0750</td><td>1161</td><td>1 5 7 3</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		222	601	1528	0750	1161	1 5 7 3						
Max 1.4 3.6 6.4 215 212 395 395 164 22 40 0.12	Man	0.65	2 21	1 03	21 5	62.0) /)	0.901	2.156	201.8	0 2.1	3.8	3.5
Min 0.2 1.4 3.8 5.4 18 62 164 19 2.2 40 0.2 0.2 0.1 Ac-ft 40 137 303 1.940 3.490 8.670 13.490 4.280 400 164 2.2 0.1 0 0.1	Max	0.05	2.51	6.4	31.5	212	148	22/	69.5	6.73	2.67	0.12	0.12
0.2 1.3 3.3 3.4 18 62 164 19 2.2 0.1 0 0.1 Ac-rt 40 137 303 1.940 3.490 8.670 13.490 4.280 400 164 7.5 6.9 Cal yr 1974 Mean 84.5 Max 2.620 Min 0.1 Ac-rt 61,200 We yr 1975 Mean 46.0 Max 395 Min 0 Ac-rt 33,320 FYHIRIT	MIN	1.4	3.0	2.0	215	10	332	395	164	22	40	0.2	0.2
Call yr 1974 : Mean 84.5 Max 2,620 Min 0.1 Ac-ft 61,200 We yr 1975 : Mean 46.0 Max 395 Min 0 Ac-ft 33,320 FYLIRIT	4	0.2	127	3.0	1 040	2 400	0 670	104	19	2.2	0.1	0	0.1
Cal pr 1974 : Mean 84.5 Max 2,620 Min 0.1 Ac-ft 61,200 Wir pr 1975 : Mean 46.0 Max 395 Min 0 Ac-ft 53,320	Acent	40]	13/ 1	303 1	1,940	3,490	8,070	13,490	4,280	400	164	7.5	6.9
Wir yr 1975 : Mean 46.0 Max 395 Min O Ac-fi 33,320	Cal Tr	1974 : :	Mean 84.5	Max	2,620	Min	0.1	Ac-11	61,200				
FYHIRIT	Wir Ir	1975 : 2	Mean 46.0	Max	395	Min	0	Ac-ft	33,320				
						and the second second						FYHIE	IT

PAGE 10 OF 13

3

WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION.--Lat 45°20'11", long 120°03'40", in NWxSW% Sec.3, T.3 S., R.22 E., Gilliam County, on left bank 200 ft (50 m) downstream from county bridge, and 9 mi (14 km) northeast of condon.

DRAINAGE AREA. -- 350 mi² (906 km²).

PERIOD OF RECORD. -- April 1965 to current year.

GAGE.--Water-stage recorder.

AVERAGE DISCHARGE.--11 years (1965-76), 44.2 ft³/s (1.252 m³/s), 32,020 acre-ft/yr (39.5 hm³/yr).

EXTREMES.--Current year: Maximum discharge, 302 ft³/s (8.55 m³/s) Apr. 9, gage height, 2.83 ft (0.863 m); no flow at times.

Period of record: Maximum recorded discharge, 12,500 ft 3 /s (354 m 3 /s) June 8, 1972, gage height, 8.87 ft (2.704 m); no flow at times.

REMARKS .-- Records good.

REVISIONS (WATER YEARS). -- 1972. See 1973 publication.

				Discharge, in	cubic feet pe	r second for	the year end	ing Septembe	r 30, 1976			
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	0.1	2.2	. 5.9	23)7	36	96	51	9.5	0.8	0	4.1
2 1	.1	2.2	6.1	18	35	37	90	47	9.9	.7	0	3.5
3 1		2.4	7.7	33	34	34	104	44	9.5	.7	.1	3.6
6]	.1	2.4	9.0	341	17	16	114	41	8.6	.6	.1	3.4
5	2	2.6	9.5	371	14	27	145	37	8.2	.5	.1	3.0
6 1	2	3.0	9.0	33:	17	30	209	32	7.3	.5	2	2.8
7	.3	3.4	9.5	33	20	32	185	29	6.8	.5	10	2.6
8	.3	3.4	9.9	106	2 5	28	176	25	5.9	.4	14!	2.6
9	.)	3.4	11	116	25	28	266	23	5.9	.4	6.8	2.2
10		4.1	10 !	82	22	34	203	20	5.9	.4	5.6	1.2
11	.4	4.1	9.5 :	66	20	38	179	18	5.6	.)	4.6	.6
12	.4	4.1	9.0	37	21	34	173	18	5.4	.)	4.1	.4
13	.4	4.1	9.0	4 4	23	37	176	14	4.6	3	3.8	3
14	.4	4.1	7.7	4 5	26	4 1	1 5 2	11	4.3	2	4.3	1.0
15	.5	4.1	7.7	74:	101	4 1	138	101	4.1	2	5.91	2.8
16	5	4.3	8.6	167	29	47	130	9.5	3.8	.2	7.3	3.6
17	.5	4.3	8.6	179	4 5	94	116	9.0	3.4	2	12	3.4
18 1	.5	4.3	8.2	152	50	173	114	8.6	3.2	2	11	3.2
19	.5	4.3	8.2 ;	112	50;	202	102	8.6	3.0	.1	9.5	3.0
20	.5	4.3	7.7	8.6	40'	126	108	9.0	2.4	.1	8.6	2.8
21	.6	4.3.	7.3	68;))	110	110	9.5	2.2	.1	7.7	2.8
22	.7	4.3	7.3	59	321	110	94	8.6	2.0	.1	6.8	32
23	.8	4.6	7.7.	59	29.	108	98	8.2	1.7	.1	6.4	12
24	.8	4.6	9.9,	51	2 8	114	70	7.3	1.7	.1	8.1	3.4
25	1.0	4.6	11	4.3	32	150	84	7.3	1.5	0	8.2	3.4
26	1.6	5.1	13	37	41	114	76	6.8	1.5	0	7.7	3.2
27	2.4	6.4	45	37	55	102	70	6.4	1.2	0	6.8	32
28	2.6	6.4	45	36	66	98	66	6.4	1.0	0	6.1	32
29	2.4	6.1	40	4 4	5 5	84	64	6.4	.8	0 1	5.6	3.0
30	22	5.9	59	4 5		54	59	6.8	.9	0	5.1	2.8
31	2.0		50	40:		100		7.7		C	4.6	
Total	217	1214	4 6 7.0	2018	951	2329	1767	5461	1318	8.0	1.8.1.1	
Mean	0.76	4.11	15.1	65.11	32.8	75 1	126	17.6	4 30	0.26	5 84	2 73
Max	2.6	6.4	59	179	66	202	265	511	9.9	-0.01	-14	6.13
Min	0.1	22	5.9	18	14:	27	59	6 41	0.8	0.0	0	0.7
Acits	47	245	926	4 000	1 890	4.620	7.470	1 080	261	16	750	162
		Lannonel	and a second de			the second	in a second second second	1,000]		101	333	102
Cal yr	1975 :	Mean 47.0	Max	395	Min	0	Ac-ft	34,060				
Wir yr	1976 :	Mean 29.0	Max	256	Min	0	Ac-ft	21,080		-	1017	2
							-		Concernance on the second	-XH	IRIT	2
										LAII	1011 -	
										PAC	F 11	OF 17
										IAG		01

WATER RESOURCES DEPARTMENT

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, OREG.

LOCATION.--Lat 45°20'11", long 120°03'40", in NWLSWL sec.3, T.3 S., R.22 E., Gilliam County, on left bank

200 ft (60 m) downstream from county bridge and 9 mi (14 km) northeast of Condon.

DRAINAGE AREA .-- 350 m12 (906 km2).

PERIOD OF RECORD. -- April 1965 to current year.

GAGE.--Water-stage recorder.

AVERAGE DISCHARGE.--12 years (1965-77), 41.1 ft³/s (1.164 m³/s), 29,780 acre-ft/yr (36.7 hm³/yr).

EXTREMES.--Current year: Maximum discharge, 112 ft³/s (3.17 m³/s) April 6, gage height, 2.25 ft (0.686 m); no flow July 16 to Sept. 30.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 8, 1972, gage height, 8.87 ft

(2.704 m); no flow at times.

REMARKS. -- Records good.

REVISIONS .-- 1972, see 1973 publication.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	2.8	2.0	3.6	4.6	5.4	8.2	18	4.6	6.1	.2		
2 ;	2.8	3.01	4.1	4.5	5.1	8.6	20	4.8	6.1	.2	i	
3 -	2.6	3.0!	4.3	4.5	5.1	9.5	20	5.4	5.6	.2	1	
	2.6	3.0	4.6	4.3	5.1	9.9	37	5.4	5.6	.2		
5	2.6	3.01	4.6	3.0	5.0	9.0	64	5.6	5.1	.2		
6 1	2.6	3.0	4.6	2.8	4.9	8.6	88	5.9	4.6	.2		
1 1	2.6	3.0;	4.6	2.7	4.8	9.5	78	7.3	3.8	2	1	
	2.6	3.2!	4.6	2.6	4.8	11	64	7.7	3.4	.2		
3 !	2.6	3.0	4.6	2.6	4.8	16	44	7.7	3.0	.2	1	
10 1	2.6	1	4.6	2.8	4.9	18	35	9.9	2.8	.2		
1.	2.6	1.6;	4.8	1.0	5.1	17	28	35	2.4	.1		-
2	2.4	3.6	4.8	3.3	, 5.4	16	24	35	2.4	.1		
1	2.21	3.6	4.6	3.7	5.9	16	21	34	22	.1	;	
	2.2	1.6	4.61	4.0!	6.4	13	20	26	22	.1	i	
51	2.2	3.6	4.8	4.5	6.8	13	17	27	1.7	.1		
61	22	4.31	4.81	5.2	6.4	12	16	21	1.5	0		
1	2.2	4.3	4.8	5.9	6.1	12	14	19	1.3	0	1	
	2.4	4.3	4.8	5.9	6.1	12	13	18	1.3	i l		
,	2.6	4.6	4.8	5.9	6.1	12	12	16	.8	0	1	
	2.6	4.6	1.8	5.6	6.1	12	11	15	.8	0		
1 :	2.6	4.81	4.8	5.4	6.4	12	9.9	13	.8	0		
	2.4	4.8	4.6	5.4	6.4	11	9.5	11	.7	0		
1	2.4	4.8	5.1	5.4	6.8	12	8.2	10	.6	0		
	2.4	4.6	4.6	5.4	6.4	14	6.8	11	.5	0	1	
	2.6	4.7	5.1	5.4	6.4	16	6.1	11	.4	2		
5	2.6	4.8	4.8	4.6	6.4	16	5.9	11	.)	3		
1	2.6	4.1	4.8	4.8	6.4	17	5.6	9.5	.)	0		
	2.6	4.6	4.6	5.1	7.3	18	5.1	9.5	.3	2		
	2.8	3.61	4.8	4.8		18	4.8	9.0	.2	0		
	2.8	3.6	4.8	4.6		18	4.6	8.2	.2	0		
-	2.8	1	4.8	4.8		17		7.3		0		
	7 8.6	1 1 6.31	1 4 4.0	1 3 7.5	162.8	412.3	710.5	4 20.8	6 7.0	2.5	0	
	2 54	3.88 .	4.65	4.44	5.81	13.3	23.7	13.6	2.23	0.08	0 1	
	28	4.8 .	5.1	5 9	2 3	18	88	35	-511	-027	-01	
1	2.2	3.0	3.6	2.6	1 0	8 2	4.6	4.6	0.2	0.2	0	
11	156	231 1	286	273	323	818	1 410	835	1771	501	0 :	
	130				323	010]	1,410	035	1331	3.01		
r 19	76 : Me	28.3	Max	266	Min	0	Ac-ft	20,530				

scharge, in cubic feet per second for the year ending September 30, 1977

EXHIBIT 3 PAGE 12 OF

JOHN DAY RIVER BASIN

14047400 ROCK CREEK ABOVE CAYUSE CANYON, NEAR CONDON, 1753.

LTCATION.--Lat 45/20/11", long 120/03/40", in NWUSH's sec.3, T.3 S., R.22 E., Gilliam County, on left bank

200 ft (60 -' downstream from county bridge and 9 mi (14 km) nontheast of Concto.

2511WAGE AREA -- 352 =12 (906 km2).

FIRIOD OF RECORD.--April 1965 to current year.

3-35.--Water-stage recorder.

AVERAGE DISCHARGE.--13 years (1965-78), 41.2 ft3/s (1.167 m3/s), 29,850 acre-ft/yr (36.5 m3/yr).

EVIREMES.--Current year: Maximum discharge,478 ft³/s (13.5 m³/s) Feb. 7, gage heiptt. 3.18 ft (0.969 m); no flow Oct. 1-19.

Period of record: Maximum recorded discharge, 12,500 ft³/s (354 m³/s) June 3, 1972, gage height, 8.87 ft (2.704 m); no flow at times.

RENARKS.--Records good except for August which are fair.

REVISIONS.--1972, see 1973 publication.

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
1	5	0.3	28	8.4	64	145	74	66	1.	4.3	0.7	1 1.4
2 1	0	.3	23	9.9	66	124	96	55	7.7	4.6	.2	1.3
3	0	3	29	• 13	64	108	76	1 48	5.4	7.3	.2	1 1.2
4	0	.3	28	26	72	106	68	44	1 7.3	. 10	.2	1 1.2
5	C	.4	23	82	80	104	64	43	5.4	9.9	.2	1 1.3
6	0	4	19	90	1 135	112	62	40	5.1	7.7	.2	1.4
7	0	.4	17	62	218	118	70	36	1 5.1	6.1	.2	- 1.5
8	0	1.5	1 16	59	365	152	66	29	4.0	8.0	.2	1.6
9	0	.5	14	114	240	298	53	27	4.3	13	.2	1.6
10	0	.5	13	170	194 .	246	45	28	1 41	9.5	2	1.5
11 1	0	.6	13	142	150	203	40	27	4 -	7.3	2	1.5
12	0	.6	13	135	118	185	37	25	4.3	6.4	2	1.5
12	õ	.7	18	142	120	164	36	25	4 5	5.4	2	1.5
14	Ő	.7	130	188	106	142	35	24	51	4.6	2	1.6
15	ñ	8	185	310	104	126	33	37	5.6	3.8	1 2	1 7
16	0		118	335	84	116	35	40	1 51	1 3.6	2	1 1 7
17	ő	9	80	282	80	110	37	30	1 4.5	3.6	.2	1.8
18	0	12	55	197	84	110	35	26	43	3.4		2.2
19	0 .	1.4	37	182	102	102	32	23	1 3.5	3.0	.2	2 2
20	.1	11	28	158	135	96	29	19	3.2	2.5	.2	2.2
71		1.4	25	132	140	90	28	17	1 15	22	10	22
72	1	1.5	24	124	135	86	27	16	10	1 1 8	4.0	2.2
23 1	1	1.6	23	102	138	84	28	18	1.8	1 1 6	3.0	2.0
74	1	2.8	23	82	140	106	28	17	3.0	1 1 4	2.0	2.0
25	1	9.8	24	76	164	90	26	17	3.6	1 12	1.0	2.0
26	1 1	56	26	62	170	76	71	17	3.5	1 10	1.4	2.0
27	2	44	24	68	194	66	170	16	3.4	1.0	1.0	2.0
	2	35	22	66	161	50	122	16	2.8	1 .	1	2.0
	2	29	22	64	101	53	94	15	1 12	1 .3		2.0
20	2	32	21	70		50	76	13	1 7 2			2.0
30		36	1 10	68		50		12	1.6		1.0	- 2.0
				00			Carlos Constant	16		.6	1.5	
Total	1.8	225.9	1,140	3,619.3	3,823	3,677	1,694	862	151.3	135.3	20.4	52.6
Mean	0.06	7.53	36.8	• 117	137	199	56.5	27.8	5.05	4.37	0.66	1.76
Max	0.3	56	185	335	365	298	170	66	1 13	13	4.0	2.2
Min	0	0.3	13	8.4	64	50	26	12	1 1.0	0.2	0.2	1.2
Acatt	3.6	448	2,260	7,180	7,580	7,290	3,360	1.710	300	268	40.5	104
men												
Cal yr	1977 :	Mean Mean 4	8.99 Ma 2.2 Ma	18	5 MI	n 0	Ac-	a 6,510				

Discharge, in cubic feet per second for the year ending September 30, 1275

EXHIBIT <u>3</u> PAGE 13_OF 13_

JOHN DAY RIVER BASIN

STATE OF OREGON WATER RESOURCES DEPARTMENT SALEM, OREGON

November 1986

WILLIAM H. YOUNG, DIRECTOR

WATER RESOURCES COMMISSION

Members:

JOE B. RICHARDS, CHAIRMAN JACK A. HOFFBUHR, VICE-CHAIRMAN HADLEY C. AKINS WILLIAM R. BLOSSER WILLIAM D. CRAMER LORNA J. STICKEL

SECTION IX

LOWER SUBBASIN

A. LOCATION AND DESCRIPTION

The Lower Subbasin (see Figure 35) drains an area of about 2,030 square miles below Clarno and is located in Wheeler, Gilliam, Sherman, Morrow, and Wasco Counties. It is an area which is physiographically different from the upstream subbasins. The subbasin generally lacks the mountainous terrain and elevations which accumulate significant snowpack. Elevations range from about 200 feet at the mouth of the John Day River, to over 5,700 feet south of Heppner. The Lower Subbasin is a nearly level to rolling, loess covered plateau of Columbia River Basalt which is deeply dissected by the John Day River and its tributaries. Unlike the rest of the basin, it is a major dryland farming area and includes some large scale irrigation, using ground water.

The Lower Subbasin has a well developed transportation network. Interstate 84 and a rail line in the extreme north parallel the Columbia River. State routes 19, 206, and 218 connect subbasin communities such as Fossil, Condon, and Arlington. The Columbia River provides the Port of Arlington with a transportation route to the Pacific.

Small streams, such as Rock Creek, are important water sources in the dry Lower Subbasin.

1. CLIMATE

The climate is semiarid. Precipitation is low and the subbasin exhibits small daily ranges in both summer and winter temperatures. The length and character of summer and winter extremes are influenced by the rain shadow effect of the Cascade Mountains, and the wind tunnel effect of the Columbia River Gorge.

Precipitation ranges from slightly more than 9 inches annually at Arlington and 13 inches at Condon, to about 40 inches in the mountains. Annual average temperatures are 54° F at Arlington and 48° F at Condon.

2. LAND OWNERSHIP

Like the Middle Mainstem Subbasin, the predominance of private land ownership sets the Lower Subbasin apart from the other subbasins. Federal ownership (mostly BLM) accounts for only about 11 percent of the land area (see Figure 36). BLM-managed lands are concentrated along the John Day River canyon, and in Hay and Thirtymile Creeks. About 40 square miles of Umatilla National Forest lands are located in the uplands around Kinzua in Wheeler County. The Corps of Engineers manage a small amount of land near the mouth of the John Day River along the Columbia River.

The 100 miles of the John Day River between Clarno and Tumwater Falls are part of the designated State Scenic Waterway. The John Day River State Wildlife Refuge, from the mouth upriver for 84 miles to Thirtymile Creek, provides a resting area for ducks and geese and provides habitat for various raptor species and other wildlife.

3. LAND COVER AND LAND USE

Rangeland comprises about 57 percent of the subbasin area (see Figure 36 and Table 60). Most range is in private ownership although there is extensive use made of public range allotments on BLM land. There are 636,765 acres of private rangeland in Wheeler County alone. According to the SCS, deteriorated range is a major resource problem in Wheeler County, with 80 percent of privately owned range in poor (222,868 acres) or fair (286,544 acres) condition. The BLM has rated the majority of the public range in the Lower Subbasin as fair to poor. The condition of private rangeland is similar. Only 20 percent of privately owned range is in good or excellent condition.

About 30 percent of the subbasin is cropland, but less than 1 percent of the subbasin is irrigated. Dryland wheat farming is practiced on over 350,000 acres of loessal plateau soil. Loess is a materail formed from deposits of wind-transported silt. Loessal soil can be eroded easily by both wind and water. Conservation tillage practices such as contour plowing, terracing, no-till, and crop residue management have been encouraged to minimize erosion. The practice of clean cultivation during the fallow year continues to contribute to erosion and sedimentation. Erosion hazard for these plateau soils range from slight to severe with annual soil losses ranging from 2.5 to 15 tons per acre.

EXHIBIT _____ PAGE _3__OF _

Figure 36

LOWER SUBBASIN LAND OWNERSHIP AND LAND COVER

Riparian areas make up less than 1 percent of subbasin area, yet are often the most heavily used for recreation, grazing, agriculture, and wildlife habitat. A riparian inventory conducted on public land by the BLM in 1981 indicates that most areas under its management are in stable condition. Only a small fraction of riparian areas are deteriorating.

Ta	bl	le	60	

LOWER	SUBBASIN (acres)	LANDCOVER

Туре	Acres
Range and Pasturelands Forestland (grazed) Forestland (not grazed) Cropland Other	758,911 116,600 0 405,740 <u>54,400</u> 1,335,651

Source: Department of Agriculture Small Watershed Reconnaissance Study, 1984.

McDonald Ferry is 1,475,500 acre-feet. Peak flow for the period of record occurred on December 24, 1964, when discharge reached 42,800 cfs. On other occasions, such as in 1966, 1973, and 1977, the river ceased flowing. There are also gages on Rock Creek, Lone Rock Creek, and Butte Creek.

Peak discharge occurs from late March to early June, with 22 percent of runoff occurring in April and 21 percent in May. Low flows occur from July through November.

The Lower Subbasin can be characterized as an area that receives water, as opposed to one that produces it. Most streams in the subbasin are nearly ephemeral, almost ceasing to flow in summer.

Of the three gaged streams, Rock Creek is the largest. The mean monthly flows range from 120 cfs in March to less than 1 cfs in September. Both Butte Creek and Lone Rock Creek (a tributary of Rock Creek) average less than 1 cfs from July through October. Mean monthly minimum flows average 0.2 cfs or less on Butte Creek throughout the entire year. On Rock and Lone Rock Creeks, mean monthly minima drop to zero July through September.

All three streams have stopped flowing completely at times. Lone Rock Creek stopped flowing at some time at least 10 out of the 13 years between 1966 (first year of record) and 1978 (last year of published record). Rock Creek's flow stopped at some point nine years of the same period. Butte Creek dropped to zero flow four of the seven years between 1972 (first year of record) and 1978. Generally, no-flow conditions last from August through September. In especially dry years, flows can stop as early as July and do not resume until October.

2. GROUND WATER

Columbia River Basalt, Alkali Canyon Formation, Clarno Formation, and Quaternary Alluvium are the major hydrogeologic units in the subbasin. The Columbia River Basalt Group is a sequence of basalt flows more than 3,000 feet thick in the vicinity of the Columbia River. Data from 57 wells producing from basalt in Sherman County west of the John Day River show a range of production between 4 and 300 gpm. Usable data from 38 wells producing from basalts within Gilliam County indicate wells yielded from less than 1 to 1,500 gpm. Pump tests from 13 large-diameter wells (greater than 12 inches in diameter) in the northeastern part of Gilliam County showed well yields to be from 50 to 2,000 gpm. These deep, large-diameter wells may more accurately represent the hydrologic potential of the basalt. However, it is not known if recharge is adequate to sustain a great number of these wells.

The Alkali Canyon Formation occurs to the south and west of Arlington. Negligible data are available from wells pumping from the formation. Nearly all wells drilled in the area penetrate through the formation and tap the Columbia River Basalt. The Alkali Canyon Formation is not considered an important aquifer.

EXHIBIT _____ PAGE ____ OF 6

The extensive environmental quality monitoring activities around the Chem-Security Systems, Inc., hazardous waste storage site near Arlington have identified no pollution problems for surface or ground water. Outside of this area, ground water quality is unknown due to lack of water quality data.

Table 64

LOWER SUBBASIN SEWAGE TREATMENT PLANTS

Source	Type of Facility	Year Built	Design Population	Connected Population	Design Flow (MGD)	Connected Flow (MGD)	Current Raw Waste (#POD) Load (Day)	Current Treated Waste (#HOD) Load (Day)	Current Permitted Waste (#POO) Load (Day)
Arlington	Activated Sludge and Sand Filter	1974	1000	455	0.125	0.04	62	4	31, discharge to Columbia River.
Condon	Activated Sludge and Lagoon	1971	1200	950	0.15	0.10	160	40	25, discharge to Thirty Mile Creek via Condon Canyon.
Fossil	Trickling Filter	1952	1000	535	0.15	0.05	90	20	38, discharge to Butte Creek.
Moro	Lagoon	1970	430	250	0.045	0,035	43	No Discharge	No discharge, irrigation near Barnum Canyon Creek.

Source: Department of Environmental Quality, 1985.

D. WATER USE AND CONTROL

1. WATER RIGHTS

Irrigation accounts for about 87 percent of the appropriated water in the Lower Subbasin. Over 40 percent of the irrigation water use is in the Rock Creek drainage. Municipal uses by the communities of Condon, Fossil, and Arlington also are important. Table 65 summarizes water rights in the subbasin.

Regulation of water use by the watermaster normally begins in May and June. The Rock Creek drainage, until recently, was the area of most intensive regulation. In the last 10 years, many Rock Creek water users have begun pumping from newly drilled wells for use as supplemental irrigation water supplies, reducing the need for regulation by the watermaster. Generally, streams tributary to the John Day are already dry or nearly dry by the time regulation for minimum flows is required. As a result, use of tributary waters generally is not affected by regulation for minimum streamflows.

Hydrology Report # 1

WATER AVAILABILITY FOR OREGON'S RIVERS AND STREAMS: VOLUME 2; Technical Guide and Appendixes.

By

E. George Robison

Water Resources Department

William H. Young Director

0F 3

PAGE /

May 1991

Appendix B; Table 5: (Contd.)

TOTAL COLOR

· · · · · · · ·

N. FK. John D Located in th	e NU di	at Monu	nent #1	046000 guart	(F) er of	sec. 2	town.	9s and r	ange 2	7e .			
FLOWS	Jan	Feb	Маг	Apr	May	Jun .	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	573	810	1313	2013	2563	1119	238	95	100	138	186	314	
50% Exceed.	1233	1578	2528	3358	3962	1890	439	148	135	173	303	635	
John Day R. a	t Serv	ice Cr.	#14046	500 (F))								
Located in th	e NW q	uarter	of the	NE quart	ter of	sec. 18,	town.	9s, and	range	23e			
Flows	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	1034	1390	2048	2848	3381	1566	288	87	116	284	419	626	
50% Exceed.	1973	2536	3883	4890	5460	2681	619	193	194	363	608	1079	
Butte Cr. nea	r Foss	il #140	47100	(LT)									
Located in th	e SE q	uarter	of the	SE quart	ter of	sec. 13,	town.	7s, and	range	21e			
Flows	Jan	Feb	Маг	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	0.3	0.6	0.9	0.9	0.7	0.5	0.3	0.2	0.1	0.1	0.1	0.2	
50% Exceed.	0.9	1.8	2.7	2.7	1.7	1.0	0.6	0.3	0.2	0.2	0.2	0.4	
Lone Rock Cr.	near	Lone Ro	ck #140	47380 ((F)								
Located in th	e SE q	uarter	of the	NE quart	ter of	sec. 36,	town.	5s, and	range	23e			
Flows	Jan	Feb	Маг	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	8.8	15.5	21.2	16.5	5.4	1.3	0.1	0.0	0.0	0.2	1.0	3.4	
50% Exceed.	26.6	41.0	52.3	40.9	12.2	2.7	0.5	0.1	0.0	0.6	2.7	8.8	
Rock Cr. abov	e Whyt	e Park	near Co	ndon #14	047390	(LT)							
Located in th	e NE q	uarter	of the	SW quart	ter of	sec. 36,	town.	3s, and	range	22e			
Flows	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	18.7	28.6	53.9	33.1	8.7	2.9	0.5	0.1	0.7	0.9	5.3	13.2	
50% Exceed.	60.2	107.3	139.6	87.5	29.0	7.4	1.8	0.7	2.3	2.6	10.6	31.9	
Rock Cr. abov	e Cayu	se Cany	on near	Condon	#14047	400 (LT)						
Located in th	e NW q	uarter	of the	SW quart	ter of	sec. 3,	town.	3s, and i	range a	22e			
Flows	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	27.7	43.9	61.9	40.2	13.9	3.2	0.5	0.2	1.0	0.7	2.6	7.3	
50% Exceed.	78.5	110.6	146.9	100.2	32.4	8.8	1.7	0.7	1.7	1.8	6.4	19.9	
John Day R. a	t McDo	nald Fe	rry #14	048000	(F)								
Located in th	e NE q	uarter	of the	NW quart	ter of	sec. 11,	town.	1n, and	range	19e			
Flows	Jan	Feb	Маг	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	1114	1579	2152	2890	3373	1646	302	74	96	268	433	656	
50% Exceed.	2208	3009	4264	5174	5671	2893	680	195	180	360	625	1163	
Buckhorn Cr.	near L	one Roc	k (Hist	orical n	nisc. m	easureme	nt sit	e)					
Located in se	c. 8,	town. 6	s, and	range 24	ie								
FLOWS	Jan	Feb	Маг	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
80% Exceed.	4.0	6.1	7.6	6.2	2.7	0.9	0.1	0.0	0.0	0.3	0.8	1.9	
50% Exceed.	10.7	14.9	17.7	14.6	5.9	1.9	0.6	0.1	0.1	0.6	1.9	4.5	

Appendix F; Table 5. Water availability analysis for selected sites in the John Day basin.

John Day R. at McDonald Ferry (Applic)

	Jan	Fcb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Gaged 80% Ex. Flow	1114	1580	2152	2891	3374	1647	303	75	97	269	434	657
Gaged 50% Ex. Flow	2208	3010	4265	5175	5672	2893	681	196	180	361	626	1163
Instream Wat. Right	20	20	20	20	20	20	20	20	20	20	20	20
80% Ex. Flow W.A.	1094	1560	2132	2871	3354	1627	283	55	77	249	414	637
50% Ex. Flow W.A.	2188	2990	4245	5155	5652	2873	661	176	160	341	606	1143

Rock Cr. above Cayuse Canyon near Condon (Cert)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Gaged 80% Ex. Flow	28	44	62	40	14	3	0	0	1	1	3	7
Gaged 50% Ex. Flow	78	111	147	100	32	9	2	1	2	2	6	20
Instream Wat. Right	34	57	57	57	57	34	34	34	34	34	34	34
80% Ex. Flow W.A.	-6	-13	5	-17	-43	-31	-34	-34	-33	-33	-31	-27
50% Ex. Flow W.A.	44	54	90	43	-25	-25	-32	-33	-32	-32	-28	-14

Rock Cr. above Whyte Park near Condon (Applic)

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Scp	Oct	Nov	Dec
19	29	54	33	9	3	1	0	1	1	5	13
60	107	140	88	29	7	2	1	2	3	11	32
34	57	57	57	57	34	34	34	34	34	34	34
-15	-28	-3	-24	-48	-31	-33	-34	-33	-33	-29	-21
26	50	83	31	-28	-27	-32	-33	-32	-31	-23	-2
	Jan 19 60 34 -15 26	Jan Feb 19 29 60 107 34 57 -15 -28 26 50	Jan Feb Mar 19 29 54 60 107 140 34 57 57 -15 -28 -3 26 50 83	Jan Feb Mar Apr 19 29 54 33 60 107 140 88 34 57 57 57 -15 -28 -3 -24 26 50 83 31	Jan Feb Mar Apr May 19 29 54 33 9 60 107 140 88 29 34 57 57 57 57 -15 -28 -3 -24 -48 26 50 83 31 -28	Jan Feb Mar Apr May Jun 19 29 54 33 9 3 60 107 140 88 29 7 34 57 57 57 57 34 -15 -28 -3 -24 -48 -31 26 50 83 31 -28 -27	Jan Feb Mar Apr May Jun Jul 19 29 54 33 9 3 1 60 107 140 88 29 7 2 34 57 57 57 57 34 34 -15 -28 -3 -24 -48 -31 -33 26 50 83 31 -28 -27 -32	Jan Feb Mar Apr May Jun Jul Aug 19 29 54 33 9 3 1 0 60 107 140 88 29 7 2 1 34 57 57 57 57 34 34 34 -15 -28 -3 -24 -48 -31 -33 -34 26 50 83 31 -28 -27 -32 -33	Jan Feb Mar Apr May Jun Jul Aug Sep 19 29 54 33 9 3 1 0 1 60 107 140 88 29 7 2 1 2 34 57 57 57 57 34 34 34 34 -15 -28 -3 -24 -48 -31 -33 -34 -33 26 50 83 31 -28 -27 -32 -33 -32	Jan Feb Mar Apr May Jun Jul Aug Sep Oct 19 29 54 33 9 3 1 0 1 1 60 107 140 88 29 7 2 1 2 3 34 57 57 57 57 34 34 34 34 34 -15 -28 -3 -24 -48 -31 -33 -34 -33 -33 26 50 83 31 -28 -27 -32 -33 -32 -31	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 19 29 54 33 9 3 1 0 1 1 5 60 107 140 88 29 7 2 1 2 3 11 34 57 57 57 34 34 34 34 34 34 -15 -28 -3 -24 -48 -31 -33 -34 -33 -33 -29 26 50 83 31 -28 -27 -32 -33 -32 -31 -23

Note: The actual flow was based on record extension of the entire record to the 1967-1986 period.

John Day R. at Service Cr. (Cert)

	Jan	Fcb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Gaged 80% Ex. Flow	1034	1390	2049	2848	3382	1566	289	87	117	284	419	627
Gaged 50% Ex. Flow	1974	2537	3883	4891	5461	2681	619	194	195	364	608	1079
Instream Wat. Right	30	30	30	30	30	30	30	30	30	30	30	30
80% Ex. Flow W.A.	1004	1360	2019	2818	3352	1536	259	57	87	254	389	597
50% Ex. Flow W.A.	1944	2507	3853	4861	5431	2651	589	164	165	334	578	1049

N. Fk. John Day R. at Monument (Applic)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Gaged 80% Ex. Flow	573	810	1314	2013	2564	1119	2.39	96	101	138	186	3147
Gaged 50% Ex. Flow	1234	1578	2528	3359	3962	1891	440	149	136	173	304	r35
Instream Wat. Right	235	235	380	380	380	235	175	175	175	175	235	235
80% Ex. Flow W.A.	338	575	934	1633	2184	884	64	-79	-74	-37	-49	79
50% Ex. Flow W.A.	999	1343	2148	2979	3582	1656	265	-26	-39	-2	69	400

0°12 0°26 0°26 0°33 102 35°8 38°0 38°0 0°22 0°52 0°52		Ĵ	и., R.20 E,	op op op op op op op op op op	otag ሂምዝ ይዩን ይገለታለያ	Oct. 28, 1976 Dec. 23, 1976 June 9, 1976 June 22, 1976 June 24, 1976
DISCHARGE	CAGE-HEIGHT			NOITADOJ	1314 (113	3740
тииор Mbffff2) E	<i>4E</i>	Y RIVER	SOTOTI SOTOTI SOTOTI	han	ROCK Creek

MISCELLANEOUS MEASUREMENT No. BO Rock Creek	AM DY 17070204 20 John Day River	5 ³ GII	
DATE	LOCATION	GAGE-HEIGHT FEET	SECOND.FEET
Dec. 23, 1975 Jan. 27, 1976 Feb. 25, 1976 Mar. 23, 1976 May 6, 1976 June 7, 1976 June 22, 1976 July 27, 1976 July 27, 1976 Aug. 24, 1976 Dec. 23, 1975 Jan. 27, 1976 Feb. 25, 1976 Mar. 23, 1976 May 6, 1976 May 26, 1976 June 6	NWWWANEW sec.10, T.1 S., R.21 E. do do do do do do do do do do		6.49 41.2 134.7 114 33.2 13.6 6.22 2.96 0.40 5.09 4.32 37.6 31.7 108 32.4 9.65

	MISCELLANEOUS B STRE	DY John Day River	61111	am Co.
:	NOCK OF COM	LOCATION	FEET	DISCHARGE SECOND-FEET
	Apr. 28, 1931 May 24, 1934	At Condon Bl springs .5 mi ab West's Dam, 2.3 mi ab mouth, nr Klondike		14.1
	May 24, 1934 June 1948 Nov. 10, 1965	300 yds ab West's dam At mouth, nr Rock Creek station SW1NW1 sec.32, T.1 S., R.22 E.,	35	4.33
	Mar. 8, 1966	NE4SW4 sec. 36, T.J S., R.22 E. ab Heppner Condon Hwy		5 7 .]t
	Mar. 8, 1966	Dry Cr., nr Dam site (Condon)		21.5
	Mar. 8, 1966	nr Condon		19.9
	do	ft bl barn		18.2
	do	NEANWA sec.24, T.1 N., R.20 E., ab Rock Cr, 2.5 mi.		17.8
	do	SW4NE4 sec.15, T.1 N., R.20 E., Rock Creek, 30 ft ab bridge		35.5

EXHIBIT _____6 PAGE ____ OF ___

DATE	LOCATION	GAGE-HEIGHT	DISCHARGE SECOND-FEET
Mar. 10, 1966	SE4SW4 sec.15, T.2 S., R.22 E.,	•	153
Oct. 25, 1966	Sec.36, T.3 S., R. 22 E., ab bridge		3.47
Oct. 26, 1966	Sec.6, T.4 S., R.23 E., at Murtah		0.67
Dec. 6, 1966	Sec.26, T.2 S., R.22 E., bl Dry Cr.		51.6
Dec 7 1070	bl Wolf Hohlow Br.		50.1
Dec. 3, 1970 Mar 25, 1971	NE_{L}^{1} sec.10, T.1 S., R.21 E.		13.1 284
Mar. 25, 1971	SELSW sec.15, T.2 S., R.22 E.		260 277
Mar.26, 1971 May 25, 1971	SELSWI sec.15, T.1 N., R.20 E.		245 9.34
do	NW1NE1 sec.10, T.1 S., R.21 E.		9.28
Oct. 28, 1975 Nov. 25, 1975	NWANEA sec.10, T.I S., R.21 E. at Hwy brdg at Olex		0.52
	0		
STATE PRINTING SUTIO	but		

	LOCATION	FEET	DISCHARGE SECOND-FEET
June 6, 1976 June 22, 1976 Aug. 24, 1976 Oct.28, 1975 Dec. 23, 1976 Jan. 27, 1976 Feb. 25, 1976 Mar. 23, 1976 May 6, 1976 May 6, 1976 June 9, 1976 June 22, 1976 June 22, 1976 July 27, 1976 Aug. 24, 1976	do do do SWIANEIA Sec.24, T.1 N., R.20 E., 6 mi nw of Olex do do do do do do do do do do do do do		0.77 0.77 2.21 0.38 0.51 38.0 31.5 107 20.8 0.20 2.0 1.19 0.51 0.43
ar			

	TRIBUTARY TO OR DIVERTING FROM		COUNTY
MISCELLANEOUS	DL 17070201	Quent	50
94	John Day River	Grand	00
Rock Craek	U.VIII. III.	GAGE-HEIGHT	DISCHARGE SECOND.FEET
DATE	LOCATION		
	Mouth, 6 mi northwest of Dayville		0 8 Est
Sept. 17, 1949	Mouth		0.36
Aug. 31, 1951	Mouth, in Et soc.18, T.12 S., R.20		0.83
Aug. 23, 1951	Housin, in 12		0.05
Aug.4, 1952	de		20.4
Auly 15, 1953	40 9		2.15
Cont 8 1953	do		* 1.5 Es
50pt. 0, 1055	do A (N X)		
July 21, 1999	Drainage area, 292		1 0.03
	o f mi sho mouth		76 0
Sept. 18, 1950	U.S IIII abo motor		10.0
July 16, 1957	At mouth		3.30
18 1959	do		2.19
Aug. 10, 1))/	NEL sec. 21. T.12 S., R.25 E.	L	
Aug. 12, 1960	ME4 800.18, T.12 S., R.26 E., 0.5	np	7 07
July 18, 1961	NET Sec.ic, Dauville(292 sq mi Dr.	Ar.)	1.01
	horthwest of Day ville (-)-		7.65
1117 24 1962			7.22
Aug. 21, 1063			38.0
July 20, 190)			32.6
Jan. 6, 1964			1
Feb. 11, 1964			

Name	Priority	Acres	CFC	Creek Flow	Approximate Average Cut-off Date
Marick *	1868	45.6	1.14	1 74	August 1
West *	1868	12.6	0.32	1.46	August 1
V. O. West	1869	11.6	0.29	1.75	July 15
West *	1879	126.7	3,17	1 92	June 22
Crum	1880	12.8	0.32	5 24	June 20
Marick *	1883	46.4	1.16	6.4	June 15
Marick *	1884	2.8	0.07	6.47	June 14
West/Marick	1884	9.6	0.24	6.71	June 13
Įrby	1884	19.7	0.49	7.2	June 12
Childs *	1886	131.0	3.28	10.48	June 8
West *	1888	19.6	0.49	10,97	June 7
H. Weatherford	1890	48.1	1.2	12.17	June 6
V. O. West	1890	17.5	0.14	12.61	June 5
Pettyjohn	1893	51.0	1.28	13.89	June 3
Olson	1893	10.2	0.26	14.15	June 3
Marvel	1893	31.1	0.78	14.93	June 2
Bettencourt	1894	93.1	2.33	17.26	May 29
West *	1894	69.6	1.74	19.00	May 25
Bettencourt	1895	29.0	0.73	19.73	May 25
Ries	1895	15.5	0.39	20.12	May 24
Wheelhouse	1895	54.2	1.36	21.48	May 22
Pettyjohn	1896	58.3	1.46	22.94	May 20
Davis *	1896	37.7	0.94	23.88	May 18
Welner	1897	17.4	0.44	24.32	May 18
Brooks *	1900	30.1	0.75	25.09	May 17
V O Wort	1900	36.7	0.92	25.99	May 15
V. U. West	1903 .	10.5	0.26	26.25	May 14
Childe	1905	13.3	0.33	26.58	May 13
H Westhenford	1905	17.4	0.44	27.02	May 13
Welp	1910	90.4	2.41	29.43	May 12
West	1917	12 5	0.41	29.84	May 12
Pettviohn	1913	51.	1 28	31 43	May 12
Welp	1914	15.26	0.38	31 81	May 11
H. Weatherford	1914	167.1	4.18	35.99	May 10
Bill West	1922	35.	0.44(1/80)	36.43	May 10
D'Albero	1936	24.	0.5 (1/80)	36,93	May 10
Bettencourt	1951	34.22	0.86(1/80)	37.79	May 9
, E. Weatherford	1951	120.2	1.5 (1/80)	39.29	· May 9
Irby	1952	5.6	0.14(1/80)	39.43	May 8
Bemaer	1953	152.2	2.0 (1/80)	41.43	May 8
Irby	1966	. 81.2	2.03(1/80)	43.36	May 7
D'Albero	1967	23.8	0.6	44.06	May 6
Litte Brooke	1967	18.3	0.46	44.52	May 6
Ries	1971	15.2	· Q. 38	44.9	May 5
Welp	1973	34.7	0.5 (1/80)	45.4	May 5
Ries	1975	3.	0.08	45.48	May 5
H. Weatherford	1975	75.	1.9	47.38	May 5
E. Weatherford	1975	/1.4	1.9	49.18	May 5
Trby	2/6/76	20.2	0.51	49.69	May 4
Wilcke	2/19/76	52.4	1.56	51.25	May 4
V. O. West	3/1/76	0.	0.15	51.4	May 3
D'Albero	3/8/76	22.1	0.55	51.92	May 3
Ries	6/28/76	10 11	0.35	52.5	May 3
H. Weatherford	7/8/76	20.4	0.40	52.90	May 3
Bettencourt	12/1/76	20.0	0.95	53.91	May 2
	11/1/10	20.0	0.12	54,03	May 2

EXHIBIT 7 PAGE 0F

Subject to Stipulation

- -----

a mentione and an an an and and an

.....

ROCK CREEK WATERSHED IMPROVEMENT PLAN

- Martin

Sponsored By:

Gilliam County Soil and Water Conservation District P.O. Box 106 Condon, OR 97823

Morrow County Soil and Water Conservation District P.O. Box 127 Heppner, OR 97836

Wheeler County Soil and Water Conservation District P.O. Box 425 Fossil, OR 97830

INTRODUCTION

History

The Rock Creek region was settled between 1860 and 1885 by cattle ranchers. As settlement expanded in the region, sheepraising supplemented cattle. By the early 1900's the number of sheep greatly exceeded cattle. Sheep grazed grasses that replaced the depleted native bunchgrass stands and were easier to trail to mountain areas for summer pasture. Shortly after the depression, numbers of other livestock built steadily and began to exceed sheep.¹ Today livestock grazing, from traditional Hereford to newly-developed breeds, is standard throughout the watershed,

The broad, rolling plateau of Rock Creek Watershed supported dryland wheat production while irrigation developed in canyon bottoms. Surface irrigation systems included diversion structures along the mainstem and in tributary streams. These structures provided flood irrigation for a variety of crops; currently the primary crop is alfalfa. Many gravity-flow diversion systems do not appear to be in use. Numerous stock ponds, small impoundments, and mill ponds have been built over the years. Many of these structures for surface irrigation and storage have fallen into disrepair or washed out entirely. Late season baseflow has become unreliable and, in fact, is nonexistent through much of the summer.²

The headwaters areas consist of timber and grassy prairies (meadows). Historically, the headwaters have been managed for timber production and livestock grazing. Forest timber includes Douglas-fir, ponderosa pine and tamarack. The remains of logging mills are seen at Cone Mill, on Buckhorn Creek, and at Spoo Mill, on the Middle Fork of Rock Creek.

Rock Creek Watershed has a history of extensive flooding and streambank erosion. Residents along Rock Creek, particularly the lower end, have individually and collectively made many attempts to alleviate problems. A Rock Creek Water Control District (RCWCD) was formed in 1965 and pursued construction of a reservoir for flood control, for irrigation water, and recreation.³ Due to rising costs and lack of a consensus among affected parties, no reservoir was built.

¹Ray W. Chapin, <u>Soil Conservation Survey of the Rock</u> <u>Creek Project</u>. (Region 11: USDA, Soil Conservation Service, 1939), p. 5.

²Joe Irby, Olex resident, discussion about Rock Creek. November 15 1990.

³Minutes of RCWCD, February 24, 1965.

EXHIBIT 8 PAGE 2 OF 7

The movement of water through the watershed is a function of characteristics of land cover, soils and geology.⁸ As indicated by hydrographs in Appendix A, water passes through the watershed in the winter and early spring months. Over 70% of runoff occurs in the three months of January, February, and March. According to numerous landowners, flooding most commonly occurs in two situations: (1) rapid runoff on frozen ground during winter months; and, (2) sudden localized storms in summer months.

The location of numerous springs is a function of the <u>geology</u> and soil characteristics of the region. The intermittent characteristics of flow in the main channel of Rock Creek is related to the geology and soil deposits in the valley floor. For example, near the mouth of Rock Creek a spring in the streambed produces flow continuously, whereas except for several springs, no water may be found upstream until above the town of Olex. In numerous wider canyon bottoms, where the soils are deeper and widespread, as the canyon narrows, flow surfaces. These areas are found on the major tributaries and mainstem at the following locations: T5S R24E Sec 2, 5; T4S R24E Sec. 36; T5S R23E Sec. 10.

Soils

Soil types and depths vary within the watershed. On the uplands, soils are generally a shallow to deep, well drained, silt loam complex. Associations include Ritzville, Mikkalo, Lickskillet, Wrentham, Condon, Valby,⁹ Rhea, Morrow and Bakeoven.¹⁰ The wind-deposited soils on the Plateau are also found in the intercanyon range county between the Plateau and creek bottoms. Winds predominately from the southwest deposit soils to a greater depth on north-facing slopes. In the broader valley bottoms such as in the Lonerock area the silt loams range to a cobbly or stony loam. Associations here include the Waha, Gwinly, Rockly, Tubs, Simas, Ukiah, and Waterbury.¹¹

Upper Basin rangeland soil associations include Waterbury, Waha and Rockly. In forested areas, soils are generally very shallow over a rock complex. Associations here include Hankins, Klicker

⁸Ray K. Linsley and others, <u>Hydrology for Engineers</u>, (New York: McGraw-Hill series in water resource and environmental engineering, 1975), p. 224.

⁹Richard E. Hosler, <u>Soil Survey of Gilliam County</u>, <u>Oregon</u>, (Washington, D.C.: USDA, Soil Conservation Service, 1984), p. 173.

¹⁰Richard E. Hosler, <u>Soil Survey of Morrow County Area</u>, <u>Oregon</u>, (Washington, D.C.: USDA, Soil Conservation Service, 1983), p. 226.

¹¹Hosler, <u>Soil Survey of Gilliam County, Oregon</u>, p. 173.

EXHIBIT 8 PAGE 3 OF 7

over a rock complex. Associations here include Hankins, Klicker and Boardtree. Mountain prairies or meadows, however, are composed of a poorly-drained fine loam/clay/ash complex of considerable depth.

Climate

The climate is typical for central Oregon. <u>Average annual</u> precipitation varies from 8 to 25 inches as elevation increases. The greatest portion of the precipitation occurs in the winter and spring months from storms approaching from the south and southwest. Sudden severe convectional storms in summer months can lead to extreme localized flood peaks. Temperatures have ranged from summer highs of over 100 °F to winter lows of less than minus 25 °F.¹²

Plant Communities

Plant species evolved in this region in relation to soils and climate described above. The grasses, forbs, shrubs, and trees within the headwaters, uplands, and riparian areas play a vital role in soil and water conservation. A common listing of native, introduced and non-desirable vegetation is shown in Appendix B. Douglas-fir, ponderosa pine, tamarack, aspen, and alder are found in the headwaters.

The rangelands are a true grassland. The potential native vegetation is approximately 90% composed of bluebunch wheatgrass, Idaho fescue, and Sandberg bluegrass.¹³ Riparian areas show an extensive growth of alder with some willow and wetland plants such as sedges, rushes, grasses, cattails and other forbs.

Fishery Habitat

Rock Creek and tributaries have historically supported anadromous fish and resident native trout.¹⁴ Warmwater species have been introduced in some areas.¹⁵ During inventory along Rock Creek, observed accumulations of algal growth in isolated pools indicates warm water temperatures which

¹²Chris L. Wheeler, <u>An Engineering Report of the Rock</u> <u>Creek Watershed</u>, (Salem: State Engineer of Oregon, 1968), p. 3.

¹³Hosler, <u>Soil Survey of Gilliam County, Oregon</u>, p.70.

¹⁴Errol Claire, Fisheries Biologist, Oregon Department of Fish and Wildlife, discussion in John Day, August 13, 1990.

¹⁵Shaun P. McKinney, Fisheries Biologist, Umatilla National Forest, Heppner Ranger District, discussion in headwaters, December 4, 1990.
Lack of stable streamflow/summer flows. Summer flows for irrigation and instream use is minimal to nonexistent. Stream hydrographs shown in Appendix A reinforce what irrigators know: during much of the summer, there is no water available in Rock Creek. Alternatives discussed among the RCPG include:

- Thin fir thickets
- Juniper thinning
- Structures in creek
- Flood irrigation versus sprinkler
- Spring developments to utilize range
- Riparian management
- July rains
- stock ponds

<u>Too much water in winter - flooding.</u> Noted damaging floods have occurred in 1914, 1954, 1956, 1964 and 1965.²⁰ Floods can affect a specific part of the watershed or can be widespread, as when overbank flows occur.

Widespread flooding occurs during sudden warming coupled with rain on frozen soil or snow. With frozen soils an impervious layer seriously reduces the water retention capability of the watershed. Surface runoff becomes concentrated and flooding develops in Rock Creek. Ice and debris carried by high flood waters jam in bridges and compound problems associated with flooding. Damage to buildings, roads, utility lines and loss of crop ground and livestock are results of flooding.

Localized convective summer storms also create damaging floods. For example, in late August 1990, a storm dropping 4 to 6 inches of rain in the lower end of Rock Creek watershed produced flooding in several draws, resulting in soil loss, cutbanks and property damage.

<u>Field washing - soil loss from cropland.</u> Soil loss from cropland has occurred in dryland areas and on irrigated bottoms. Alternatives discussed among the RCPG include:

- Conservation tillage
- Terraces
- Don't farm next to creek
- Plant grasses next to bank
- Check dams in creek
- CRP plant grasses
- Subsoiling frozen ground or stubble
- Rotations with grasses
- Flood irrigate versus sprinkler
- Crop residue

²⁰Gilliam County Soil and Water Conservation Service and others, <u>Watershed Work Plan Rock Creek Watershed</u>, (USDA, Soil Conservation Service, 1975), p. 36.

EXHIBIT 8 PAGE 5 OF 7

- Grazing management
- Early seeding fall versus s
- Type of crops

Distribution of stock water. Livestock grazing is practiced throughout the watershed. Grazing areas include rangelands, riparian areas, wheat stubble, and forestlands. Water availability is a strong limitation to the effective use of grazing areas. Alternatives discussed among the RCPG include:

- Spring developments
- Water impoundments
- Fencing
- Put water in correct places
- Haul water in
- Pipelines
- Drill wells

Lack of vegetation. Forage for livestock is limited in season and location. Diversity of grasses on the bottoms is limited. Great variability of grasses is found with changes in soil, slope and orientation. The inventory of range, as noted by the SCS, shows poor to excellent conditions. Rangeland condition is poorest on the valley bottoms and is excellent higher up on slopes.

Water conservation and management. Rock Creek watershed yield can vary considerably year to year. Streamflow records indicate approximately 20,000 to 40,000 acre-feet annually (see Appendix A). The pattern of release is such that water passes through the watershed during winter and early spring months. Water is not available in the creek during summer months. The emphasis was stressed to <u>capture</u>, <u>store</u>, <u>and safely release</u> water where it reaches the ground surface. This implies land treatment alternatives and solutions. Alternatives discussed among the RCPG include:

- Replant trees in upper watershed
- Build ponds or water basins
- Plant grass along roadsides
- Slow the water down in streams
- Install check dams
- Plant buffer strips along drainageways (grassed waterways)
- Encourage trashy fallow/residue
- Install more diversion ditches
- Practice subsoiling
- Use single shank on frozen soils on planted fields
- Improve grazing management
- Extend Conservation Reserve Program
- Develop upland water storage reservoirs
- Eliminate water use through noxious weed control
- Contour seeding
- Grass seeding on stream banks
- Improve construction of logging roads

EXHIBIT 8 PAGE 6 OF 7

grasses in the timber understory and along tributaries. Proper grazing practices include leaving one half a years growth and using rotation and deferred/rotation patterns of grazing.²⁵ To provide options in water supply for livestock it is recommended to extensively pursue out of stream stock tanks (OOSST).

Tributaries in these areas could also be important for fish spawning.²⁶ Improvements to fish habitat, primarily through construction of small instream checks, will create more spawning pools. This will also help regulate water releases from the forestlands, falling within all three watershed objectives mentioned earlier. Unlike headcutting found in higher elevations, the primary soil loss in these reaches is through streambank erosion. Small checks in conjunction with vegetation will slow water down through these tributary streams. Locations for instream checks and OOSST are shown in Appendix H.

Upper Basin Rangelands

Continuing down the watershed it is appropriate to describe the rangeland and major tributaries from the forest/rangeland transition to the junction of Lonerock Creek with the mainstem. This area includes the following watercourses: the mainstem below Anson Wright Park, Rood Canyon, Middle Fork, Juniper Fork, Buttermilk Canyon, and Lonerock Creek. These areas are valuable for livestock grazing; they also contain important fish habitat. A future vision suggests management practices to improve livestock distribution. In general, livestock should be brought up off the bottoms. However, in some cases livestock density is too high around water source and feed areas on the Plateau.

Areas of juniper trees, particularly in the Lonerock Creek watershed, should be thinned and used as riprap in tributary streams. Mechanical treatment of rangeland and seeding to perennial grasses should be pursued in areas of heavy grazing pressure, on bottoms, and along abandoned roads. Noxious weed control should be actively pursued through existing programs (Gilliam and Morrow Weed Agents and Rock Creek Range Conservation Corporation). Although the tributary streams mentioned above dry up in summer months there are several perennial springs that could be developed for livestock use or as groundwater recharge (subirrigated). This would improve grass production in these areas, cool surface water, and improve baseflow. These springs include several areas on the left side of Lonerock Creek, Wick Creek and along the mainstem near Hardman.

²⁵Allen Koester, Gilliam District Conservationist, SCS, discussion of November 13, 1990.

²⁶McKinney, discussion in headwaters, December 4, 1990.

EXHIBIT 9 PAGE 1 OF 13

PAGE / OF /3

* *.

0-192a-1	-1-26,	·**2/*2	-	 F	THIRIT	.9			1. 19 - 14 - 44		54 E 2		OF	FICE	OF ST	OR	EGON	SINEER		14047	We we	HG.	File No. State	G. S	50
				P	AGE 2	- OF	13 .	•		· ·····				Water	Resourc	D	epartn	nent	in in a	B	al al				
Daily G	age I	Ieight	, in I	eet, a	nd Discha	rge, in	Second-f	eet, of .	· Lo	CK	Creek	ç		at-	Rock	10	reel	K, Ori	g for the	year ending Sep	L. 80, 192 5	Table of use: H	alf tenths	tt. to	ft.
-		. D	rainag	e area .			quare mile	a.	(Mrs	J.M.Y	lest	, Obser	Ter) (Dage read		Hund	edtha		noo a day		Used rating tabl	e dated _ 4-	16-2	6
* *	1		2	Gara	DOT.	1	NOV.	1	DEC.		JAN.		FEB.	1	MAR.	T	L	APR.	MAY	JUNE	JULY	AUG.	SEPT.	2 5	1. 2
nd-fe			Â	height	Discharge	beight	Discharge	Gage	Discharge	Gage	Discharge	Gage height	Discharge	Gage height	Discharge	Day	Gage height	Discharge	Gage height Discharge	Gage height Discharge	Gage height Discharge	e height Discharge	height Discharge	A +	SH &
Becol			1								D. S. S.			+		1.	289	48	230 19	270 42	200 3.5	2.00 3.5	2.35 22	1 20	6.7.5
00			2									1	-			2	280	· 48	2.25 2 16	2.75 45	200 3.5	2.00 3.5	2.35 22-	2 -	03:
K			8													8	280	48	2.20 14	3.20 73	200 35	200 3.5	2.10 8.0	2nd	
			4								Ret Martin		1	1		4	2.80	48	2.20 14	2.95 57	2.00 3.5	2.00 3.5	2.00 3.5	4 -	
. 1			5									-				5	2.80	48	2.20 14	2.80 48	1.95 1.6	2.00 3.5	2.00 3.5	5	
			G										4.15			6	2.95	57	2.15 11	2.72 42	2.00 3.5	2.00 3.5	2.00 3.5	G .	• • •
char			7											1		7	291	54	2.05 5.8	2.55 93	2.00 3.5	2.00 3.5	2.00 3.5	Artes	
Dis			8						1							8	2.90	54	2.00 3.5	2.55 33	1.95 1.6	2.00 3.5	2.15 .11 -	8 8	Chert
NS			9							12					4	9	2.70	42	2.00 3.5	2.50 30	2.00 3.5	2.00 3.5	2.30 19	0 -	JUN
Xt			10					-								10	2.75	45	2.05 5.8	2.35 22	2.00 . 3.5	2.00.3.5	2.00 3.5	10 \$X	C RY
ap of			11		•								1			11	2.50	30	2.05 5.8	2.35 22	2.00 3:5	2.00 3.5	195 1.6	11	141
10			12		1.											12	2.50	30	2.00 . 3.5	230 19	2.00 3,5	2.00 3.5	2.00 3.5	12 6	1.1.0
	2	1 4.	18	1.2.2	1. 1	1000	-			• =		-	1. 1. 1. 1		· · · · · ·	18	2.60	36	205 : 58	2.20 14	1195 1.6	2.00 3:5	2.45 27-	18 -	1,3
		1.	14		N		·		-				***** **	-	1	41	2.40	24	205 5.8	2.30 19	1.95 1.6	2.00 3.5	2.30 -19	14 64	C.T.
i. i	:		15		8.14			100		1.00	SAN HERE	18.1	1		3	25	2.40	24	2.04 15.3	2:15 511:	2:00 3.5	2.10 8.0	2.00 3.5	15 :	
5 5		1	16			N GVE	1.1°		-	1		15	1. 2.1.2		1. 26	B	2.55	33:	2.00 3.5	2.15 11	2:00 13.5	2.10 8.0	2.00 . 3.5	10-	
	1.		17	14.30	Photo and					1 24	1.1	· · ·	·	2.85	51	17	2:50	30	2.00 3.5-	2.01 4.0	2.00 3.5	2.10 8.0	1.80 0	17 5	Per la companya de la
			18	. Court						-	191. 191	13.43	14201	2.92	34	Lis (2.65	39:	2.00 3.5.	2.00 3.5	2.00 3.5	2.10 8.0	2.00 3.5	15 1	the state
	1		19	* 12		** _	-	-		-	1.41 2	-	4	291	54	19	2.65	39.	2.00 3.5	2.00 3.5.	2.00 3.5	2.10 8.0	2.00 3.5	19	1 1'
		i	20		-						1 1		1 21.4	290	- 54	20	3.20	. 13	2.10 .8.0	2.00 3.5	2.00 3.5	2.10 8.0	2.00 3.5	20 3	50
ot at		1.7	21	and it	ng bi a la				•		and and a		Section.	3.20	. 13.	21	3:08	67-	2.65 .39	2.00 .3.5	2.00 3,5	2.15 11.0	2.00 3.5	21 -	2 1 - 2
1 - 10		PP Ste	22	25 SPA	ter have	三日本				1.1.1.	aligi que contra la	A WAR	AN TOP TAKEN TO	90ge	063	22	2.95	~5/1	4.00 126	2.00 3.5	2.01 4.0	2.15 11.0	2.00 3.5	22 22	104
00		12	23	- 2	Section of Long	in the second			** 31k	1.000.21	cathe refrect	1000	and the second s	225	164	23	0.00	160	3.50 92	2.00 3.5	2.0 40	2.0/ 4.0	2.00 3.5	23 -	40
10		되는	24	がなると	なたのでは	2611	226321 6565-6	12.25	- Antoniek	44.5	201444120	311.31	414 + 3 + 1 15 \$ 19 1	2.20	971		2.05	EAG.	3,50 32.	2,00	2-01 4.0	2.00 3.5.	2.00 3.54	24 8	物中的学
ETT.	女生	- 24	1 20	YERANA.	ADDI Maker	2432			1. 1.	13.52	We let		144743/4415	200	.4:001	20	000	10-	3.20 . 73	2.00 3.3	2.01-4.0	2:00 3.5	2.00 3.5	25 -	
17		計画	26	7452.4	State and	空心局	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7		19994	24 11.424	3-5	HATEF	3.94	6.01	部	210	1421	3.20 13	2.00 0.5	2.0/ 4.0	2.15 11	2.00 3,5	25	
age age	1	31.4	27	A.M.	the the second second	2 - 17 14		Part		-		1.9 Cal-	No. of the second	194	57	127	2.60	.36	2.90 54	2.00 3.0	2.0/ 4.0	215 11	2.00 3.5	27	1 1
E E	1		28	1.014		-				-	-			8 05	64	28	2.60	25	184 51	2.00 2.5	2.00 2.5	2.15 11	2.13 11	arter arter	
xfmt	1H		29			12			-	-				292	.54	20	130	00	290 .54	200 35	2.00 0.5	2.15 11	2.15 11	20 8	а. н. в. н.
Mit	NO	1	1 20											2.92	.54	81			282 48		200 3.5	120 10	2.00 . 0.5	30	-Period
	-	Total	Tor	45-0		1.00			No.						.975			294	916.8	570.5	1039	2120	2181	51	42903
	Mean	TOTAL	1	1	1.1	1								15 da	1)65.0	-	1.14	431-	29.6	19.0	3.35	6.84	. 7.27	15 -	7,290.5
- 1	Run-of	in acre	oft		in the	·			1.15	6.5			1.4		1930	N.	6- 2	565	1820	1130	206	420	433		8520
1	Maxim	am		1		1				2					86 !			73	126	73.	4.0	22	27		
1	Minim	m	-	111	27	-	14								51	2.	2	22	3.5	3,5	1.6	3.5	0.		0
		-	-	1.4.	5 1.0		-	-		-				1000	Ar Ar Ar	tre :	1.11.41		All and the second second			and the second s		See. Com	

An and a general		EX PA	HIBIT	9 . OF .	13		• • •		1 150 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 .	OF	FICE	OF ST Resource	ATI	EGON E EN eparti	GINEER	2	15 · ·	<	404	1000	2000	ing:	i.	File	No. {U.S. State	2	50
Daily Gage Height	, in i	Feet, a	nd Discha	rge, in	Second-f	eet, of		Coch	K Cre	ek		near		T	Roc	KCr	eek	for the	year end	ing Sep	L 80, 191	2.6_	Table	of use: He	alf tenths	1-	tt t	tt.
	I	ge area	0.000		square mile	a.	(Trs	IN.W	est	, Obse	rver)	Gage read	to		hundr	redth	2.5_ on	ce a day				Used	rating table	dated	4-	10-	- 26
feet	Day	Gage	Discharge	Gage	Discharge	Gage	DEC.	Gage	JAN.	Gage	FEB.	Garo	MAR,	- 10	Gage	APR,	Gare	AY ·	JU	NE	Gage 1	ULY	Gage	AUG.	GAge	PT.	N	CA S
cond	-	actene		neight	15 incharge	height	Discharge	height	Discharge	height	Discharge	height	Discharg	Ë Å	height	Discharge	height	Discharge	height I	Discharge	height	Discharge	height	Discharge	height	Discurree	-	1237
8 8	1			100	-				-	-			i	1	2.3	19.	2.00	3.5	1.95	1.6	1.95	1.6	2.00	3.5	2.1	8.0	1	3.0
	-			-						-		-		2	2.5	30	2.0	3.5	2.00	3.5	1.95	1.6	200	3.5	2.1	8.0	2	
NC	-						-							8	2.55	33	1.95	1.6	2.00	3.5	1.96	1.6	200	3.5	2.1	8.0	3 6	
11	5											-		4	2.65	39	1.95	1.6	1.95	1.6	1.93	1.6	2.00	3.5	2.1	8.0	4	
	-				-					-	-			5	2.75	45	2.00	3.5	1.95	1.6	1.95	1.6	2.00	3.5	2.1	8.0	5	
Arge	7				-							-		0	3.1	67	2.00	3.5	1.95	1.6	1.95	1.6	2.00	3.5	2.1	8.0	6	
Unich	-							-	-	4		1.		7	295	51	2.00	3.5	1.95	1.6	2.00	3.5	200	3.5	2.1	8.0	7	the de la contra
	9						-					-		8	2.0	40	2.00	3.5	1.95	1.6	2.00	3.5	2.00	3.5	2./	8.0	80	8 8
	10		-											9	20	40	2.00	3.5	2.02	4.4	2.00	3.5	2.00	3.5	2.1	0.0	9 -	CILE
.2.	11	14						-		Y	** · · · · ·			10	2.9	34	2.00	3.5	2.00	3,5	2.00	3.5	2.00	0.5	2.1	0.0	10 7	PR 5
18-	12		-	-		1		-		1				11	2.0	40	2,00	35	2.00	3.5	2.00	3.5	2.00	3.5	2.1	8.0	11 2	3-47
7.2.	18		14 - m	11				6		4				12	3.0	110	2.00	3.3	2.00 .	3.0	1.95	1.6	2.00	3.5	2.1	0.0	12 -	al
120	14	19.18	14 - 2	•	•	1 14				1. 14:	c 11	1.	10	18	816	70	2.00	85	2.00	85.	1:90	1.6	2.00	3.5	2./	8.0	13 2	
E. I.	15	A	18. AL	14.25	194 A				104	151	1 12	10.00	Litter a	11	8 00	-60	2.00	3.5	2.00 .	35	0.00	1.6	200	85	2.1	0.0	14 -	
5 5	16	1.00	stat in		A	1. 15					1 4	1		110	28	18	2.00	35	2.00	9.6	2:00	5.0	2.00	3.5	2.1	0.0	15 1	
	17	1.00	4 5 Jako 8	24.	-17 - 1	1.00%				A.C.	ALC: YOU			16	200	. 19	2.00	3.5	2.00	3.5	2.1	3.5	2.00	8.5	2.1	0.0	16 -	1 2 .
· · · · · ·	18	* 1.1M	44.204	8. C.	11114	• 1		100	1.4.2	1 1719		Degener -	11.139	11	26	36	1.95	1.6	19	0.0	2.00	35	200	35	2.1	80	17 1	abech in .
	19			1	1		*.		1.14	191 3	2. N.	1.00		10	28	48.	195	1.6	19	0	200	35	2:00	35	01	80	18 8	1 4 4
	20		1-121	-						. 1	A	11.4		20	2.5	30	1.95	1.6.	19	0+	200	3.5	200	:3.5	21	80	19 -	
	21	in.	13. 31	12		+			1	1.1					194	.24	195	10	19	at	0.00	35	200	35	21	80	20 1	CH'N
feet	22	Sec. 4	法情况和	A Marca				- 124	· Contractor	1.28	St - a fail	12.	. 1.5	22	24	24	1.95	1.6	1.9	0.0	2.00	3.5.	2.00	3.5	01	80	21 -	1 A VI
	23		The State	+ 1.96				1	t	1	1 . AL !	277	049	25	235	22	2.00	35	1.9	03	200	35	200	3.5	21	180	2 8	3-8
總統附部等	24		法はない	林田谷:	Waters	12.245	407-0251	and the	Sources	143423	和武武和	消伤	UN STATE	22	2.35	122 181	2.00	3:50.	2:00 2	3.51	2.00	3.5.4	2:00	3'5	21	80		an work
3.0	N	1	REC SI	語	al.,24.	. Dr	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		約44支	いけに	第二百姓!	192	きい	日本	2.3	19	2.00	3.5	2.00 3	3.5	2.00	3.53	2.00	3.5	21	8.0	an A	the die
学校を見た	26	拉林	海道感	國際	心白いる	4.1%	4.4	和思想	机制作用	總透	·=***	mag:	1.12	100	2:25	1/6 01	2:00	3,5%	2:05 :	5.8	200	3.5	2.00	3.5 5	21	80	-	
E e A	27	語の	ちんか	C.	Karan Pa	1.15	16	the start	で学校が	100.00	中午の計	A	1 24	14	2.2	314 3	1:95	1.6%	2.05	5.8	2.00	3.5	2:00	3.5	21	80	20 -	-
stag	28		1	1	140			-4	1. 11	* 48 Q	-Y 1121		1. 1.2	1 25	2.1	\$8.0	1.95	1.6	2.00 3	3.5	2.00	3.5	2.00	3.5	2.1	80	21	11.
H04 ::	29	* •	,	14		*		10.00						29	2.1	. 8.0	1.95	1.6	1.95	1.6	2.00	3,5	2.00	3.5	21	80	S S	a de se
the the test	30		-						-					30	2.05	5.8	1.95	16	1.95	1.6	2.00	3.5	2.00	3.5	2.1	80	20	0.1
	31									• • •	* • •			81			1.95	1.6			2.00	3.5	2.05	5.8			81	Period
Total			3		1	int.				1.00		-	45 :			1205.8	84	5.7	70	4.3	9	959	110	2.8	2	40.0		1.812.5
Mean	-	-		3	1.1	-		1 5	1		1 1				• . •	40.27	2.	76	2.5	48	3.	09	З.	57		8.0	11	
Bun-off in acre	a			14		•	-	• • •		1	- 1	_	.1. 11	-	1.1.1	2390	. 17	0	14	-	13	20	22	0	4	76	(;3,600
Maximum		1	· 24+	2.4		-		1.5	-			-		-	1. 1	112		3.5	-	5.0		8.0		5.8		8.0		
Minimum		-		-		2								5		5.8		1.6		0		1.6	5	.5		8.0		÷.

	Contraction of the			the second second			Oregon	, for the	year en	ding Sept	lember	30, 1965	-			Wat	er Resourc	es Dep	artment		Ci	Used	rating table			
Drain	nage ar	ca	1	Square Mile	s. Gage	staff	gage						-	(Alvin A.	West	-	, Ob	server)		Ga	ge heigt	hts used to	hundr
	. 00	TOBER	NO	VEMBER	DE	CICAGBER	34	WIANT	70	BRUARY	,	AJICH			PRIL	1	MAY		JUNE		JULY		UGUST	523	PTEMBER	
TAG	Gare	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	DAY	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gare	Discharge	Gare	Discharge	DAT
					-		-				1					207	51		-			-		1		1
1	-						1		1							2.02	46			1						2
4			1				1	COLUMN STREET	1		1		11			1.96	41									3
1		7	1		1						1		11			1.86	34									
5			1		1								5			1.82	31								and an and a set	. 5
6				annennen		homeun							1 6			1.78	29									6
7													7			1.76	28		-							7
													8			1.72	26			. 73	20.9		-1			8
													9			1.70	25	.86	1.2			. 66	0.5			
10													10			1.60	. 20									10
11									1				11			158	16			1						11
12									-		1		12			1.00	3.0									12
13			-				-				-		13	236	97	1.00	3.0									13
14			-		-				-	-			14		1	.90	2.1	-							47	14
15							-						15			.90	2.1							.64	PA 03	15
16								-			1		16						-							16
17			2.00						-		-		17													17
18				-	-								18		100							-				18
19	-			-					-		1		19	2.92	109							-	-			19
20					-					-	-		20	254	137											20
21			-		-		-		-			-	21	2.56	141			1.10	4 51				-			21
22	-			-	-				-				22	2.56	141			1.18	- 2.4			-		·		22
23	-			1 1									23	2,24	127		-			-						- 23
24	-		-	-	-				-		1-		24	6.56	121	124	2 00	-				-		-		26
25										-++	1	-	25	2.26	10	1.34	9,5	-	-		8 7					- 25
26	-	-	-	-	-		-		-		-		26	201	2 71			-		. 60	- 13		-		-	- 26
27	-		-								1.		27	211	67				A CONTRACTOR OF THE OWNER					-		27
28	-		-		-		-				1		28	210	54			-			*	-				- 28
29	-		-				1	1.			-		- 29	2.04	53	-		-						-		- 29
30	-		-	-			-				-		- 30	2.07								1				- 30
31	-	-						.1					- 31	10												318
1	TOTAL		-	-				-	-		+		H	Id	BC	366		6	. 6	1.	2		.5		.3	-
Me	cond-feet	-												1				-		-						
Ru	m-off in											-						10								

in C	Lubic F	eet per See	cond, of	(KOCK (Oregon	, for the y	ear en	ding Sept	; ember	30, 1973	-	191/1	Jaris	Wat	OF ST	ATE I	ENGINE	ER		Used	rating table		File NO.		
Drai	nare ar	483		Square Mile	. Gare		staff	gage					1	(pi					Obse	rver)		G	ge heigh	ts used to h	undred	iths.
		-	NO	WENDER.	DI	THEFT	1	MILANY		BUARY	Γ.	ABON	T		PRIL	1	MAY		JUNE	,	ULY		UCUST	SEP	TEMBER		the second
		TOBLK	1	TEADER		LADEN					-	I	-				1	-									£
DAY	Gare	Discharge	Gare	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	DAY	Gage	Discharge	Gare	Discharge	Gage	Discharge	Gage	Discharge	Gate	Discharge	Gage	Discharge	M	n l
				-		-							-		-	-		-			-	010	1	1	-	H-	-
1							-		mirmus				- 1				*****			0.50	9 03	0.00	1 0.9	5.57	0.4	1	1
2													- 2	-						20		1.00	4	- 57	1 .4	2 -	-
3											-		- 3							1207	7 - 7	10	4		-4	3 1	É .
4													- 4							.205	1 2	100	.4	60	-4	9-	-
5	-		-			-					-		5	-						730	1.4	.60	.4		.4	1 3	1
6													- 6							130		17	-4		.4	97	
7													- 7							.005	2 2	:02	100		4	7_	-
8													- 8							.005	3 .6	10%		- 20	4	8 5	Q.
9													. 9							.80		He.	1.6	125	4	9 2	12
10				1	-		-		-		-	-	10		-					.30	1.4	.62	4.	.28	.4	10 1	1
11	-	-	-		-								- 11						A	.50	3 .2	-62	.6	258	4	11 F	N
12	· ·										1		12							_50%	-Z.	67	.6	-58	4	12 3	
13					-	-					1		13							.50	.Z,	.62	6	-5B	A	15 4	
1	1		-								+		14							.50	.2	67	16	.58	A	14 F	
15							-	-	-		1	-	15				. 41			.50-0	1.2.	52	80 .6	.58	A	15 6	- 1
16											11-		16				in which the		-	.50	5 .Z	.62	a .6	.58	1	16 +	Ez
17	1 2 -	1. 1. 1. 1. 1.	1057	4				- : 155 -	1234		1		17			-		260	NZ 20	,50 1	. 2	62	1.6	:58	4	17	the state
18			-								1		18					.60	AZ 20	.60 t	11-1.6	.62	.6	.58	A	18	4
19	-									1.1.	1		19					.60	20	.60	5 .4	.67	6	.58	A	19 6	0
20								-	-	-	1		20					.60	20	60 -	4.6	.62	.6	,58,	7. 14	20 2	10
21					-				-		1		21		-			.60	12 2.0	.60	-6	.62	6			21 2	0
22					-		-				1		_ 22		-			.60	#1 1.5	.60	6_6	.62	6		-	22 6	(A)
123						-	-		-		1		23		-			60	1.5	60	7.5	_62	6			22]	
24				-	-								- 24			-		.62	1.5	.60	1 :5	.62	1.6	.56	7 .3	24	
25							1		-				25					.52	tel 15	60	1.5	.62.	et its			25 F	
	1	1. 1. 1. 1.		14	10.		1	1.1.1	2242	24.3	1.	\$5	28				1	.50		.60-	1 5	10	5			20 6	
1.		. *		1					1 W .A		11-	12	27			-		.50	E. a	.00-	s A	.59	4			27 .	
1.			-	1					1.1		1	1 1	28					50	23	.201-	S A	59	.4	i		20	18
-			1				1		12363	2	1		29		4			-50		61	8 .5	.59	.4		1	29 6	0
-						-	-				1		30					.50	401 .3	,60	.4	,59	4		-	30	
1.							-						31			-				.60	5 .7	,59	1 4			31 80	INT
-	TOTAL																										
+											1:																
- 14	ean		1-		1				-		1													-			-
-1	per et. m		1						1				T														
-17	loches _		-								1-		1								-					YUI	DIT
1	A LANG			and the second second					And Address of Street		-	And other Designation of the local division of the local divisiono	-	A COLUMN TO A COLUMN									and the second second	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	A DECK OF THE R	LUA-	DII

Daily Gage Height, in Feet, and Discharge, in Cubic Feet per Second, of

No Bate STATE OF OREGON No. RCCOR OFFICE OF STATE ENGINEER Water Resources Department Oregon, for the year ending September 30, 19_

Ploie

Used rating table

West Dry Ou Case fingles

File No. 14-0474.9

	00	TOBER	NO	THEFT	DE	THEFT	JAL	NUARY	1 12	BRUARY		ARCH			APRIL		MAY	1 3	JUNE		ULY		UGUST	803	TEMBER		2
DAY	Gare	Discharge	Gage	Discharge	Gare	Discharge	Gare	Discharge	Gage	Discharge	Gare	Discharg	AVC	Gage	Discharge	Gaze	Discharge	Gage	Discharge	Gage	Discharge	Gare	Discharge	Gage	Discharge	AVG	2 P
									1.11		inengint		1	neight					1		-					+	£
1									1.16	35	1.24	44	- 1	1.65	98			A.70	02 5.0	260	or 0.5	0.70	30 0.3	-		1	1
2								*****	114	34	1.20	39	- 2	1.50	80			JO.	5.0	_60	57 5	10	.3			2	2
3							110		110		1.10	30	- 3	1.50	- 80			.12	6.0	160	28 .4	110	1.3			3	E
4							110	30	1.00	28	1.10		- 4	1.00	98			.14	7.0	-10	51 1.2	-10	20 3			4	-
2							110	30	1 An	11	101		- 5	1.00	114	199	2 21	10	5.0	10	07 1.5	10	17 .4			1 9	3
6							110	30	an an	11.	109	25	- 0	020	201	410		100	7.0	70	10 1.0	10	1 1			G	Bus
-							1.20	20	95	1/2	100		- 7	200	212			15	1 20	70	10 1.0	.10	1 1			7	
°							1.90	114	1.06	77	108		- "	27	307			01	1 20	-1/0	11 4	70	1 1				1 miles
10							1.70	118	1.01	25	1.0	20	1.	2.33	307			15	125	-15	0 9	74	10 11			1.1	- 11
	1		1				1.51	RA	1.00	75	:110	- 30	- 10	an	-21		314	45	25	70	4 9	-10	18 .4			10	1
							1.50	80	1.00	25	1.10		-1"					in	20	70	a 8	-10	1 7			11	-
,							1.40	64	1.04	25	1.15	28	1.					67	1.0	70	7 8	.70	A	-		12	1
							1.30	51	1.03	28	1.16	35						.64	2.0	70	4 7	.70	4			11	2
5							17.8	49	1.40	30	1.20	39	15					15	40	70	4 7	70	11 4			14	ES
			1	And Street			230	780	1.10	30	1,70	39	1.					.60	.9	.70	14	TA	17 5			15-	1.
7		1999 C	100 CV	1 - F	-		250	470	Y.m	30	174	44	17	1.				(A)	9	704	0 6	-70	1 5		-	16	the state
							2.40	314	1.26	46	1.62	102	18					.60	9	.70	6 6	70	5			17	P A
					-		2.10	218	1.22	44	2.58	380	19					,60	9	.70 -	16 6	.70	5	0/2	16 0.2	1.1-	-
0			*				1.50	140	1.24	44	204	201	20					.60	.9	.25	7 4	.70	.5	62	2		Line I
1							1.50	80	1.18	37	1.85	159	21					.60	12 9	18	7 4	.70	17 5	.67	2		++
2							1.40	64	1.10	30	1.70	118	12					.61	2 19	.68	\$.3	.70	16 .6	.62	7		N
3		1. 1. 1. 1.			0.50	5	1.40	64	1.14	1:34	1.70	118	23					.60	8. I	65	\$.3	.70	16 .6	62	.2		2 2
		an mark		-			1.34	56	1.10	30	150	80	14			1.D	I .2	.60	13 18	.68	1.3	:18	ic A	.62	,z		1
5			256	5. 29			124	44	1.13	3.133	1.90	164	25			.50	.2	.607	4. 7	13	4.3	96	11	62	.2		1
8	-		100	1.1.	1		124	44.	118	37	7.70	118	28			.50	.2	.60	4 .7	168	2 ,2	.90	8.0	,62	.2	1	E
7						120	1.4	38	1.28	49	1.68	114	27			.70	4.5	1600	5.6	THE	3	188	17.0	.62	.2		
	060	A 0.4					1.18	37	1.30	51	140	. 98	28			68	3.5	.60	5.6	.65	.2	.84	6 50	-63	.Z.	-	
i							1.18	37	1:40	_64	1.50	91	29			.70-	3 4.5	.60 1	6 6	-65	1 .2			62	2	7	6 0
							1.20				140	_64	30			1720	z 6.0	60 1	2.6	.70	.3			62	5. 31	1	
1							1.18	37			1.48	77	. 31			The	2 6.0			.70	0 ,3					11	ear
T	DTAL	-																									
-	-												-					-				-				1	
per	nd-teet												-											-			
Inc	thes																					-					
ACT	eff in	1 march									-		-		(EVI	1101

Rectard A70 Sec. at Jan 17 Matholican and Sec. an many days

		ne	ar Rock	Creek		Oregor	, for the 3	ear er	iding Sept	ember	30, 1965	_			Wat	er Resourc	es Dep	artment	TPA	Rad	Used	rating tabl	e	1	
Drainage (Irea		Square Mile	s. Gage	stat	Cf_gag	70						(C	harles	P. Mars	cel	-	, Obr	erver)		Ģ	ge heigt	its used to	hundre
	CTOBER	NO	VEMBER	DE	CEMBER	31	NUARY	TE	BRUARY	1	MARCIE	T		IMIL		MAY		JUNE		JULY		UGUST	523	TEMBER	
AVG Migh	Discharge	Gage	Discharge	Gage	Discharge	Gase	Discharge	Gage	Discharge	Gage	Discharge	AAd	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	DAY
1							1					1			1.54	38	0.88	5.0	0.60	0.1		0	0.65	-A 0.2	
2															1.54	38	. 76	2.0	. 54	0		0	.65	1 .2	2
3														and the second second	1.56	39	. 72	1.1		0		0	65	.2	3
4	-									-						a 36		a 2.2	54	0		0	.65	12	1
5	-														1.48	33	.82	3.4	.42	0		0	56	,0	5
6		-										- 0			1.40	27	. 68	.5	.60			0	56	0	6
7		-		-								- 7			1.42	28	. 60	./	AO	0		0	56	.0	7
8	-			-							-	- 1			1.40	27	. 64	J. 3	42	0		0	,56	0	8
9	-											- 1			1.30	21	. 68	.5	A6	0		0	154	0	0
10		-		-						-		- 10			1.28	20	. 68	.5	92	0		0	36	0	10
11	-	-		1.000		Constants						- 11			1.28	20	.66	.4		0		0	36	0	11
12												- 12		V 101	1.20	16	,00	.5	1000	0		0	39	0	12
13	-			-	-	1000000						- 13	2.00	101	1.18	10	.10	-6		0		0	34	0	13
14		-		-								- 14			1.10	16	70	.6		0		0	.57	0	14
15								-				- 15			1.00	7.0	70	.0	-	0		0	.30	10	15
16		10.00		-	-	-	1 L.	2		•		16		-	90	83	158	AI		0		0	20	0	16
17				141			-112				-	- 17			1.07	9.7	1.36	25		0	and the second	0	56	0	17
18			- 17 (F)		-					10		10	2.07	116.	1.04	10	1.24	18		0		0	62	1	16
									-			20	208	119	1.06	11	1.20	16		0		0	.54	0	10
		-										1,1	2.00	101	1.14	14	.98	8.3		0		0	.54	0	-
								-				22	2.12	128	1.18	. 16	. 82	3.4		0	922	148	: 52	0	
23					1.4		1 1	+ + -				23	2.02	105	1.24	18	. 60	./		0	-	1 128	54	0	
24												24		a 98	1.16	15	. 58	.1		0	.90	1 4.7	.56	0	24
25								- 94.2	1 m m			15	1.94	90	1.12	3. 13	. 46	0	-	0	.94	5.8	54	0	25
26	*	-		1.0	-			1				26	1.86	76	1.10	17.	.68	.5		0	88	4.2	:60	1	26
27	-		-									27	1.80	67	1.00	9.0	.68	.5	1.28	.20	68	A	,62	:I:	27
28										1		28	1.74	59	.94	6.9	. 64	.3	88	5.0	.56	0."	.66	51	28
29		-			-							29	1.60	43	.74	1.5	.62	.2	.70	6	.60	-1	:64	1Z	29
30								•••		-		_ 30	1.58	91		a 2.7	3	0	.58	.1	.56	0	.62	1. 1.	30 P
31			••••	-		-		•••	••••	-	2	31		••••	_84	3.9	•••	••••		d	.64	23 0			31 Y
TOTAL										1		+			-	539.6		132.3		25.9		291.2		1.6	
Mean												1				17.4		4.41		0,84		9.39		.053	
Second-fe	et				-							-													
Run-off is		1					and the second										-						-		

Drain	LASC AD	ca		Square Mile	L Gage	•	1		1		-		-	(1		1		, Ob	server)	1		Gage he	ights used to	hundre	6
	00	TOBER	NON	VEMBER	DE	CENER	34	NUARY	-	BRUARY	1	KARCH			PRIL		MAY	-	JUNE	-	JOLY	-	lucust		EPTEMBER	- +	Tour
DAI	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gare	Discharge	Gage	Discharge	Gage	Discharge	IVG	Gage	Discharge	Gare	Discharge	Gage	Discharge	Gare	Discharge	Gare	Dischars	te Gag	ht Discharg	DA	PIC
1											-		- 1							0.98	19 0.9	0.99	10 0.	41.0	47 0.	5 1	Percent
2													2							-20	9	-90	100	1.10	1 .0		-
3							1						13							96	104 8	a	00	4 10	1 1 1		E.
5							1				1		5									98	al .	3	1	5	
6																						.98	1	3		6	arter
7					-		-		-		1		7							.98	+04 .9	.97	1 .	3	-	7	á
8							1				ļ										.9	.98	1	3 10	3-08	1 .	5
9					-						-		9							.98	104 .9	.99	of a	4 1.00	21	- 9	Ł
10							-		-		-		10	-						1.58	17	1.00	07 -	9 184	21 -	10	E
11													- 11							1.24	_ 5.7	1.02		5 8	6 .	_ 11	£
12									1		1		12							126	1 20	100		6 00	51	- 12	tend
13									-		1		13							614	01 -50	1.01	0	20	2222	- "-	4
14	100		-		1				1		1	-	1.							1.0	13	LAD	4	3 8	6.7		E
1.0										1.4.4	-		1.				-	1.00	10	1.02	13 .7	100	08	31 .8		1.	
17	2000	a service a	de la	1	•				1 200	1.15	1	*	17	* 33 V				102	1.2	.91	08 .4			8	51 1	17	ł
18								-			1		18					1.00	1.0	.92	.2	1.04	18 .	6 8	6 1	18	8
19			-							· · · ·	15		19	-			here and	1.00	1.0	.91	sq ,2	1.06	18 1	7_8		19	£
20						-	-	-			1		20	-				1.00	3 1.0	-	-	1.04	19 13	5 .B	307 1	1 20	ž
21	-		-										21							41	PH .2	1.02	1 -	4	-	21	I.
22			1.000		1000						17		22					a	~ 9	-94	1 14	1.04	1	2		- 22	4
23	1000000000									and the second s	1		1	- Terrer	-			98-	1 9	12	1 3	in	07 -	J A	ray -	_ 23	I
24							1		1		1		115		+			98	1.9	91	4	101	10	4	chap	24	-
2				· .							T.	1.1.1	26					98	9	99	7	103	To I	41		17	E
26									1	1.1.1	1	1 1	27			5		.98	9		and d	102	1	3	-	- 29-	
28		-								· Anna	1		28					.93	9	.97	04. 4	1.03	4	1 14	3506 1	1.	and an
29				-							1		29	-		*	- '	.98	9	.97	a. 4	1.02	1	3 A	211	29	å
30				-							1		30					,98	19 .9	1.00	1.6	1.02	10 .3	B A	2-06 1	30	
31	-						-						31 •	••				•••		100	14 .6	104	-09 .5	5		31	¥ea.
T	OTAL															in		12.	4	4	4.2	12	1		4.5		
																							-			1	

D	rain	te area	460		Square Mile	s. Gar	sta	Oregon ff gag	, for the g	year en	ding Sept	ember	30, 19 76			Wat	er Resourd	res Dep	artment	, Ob	server)	Used	rating table	ge heigh	its used to	hundr
F	4	осто	BER	NON	TEMBER	DZ	CINGER	34	NUARY	170	BRUARY		ARCH	T	APRIL	1	MAY		JUNE		JULY		UGUST	SEP	TEMBER	
·	AV C		- 10.1	Gare	Discharge	Gage	Discharge	Gare	Discharge	Gage	Discharge	Gare	Discharge	Gare height	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gare	Discharge	Gage	Discharge	AVG
ŀ	-	1 00	1					100	2.17	1						-		Vad	47	-		-				t d
	10	88-0	1	415		-		1.68	1 80	200	46	1		1		1		1.31	7.2	1						1 2
	;	99.0	3	1				180	3 13	1	**************************************			1.2.6	105	1		1.32	6.6							3
										1.50	13	- Stations						1.37	8.1							
	5											1.86	34	5			07	1.37	8.1							5
	6	.96-0	.2					1				188	36	03.52	217	1.86	34		14/ 6							6
	7	.96	2					-						7				1.30	- 6.0							7
	8 .	.96	.2			1	1 -	1		100	20	1.00	- /	13.30	188			1.04	- H.L.			011	11		Contemportation St.	8
		.96	- 2	1		1.68	3/1 5.9			150	30	1.00	36	02.81	260			123	37			2.16	61			0
	10	.96	12	-		-				-		1		10 3.40	201			1.20	3.0		-	178	54			10
	11 .	36	12			170	1 4	200	1 10	1				11 310	163							1.17	18			11
	12	36	2	1.20	11.5	110	- 1911 - 10re	12.50	1 10	1.70	23	1		11 2.10	100	-						1.10				12
	13	acon	1.2	have	an is	1			and the second	1	and the second	1.9%	42	14 5,10	163			124	42							14
	15	98	2	1.34	\$.6			2.38	16 63	1.84	.33	200	46	15				1.13	2.0						and the state of the	15
	16	96	.2		· · · · ·	1.62	34 64	3.50	on 155	X.84	33	11	1	10 2.90	139										-	16
	17	,981	.2	1.48-5		1.65	-9 75	3.78	2 237	1 11		1		17	1 1	122	3.6	1.10	1.5	-		1.38	. 8.4		E	17
	18	.96-1	2.2			1		-		1		320	175	18		1.22	3.6	1.15	2.2			182	31			18
	19		1					2.86	-19	216	61	320	201	19		129	3.0				the second	136	66			19
	20	,9870	2, 2			-		-		300	46	1		20		1.22	6.6									20
	21	Lager,	3			1. 24	1. 1.					270	115	21				Im	120						1	21
	22	100	4	1100	A T	142	2 11	201	71			2.68	113	22				171	12							22
	23	1 ng	5	PATE	43	4.11	26	216	61	1.82	.31	1		24				1.21	3.3			17/0	10		1940 - 1940 -	23
	24	A	5	KHE	9	1.		1	1	1.84	HH:33 .	270	115	25		KELS	4.8	1.18	2.7							25
				11	11 1-		• •	2.00	1 Ale	-1:0	1.6%	2.70	115	28 232	77	1.50	13					142	9.8	1.000	Set 4	26
	27				-	-		1.94	8 4	2.20	165	2.80	105	27						.94	16 0.4			•		27
	28	1.11	1,5	1				1.90	37	332	67	3		28 2 22	- 69	1.37	87							-		28
	29			-				1.98	44			1	OF	29	<u> </u>	1.37	8.1									29
	30			1.65	# 30			2:08	-22	1		220	65	30		13/	0.1									30
	31		1.6	•••			01		00.1			2.00	1.0.5	31	507	1.20	140				4			• • •	••••	31
	TO	TAL	5.9	6.	L	4	61	10	93.4	-	181	12	23		200	10	1.3	44	. 4		1	9	1.8	-	-	
_	Mean											+														-
-	per	eq. mi										+														
-	Inci	ici in					-																	-		-

						·····,	Oregon	, for the y	ear en	ding Sept	ember	30, 19 65	·		OF	Wat	er Resource	ATE Dep	artment	ER	Shur	Used	rating table		/	_	
Drai	inage are			Square Mile	s. Gage	staff	f gage		Les	t Fla	ng a	2.41 2	. 1	(Da	vid R. B	hird		, Ob	server)		Ga	ge heigh	its used to l	hundre	edu
	00	TOBER	NOT	TEMBER	DEC	CEMBER	JA	NUARY	m	RUARY	,	ARCH	T		PRIL		MAY		JUNE		JULY	1	UGUST	SZP	TEMBER		ouro,
DAY	Gare	Discharge	Gage	Discharge	Gage	Discharge	Gare	Discharge	Gage	Discharge	Gage	Discharge	DAY	Gage	Discharge	Gare	Discharge	Gage	Discharge	Gage	Discharge	Gare	Discharge	Gage	Discharge	TAG	hird Te
-							1						-			1.01	50	100	12		1 38		1 0.8	1.12	101 15		4
1													1			1. 11	a 48	1.00	a 11	0.78	3.6	160	.8	.62	1.5	1	Secon
													1,			1.37	45	.96	9.7	.80	4.0	.60	.8	.62	1.5	3	E
4			1										4			1.32	39	. 92	7.9		a 3.5	.55	.9	.60	ter 1.3		Ę
5		and the second second											- 5	-	and section in	1.31	38	. 90	7.0		q 3.0	- 58	.7		a 1.2	5	
6													6			1.30	37	73	2.6	.72	2.4	.56	.5	,58	tos .9	6	unte
7	-												7			1.31	38	.75	3.0	.72	7 2.4	56	.5	56	1.7	7	a
8													8			1.30	37	. 78	3.6	.7/	2.2	58	.7	.58	+03 ,9	B	£
0	-												- 9			100	9 34	.13	1.4	. 14	2.8	.62	1.0	66	104 2.0	P	S.
10	-					-			-				10			128	30	.16	1.4	.67	1.9		1.6	.66	2.0	10	hird
11	-		-										- 11			1.20	29	16	3.2	1.	2.0	14	1.4	29	19	11	4
12					-		-						12	170	100	1.10	22	72	24	·/	20	10	1.4	18	q 1.7	12	-
13									-				13	110	100	1.04	15	77	24	7.	20	.67	1.0	. 68	24	13	ġ
14	-		-										14			1.05	15	To	20	73	20	.69	19	1	2 27	14	H
15			-	+		••						1. A. A.	1.			1.02	13	68	18	.7:	20	.78	20	.70	1 78	15	
16	14	-						States therein		1			17		1	1.01	12	1.48	160.	.7	20	.65	1.4	.18	2.4	10	arter
1.	-	121				line .							18		-	1.	a 12	1.20	27.	.7	2.0	.58	.7		a 24	18	8
19						•				-	1		19	1.80	123	1.02	13	1.30	37	.7	2.0	.58	.7		1 2.4	19	¢
20	2												20		a 112	1.12	20		120	.7	2.0	.60	,8	.68	M 24	20	Four
21	1		-	-									21	1.70	100	1.13	21	-	9.15	.71	2.0	.58	.7	.LA	1.8	21	2
22	-		100			-	-					-	22	1.80	/23	1.11	19	.94	8.8		q 1.0	280	1290	. 166	2.0	22	Ē
23			-	1	-		-						23	-	2 105		a 16	. 90	7.0	,53	.3	175	dig.		2 2.2	23	T
24	-		-		-				-		-		24	1.61	. 82	1.01	14	. 90	7.0	. 55	.3		4.96 8.8	.68	2.4	26	ě
25	1		1.14				-		1.1.1.1	- 144	-		25	1.62	87	1.02	13	. 90	7.0		a .3	.70	+++ 2.8		1 2.4	25	E.
26	-		-	-			-			1		the second	26	100	80	1.01	12	.90	7.0	112	ABL.	. 69	104 2.4		2.4	26	-
27	-	-					-				-		27	1.55	16	·a/	07	90	1:0	-193	18.	~	4 2.4	168	124	27	ŧ
28			-	• •				(). () () ()			-		- 28	1.49	63	10	a 10	80	40	21	15	18	24	168	1.9	28	Quan
29	-	-				14 m m		-					- 29	1.42	52	99	11	.80	4.0	. 12	1.0	.18	1 2.4	-66	1 2.0	29	-
30	-												31			100	12			:61	.9	.00	a 2.0	00	17.0	30 1	Peri
31		-					-					1				-lastic Means	711 7		2021	-	1090		150 0			311	
-	TOTAL		-				-				-				-		116.1		673.4		101.7		450.0		51.6	-	_
- 14			-		-							-	+						2.18		3,55		14.5	-	1.92	-	_
- 50	cond-fect per sq. mi.				-		-	m o Hun Harting				-	+		+		-	-		-							
- 1	inches		-				-						1				1470		587		218		802	-			-
- Ku	cre-seet .	1	1										-				1140		201		-10		010		114	1 Sector	

-				near Co	ndon		Oregor	, for the 3	year en	ding Sept	ember	30, 1965	1			Wat	er Resourc	es Dep	artment	5.	1	Used	rating table			-
Dra	inage ar			iquare Mile	s. Gage	Btaff:	gage.	readings						(٧.	Obristo	phera	n	, Ob	server)		Ga	ge heigt	hts used to h	undr
Γ	00	TOBER	NOT	TEMBER	DD	CEMBER	31	NUARY	10	BRUARY	,	ARCH	Π	4	APRIL.		MAY		JUNE		JULY		UGUST	523	TIMBER	
DAY	Gare	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	DAY	Gage	Discharge	Gare	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	DAY
1							-							_		1.98	.55	1.98	17	127	47	1		-		
					1		-				-					1.95	52	1.47	12	1.23	3.7					
1:							1				-					1.94	50	1.46	11	1.22	3.4					1 1
											1					1.88	44	1.41	9.4	1.19	2.7					
			1		1		-						1			1.88	44	1.40	9.0	1.20	2.9					5
				The second second												1.88	44	1.59	8.6	1.17	2.4					6
																1.87	43	1.38	8.3	1.15	2.0					7
							-	A company		1			1.1			1.82	38	1.35	7.2	1.15	2.0		a available a			
															-	1.77	33	1.31	5.8	1.13	1.7	0.75	0			
10													10			1.72	29	1.29.	5.2	1.10	1.2					10
		1											1,1			1.71	28	1.29	5.2	1.11	1.4					11
										-			12			1.68	25	1.27	. 4.7	1.10	1.Z.	1				12
1		1										'	13	2:30	94	1.66	24	1.27	1.7	40	a. 1.2					13
1										. 5			14		a 94	1.65	23	1.21	3.2	1.08	1.1					14
1		1	Contraction of the second						-			•	-15		a 92		a 21	1.22	3.4	1.05	.9					15
1						•-	1	-		;		* * *	16		9 90	•••	a 20	1.27	4.7	1.02	.7					16
i		2.50 3	1.27			1			A.C.	1		-	17	1	a 100	1.59	18	1.98	55	1.00	4					17
				1					1				-18	*	a 90	1.58	18	1.80	36	1.00						18
19		-ura-								3			19	2.40	108	1.57	17	1.56	17 .	1.02	.7					19
20		•										-	20		9 110	1.68	25	1.66	24	1.09	1.1	1.01	.7			20
	1	1	-			*		•		1			21	2.38	105	1.74	31	1.68	18	1.28	1.1	,98	.5			21
			1.*										1 22 1	2.38	105	1.67	25	1.49	13	1.17	24	.80	Trad at 6 P.	,	1.5	27
1				1				1 20	-	-			11	2.31	95	1.62	21	1.47	R	1.07	1.0				•	23
24								1					24	2.25	88	1.60	19	1.44	11	1.09	1.1	1				24
25		**								1			25	6	9.82	1.57	17.	1.38	8.3		4 8					25
		•/					-		•		-	-	26	2.16	3:76	1.56	17	1.37	8.0	1.00	0.6					26
17	-				-			Contraction of		1			27	2.10	69	1.55	16	1.34	6.9							27
20		and the second		•				1		1			28	2.04	62	1.49	B	1.29	52							28
29								1.00	1910			_	29	2.01	58	1.48	12	1.28	5.0							29
- 30					-		-				-		30	1.98	55	1.49	13	1.27	4.7		una pre					30
31					-		-				-		31	•••		1.50	13									31
	TOTAL			The second second					-			-			•		848		338.5							
-				-	1				-								27.4		11.3							
- M	cond-feet		1							_																-
B	m-off in		1									*														-
	and the second																					1				A comment

Table product Reg in Boundary, in	Della		(ray)			EX PA		T_9 2 OF	13		,	Si		OF	FICE Water	OF S	TAT	REGON E ENG Departm	GINEER	N 2			in Tr	404 <i>F</i>	7420	ope	rale	File	No. U.S. State	2	51
No. DOT D	Diaty	age H	D	, in J	roct, a	nd Disch	arge, in	a Second-f	eet, of m.	N.A	1. 10	Cree hnse	n.	, Obae	near rver)	Gage real	1	rda/	yn.0	2r.	for the	year en	ding Sept	. 30, 19	2.5	Table	rating table	dated		5-11	0-27
No. 1 No. 1 <th< td=""><td>* *</td><td>1</td><td></td><td></td><td></td><td>OCT.</td><td></td><td>NOV.</td><td></td><td>DEC.</td><td></td><td>JAN.</td><td>1</td><td>FEB.</td><td>1</td><td>MAR</td><td>T</td><td>T</td><td>APR</td><td>T</td><td>MAY</td><td>1 7</td><td>UNE</td><td>1 3</td><td>ULY</td><td></td><td>AUG.</td><td>81</td><td>EPT.</td><td></td><td>J'ALA' I</td></th<>	* *	1				OCT.		NOV.		DEC.		JAN.	1	FEB.	1	MAR	T	T	APR	T	MAY	1 7	UNE	1 3	ULY		AUG.	81	EPT.		J'ALA' I
	ond-fe			De	beight	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Dischar	E A	Gage height	Discharge	Gage	Discharge	Gage height	Discharge	Gage beight	Discharge.	Gage height	Discharge	Gage	Discharge	Day	Stor -
1 1	-	1.		1										2			1	235	64	1.95	28	210	40	105	0.4	1.0	0.1	1	4	1	500
1 1	51			2	-												. 2	245	74	1.90	2 25	2.95	74	11	0.6		./		4	2	
and an and an analysis and an analysis and a	10	1		3			-										3	240	69	1.90	25	2,30	59	1.1	0.6	1.0	./	1.05	.4	3 8	
1 1	11			4	-		-										1	12.40	69	1.85	22	222	51	1.1	0.6)		4	4	
1 1				5	-					-							. 5	240	69	1.85	22	215	44	105	0.4				4	5 -	
1 1	- BB	•		G								-					6	2.50	79	1.80	19	210	40	1.05	.4				4	6	• • •
a a b b cos 64 cos 32 cos 4	leche leche	.;		7			1										1	240	69	1.75	16	205	36	105	.4			1.05	4	1 Inte	
1 1	AA			8													8	235	64	1.75	16	200	32	1.05	.4				4	8 6	Comp
Image: Solution of the second seco	143			9	-								1		1 .	-	9	230	59	180	19	1.95	28	1.05	.4		1.1	105	.4	9	
III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	52	140		10													. 10	225	54	1.80	19	190	25	1.03	.2			1	4	10 \$	QN:
11 11 11 11 11 12 <td< td=""><td>12 4</td><td>V.</td><td></td><td>11</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>11</td><td>220</td><td>49</td><td>175</td><td>. 16</td><td>1.85</td><td>22</td><td>1.03</td><td>.2</td><td></td><td></td><td></td><td>4</td><td>11</td><td>4. 2 .</td></td<>	12 4	V.		11		1							1			1	11	220	49	175	. 16	1.85	22	1.03	.2				4	11	4. 2 .
1 1	in m	13		12	1	1							-				12	220	.49	1.70	14	1.80	19	1.00	.1.	10		•	4.	12 6	0 80
Image: Section of the section of th	53	1		18	1 2 2	1000	1.		-			12.000		4		12	A II	220	49	165	13	1.75	16	105	4) 14	105	4	18 .	9
Image: Section of the section of th	73	Na l	1	14	S.th.	14.15	·	N			-	the state		quela e			14	21	40	1.65	13	1.75	16	100	.1	10.	./	160	11	14 &	
1 1	13	1	1.1	15	活题	1. 19	1		1.1.1			Sec. 20		14 J 14		1. 1.	10	21	40	1.75	17	1.70	14	100	/).	105	62	15 #	
на	5.8	1		16	· Sigle	言語語	- 44.	+6 1				.a	1.4		1		18	245	.74	120	.14	1.65	12	105	. 4.		1	110	0.6	16 -	
Image:	in l	1	1	17	Bart	122228	1					- 24	4.	N 11		1.00	117	230	59:	1:80	1.19	160	11	105	· 4.	•	1.1	110	. 0.6	17 1	and in
10 200 69 10 200 69 10 25 160 1 100 1 <				18	T		n.7	1.1.1				1 2000	1.20		245	.74	18	220	491	195	-28 .	1.55	9.4	106	4.	-		105	4	16	
a 265 74 265 96 256 1.3 1.0 </td <td></td> <td>1</td> <td></td> <td>19</td> <td>***</td> <td>2 **</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>111</td> <td>2:40</td> <td>69</td> <td>19</td> <td>230</td> <td>59</td> <td>190</td> <td>25</td> <td>150</td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td>100</td> <td>.1</td> <td>19 0</td> <td>Diad Diad</td>		1		19	***	2 **								111	2:40	69	19	230	59	190	25	150	20					100	.1	19 0	Diad Diad
a		1		20		1.1.8	x2 .				• •			2	2.45	74	20	566	96	290	128	1.05	6.5		.3)	10	./	20	NOJ VI
275 106 275 106 276 74 30 117 125 41 1	11 1	151		21	15817	19 Birth	stor.	1	* ++			Sec. Sec. 1	1.00	4 ····	275	106	1 21	205	174	400	300	ino	52	4 .		10	1-	10	.1	21 4	2 2 3
3 -	S. 5. 2	明	200	22	**#167	بعذن فبراه مد	100	-			1.4.4		S. 12.4.	Sec. 12	275	106	1 21	205	74	350	117	135	41		· · · ·	A. 5.	1	10		22	de l'
All and	15	1		23	1.52 .	in her the	1.0	1.5	1			Sec. al	100	24.9	260	. 90	23	200	69.1-	200	115	130	3.1		.2	15 1 3	2	(1.44)		23	Far
Image: set of the set of	いい	运行	探	贫	成的社	影行动	教授	A.A.	· print.	11 mar	公园	日本なる	製品	intra an	255	: 84	自民	3333	159 E	360	1902	180	5.2	5-15-	出行系统	103	200	in the	191731	31.6	al and and
And	10	行業	127	12	tratin.		""	1000	1	A		17. 1 1 mit	144	the said	550	-79		200	49	5.00	-79	130	19	100	-1	-1.1.1			1	25 8	See.
1 1	200	市合語	13	2	1444 1444	1.2.2.3	北北	·			2. 22	15 11	15 acres	23 124	255	84	日次	nstal.	49%	200	64	in	320.	-A.)	-1.A.S.S.		10	10	11		2. 1 1
Image: Non-State Image: Non-State <td></td> <td>and the</td> <td>1-12</td> <td>14.07</td> <td></td> <td>· ·er +</td> <td>10.0</td> <td>1.1</td> <td></td> <td>1</td> <td></td> <td>. T¹³ (1⁻³)</td> <td>1.000</td> <td>n</td> <td>250</td> <td>179</td> <td></td> <td>215</td> <td>44</td> <td>220</td> <td>. 49</td> <td>120</td> <td>777</td> <td>14. 1</td> <td>1. 4</td> <td>1</td> <td>2</td> <td>10</td> <td></td> <td>20 10</td> <td>12 1.2</td>		and the	1-12	14.07		· ·er +	10.0	1.1		1		. T ¹³ (1 ⁻³)	1.000	n	250	179		215	44	220	. 49	120	777	14. 1	1. 4	1	2	10		20 10	12 1.2
III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIII	atage atage			20		1 1 1	-01		1.		-		** .	1 4	245	74	152	an	40	210	44	116	12	1		-			-1 -	21	1 1 1
In mage Image <	-	Y		20			10	1 1 1					1. 10	1. 1	245	74	20	205	36	20	54	16	12		./		- En		./	28 tre	cepti chee bits
X X X X X<	atta	aro		20			-								205	74	30	200	32	220	49	110	06	-		105	4	10	1	2 6	о.п. о.п.
Total 1/36 1/760 1/500 59/.6 8.7 4.8 2.5.2 5.026.3 Mean 1/4da/81/1 58.7 48.4 19.7 .28 .15 84 Tunott in scrift 2250 3,490 2980 1/70 17.5 9.50.0 9.966. Maximum 106 96 74 .6 .4 11.	M	N	1 1	21		201						•			210	69	In			511	£ 41					103.	A	1.0		30 -	Period
Mean 14dal 81.1. 58.7. 48.4. 19.7 28.8 15 84. Mean 14dal 81.1. 58.7. 48.4. 19.7 28 15 84. Tamoett in screett. 2250 3,490 2980 1/70 17.5 9.50.0 9.966. Maximum 106 96 74.6 4.1 11. Minimum 69.38 13 0.65 11 1 1	5 token		-	101		· · · ·	1.1	1			-	· • ·		1	2.40	1136			1760	1.	1.500		5916	-	87	-	18		050	S1	50000
Run-off in acre-ft. 2250 3490 2980 1/70 17. 9. 50.0 9.956. Maximum 106 96 — 74. 6. 4. 11. Minimum 69. 32. 13. 0.6. 11. 11.	Ser. Pa	lean	otai -	-10-						1.0.				· 5.	14da	1811	2.44		587.		484		197		28	the states	16	-	81		5,0263
Maximum 106 96 — 74 6 4 11. Minimum	2019	inn off to	a acre	ri.	12		8.3			-	•		-	1	. 1	250	1	1.4	\$490		2980		170	- 1	17:	1.00	90		500		garri
Minimum 69 32 13 0.6 11 11		arimum	1				-		1			•	1	1.00		106			96		-		74	The second	.6.		A		11	-	2,500.
		linimum		-	2		122				1.8		1-	1	1.	69	1	1-1	.39		1.3		0.6		./1		1	-	11		*

		in 1	Feet, a	nd Discha	rge, in	Second-fe	eet, of .	Roc	ok (reek			-at-	Gwe	no	10/3	in, c	reg	L. for the	l year en	ding Sept.	80, 19	2.6 .	Table	of use: Ha	If tenths		_ft t	•
_	D	rainag	re area .	-		square mile	s.,	Mrs.	N.M.	Johns	on	Obser	ver) (lage read t	o	Hdi	ts		OD0	ce a da;	y .*			Used	rating table	dated	5-10	-27	- ALum
1		2	Gare)OT. '	· · ·	NOV.	1	DEC.		JAN.		FEB.	1	MAR.	TT	7	APR,		MAY	J	UNE		TULY		AUG.	8	EPT.	5 4	
		8	height	Discharge	height	Discharge	height	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	DAy	Gage	Discharge	Gage	Discharge	Gage	Discharge	Gage	Discharge	height	Discharge	height	Discharge	a ·	0.0
		1													1	2.6	90-	1.8	19	1.25	24							1	40
		2													2	2.6	90.	1.7	14	1,25	24			-				2 -	a
		3											1		8	2.45	74	1.7	14	1.25	2.4							3 0	
		4													4	2.5	79	1.7	14	1.2	17							4-	-
		5													5	2.75	108	1.8	19	1.2	17							5	
		6					2						-			265	94	185		115	12							-	
		7											1		0	200	81	18	10	115	1.6		-	-				a a	7
		8						•			1		-			2.55	04	185	19	115	8/12							- Ound	Incu
		9								1			1		8	26	04	180	22	115	1.2	-						-	3
		10										-				25	90	175	12	115	14	-		+				10 5	
		11				1				. *	-				10	2.0	19	17	1.1	115	1.2			-				10 -	02
		10		-											11	3.0	146	1.1	14	145	1.2	-						11 2	18
		1.	3.34			+					2.2	1			12	2.05	122	1.05	12	1.10	1.2	•				-		12 -	0
1.	See. 1	10		4- m		101.14.11		-	1	3 10 10 10	×			12	18	2.1	104	1.0	11	1.13	1.2.			-				18 5	
	. 1		36.4	Strate C	1.1.		1			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	dati	1.1.1	1.0		11	2.0	90	1.6	11	1.15	1.2					-		14	
			- (.).	Andres Car	1.58.51										15	2.55	84	1.6	//	1.15	1.2		*					15 #	
		16	44.64		\$23	-				44.4		- 1.			10	2.45	.74	1.65	.12.	1.15	. 1.2			-				16 -	
	1 .	17	1.000	Alles I. C.	Sec. 20	100 - 100 -	1.00		1.0.2	and the	Sec. 1	Constraint of			17	2.4	69	1.65	12	1,15	1.2				-			17 5	alt.
1		18								1 45		1 - 1		· 4	18	2.4	. 69	1.6	11	1.1	.6.					-	-	18	4
		19				1	-								19	2.4	. 69	125	9.4	1.1	.6							19	ā
	1	20	1.1				:		-	n -			• •	3	20	2,35	64	1.53	9.4	1.1	.6	1			*			30	
		21	1227-1	dente di	a's a	14	-		. d.	Sec. A.L.	Tris	-with the	12	···	21	23	- 59	7.55	9.4	1.1	.6 .	1.41	-		1.000			21 -	
	1 2	22	- 34-5-2 c	a har all	SAME!	14	4	1. 1.	(Care)	- All and a state	1.2.2		(Shiel	20 State	22	2.3	\$ 59	1.45	6.5'	1:05	4-	1		1	+		-	22 8	3.6
1		23	and the		1	1				e = 1.14	5.	A. C. th		-	23	2.25	54.	1,45	6,5	1.05	A			*		• •		23 -	0
13	18	24	and the	開始中國	编制	General St.	STATE.	10000	17-48		1996	Not State	257	84	靈	2.25	R-15.4	1.4	5.2	4.05	4242	1945	The second	Sten .	小田 王子	ten.	三、 新开	24 2	14
		23	学习		alpertan.	-		1	-	a a a a a a	1	合合和	Ser.	1.	105	2.2-	-49	14	- 5.2	1.05	- 4-	2.64	1.		· · ·	'	1	25 -	1
	1.	26	王朝	质药制	资格*	4 . ·	1.2.6	1	in the	13.3. (A.)	N	动自己和	613	1010	た	2.1.	1 40	1.5	3.1	1.05	4:				1. 1. 5.			21 1	
1	1.	27	神秘	出版的问题	un.	N	1.5.18		10.00	NAC NOR	动物组	而与有	100		12	2.0	32	1.8	3.1	Dry	0-	10		4 1				27	-
ľ		28	States ?		194	1.10				16	1.1	17.2 × 2.2			13.1	1.9	25	1.4	· ·5.2	-	0	1.1	. 17				2-1	25 5	I
1		29				1.00	-		+			-	-		22	1.85	22	1.4	5.2		0						-	S and	1
ALO		30					-								30	1.8	19	135	4.2		0				-			- 0	0.1
X	1 1	81												14	81			1.3	31			-							Pe
	Total	-						•		3 .	· .	10	1	Sel.	0		2172		351.5	*	29.4			•		1		311	25
en -	1	1	er.	1	1.00			1.1.1	1.00		• •	12 11	121	1.1.1.2	1	14	72.4	5 A.	11.3	2706	109	98 .	and the second	11.10					an
n-off	in acre-	r.	· · · · ·	1336				14		1.2.1		the fight	14%	18 24	1	1511 .	4310	-	695	1	58		4		THUR	- 1	g	6.47 **	.5
rime			2.4					1		• •		11.	1. 16.5.	· · · · · · · · · · · · · · · · · · ·		1.00	142	1R	22		24	1.3			EXHIB	1=	1	-	00
	5 100	5	2011	-		"			1.00			1. 1. Par	2.	1	14		10	-	21	The Part				-	PAGE _	130	F 13	-	

PAGE PF 0

OREGON COOPERATIVE WORK

DEPARTMENT OF THE INTERIOR UNITED STATES RECLAMATION SERVICE IN COOPERATION WITH STATE OF OREGON

JOHN DAY PROJECT Irrigation and Drainage

BY JOHN T. WHISTLER ENGINEER U. S. RECLAMATION SERVICE

JOHN H. LEWIS STATE ENGINEER FOR OREGON

FEBRUARY 1916

PROJECT CONSIDERED

JOHN DAY PROJECT

	Discha	rge in Secon	Run-off		
MONTH	Maximum	Minimum	Mean	Total in Acre-feet	A ccur-
1905		1		1	1
March	87	28	50.0	3,070	B.
April	103	.6	38.1	2,270	B.
May	145	.3	12.3	756	B.
June	488	.3	45.5	2,710	B.
July	1.3	.3	.67	41	B.
August 1-20	3.8	.3	1.24	49	
The period	488	.3	26.0	8,900	
1906					
March	625	44	115	7,070	C.
April	224	22	71.1	4,230	C.
May	1,640	10	109	6,700	D.
June	725	32	221	13,200	C.
July 1-21	32	19	22.1	920	C.
The period	1,640	10	115.0	32,100	

Ectimated Monthly Discharge of Willow Creek near Arlington, Oregon, for 1905-1906.

It will be noted from the tables that there is very little difference between the discharge of the river at McDonald and Clarno, during the period of low water. This would be expected, since the tributaries between the two stations are practically dry at this season of

Monthly Discharge of Rock Creek near Arlington, Oregon, for 1905 and 1911.

	Dischar	rge in Secon	Run-off			
MONTH	Maximum	Minimum	Mean	Total in Acre-feet	Accur	
1905					1	
March	256	32	93.2	5,730	B.	
April	167	10	57.5	3,420	B.	
May	50	10	22.7	1,400	B.	
June	45		10.2	607	C.	
July	10	0	.97	60	C.	
The period	256	0.0	36.9	11,200		
1911					1	
April 6-31	73	7.3	36.7	1,880	B.	
May	10	.9	4.91	302	B.	
June	1.2	.6	.87	51.8	B.	
July	1.2	.2	.57	35.0	B.	
August	.4	.0	.21	13.0	B.	
September	.9	.0	.37	22.0	B.	
October 1-21	1.6	.6	1.40	58.3	В.	
The period	73.0	0.0		2,360		

the year. The tables show that by applying records at McDonald to the diversion site, assumptions will closely represent actual discharge at this point.

A gaging station was established on Camas Creek in April, 1914, and records have been kept since that time. The following records were furnished by the District Engineer, Water Resources Branch of the U. S. Geological Survey.

Monthly Discharge of Camas Creek below Cable Creek near Ukiah, Oregon.

MONTH	Discha	Run-off		
	Max.	Min.	Mean	Total in
1914	1	1		Acre-leet
May	265	10	1 7.15	
June	585	20	140	8,920
July	26	10	112	6,660
August	10	10	17.7	1,090
September	10	6	7.5	460
	13	5	10	600
The period				
	585	5	58.4	17,730
1914-15				
October	17			
November	. 11	9	13.0	800
December	- 14	••	11.4	680
January		••	7.0	430
February		••	5.0	310
March			10.0	560
April	*635	••	158	9 7 9 0
May	860	47	215	12,800
June	460	61	244	15,000
ulv	233	20	63.3	2,000
Ugnet	24	9	13.7	3,110
leptember	10	5	74	840
optember	10	5	7.1	450
			1.1	420
The year	860	-		
	000	0	63.0	45,780

SOILS.

Much difference of opinion has obtained as to the value of soils along Columbia River in this region, and it has therefore appeared desirable that this phase of the problem be given the fullest con-

A soil and agricultural survey of the irrigable lands was made June 10 to June 17, inclusive, 1915, by W. L. Powers, Associate Agronomist in Irrigation and Drainage, and C. V. Ruzek, Assistant Agronomist in Soils, of Oregon Agricultural College.

*Discharge from November 19 to March 12 estimated on account of ice. The monthly values are provisional and subject to revision when the statistic revision r

OF

0

55

and the second second

USDA-SCS-EIS-WS-(ADM)-75-2(F)-OR

ROCK CREEK WATERSHED PROJECT Gilliam and Morrow Counties, Oregon

FINAL ENVIRONMENTAL IMPACT STATEMENT

James W. Mitchell State Conservationist Soil Conservation Service

Sponsoring Local Organizations

Gilliam County Soil & Water Conservation Distric Arlington, Oregon 97812

Morrow Soil & Water Conservation District Heppner, Oregon 97836

Rock Creek Water Control District Arlington, Oregon 97812

April 1975

PREPARED BY

UNITED STATES DEPARTMENT OF AGRICULTURE

Soil Conservation Service

1218 S. W. Washington Street Portland, Oregon 97205

Soil Association 4 - Nearly Level to Very Steep Soils of Forested

Uplands, Hankins-Klicker-Boardtree Association -

This association occupies a broad, rolling plateau with many small, concave drainages in the highest part of the area. Hankins soils are very deep, dark colored, clayey soils on gentle to steep slopes with northerly aspect.

Klicker soils are moderately deep, stony, silty soils over basalt bedrock. They occupy steep to very steep slopes and are intermingled with basalt outcrops.

Boardtree soils are gravelly loam soils underlaid by clayey sediments at depths of 20 to 40 inches. These soils occupy moderately steep to steep north-facing slopes.

The Hankins, Klicker, and Boardtree soils have a high moisture-supplying capacity for plants.

Minor areas of very shallow Rockly soils occur on ridgetops.

Ground Water Resources

The potential for obtaining an adequate and economical supply of ground water is poor in this watershed. Potential for ground water supply is fair to good in the areas underlain by the basaltic lavas and poor in the areas of John Day sediments. The lava flows dip gently north from the Blue Mountains and receive some recharge from the mountains and from the incised drainages within the watershed. The main problem inherent to water production from this formation is the unpredictability of the well yields. Generally, wells in these basalts can be expected to produce one gallon per minute per foot of depth below the water table with a bore diameter of 10 inches or larger. Values significantly smaller or larger than this may be experienced within short horizontal distances. The water table is generally at substantial depths.

Existing wells within the basaltic lava flows of the watershed are generally for domestic supplies only. Recently, however, a few large diameter irrigation wells were drilled along the flood plain of Rock Creek and provided yields ranging from 300 to 1,250 gallons per minute. Future ground water development will depend upon evaluation of the existing units, but present indications are that this source will not sustain a significant increase in withdrawal.

Surface Water Resources

EXHIBIT.

PAGE 2 OF

Rock Creek is a tributary to the John Day River. The confluence of the creek and the river is 21.6 miles above the junction of the John Day with the Columbia River. (16) The principal tributaries of Rock Creek are Juniper, Lone Rock, Sixmile, and Dry Fork Creeks.

Rock Creek is 71.7 miles long with 143.4 miles of streambank. It is an unmodified perennial stream for approximately 20 miles in its upper reaches, an unmodified intermittent stream for 21 miles, and a modified intermittent stream for 30.7 miles in its lower reaches where it passes through cropland. The stream width varies from 30 to 270 feet and depth varies from 5.5 to 11 feet. The headwaters of Rock Creek are at an elevation of 5,360 feet. The creek falls to an elevation of 420 feet at the mouth. (4)

The Creek varies from a small, incised, upland channel having no flood plain to a stream having an average channel top width of 85 feet with a 100-year flood plain averaging 550 feet in width.

Rock Creek has a typical snowmelt runoff pattern of high spring flows and low to nonexistant surface flows during the summer and fall. Generally, the highest runoff volume occurs in April with about 58 percent of the annual runoff from March through May, and 71 percent from February through May in the vicinity of Cayuse Canyon. At the mouth of Rock Creek it is estimated that 64 percent of the annual runoff occurs from March through May and 79 percent occurs from February through May. (17) On occasion, however, a warm front producing precipitation combines with a warming trend and depletes the winter snow pack producing high funoff (near 9,000 cfs for a 100-year event) during the winter months. Only 7.7 percent of the annual runoff occurs during June through mid-October in the vicinity of Cayuse Canyon. (17)

EXHIBIT _____ PAGE _3___ OF _3___

Average monthly stream discharges are:

Months

Rate of discharge in cfs

5	Rock Creek near Cavuse	Vicinity	Mouth of
	Canyon (vicinity of	of Olex	Rock Creek
· · ·	Gnost Camp) .		
October	4	0 .	0
November	11	0	0
December	34	37	38
January	42	46	47
February	61	66	67
March	. 71	77	79
April	98	105	108
May	82	77.	79 -
June	2.7	9	0
July	4 .	0	0
August	0.5	0	0
September	0.9	0 .,	0

Rock Creek averages no flow for 30 days each year in the vicinity of Cayuse Canyon. In the seven years of record at this location the dry period ranged from 0 to 80 days. (17) In the lower reaches of Rock Creek the stream is essentially dry from June through November on the average.

Sixty miles of riparian vegetation occur along the creek. The ciparian vegetation is listed below.

Trees:	ponderosa pine Douglas fir	cottonwood alder	hawthorn birch	
Shrubs:	willow choke cherry	elderberry bittercherry	golden current serviceberry	rose

JOHN DAY RIVER BASIN

STATE WATER RESOURCES BOARD . SALEM, OREGON March 1962

1

· · · · · ·

E . . .

17

Barris a

-

Contraction of the local distance of the loc

BOARD MEMBERS

LOUIS H. FOOTE, Chairman - Forest Grove KARL W. ONTHANK, Vice Chairman - Eugene LaSELLE E. COLES - Prineville GEORGE H. COREY - Pendleton JOHN D. DAVIS - Stayton RUTH HAGENSTEIN - Portland ROBERT W. ROOT - Medford

DONEL J. LANE, Secretary

WATER SUPPLY, USE, AND CONTROL

acre per season for diversions from the main stem, North Fork, and Middle Fork of the John Day River, and four acre-feet from all other tributaries, as established by the John Day River adjudication of water rights. A duty of four acre-feet per acre per season was assumed for ground water rights.

The actual consumption of water for irrigation purposes is undoubtedly smaller, because only 49,000 acres are presently irrigated, not all rights can be exercised to their legal limit because of seasonal deficiencies in water supply, and because irrigation return flows are reused by downstream irrigators. Assuming a consumptive irrigation requirement of two acre-feet per acre, about 100,000 acre-feet would be needed each year to supply the consumptive requirements of the existing irrigated acres in the basin.

The average annual yield of the John Day River at its mouth is 1,410,000 acre-feet. Thus, the current use of irrigation water represents less than 10 percent of the gross basin water yield. However, there are many serious local and seasonal shortages relative to available water.

ind

11

1

The amount of yield during the main irrigation season, April through September, generally represents from 45 to 75 percent of the total annual yield. However, the monthly yield progressively diminishes through the irrigation season to the extent that the yield for September ordinarily is less than one percent of the total annual yield. Hence, all irrigated lands, including those along the main rivers, can experience late season water shortages. This situation is most serious along smaller tributaries because late summer flows are often extremely low or nonexistent. A review of 42 small watersheds, covering 80 percent of the basin area and including most of the irrigated land in the basin, indicates that 32 of these watersheds have inadequate total or late season water supplies for existing irrigated lands.

Modifications of the runoff pattern through reservoir storage would be essential in order to provide a fully adequate water supply for much of the presently irrigated land. Many lands are overirrigated during the early part of the season when a large supply of water is available. In many cases, the entire seasonal quantity of water allowed by the water right is used during the high flow months. Reservoir storage, designed to alleviate existing shortages, could function primarily to distribute the water presently used over a longer period, that is, into the later, drier months, rather than to provide additional quantities of water.

There are very few existing storage facilities for irrigation purposes in the basin. The State Engineer has only 20 water rights on file for irrigation reservoirs totaling 3,930 acre-feet. The largest reservoir right is for 2,300 acre-feet; all others are under 500 acre-feet.

STATE ENGINEER

WATER RESOURCES DEPARTMENT

P.O. BOX 261

CANYON CITY, OREGON

Contract Contraction

June 6, 1975

97820 • Phone 575-011

FILE NO.

TOM McCALL GOVERNOR CHRIS L. WHEELER State Engineer

> Mr. Welter N. Perry State Engineer's Office 1178 Chemekets St. N.E. Salem, Oregon 97310

Dear Newt;

.cc: . Dave Childs

In snswer to a call from Dave Childs on May 28th, I arrived at his home at 1230 on June 2nd. We discussed the nature of Rock Creek and the water rights on Rock Creek. At 1600, we drove down to Rock Creek and looked at his weir on his ditch. His right calls for 1.6 cfs in his ditch, and he was receiving only 1.19 cfs. Since there are many upstream users pumping with later priority dates, weter could have been acquired to meet his right. At Mr. Child's request, I did not shut anybody off. Instead, I measured the flow of the creek at various points to try to document the behavior of the creek at low flows.

For most of its length, the creek is incised into the Columbia River basalts. There are long stretches of gravel and alluvium beds between outcrops of the bedrock basalt. Because of this, the surface flow of the stream varies, higher on the bedrock outcrops, and lower on the gravel stretches. My measurements and their locations are as follows:

T. R. Section Forty-scre tract Discharge. Date

1112	N. N. S.	19 20 21 21 22	EEEEE.	11 15 30 10	i agir	SWISEI NWINEI SWISEI NWINEI SWISEI	Mc Donald R.C. 3t Atron CHILDS CRUMS		4.2.55	cfs cfs cfs cfs cfs	June June June June	2,2,3,3,3	1975 1975 1975 1975
2	S.	22	E.	 9	1.4	SWASEA	TPetty John .	r. +*` •	7.1	cfs	June	3,	197

I will get the flow at Cayuse Canyon on my next measuring trip.

Bob Main Watermaster, Dist.#4

FXHIBIT

DRAFT

STATE OF OREGON

CERTIFICATE OF WATER RIGHT

THIS CERTIFICATE ISSUED TO

STATE OF OREGON WATER RESOURCES DEPARTMENT SALEM, OREGON 97310

The specific limits for the use are listed below along with conditions of use.

Source: ROCK CR tributary to JOHN DAY R

County: GILLIAM

Purpose: UPSTREAM PASSAGE OF ADULT AND JUVENILE FISH INCLUDING SUMMER STEELHEAD AND RESIDENT RAINBOW TROUT

To be maintained in:

ROCK CREEK FROM USGS GAGING STATION AT WHITE PARK RM 40.0 (NESW, SECTION 36, T3S, R22E); TO THE MOUTH OF ROCK CREEK RM 0.0 (NESW, SECTION 11, T1N, R19E)

The right is established under Oregon Revised Statutes 537.341.

The date of priority is 3/21/90.

The following conditions apply to the use of water under this certificate:

 The right is limited to not more than the amounts, in cubic feet per second, during the time periods listed below:

 JAN
 FEB
 MAR
 APR
 MAY
 JUN
 JUL
 AUG
 SEP
 OCT
 NOV
 DEC

 34
 57
 57
 57
 57
 11
 1.7
 3.09
 2.47
 2.72
 6.67
 21.8

 33.10
 12.10
 3.14
 3.74
 3.24
 3.24
 9.61
 19,10

- The water right holder shall measure and report the in-stream flow along the reach of the stream or river described in the certificate as may be required by the standards for in-stream
- 3. For purposes of water distribution, this instream right shall not have priority over human or livestock consumption.

water right reporting of the Water Resources Commission.

- The instream flow allocated pursuant to this water right is not in addition to other instream flows created by a prior water right or designated minimum perennial stream flow.
- The flows are to be measured at the lower end of the stream reach to protect necessary flows throughout the reach.

Witness the signature of the Water Resources Director affixed this 1st day of _____, 19___.

Water Resources Director

.

Recorded in State Record of Water Right Certificate number _____.

IS70863

3

*

韩

-

F . +

Oregon Water Resources Department Water Rights/Adjudication Section Water Right Application Number: IS 70251 Proposed Final Order

Summary of Recommendation: The Department recommends that the attached draft certificate be issued with conditions.

Application History

On 3/21/90, the Oregon Department of Fish and Wildlife submitted an application to the Department for the following instream water right certificate.

ROCK CR tributary to JOHN DAY R Source:

GILLIAM County:

UPSTREAM PASSAGE OF ADULT AND JUVENILE FISH INCLUDING Purpose: SUMMER STEELHEAD AND RESIDENT RAINBOW TROUT

The amount of water (in cubic feet per second) requested by month:

JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC1st½34.057.057.057.034.034.034.034.034.034.034.034.02nd½34.057.057.057.057.034.034.034.034.034.034.034.0

To be maintained in:

ROCK CREEK FROM USGS GAGING STATION AT WHITE PARK RM 40.0 (NESW, SECTION 36, T3S, R22E); TO THE MOUTH OF ROCK CREEK RM 0.0 (NESW, SECTION 11, T1N, R19E)

The Department mailed the applicant notice of its Technical Review on November 25, 1995, determining that the requested flows exceeded the estimated average natural flow during some months but that flows at a reduced amount, with exceptions for human and livestock consumption, are appropriate. The objection period closed February 1, 1995. Objections and comments were received (from A DAVID CHILDS, OREGON DEPT OF FISH AND WILDLIFE, WATER FOR LIFE, WATERWATCH OF OREGON) .

The following supporting data was submitted by the applicant:

- Engineering determined by using USGS data and passage facility (a) design.
- A letter dated April 5, 1996, stating that the flows requested (b) in this application are the minimum amount necessary to restore, protect and enhance populations and habitats of native wildlife species at self-sustaining levels

In reviewing applications, the Department may consider any relevant sources of information, including the following:

- comments by or consultation with another state agency
- any applicable basin program
- any applicable comprehensive plan or zoning ordinance
- the amount of water available
- the proposed rate of use
- pending senior applications and existing water rights of record
- the Scenic Waterway requirements of ORS 390.835
- applicable statutes, administrative rules, and case law '
- any comments received

An assessment with respect to conditions previously imposed on other instream water rights granted for the same source has been completed.

An evaluation of the information received from the local government(s) regarding the compatibility of the proposed instream water use with land use plans and regulations has been completed.

The level of instream flow requested is based on the methods of determining instream flow needs that have been approved by administrative rule of the agency submitting this application.

Findings of Fact

The John Day Basin Program allows the proposed use.

Senior water rights exist on this source or on downstream waters.

The source of water is not above a State Scenic Waterway.

The source of water is not withdrawn from appropriation by order of the State Engineer or legislatively withdrawn by ORS 538.

The estimated average natural flow for the lower end of the requested reach is as follows (in cubic feet per second):

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
36.0	77.7	125	116	32.0	11.0	4.7	3.09	2.47	2.72	6.67	21.8

Water is NOT available for further appropriation (at a 50 percent exceedance probability) for the period May, June, July, August, September, October, Straight November and December.

Model The flows available for further appropriation are shown below:

not a JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 35.82 77.5 123.8 110.8 24.22 1.53 -8.0 -7.41 -4.57 -0.43 6.48 2L& Complete analysis W/adjustments to fit + data points.

Conclusions of Law

Under the provisions of ORS 537.153, the Department must

presume that a proposed use will not impair or be detrimental to the public interest if the proposed use is allowed in the applicable basin program established pursuant to ORS 536.300 and 536.340 or given a preference under ORS 536.310(12), if water is available, if the proposed use will not injure other water rights and if the proposed use complied with rules of the Water Resources Commission.

The proposed use requested in this application is allowed in the John Day Basin Plan.

No preference for this use is granted under the provisions of ORS 536.310(12).

The proposed use will not injure other water rights.

The proposed use complies with rules of the Water Resources Commission.

The proposed use complies with the State Agency Agreement for land use.

The proposed instream flows do not fully appropriate this source of water year round. Water is available for additional storage.

While the proposed use meets the other tests, the full amount of water requested is not available during some months of the year.

Water is not available for the proposed use at the amount requested during May, June, July, August, September, October, November and December because the unappropriated water available is less than the amounts requested during these months.

For these reasons, the presumption set forth in ORS 537.153, as discussed above, has not been established. The application therefore has been processed without the statutory presumption.

"When instream water rights are set at levels which exceed current unappropriated water available the water right not only protects remaining supplies from future appropriation but establishes a management objective for achieving the amounts of instream flows necessary to support the identified public uses." OAR 690-77-015(2).

"The amount of appropriation for out-of-stream purposes shall not be a factor in determining the amount of an instream water right." "The amount allowed during any time period for the water right shall not exceed the estimated average natural flow ..." (excerpted from OAR 690-77-015 (3) and (4)).

Because the proposed use exceeds the available water, it can not be presumed to be in the public interest. However, under the direction of OAR 690-77-015 (2)(3) and(4), the proposed use is in the public interest up to the limits of the estimated average natural flow.

Oregon law allows certain uses of water to take precedence over other uses in certain circumstances. When proposed uses of water are insufficient for all who desire to use them, preference shall be given to human consumption purposes over all other uses and for livestock consumption over any other use (excerpted from ORS 536.310 (12)).

The Department therefore concludes that

- the proposed use, as limited in the draft certificate, will not result in injury to other water rights,
 the proposed use, as limited in the draft certificate, will
- the proposed use, as limited in the draft certificate, will not impair or be detrimental to the public interest as provided in ORS 537.170.
- the proposed use, as limited in the draft certificate, for purposes of water distribution, this instream right shall not have priority over human or livestock consumption.
- the flows are to be measured at the lower end of the stream reach to protect necessary flows throughout the reach.
- the stream flows listed below represent the minimum flows necessary to support the public use.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC AT 21 4-7 3.09 2.47 33.10 13.00 3.69 2.39 2.34 34 57 57 57 2.72 6.67 21.8 3.24 9.61 19.40 Recommendation

36.10 78 123 75.60 33.10 12.60 3.69 2.29 2.24 3.26 8.61 19.10 The Department recommends that the attached draft certificate be 0.3 issued with conditions.

DATED AUGUST 20, 1996

Steven P. Applegate Administrator Water Rights and Adjudications Division

Protest Rights

Under the provisions of ORS 537.153(6) or 537.621(7), you have the right to submit a protest against this proposed final order. Your protest must be in writing, and must include the following:

- Your name, address, and telephone number;
- A description of your interest in the proposed final order, and, if you claim to represent the public interest, a precise statement of the public interest represented;
- A detailed description of how the action proposed in this proposed final order would impair or be detrimental to your interest;
- A detailed description of how the proposed final order is in error or deficient, and how to correct the alleged error or deficiency;

70251

FEB 1 4 1995

SALEM, OREGON

A David Childs 1806 Thompson St The Dalles, OR 97058 February 10 1995 503/ 298/1499

Mr Mike Mattick Instream Water Rights Water Resources Department Commerce Building 158 12th Street NE Salem, Oregon, 97310-0210

Dear Mike.

Rather than as you suggest, I believe you expressed a strong knowledge of reality. I interpret your remarks of February 1st and your letter, of the 6th as truly remarkable. I have volunteered information many times. But this is a first for WRD (not the first apology, I have another, which I did accept.) You have nothing to apologize for. This was the first time I felt my input was asked for.

I participated in the Advisory committee for The John Day basin plan and also in the State Wide Basin Advisory committee and for the formative years of the Strategic Water Management Group I 've written reams of critique for stream benefit and worked hard for wetted-stream legislation, including being a member of the rule writing committee for instream water rights.)

The answer to your first question is easy, <u>none</u>. The answer to the second question, for the moment, is thanks for asking.

---- "What is truly possible?" What a kind and generous question. The closest I ever got to influencing anyone in modern WRD. happened when I was told, "You had input, we chose not to use it."

I'll send you my answer to your second question, probably by Washington's birthday. Thanks for asking.

I am enclosing a corrected front sheet to my comment-letter of January first. in which I accidentally left out the word 'along'.

Sincerely,

David Childs

aldution correction

DEC

FEB 1 4 1995

WATER MEDICALS DEPT. SALEM, OREGON

A David Childs 1806 Thompson St The Dalles, OR 97058 January 31 1995 503/ 298/1499

Mr Mike Mattick Instream Water Rights Water Resources Department Commerce Building 158 128th Street NE Salem, Oregon, 97310-0210

Dear Mike.

The proposed instream water right, (application No. 70251) for Rock Creek Gilliam County is seriously flawed.

1 / The forty mile stream-reach described for the Instream Water Right is dry for much of its distance during August, September, and October.

2 / The stream reach above The Gage Station is also dry for much of its distance up to the divide during this period.

3./ The period of summer dry-up with no water was about 30 days at our former ranch below French Charlie In the era of 1900.

Interview (1976) and visit with Ethel Sprinkel. She was born on the ranch in 1888, and lived there until 1906. I asked, "When you were here, the creek never went dry did it?" She responded, " It went dry every August for about a month.

My father came to Rock Creek in 1903, lived with his mentor-family, Tip and Mrs Mobley, until 1910. Tip settled on Rock Creek near Olex in 1867. Father ranched In the community until his death in 1946. I was born in 1923 and started fishing with my Dad in 1927. I rode horseback for 3 miles and forded the creek twice each day riding to school at Olex. DAVID CHILDS 1806 Thompson St. The Dalles OR 97058

MR Mike MATTICK Instream Water Rights WATER RESources Department COMMERCE BUILDING 158 12Th STREET NE. SALEM, OR 97310-0210

P.1/4

SENT BY FAX AND REGULAR MAIL

January 31, 1995

נכ
1
N

EPARTMENT	OF
SH AND	
ILDLIFE	

Water Resources Department 158 12th Street, NE Salem, OR 97310

RE: Comments; 5 John Day River basin Instream Water Right Technical Reviews; Applications 69960, 70250, 70251, 70263 and 70648.

ODFW has reviewed the subject Technical Reviews and offer the following comments:

General Comments

1. ODFW has previously indicated it does not oppose reducing instream water right flow levels from amounts requested to the estimated average natural flow when this is less than requested flows. This is consistent with OAR 690-77-045 (3e).

2. According to OAR 690-77-026 (1), WRD "shall undertake a technical review ... and prepare a report." This subsection further lists 8 [(a) through (h)] mandatory criteria which, at a minimum, must be assessed during the

criteria which, at a minimum, must be assessed during the technical review. ODFW has concerns with the apparent level of assessment relative to subsection (c):

OAR 690-77-026 (1) (c)--Assessing the proposed instream water right with respect to conditions previously imposed on other instream water rights granted for use of water from the same source.

In the subject John Day River basin reports of technical review, WRD is proposing to condition each application to exempt human and livestock consumption from regulation in favor of these instream rights as follows:

This instream right shall not apply to permits for appropriation for domestic or livestock use....

2501 SW First Avenue PO Box 59 Portland, OR 97207 (503) 229-5400 TDD (503) 229-5459 WRD; IWR Comments; John Day River January 30, 1995 Page 2

This instream right shall not have priority over human or livestock consumption.

Instream water rights certificates in the John Day River basin based on conversion of minimum perennial streamflows generally contain similar conditioning language giving preference to the listed uses.

By rule, WRD's technical review process includes <u>assessing</u> conditions previously imposed on other instream water rights from the same source. If found to be appropriate, WRD may propose that new instream water rights contain the same exemption. There is no requirement that this exemption be automatically included as a proposed condition.

When ODFW reviewed WRD files on some of these applications for documentation of assessments of prior conditions, we found nothing to document that any such assessments had been done. ODFW, therefore, assumes the required assessments were not done, contrary to rule. ODFW also objects to the routine placement of exemptions on any of the subject applications on the grounds that to do so does not give adequate consideration to the public's interest in maintaining fishery resources in John Day River basin streams. OAR 690-11-195 (4dA).

Specific Comments

Application 70251; Rock Creek; RM 40 to 0--In its water availability analysis, WRD staff find that water is not naturally available to meet even ODFW's recommended <u>minimum</u> flows for fish in May through December. For the months of July through November, the water availability analysis indicates that only about 1/3 of the minimum recommended flow is available. When these calculated flows are compared with other <u>measured</u> flow records, it appears that the estimated average natural flow levels for July through December are potentially erroneous.

The estimated average natural flow and instream water right should be calculated and measured at the mouth of Rock Creek, the downstream limit of this application. Records for USGS gage 14047390 (50% exceedance; 1975-87; RM 40) indicate actual flows (after cumulative withdrawals above) are similar to what WRD staff
WRD; IWR Comments; John Day River January 30, 1995 Page 3

	JUL	AUG	SEP	OCT	NOV	DEC
WRD Water Avail- ability (RM 0)	4.7	3.1	2.5	2.7	6.7	21.8
USGS Gage Records (RM 40)	2.9	1.7	2.1	3.7	11.0	30.0
Robison, 1991 (RM 40)	1.8	0.7	2.3	2.6	10.6	31.9

predict would be naturally available at the mouth of Rock Creek, 40 miles downstream.

The numbers above listed as "Robison, 1991" were extracted from WRD's 1991 Hydrology Report #1, "Water Availability for Oregon's River and Streams: Appendix B". Again, these are natural flow predictions (50% exceedance) for a gage 40 miles upstream from the mouth of Rock Creek, the point of natural flow measurement for the proposed instream water right.

Based on the observation that natural stream flows generally increase as a stream progresses downstream, it is doubtful that the flows cited above accurately represent the instream flow picture.

During physical stream surveys conducted by ODFW personnel in 1971, stream flows in Rock Creek were measured at 1 mile intervals for the lower 9 miles. During this survey, numerous active water diversions were noted. Despite the loss of flow at 22 diversions, measured instream flows (e.g., 4.8 cfs at RM 2) often exceeded the estimated average natural flow.

Although this comparison can not be considered conclusive, ODFW believes significant evidence exists to cast doubt on the results of the water availability analysis performed for this application and is the basis for our objection to same.

Application 70250; Bridge Creek; RM 19 to 13--WRD's water availability analysis indicates water is not naturally available to meet ODFW's recommended minimum flows 10 months out of 12, May through February. There are no gage records available to us for comparison here. We do, however, have limited instream flow measurements taken in July, 1971, that indicated the estimated average natural flow presented in this technical review underestimate natural flow. WRD; IWR Comments; John Day River January 30, 1995 Page 4

The water availability analysis predicts less than one cfs would be available naturally in Bridge Creek during July. ODFW's measurements during July, 1971, recorded a flow at RM 13 of 7.2 cfs after an observed 7 active diversions. Although not conclusive evidence, these measurements, coupled with anecdotal information obtained from field personnel, leads ODFW to believe sufficient doubt exists as to the accuracy of the water availability analysis completed for Bridge Creek.

Application 70263; Bear Creek; RM 11 to 0

The situation on the lower 11 miles of Bear Creek is similar to that of Bridge Creek to which it is tributary. Although no gage data exists for comparison, flow measurements taken by ODFW in July, 1971, recorded flows between 2.2 and 6.2 cfs in this stream section. ODFW district personnel indicate that these observed levels of flow are not extraordinary.

Thank you for this opportunity to review the subject technical reports. We appreciate WRD's efforts to move forward with these applications and encourage you to proceed to certification as guickly as possible.

Sincerely,

assunato

Stephanie Burchfield - Water Resources Program Manager Habitat Conservation Division

c. Unterwegner, John Day Lauman/Eddy, La Grande WaterWatch of Oregon (public information request)

File: WRD/Instream Water Right/Communts

RECEIVED

FEB 0 1 1995

WATER RESOURCES DEP

WATER FOR LIFE'S OBJECTION TO TECHNICAL REVIEW: APPLICATIONS # EN 25 REGON

Submitted to the Oregon Water Resources Department, January 31, 1995

Water for Life hereby submits the following objection to Application # 70251, an instream water right application filed by the Oregon Department of Fish & Wildlife ("ODFW"). Water for Life asserts that the technical review by the Water Resources Department ("WRD' or "Department") is defective and there are elements of the water right as approved that may impair or be detrimental to the public interest, based on the facts and issues set forth below. The applicant has requested flows that exceed the level of flow necessary to support the uses applied for (ORS 537.336 and OAR 690-77-015 (9)). For the reasons set out herein, the application should be rejected or returned to the applicant for the curing of defects.

A. WRD FAILED TO ANALYZE FLOW NEEDS

The flow levels approved by the technical review are not based on any analysis of the need for the flows requested. ORS 537.336 sets out the statutory standard which the Department is supposed to follow when determining instream water rights; the "quantity of water necessary to support those public uses." Water for Life asserts this standard means the minimum quantity necessary to support the public use. The technical review does not address the quantity of water or flow levels necessary to support the uses applied for. A review of the WRD file shows that no such analysis has occurred. The only review undertaken by the WRD was a check to see if the requested flows are less than the average estimate natural flow ("EANF"; OAR 690-77-015 (4)). At the very least, the flows approved should not exceed the lesser of EANF or the minimum flow recommended in the Basin Investigations.

B. NO SUPPORTING DATA SUBMITTED FOR REQUESTED FLOW LEVELS

An integral part of the technical review by the WRD is the analysis of the application and supporting data (see OAR 690-77-026 (1)(a)). OAR 690-77-015 also requires an application to include at a minimum "a description of the technical data and methods used to determine the requested amount;" (emphasis added).

No analysis of supporting data, or the lack thereof, appears in the WRD file for the application. The technical review is defective in that the WRD did not evaluate "whether the level of instream flow requested is based on the methods for determination of instream flow needs as directed by statute and approved by the administrative rules of the applicant agency." (OAR 690-77-026 (1)(h)).

ODFW does not have specific files for their instream water right applications. The original data supporting the Basin Investigation has apparently been lost or destroyed. Such information is essential to understand and evaluate the requested flows and assess their accuracy. No supporting data or "technical data" was submitted by the applicant as required by OAR 690-77-020 (4). Since no technical data was included with ODFW's application. the application should be returned to the applicant for curing of defects or resubmittal (OAR 690-77-021 and 022).

C. OREGON METHOD IS INHERENTLY FLAWED - WRD SHOULD REJECT APPLICATION

The methodology used for this application, the "Oregon Method", is inherently flawed in that it is based on a methodology that has been superseded and is not reliable, and is based on outdated or insufficient information (note testimony of Albert H. Mirati, Jr. on the Oregon Method at the Water Resources Commission, December 6. 1990 meeting).

The Oregon Method was further critiqued in <u>Instream Flow Methodologies</u>, EA Engineering, Science and Technology, Inc. (1986), a publication referenced ODFW's own publication also entitled <u>Instream Flow</u> <u>Methodologies</u>, Louis C. Fredd, Oregon Department of Fish and Wildlife (1989). In that critique at page 10-71, the authors stated:

"The principal limitation is the arbitrariness of the flow criteria. There is no way of knowing if they are necessary or sufficient. The binary velocity and depth criteria are also arbitrary and can result in misleading conclusions. It [Oregon Method] is one of the earliest developments of the concept of depth, velocity, and especially substrate size and dissolved oxygen, but has now been superseded."

The determinations made for the Oregon Method are not reliable and should therefore be rejected by the WRD or the Commission as the final authority in determining the level of instream flows necessary to protect the public use (ORS 537.343).

D. OREGON METHOD WAS NOT FOLLOWED TO OBTAIN FLOW LEVELS REQUESTED

One of the requirements of the Department's technical review is contained in OAR 690-77-026 (1)(h): "Evaluating whether the level of instream flow requested is based on the methods for determination of instream flow needs as directed by statute and approved by the administrative rules of the applicant agency." This requirement does not mean the Department can simply accept ODFW's assertion that the "Oregon Method" is the basis for the requested flows. The Department must actively review the application to see if the Oregon Method and ODFW's instream rules are being followed. Where applicable, ODFW must also submit supporting data to show that the standards and criteria contained in their rules have been followed.

The actual measurements used by ODFW to set requested flow levels are totally inadequate to validate those amounts; these measurements were made by ODFW's predecessor, the Oregon State Game Commission, as shown in the Appendices to the Basin Investigations. Actual measurements of streamflow were not made at times when key life stages occurred and, in fact, the severe limitations of the data available show that they are inadequate to validate the requested flows: "Actual measurement of streamflow made at or near recommended instream flow requirements and made at times when key life stages occur are important to validate the methodology use, and to validate that the recommended instream flow requirements provide desirable habitat conditions." Instream Flow Methodologies, Louis C. Fredd, Oregon Department of Fish and Wildlife (1989), p. 12.

E. "EANF" CALCULATIONS ARE DEFECTIVE OR INCOMPLETE

There are no calculations or information in the WRD file to show what ratios or models were used or how adjustments were made to determine the 50% exceedance flows, and there is also no information in the technical review to show the type of statistics used (see "Methods for Determining Streamflows and Water Availability in Oregon", <u>Robison</u>, p. 22 and 23.) The EANF calculations are defective, resulting in high EANF levels and thus allowing excessive recommended flows by the WRD. The model used to calculate EANF should be reviewed and revised to properly set EANF figures.

F. FISH SPECIES MAY NOT BE PRESENT IN STREAM

The application is defective in that the purpose listed in the application (to provide required stream flows for several different types of fish species) listed fish species that may not be present in the stream. Insufficient information was submitted with the application to determine if the fish species listed in the application are actually present in the stream reach applied for. No supporting data was submitted to show the presence of the listed species as required by ODFW's rules (OAR 635-400-015 (8)(a)).

G. "REPORT CONCLUSIONS" CONTAIN BOILERPLATE LANGUAGE

The "Report Conclusions" of the technical review contain boilerplate language apparently agreed upon by the Department and ODFW, some of which is not applicable to this application. There is no information in the application file to indicate the "conclusions" were actually reached as part of the technical review.

H. "OPTIMUM FLOW" REQUEST IS CONTRARY TO STATUTORY STANDARD

ODFW applied for the "optimum" flow rates listed Basin Investigation. The statutory standard for instream water rights, however, is the quantity "necessary to support" the public uses allowed (ORS 537.336 (1)), not optimum flows.

The January 1963 South Coast Basin report listed minimum flow amounts in Table D as recommendations to "provide what is considered the basic flows necessary to meet present requirements for anadromous fish passage, spawning, and rearing. These are not considered optimum flows although they may approach optimum in some instances." (South Coast Basin, State Water Resources Board, January 1963, page 73).

When new information was developed from a 1969 survey, the Oregon State Game Commission prepared the April 1972 report (Basin Investigation, also known as "Environmental Investigation"). The new report did modify some minimum flow amounts, and added "recommended optimum flows ... designed to provide instream conditions capable of maintaining an optimum desirable level of natural production." (1972 Environmental Investigation, South Coast Basin, Appendix 2, page 58). It is obvious from the data involved that both EANF and the flows allowed by the technical review are excessive.

The flow rates allowed should be reduced to the minimum flow recommendations of the Basin Investigation or EANF, whichever is less.

I. "REACH" REQUESTED IS TOO EXTENSIVE

A significant defect in the application and supporting data that the Department failed to consider concerns the reach of the stream allowed under this instream water right. The flow rates allowed would be applicable to the entire reach requested. This reach is far too long for the flow rates allowed, especially in light of the incoming tributaries between the mouth and the upstream end of the reach (see basin maps). The instream right "shall be approved only if the amount, timing and location serve a public use or uses." OAR 690-77-015 (9).

OAR 690-77-015 (6) states that instream rights "shall, insofar as practical, be defined by reaches of the river rather than points on the river."; OAR 690-77-202 (4)(d) requires that the application shall include the stream "reach delineated by river mile." It is neither practical nor reasonable to approve the same flow rates for the entire reach given the length of the reach applied for, the water available in the stream and the additional tributaries that flow into the stream within the reach.

The stream reach is also excessive according to ODFW's own instream rules. OAR 635-400-015 (11) details the requirements for a specific stream reach. A stream reach is limited to a point where "Streamflow diminishes by at least 30%" (OAR 635-400-015 (11)(B)). OAR 635-400-015 (11)(C) also appears to have been violated since the "stream order" (OAR 635-400-010 (19)) changes within the reach requested due to the incoming tributaries.

The flow requests by ODFW are based on the old Basin Investigations. The Basin Investigations lists the location of the recommended flows in the appendix listing the recommended flows. It is clear that the flow recommendations in the Basin Investigation did not extend upstream and the facts cited above further prove that the reach approved should be limited significantly.

J. EXISTING INSTREAM WATER RIGHTS NOT TAKEN INTO ACCOUNT

An instream water right already exists within the reach of the stream at issue in this application. The amount of the existing instream right should be subtracted from any instream right allowed under this application.

OAR 690-77-015 (10) requires that the "combination of instream rights, for the same reach or lake, shall not exceed the amount needed to provide increased public benefits and shall be consistent with (4) and (5) above. Subsection (4) of that section deals with the "EANF" determination; the existing rights were also not accounted for in that calculation. See also OAR 690-77-015 (9).

If the existing instream water right is not subtracted from the approved flow levels, the Department should add a condition to the water right as follows: "The instream flow allocated pursuant to this water right is not in addition to any other instream water rights with a senior priority date and is not in addition to a designated minimum perennial stream flow."

K. ODFW'S GAGE RULE NOT FOLLOWED

The application fails to abide by another rule applicable to ODFW's instream applications, OAR 635-400-015 (10)(a). This rule requires ODFW to compare hydrological estimates or gaging data to the amount of water they request for instream flows ("instream flow requirements"). A specific evaluation is set out in subsection (10)(b) regarding appropriate levels for any given time period in relation to the naturally occurring stream flows. ODFW never performed this evaluation for the application.

CONCLUSION

This objection is filed in accordance with OAR 690-77-028. The issues raised should be considered as part of a contested case hearing. The WRD technical review is inadequate and defective and has failed to follow applicable rules. A thorough review of the application is necessary to determine the flow levels necessary to support the public uses applied for.

For the reasons set forth above, the objector asserts the application is defective and should be returned to the applicants. The flow levels requested are excessive and not necessary to support the public uses proposed. Flow levels set at the rates proposed interfere with future maximum economic development. Excessive flow rates for instream water rights represent a wasteful and unreasonable use of the water involved (ORS 537.170). The flow rates approved should be set the minimum quantity necessary to support the public use applied for.

Todd Heidgerken Executive Director of Water for Life

Hand Delivered

Rue. 2/1/95

January 31, 1995

Oregon Water Resources Department Water Rights Section 158 12th Street NE Salem, Oregon 97310

Re: Technical Reports for: 69960, 70250, 70251, 70263, 70648 ODFW, Instream Applications, John Day River Basin

WaterWatch of Oregon strongly supports the flows <u>requested</u> in the above referenced Oregon Department of Fish and Wildlife applications. These flows are essential for survival of resident salmonids, small-mouth bass, summer steelhead, rainbow trout, and channel catfish. Streamflows are critical to the survival of these fish. By this letter WaterWatch requests copies of any objections filed on these applications.

WaterWatch

In addition, we file the following objections to the water availability analyses in the technical reports pursuant to OAR 690-77-028:

The Water Availability Analysis is Defective

Instream water rights are a means for the state to achieve equitable allocation of water and Oregon Statutes place a duty on the state to act in a way that will protect instream flows needed for fish populations. OAR 690-77-015(2), ORS 496.430, OAR 690-410-070(2)(h). The agencies administrative rules require the technical reports to contain an evaluation of the estimated average natural flow (ENAF) available from the proposed source. OAR 690-77-026(1)(g). The rules also state that the amount of appropriation for out of stream uses is not a factor in determining the amount protected under the instream water right. OAR 690-77-015(3).

However, the technical reports state that they contain an:

"evaluation of the estimated average natural flow available from the proposed source during the time(s) and in the amounts requested in the application . . . The recommended flows take into consideration planned uses and reasonable anticipated future demands for water from the source for agricultural and other uses as required by the standards for public interest review . . ."

Technical reports page 2 (emphasis added). Clearly, this analysis is contrary to the agencies rules because it takes into account out-of-stream uses. These instream water right application requests must be evaluated according to the higher ENAF figures.

Water Resources Department Page 2

The technical reports propose to issue instream water rights for the Department's lower "average flows" rather than those requested for several months of each year. The flows requested by ODFW are necessary for the requested beneficial use of water - fish life. These flows are needed for migration, spawning, egg incubation, fry emergence and juvenile rearing and for fish passage and habitat maintenance. There should be no reduction in the requested flows. ODFW's flow requests are either within the ENAF or are needed to account for high flow events that are needed for fish passage and habitat maintenance pursuant to OAR 690-77-015(4).

The proposed conditions are contrary to the public interest.

The technical reports propose to subordinate these instream flow requests to human consumption or livestock. The technical reports do not provide any support or reasoning behind its proposal. These uses, while they use small amounts of water individually, have cumulative adverse effects on streamflows needed for fish.

Streamflows are not only critical for fish survival, they help abate water quality problems. The Department of Environmental Quality (DEQ) has designated a segment of the John Day as water quality limited. The river is not able to support the designated beneficial use of aquatic life. Rivers can not assimilate pollution loadings unless there is sufficient water instream. Thus, streamflow protection is critical to pollution abatement.

These proposed conditions are contrary to the public interest in protecting the resource. The Commission's statewide policies recognize the importance of maintaining streamflows and place high priority on protecting streamflows. OAR 690-410-030(1). This policy directs the state to take action to restore flows in critical areas such as this system. Id. The public uses of the this river system have been impaired. Adoption of these instream water rights without conditions is just one small step towards restoring this system.

Adoption of these and other instream flows is critical to the health of Oregon's watersheds and must be a high priority for Oregon if the state is to develop solutions to the resource crises that threatens to destroy the livability of Oregon. Instream water rights not only help to achieve a more equitable allocation of water between instream and out of stream uses, they also establish management objectives for Oregon's rivers. WaterWatch supports the Department's efforts to finally begin to implement an Act that has been "on the books" for the past six years. We look forward to the adoption of these instream water rights.

Sincerely Kimberley Priestley Legal/Policy Analyst

COPY CHECK-OFF SHEET FOR INSTREAM TECHNICAL REVIEWS

CC: FILE # WATERWATCH ODF&W (DEPENDING ON - IF NOT APPLICANT) COUNTY (IES): Gilliam WATERMASTER # 4 REGIONAL MANAGER - NC KEN STAHR 1 David childe, 1806 Thompson St. The Dollar, OR 27058 OTHER ADDRESSES: (OVER FOR MORE ADDRESSES) AGRICULTURE, DEPARTMENT OF, VES GARNER BOYER, JOHN, JR. COALITION FOR REPONSIBLE WATER PLANNING COOS COUNTY BOARD OF COMMISSIONERS, GORDON ROSS (COOS RIVER BASIN ONLY) CROOK COUNTY STOCKGROWERS ASSOC., JEFF & RUNINDA MCCORMACK DEPARTMENT OF ENVIRONMENTAL QUALITY DOUGLAS COUNTY LIVESTOCK ASSOCIATION 10/24 mm ORIGINAL TO APPLICANT 10/14/94 CASEWORKER

COPY CHECK-OFF SHEET FOR **INSTREAM TECHNICAL REVIEWS** OTHER ADDRESSES:

F. A. I. R.

FRUIT GROWERS LEAGUE

HURRICANE CREEK IRRIGATION DITCH CORPORATION, RICHARD A. BOUCHER, SEC./TREAS. ILLINOIS VALLEY WATER RIGHT OWNERS ASSOC. LAKE COUNTY STOCKGROWERS, ANN TRACY, PRESIDENT MORROW COUNTY COMMISSIONER, RAY FRENCH MOON, DAVID, ATTORNEY OREGON ASSOCIATION OF NURSERYMEN, INC., CLAYTON W. HANNON, EXECUTIVE DIRECTOR OREGON ASSOCIATION OF REALTORS, JERRY SCHMIDT, WATER CONSULTANT OREGON CATTLEMEN'S ASSOC. OREGON HOP GROWERS ASSOC. OREGON SHEEP GROWERS ASSOCIATION, INC. OREGON WHEAT GROWERS LEAGUE, MACK KERNS WALLOWA COUNTY COURT, OFFICE OF THE JUDGE WALLOWA COUNTY STOCKGROWERS ASSOC., C/O JEAN STUBBLEFIELD, SECRETARY WATER FOR LIFE WATER RESOURCES CONGRESS

2 .

Revised: 10/14/94 Poul Bates Gillion County SWCD, POBox 106, Condon, OR 97823 Joe Rietmann, Morrow SWCD, POBox 127, Heppener, OR 27836

RECEIVED

Oregon

NOV 1 6 1994 NATER RESOURCES DEPT. SALEM, OREGON

DEPARTMENT OF

FISH AND

WILDLIFE

HABITAT CONSERVATION DIVISION

November 15, 1994

Mike Mattick Water Resources Department 158 12th Street, NE Salem, OR 97310

RE: Instream Water Right 70251; supporting information

Dear Mike:

Attached is the subject material you requested. Hopefully it will serve to support our application for sufficient water to operate the fishway at Harper Dam on Rock Creek (John Day River).

Sincerely,

Aunt

Albert H. Mirati, Jr. Fish Passage Coordinator

c: Burchfield

2501 SW First Avenue PO Box 59 Portland, OR 97207 (503) 229-6967

Koor VL, pur ony

WR 20251

UNITED STATES DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE ENVIRONMENTAL & TECHNICAL SERVICES DIVISION 1002 NE HOLLADAY STREET - ROOM 620 PORTLAND, OREGON 97232 503/230-5400

January 24, 1990

NOV 1 6 1994

RECEIVED

NATER RESOURCES DEPT. F/NWRALEM, OREGON

Sharon Convers Oregon Department of Fish and Wildlife 506 S.W. Mill Street P.O. Box 59 Portland Or. 97207

Dear Ms. Convers,

Attached is the functional design for the Harper Dam Fishway on Rock Creek (Enclosed). This is the second fishway of a series of upwards of 6 that is needed to insure safe and efficient adult anadromous fish passage into the upper basin of Rock Creek in the John Day River Basin. It is our understanding that the Oregon Department of Fish and Wildlife (ODFW) plans to construct the Harper Fishway during the summer of 1990 with funds carried over from FY89.

As you recall the National Marine Fisheries Service (NMFS) volunteered to help design the first couple of fishways to expedited the project. The first fishway at Ramsey Dam was designed by NMFS last September and ODFW personnel constructed it in October.

Please have your engineering staff review the enclosed functional design for the Harper Fishway. Detailed structural design is required before construction can begin on this fishway. The NMFS is not prepared to do the structural design for the Harper Dam site so the ODFW will need to either do the structural design or contract it out to a private engineering firm. As nearly \$18,000 in engineering related funding was provided to ODFW by NMFS for this project, the design costs should be covered.

Technical comments or questions on the design should be directed to Mr. Randy Lee at 230-5411. Any other comments or questions can be directed to Mr. Mike Delarm of my staff at 230-5412. We look forward to moving ahead with this project.

Sincerel

Robert Z./Smith Director, Columbia River Fisheries Development Program

RECEIVED

Harper Dam Fishway Rock Creek John Day River Basin NOV 1 6 1994 NATER RESOURCES DEPT. SALEM, OREGON

Background

Rock Creek enters the John Day River at river mile 21.6. The Oregon Department of Fish and Wildlife (ODFW) personnel indicated that 75 miles of habitat would be opened by correcting passage problems on Rock Creek. According to ODFW, steelhead is the only species of anadromous fish which utilize the Rock Creek drainage. Steelhead currently utilize the lower 25 miles of the creek.

There are six irrigation dams within a 20 mile creek reach. The dams are located at creek miles 7 (Ramsey Dam), 19.75 (#2), 23.5 (Irby Dam), 25.5 (Harper Dam), 27 (McCoin Dam), and 28 (#6). Steelhead passage is entirely blocked at the Harper damsite, but all the other dams probably delay or block*g* passage during low to moderate flows (possibly during higher flows).

In October of 1989, ODFW constructed a fishway designed by the National Marine Fisheries Service (NMFS) at the Ramsey damsite. In general, the fishway consists of two pools with a vertical slot insert placed between the pools.

The following presents a functional design for providing safe and efficient passage of adult steelhead at Harper Dam.

Harper Dam Fishway Rock Creek John Day River Basin

Summary

• •

. .

Location: Approximate creek mile 25.5 T2S, R22E, Sec. 5 Gilliam County, Oregon

Fishway type: Vertical Slot Floor slope 1 vertical to 8 horizontal 7 vertical slots with one 15-inch entrance Pool dimensions 6 foot wide by 8 foot long Vertical slot either can be formed concrete or inserts.

Design	Flows:	57	cfs	maximum
		47	cfs	normal
		34	CÍS	minimum

RECEIVED

NOV 1 6 1994

NATER RESOURCES DEPT. SALEM, OREGON

Hydraulic Design

The proposed fishway at the Harper Dam is a vertical slot type with each slot having a width of one foot. Field surveys by ODFW taken May 4, 1988 indicated a head of approximately 8 feet will need to be managed by the fishway. This results in a fishway with 7 vertical slots and one 15-inch wide entrance to satisfactorily manage the 8 foot drop. Due to cost and space limitations, the fishway proposed is to have a slope of 1 vertical to 8 horizontal and have pool dimensions of 6 foot wide by 8 foot long. This is considered to be minimum dimensions for this type of fishway. Vertical slots can be either formed concrete or fabricated metal inserts which may be constructed offsite and installed in the flume when completed.

It is expected that adult steelhead will be present during the months of February through May, therefore, the fishway is designed to accomodate passage during this period. Design flows for the fishway are as follows: 57 cubic feet per second (cfs) maximum, 47 cfs normal and 34 cfs minimum. From high water marks, there appears to be 4 feet of head over the dam crest. Using the standard weir formula, this converts to a streamflow of approximately 1259 cfs. At this streamflow the effectiveness of the fishway entrance flow to attract fish is negligible without auxiliary water, however, at this high streamflow it appears fish may choose to pass over the dam or wait and use the fishway when streamflows subside.

Stoplogs at the entrance are utilized to control the discharge from the fishway. To increase operational flexibility and ease of adjustments, a gate may be considered. Adjustments to the logs or gate will be necessary to insure a hydraulic drop of 1.25 feet across the entrance. This will result in and entrance jet velocity of approximately 9 feet per second. A short flow deflecting wall is constructed between the entrance pool and the first slot upstream from the fishway entrance. The purpose of this wall is to dissipate the energy from the oncoming jet. Additionally, for dewatering purposes, stoplog slots are located at the exit. A coarse trashrack is also located at the exit. TO allow passage of fish past the trashrack, the spacing between vertical rack bars are 9 inches and the spacing between horizontal members are 2 feet. To facilitate cleaning of debris from the rack, the rack face is set at a slope or 4 vertical to 1 horizontal. To insure safety, it is recommended the fishway be covered by the use of metal walkway grating.

57 MAX TEUS 7 > NORM 37 MIN

SHEET NO.	TITLE
1	INDEX TO DRAWINGS
2	PLAN
3	SECTION
4	HYDRAULIC PROFILE
5	DETAILS
	PRELIMINARY FOR REVIEW
	NATIONAL MARINE FISHERIES SERVICE 1002 NE HOLLADAY STREET - RM 620 PORTLAND. OREGON 97232 HARPER DAM FISHWAY INDEX TO DRAWINGS

W A T E R R E S O U R C E S D E P A R T M E N T

August 13, 1991

A. David Childs 1806 Thompson St. The Dalles, Oregon 97058

Re: Instream Water Right Application 70251

Dear Dave;

I have received your letter asking for a review of the Rock Creek instream water right application and have forwarded it, along with a copy of this response, to Lorna Stickel.

At this point we are in agreement that the flows requested by ODFW may be too high during a portion of the year. The certificate for this application will not be issued pending resolution of this flow issue. The stream flow analysis has not yet been shared with ODFW. You will be notified of any modification of the proposal based on this information.

The Department's current course of action on instream water right applications is to attempt to resolve all issues on a basin by basin basis. We are currently focusing on the North Coast Basin. We have not prioritized the rest of the state for subsequent activity. However, there may be good reason to address either the Sandy or Umpgua Basins next.

You will be notified of any proposed resolution of the Rock Creek flow issue prior to final action on the application.

Sincerely, milar J. Mattick

MICHAEL J. MATTICK Water Rights Specialist

MJM:

cc: Lorna Stickel Laura Pryor, Gilliam County Judge Al Mirati, ODFW

3850 Portland Rd NE Salem, OR 97310 (503) 378-3739 FAX (503) 378-8130

RECEIVED

AUG 1 2 1991 WATER RESOURCES DEPT. SALEM, OREGON A David Childs 1806 Thompson St July 31, 1991 The Dalles, OR 97058 (503) 298- 1499

Lorna Stickel Chairman Water Resources Commission Attn, Mr Mike Mattick Instream Water Rights Water Resources Department 3850 Portland Road NE. Salem, Oregon, 97310

Dear Mike.

I am writing to ask that the instream water right , application No. 70251 on Rock Creek Gilliam county, be reviewed.

George Robison's, hydrologist's model predicts "natural' flows of only three to 10 percent of those asked for, during several months in the application flow and time frame.

1/ The stream-reach described in the Instream Water Right is dry for most of its distance during July, August, September, and October,.

2/ The stream-reach above The Gage Station is also dry for most of its distance during this period. There is no water coming down stream to the gage. There is no water in the watershed, above the gage, during the critical period, other than from convection storms and a few areas of springs and drying trickles in the headwaters.

3./ There is no water during the critical time-frame. Fish are not in the described stream reach other than in areas of spring fed water surfacing from basalt aquifers. Springs have for centuries been the lifesupport system for downstream fish. The upstream dry-up is a last-40year happening. 4 / The period of summer dry-up with no water for fish and no water for irrigation was only about 30 days annually a century ago. The dry period has lengthened over the years to become five to seven months.

However the ODFW asked for IWR, flows during July through October are not now nor have they ever been available from Rock Creek's watershed, this is not a function of down stream irrigation but a function of upstream watershed condition.

This has also been the historic pattern, however, it has been amplified in the upper watershed by practices that have speeded winter water from the watershed via excessive surface runoff. It has been amplified in the lower watershed by the change from flood irrigation and alluvial recharge to a system with a preponderance of sprinkler irrigation and little alluvial recharge.

The seed-stock for anadromous and resident fish have developed in tune with the nonpassage system of the natural summer dry-up for many centuries it can not be changed by numbers. The numbers were never there.

. Simply building a fish-way designed for 34 cfs for a time-period that has not, by any measure, ran over 2 cfs, will not restore the fishery or the aquatic resource. Rather it will create false hopes and wasteful priority of funding. The enhancement of the stream and restoration of the fishery is possible but this means, setting 34 cfs IWR, will only extend the delay and weaken the chances for recovery. Needed is a responsible diagnosis of the aquatic ills of the stream.

Since Rock Creek Gilliam county has been thoroughly researched by the Water Resources Department, it would seem prudent to use that evaluation in setting the flows for instream water rights. The stream flow data has been published. The recording gages were result of coordination between local people and the Water Resource Department.

I object to the proposed flows. They are not attainable, never were there, and send us down the wrong track to recover this stream.

I'm available should you find it desirable to discuss this further.

I have enclosed a copy of a portion of comments to the Umatilla National Forest dealing with Rock Creek Gilliam and Morrow County. Thank you for your consideration.

Sincerely,

Jan Phild

David Childs

Copy to Laura Pryor, Gilliam County Judge

Enclosures:

1/Description of Rock Creek -Letter to Forest Supervisor

2/ Flow data 1966 - 1989 The gage site was changed in 1976.

3/ TRIBUTORY Flaw data to GAGE for IWR

INTEROFFICE MEMORANDUM Water Rights Section

FROM: Dwight French, x268

DATE: March 26, 1997

RE: Water Availability for ISWR applications/files

You asked about the file copies of Estimated Average Natural Flow (EANF) for ISWR applications.

There is not a printout in each file similar to what you would generally see in an out of stream application file. The EANF information is in either the Technical Review (TR) or Initial Review (IR) as well as the Proposed Final Order (PFO).

During the processing of the ISWR applications, Rick Cooper and/or Ken Stahr would provide us with a electronic copy of the water availability information for a particular group of ISWR applications. We would then cut and paste that information directly into the TR or IR. When preparing the PFO, we would cut and paste from the TR or IR directly into the PFO.

In summary, our EANF numbers are in the TR or IR and the PFO for each particular ISWR application file.

cc: Mike Mattick

All Protested ISWR Files

Altern Applications with Protests

Basin	App Num		
2			
	o ^K 71556	А	OREGON DEPARTMENT OF FISH & WILDLIFE
tal for Basin	2: 1		
4			
	6 71793	w	OREGON DEPARTMENT OF FISH & WILDLIFE
	ok 71798	w	OREGON DEPARTMENT OF FISH & WILDLIFE
	72076	W	OREGON DEPARTMENT OF FISH & WILDLIFE
	72077	W	OREGON DEPARTMENT OF FISH & WILDLIFE
	72078	W	OREGON DEPARTMENT OF FISH & WILDLIFE
	72079	W	OREGON DEPARTMENT OF FISH & WILDLIFE
	72080	W	OREGON DEPARTMENT OF FISH & WILDLIFE
	72081	W	OREGON DEPARTMENT OF FISH & WILDLIFE
otal for Basin	4: 8		
5			
	JL 70353	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	1 70354	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	DK 70357	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70358	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	70358	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	1 70358	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	0K 70605	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70606	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	1 70606	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70612	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70695	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70695	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	j 73199	A	OREGON DEPARTMENT OF FISH & WILDLIFE
tal for Basin	5: 13		
6			
	69949	А	OREGON DEPARTMENT OF FISH & WILDLIFE & PARKS
16	t v 69949	S	OREGON DEPARTMENT OF FISH & WILDLIFE & PARK
yere o	69951	S	OREGON DEPARTMENT OF FISH & WILDLIFE & PARK
ULU P	69951	А	OREGON DEPARTMENT OF FISH & WILDLIFE & PARK
	69958	S	OREGON DEPARTMENT OF FISH & WILDLIFE & PARK
	69958	А	OREGON DEPARTMENT OF FISH & WILDLIFE & PARK
	69958	S	OREGON DEPARTMENT OF FISH & WILDLIFE & PARK

4

89

18

74

2-3992

12

12

69959

S

OREGON DEPARTMENT OF FISH & WILDLIFE & PARKS

astrea	m	App	ollcations	with	Protests
4/2/97	•		•		

Basin	App Num	
6		A STATE OF
	69959	S
	69959	А
	69961	А
	69961	S
	69961	S
	69963	А
	69963	S
	69963	А
	OK 70251	A
	OK 70589	А
	70640	S
	70640	А
	70641	А
	.) 70641	S
	70642	А
	1 70642	S
	0 K 70645	А
	70645	S
	70646	S
	70646	A
	70651	S
	70651	A
	70652	A
	70652	S
	70653	S
	70653	A
	70654	S
	70654	A
	70655	S
	70655 ــز	A
Total for Basin	6: 38	
9		
	70863	А
	70864	А
	70870	A

72163

72168

A

S

OREGON DEPARTMENT OF FISH & WILDLIFE & PARKS OREGON DEPARTMENT OF FISH & WILDLIFE OREGON DEPARTMENT OF FISH & WILDLIFE

OREGON DEPARTMENT OF FISH & WILDLIFE OREGON DEPARTMENT OF FISH & WILDLIFE OREGON DEPARTMENT OF FISH & WILDLIFE OREGON DEPARTMENT OF FISH & WILDLIFE

Instream Applications with Protests 4/2/97

Basin	App Num		
9			
	72168	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72169	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72169	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	72170	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72173	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72181	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72186	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72187	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72188	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	72191	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	72194	А	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for Basin	9: 16		
10			
	71450	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71455	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	71455	A	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for Basin	10: 3		
11	- Hwell		
Dwight	D ⁶¹ 7002	A	OREGON DEPARTMENT OF FISH & WILDLIFE & PARKS
Total for Basin	11: 1		
12			1
	71467	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71468	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71472	A	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for Basin	12: 3		
13			
	70486	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70487	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70656	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70657	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70658	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70659	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70662	Α ·	OREGON DEPARTMENT OF FISH & WILDLIFE
	70663	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70664	А	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for Basin	13: 9		

Page 3 of 6

Instream Applications with Protests 4/2/97 .

Basin	App Num		
14			
	70094	А	OREGON
	Duff 70094	А	OREGON
	y70094	А	OREGON
	70798	S	OREGON
	70798	А	OREGON
	70799	А	OREGON
	70799	S	OREGON
	70800	А	OREGON
	70800	S	OREGON
	70801	А	OREGON
	70801	S	OREGON
	70802	А	OREGON
	70802	S	OREGON
	70804	А	OREGON
	70804	S	OREGON
	70807	А	OREGON
	70807	S	OREGON
	70807	S	OREGON
	70808	А	OREGON
	70808	S	OREGON
	70809	А	OREGON
	70809	А	OREGON
	70809	S	OREGON
	70812	А	OREGON
	70812	S	OREGON
	70812	А	OREGON
	70812	А	OREGON
	70813	А	OREGON
	70813	S	OREGON
	70813	А	OREGON
	70813	А	OREGON
	70813	А	OREGON
	70815	A	OREGON
	70815	S	OREGON
	70816	А	OREGON
	70816	S	OREGON
	70821	A	OPEGON

DEPARTMENT OF FISH & WILDLIFE & PARKS DEPARTMENT OF FISH & WILDLIFE & PARKS DEPARTMENT OF FISH & WILDLIFE & PARKS DEPARTMENT OF FISH & WILDLIFE **DEPARTMENT OF FISH & WILDLIFE DEPARTMENT OF FISH & WILDLIFE** DEPARTMENT OF FISH & WILDLIFE DEPARTMENT OF FISH & WILDLIFE **DEPARTMENT OF FISH & WILDLIFE** DEPARTMENT OF FISH & WILDLIFE **DEPARTMENT OF FISH & WILDLIFE DEPARTMENT OF FISH & WILDLIFE** DEPARTMENT OF FISH & WILDLIFE **DEPARTMENT OF FISH & WILDLIFE** DEPARTMENT OF FISH & WILDLIFE **DEPARTMENT OF FISH & WILDLIFE** DEPARTMENT OF FISH & WILDLIFE **DEPARTMENT OF FISH & WILDLIFE** DEPARTMENT OF FISH & WILDLIFE DEPARTMENT OF FISH & WILDLIFE

OREGON DEPARTMENT OF FISH & WILDLIFE

2/97 Basin			
Dasin	App Num		
14			
	70824	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70826	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70829	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	70829	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70829	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70829	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	70830	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	70830	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70830	S	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for B	asin 14: 46	6	
15			
	70982	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70993	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70998	w	OREGON DEPARTMENT OF FISH & WILDLIFE
	71008	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	71201	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	71614	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	71622	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	72843	А	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for B	asin 15: 8		
16			1
	71172	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	71173	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71174	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	71181	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71182	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71183	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71184	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71185	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71190	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	71192	A	OREGON DEPARTMENT OF FISH & WILDLIFF
	71193	A	OREGON DEPARTMENT OF FISH & WILDLIFF
	73350	A	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for B	asin 16 : 11	2	
17			
17	70000		
	/0228	A	OREGON DEPARTMENT OF FISH & WILDLIFE

Instream Applications with Protests

4/2/97	The self		
Basin	App Num		
17		•	
	70229	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70230	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70348	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	70348	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70448	S	OREGON DEPARTMENT OF FISH & WILDLIFE
	70448	A	OREGON DEPARTMENT OF FISH & WILDLIFE
	70574	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70877	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70891	А	OREGON DEPARTMENT OF FISH & WILDLIFE
-	70895	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70895	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	70915	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	71697	А	OREGON DEPARTMENT OF FISH & WILDLIFE
	80446	А	OREGON DEPARTMENT OF FISH & WILDLIFE
Total for Basin	17: 15		
172			

ł

Instream Applications with Protests

. . .-

UNITED STATES DEPARTMENT OF THE INTERIOR - GEOLOGICAL SURVEY - OREGON OFFICE 12/04/89

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1974 TO SEPTEMBER 1975 MEAN VALUES

•					ME	AN VALUES	5					5 4M	1
DAY	0CT	NOV					APR	MAY				LITI	
DAT	001	NOV	DEC	JAN	FEB	MAR	Arts	TAT	JUN	JUL	AUG	SEP	
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
11													
13													
14													
15													
16													
17													
18												. 44	
19												. 40	
20												. 40	
21												.40	
22												. 40	
25												• 40	
25												• 30	
26												.33	
27												.37	
28												.40	
29												.40	
30												.40	
31												(/	
TOTAL													
MEAN													
MAX													
MIN													

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON, OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

		DISCHA	RGE, CUBI	C FEET PE	R SECOND	, WATER Y MEAN VALU	EAR OCTOBE ES	ER 1976 TO) SEPTEMBE	R 1977 U.7	309	2.4
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP
1 2 3 4 5	2.4 2.4 2.1 2.1 2.3	2.8 2.8 2.8 2.8 2.8 2.8	3.8 3.9 3.9 3.8 3.8	3.9 3.9 3.8 4.1 3.3	3.9 4.1 3.9 3.9 4.1	8.3 9.0 9.0 9.0 8.3	14 18 20 37 59	4.1 4.3 4.6 5.0 5.0	7.6 7.3 7.3 6.9 6.1	.51 .45 .45 .57 .57	20 21 20 20 20 21	•11 •11 •11 •11 •11
6 7 8 9 10	2.3 2.1 2.1 2.1 2.1 2.1	2.8 2.9 3.0 3.0 3.0	3.6 3.8 3.8 4.1 3.9	4.0 4.1 4.0 4.0 4.7	4 • 4 4 • 4 4 • 4 4 • 1 4 • 4	7.9 8.6 12 16 17	81 71 58 40 31	5.3 6.9 7.3 7.3 16	5.3 4.3 3.8 3.8 3.8 3.5	.57 .51 .40 .33 .33	5.5 .36 .18 .15 .14	.11 .10 .10 .10 .10
11 12 13 14 15	2.1 2.0 2.0 2.0 1.8	3.0 3.0 3.0 3.5 3.6	4.1 4.3 4.6 4.3 4.3	4.5 5.0 5.4 5.6 5.3	4.8 5.3 5.8 6.9 7.6	16 14 14 13 11	25 22 19 18 17	45 45 38 28 24	3.3 3.5 3.2 3.0 2.7	.30 .27 .27 .25 .23	.14 .14 .12 .14 .12	.10 .10 .10 .10 .10
16 17 18 19 20	2.0 2.0 2.0 2.0 2.1	3.9 3.9 4.1 4.3 4.1	4.3 4.3 4.1 3.5 3.3	5.0 5.0 5.5 5.0 5.5	7.6 7.6 7.2 6.9 6.6	9.8 10 9.4 9.8 9.0	15 13 12 11 9.8	22 21 19 17 15	2.3 2.4 2.0 2.0 1.8	.21 .21 .23 .23 .20	.12 .11 .11 .11 .11	.11 .11 .12 .12 .14
21 22 23 24 25	2.1 2.1 2.1 2.3 2.4	4 • 1 4 • 1 4 • 6 4 • 6	3.4 3.4 3.3 3.5 3.8	5.3 5.0 5.0 5.0 5.0	6.6 6.6 6.3 6.3	9.0 9.0 9.4 12 13	9.4 8.3 7.3 6.3 5.8	13 11 11 12 12	1.7 1.3 .89 .99 .79	20 20 20 20 20 20	.11 .10 .12 .15 .16	.14 .14 .14 .15 .15
26 27 28 29 30 31	2.4 2.4 2.5 2.5 2.5 2.5 2.7	4.3 4.1 3.6 3.6 3.8	3.9 3.9 4.1 3.9 3.9 3.9	4.6 4.6 3.6 3.9 3.8 4.1	6.1 6.1 6.6 	13 14 16 16 15 14	5.0 4.8 4.3 4.1 3.8	12 11 12 11 9.4 8.3	.79 .63 .63 .57 .57	20 20 18 20 20 20	.16 .15 .12 .11 .12 .11	.15 .15 .16 .18 .16
TOTAL MEAN MAX MIN AC-FT	68.0 2.19 2.7 1.8 135	106.0 3.53 4.6 2.8 210	120.5 3.89 4.6 3.3 239	141.5 4.56 5.6 3.3 281	159.1 5.68 7.6 3.9 316	361.5 11.7 17 7.9 717	649.9 21.7 81 3.8 1290	462.5 14.9 45 4.1 917	90.96 3.03 7.6 .57 180	9.27 .30 .57 .18 18	9.97 / .32 5.5 .10 20	3.68 .12 .18 .10 7.3

• CAL YR 1976 TOTAL 11019.12 MEAN 30.1 MAX 305 MIN .23 AC-FT 21860 WTR YR 1977 TOTAL 2182.88 MEAN 5.98 MAX 81 MIN .10 AC-FT 4330

UNITED STATES DEPARTMENT OF THE INTERIOR - GEOLOGICAL SURVEY - OREGON OFFICE 12/04/89

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021 3.09

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976 MEAN VALUES 4.7 APR MAY

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.40	2.2	5.6	21	35	50	87	81	10	1.3	.27	3.0
2	.40	2.2	6.0	23	33	34	83	69	9.8	1.3	.51	2.8
3	.40	2.3	7.6	27	30	30	96	56	9.0	1.1	.51	2.7
4	.45	2.4	8.8	32	21	27	106	50	8.3	.99	.36	2.5
5	.45	2.6	9.2	36	16	24	149	45	7.3	.99	.33	2.3
6 7 8 9 10	.57 .63 .59 .57 .57	2.9 3.3 3.3 3.3 3.3 3.6	8.8 10 11 12 11	32 31 129 118 81	14 15 17 21 18	29 30 27 30 36	231 194 194 305 223	41 37 31 28 24	6.3 6.1 5.3 5.3 5.0	.79 .71 .89 .89 .71	.71 20 22 13 8.3	2.1 1.8 1.8 1.8 1.7
11 12 13 14 15	.58 .56 .51 .50 .50	3.9 3.9 3.9 3.9 3.9 3.9	10 9.0 8.6 7.6 7.9	68 58 44 48 113	16 20 22 27 29	40 33 39 40 41	183 159 180 153 143	24 22 17 14 13	4.6 4.3 3.8 3.8 3.5	.63 .63 .57 .51 .45	6.3 4.8 4.1 5.0 6.3	1.7 1.5 1.5 1.4 2.4
16	.50	4 • 0	8.3	236	29	50	129	12	3.5	.45	8.3	3.2
17	.50	4 • 0	8.3	245	48	96	113	11	3.6	.40	15	2.5
18	.50	4 • 0	7.6	183	53	191	113	9.8	3.5	.40	9.4	2.3
19	.50	4 • 0	7.6	121	52	214	101	9.4	3.0	.36	8.3	2.0
20	.50	4 • 0	6.9	92	39	124	116	10	2.9	.36	7.3	2.1
21	.54	4 • 0	6.6	69	32	108	146	11	2.7	.40	6.3	2.1
22	.58	4 • 0	6.6	59	32	106	124	9.0	2.4	.40	5.5	2.5
23	.68	4 • 0	7.3	59	29	101	129	8.3	2.3	.36	5.3	3.0
24	.79	4 • 0	11	48	29	113	124	7.6	2.3	.36	5.3	3.2
25	1.0	4 • 0	12	38	32	143	108	7.3	1.8	.33	5.8	3.2
26 27 28 29 30 31	1.5 2.4 2.6 2.3 2.1 2.0	4.5 5.2 6.0 5.8 5.6	14 53 43 39 61 46	37 36 36 43 41 37	41 56 68 53 	103 94 89 77 79 96	101 94 89 94 92	6.9 6.3 6.6 6.6 6.9 9.0	1.8 1.7 1.5 1.3 1.2	.30 .23 .23 .23 .23 .23 .23	6.1 5.5 5.0 4.3 3.9 3.5	3.0 2.9 2.8 2.7 2.5
TOTAL	26.67	114.7	471.3	2241	927	2294	4159	689.7	127.9	17.73	197.29 25	71.0
MEAN	.86	3.82	15.2	72.3	32.0	74.0	139	22.2	4.26	57	6.36	2.37
MAX	2.6	6.0	61	245	68	214	305	81	10	1.3	22	3.2
MIN	.40	2.2	5.6	21	14	24	83	6.3	1.2	23	.27	1.4
AC-FT	53	228	935	4450	1840	4550	8250	1370	254	35	391	141

WTR YR 1976 TOTAL 11337.29 MEAN 31.0 MAX 305 MIN .23 AC-FT 22490

2,47

16

UNITED STATES DEPARTMENT OF THE INTERIOR - GEOLOGICAL SURVEY - OREGON OFFICE 12/04/89

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DAY 1 2 3	OCT .18 .18 .18 .18 .18 .20	NOV • 57 • 63 • 63	DEC 36 29	JAN 15	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	.18 .18 .18 .18 .18 .20	.57 .63 .63	36 29	15	10							
45		.63 .63	41 34 27	17 29 86 171	69 69 70 78 93	128 109 93 93 90	81 88 72 65 63	61 53 46 42 42	12 9.8 8.6 7.6 6.9	3.6 5.5 9.8 15 12	.71 .71 .63 .57 .45	1.5 1.4 1.3 1.3 1.3
6 7 8 9 10	.20 .21 .21 .21 .21	.71 .71 .63 .63 .71	23 19 18 15 14	86 69 70 126 185	161 268 370 251 188	103 109 154 295 230	62 70 63 54 48	39 34 28 26 28	6.0 5.3 4.6 4.1 4.3	8.6 6.9 15 17 12	.45 .40 .36 .36 .33	1.5 1.5 1.8 1.8 1.7
11 12 13 14 15	.27 .33 .36 .36 .40	.71 .71 .89 .89 .89	14 13 34 166 310	149 147 149 179 349	144 111 107 93 92	188 166 149 128 113	43 39 37 35 33	28 26 24 24 40	4.8 5.0 5.5 6.6 6.0	9.0 7.6 6.3 5.0 4.1	.33 .40 .71 .79 .99	1.8 1.8 1.8 2.1 2.3
16 17 18 19 20	• 4 C • 4 C • 4 5 • 5 1 • 4 5	.99 .99 .80 .72 .66	164 99 75 57 42	362 310 230 205 191	73 77 72 92 128	107 101 101 95 92	36 41 38 33 30	42 32 27 22 19	5.5 5.0 4.1 3.8 3.3	3 • 8 3 • 8 3 • 5 3 • 2 2 • 8	1.3 .99 .79 .71 .99	2.3 2.4 2.5 2.7 2.7
21 22 23 24 25	.51 .51 .57 .51 .51	.80 1.2 2.9 3.3 19	35 37 36 35 34	164 142 115 92 97	126 119 126 126 151	85 81 81 99 83	28 28 31 30 27	17 18 19 18 19	3.0 2.8 2.9 3.8 4.1	2.5 2.1 1.8 1.7 1.4	1.2 1.4 1.5 1.3 1.4	2.7 2.8 2.8 2.8 2.8
26 27 28 29 30 31	•57 •57 •57 •57 •57 •57	73 54 45 39 41	32 29 29 30 31 32	90 77 83 83 80 72	164 179 147 	73 66 61 55 53 53	95 171 115 83 67	18 18 17 15 14 13	4.1 3.6 3.2 13 4.8	1.3 1.4 1.2 1.1 .99 .79	1.3 1.2 1.1 1.1 1.3 1.5	2.7 2.5 2.4 2.4 2.4
TOTA MEAN MAX MIN AC-F	L 11.92 .38 .57 .18 T 24	293.93 9.80 73 .57 583	1590 51.3 310 13 3150	4220 136 362 15 8370	3744 134 370 69 7430	3434 111 295 53 6810	1706 56.9 171 27 3380	869 28.0 61 13 1720	164.1 5.47 13 2.8 325	170.78 14 5.51 17 .79 339	27.27 .88 1.5 .33 54	63.8 2.13 2.8 1.3 127

CAL YR 1977 TOTAL 3784.23 MEAN 10.4 MAX 310 MIN .10 AC-FT 7510 WTR YR 1978 TOTAL 16294.80 MEAN 44.6 MAX 370 MIN .18 AC-FT 32320
STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS LATITUCE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

		DISCHA	DCE, CURT	C EEET OF	D SECOND	WATED YE	AR OCTOBE	R 1978 TO	SEPTEMBE	P 1070	200		
		DISCHA	COST COBT	C FEET PE	K SECOND,	IEAN VALUE	S		OCT I CHOE	117	Sitt	2.47	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	2.4	2.7	27	7.6	7.1	107	175	192	18	3.94	.94	1.7	
2	2.3	2.8	25	9.0	6.8	83	202	159	16	3.9	.94	1.7	
5	2.4	2.8	21	10	9.0	82	202	137	14	3.9	.94	1.7	
5	2.3	2.8	75	8.6	494	346	208	182	12	3.5	.94	1.4	huld
6	2.3	2.8	5.8	8.6	573	556	224	247	11	3.5	.94	1.4	A obre and
7	2.3	3.0	37	8.6	716	539	244	208	10	3.5	.94	1.1	1 2 2 2 1
8	2.3	3.0	35	7.8	264	401	218	187	9.6	3.9	.94	1.1	proposed
9	2.1	3.0	33	7.0	394	306	218	173	9.0	3.9	.94	1.1	> We ka
10	2.1	3.0	32	9.0	284	295	200	150	9.0	3.9	.94	1.4	wowwww. Th
11	2.0	2.8	53	11	303	282	190	126	9.0	4.4	.94	1.4	1 1000 10
12	2.0	2.7	83	13	367	300	187	113	8.4	4.4	.80	1.1	22
13	2.0	2.7	63	15	522	282	185	107	7.4	4.4	.80	1.1	10.
14	2.1	2.7	42	14	300	274	166	97	7.4	3.9	.94	1.1	
15	2.1	2.5	37	12	197	282	159	90	6.9	3.9	121	1.1	
16	2.1	2.8	33	11	155	311	159	85	6.9	3.5	6.0	1.1	
17	2.3	2.7	29	9.5	115	282	166	77	8.4	3.5	2.87	.94	
18	2.3	2.4	26	8.6	96	259	142	69	9.6	2.8	1.7	• 94	
19	2.1	2.1	23	8.1	81	244	126	64	9.0	2.2	2.2	.94	
20	2.1	3.2	20	0.0	07	224	115	54	0.4	1.1	2.2	.74	
21	2.1	3.3	19	13	64	205	107	48	7.4	1.7	36	.94	
22	2.1	3.0	19	12	52	182	133	45	6.9	1.4	4.4	.94	
23	2.1	3.0	21	11	54	166	195	39	6.0	1.4	2.2	.80	
24	2.1	3.0	25	11	50	108	401	48	0.0	1.4	1 7	- 80	
20	2.1	5.0	54	10	10	110	390	48	7.4	1.4	1.1	.00	
26	2.3	3.0	43	10	171	162	274	37	4.8	1.4	1.7	.80	
27	2.4	2.8	35	9.2	162	185	256	34	4.8	1.4	1.(.80	
28	2.4	3.0	30	0.0	150	210	256	30	4.0	1 1	1 7	• 0 0	
29	2.4	0.0	20	0.0		227	241	21	3.9	1.1	1.7	.68	
31	2.5	19	10	7.2		195	216	22		1.1	1.7		
									257 (07 0	201 103	77 700	
TOTAL	69.0	108.2	1072	305.8	5/45.9	7702	6128	3094	251.4	2 81	204.08	1 11	
MEAN	2.23	3.61	54.6	7.80	205	248	204	99.8	0.00	4.4	121	2.2	
MAX	2.5	21	00	7 0	6.8	22	401	24/	3.9	1.1	.80	.68	
AC-FT	137	215	2130	607	11400	15280	12150	6140	511	173	406	66	

 CAL YR 1978
 TOTAL 15648.15
 MEAN 42.9
 MAX 370
 MIN .33
 AC-FT 31040

 .WTR YR 1979
 TOTAL 24807.36
 MEAN 68.0
 MAX 716
 MIN .68
 AC-FT 49210

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS LATITUCE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

•		DISCHAR	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR EAN VALUES	OCTOBE	R 1979 TO	SEPTEMBE	R 1980	25.9	- 42
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.68 .68 .58 .58	6.0 6.4 6.4 4.4	31 47 92 135 150	14 13 14 16 34	35 52 70 92 74	155 158 178 172 166	88 78 74 69 70	28 26 21 20 30	11 16 15 13 11	10 9.4 9.9 9.4 9.4	1.5 1.5 1.5 1.5 1.5 1.5	2.1 2.1 2.1 2.1 2.1 2.1
6 7 8 9 10	.58 .58 .48 .48 .58	2.2 2.2 2.2 4.4 9.6	97 80 67 58 54	64 52 43 42 38	76 78 72 62 59	155 175 169 160 149	80 70 62 67 72	34 30 27 24 29	9.9 7.6 11 14 14	8.2 6.5 5.9 6.5 5.5	1.5 1.5 1.5 1.3 1.3	1.8 1.5 1.5 1.5 1.5
11 12 13 14 15	.68 .68 .58 .68 .80	10 9.6 10 9.0 9.0	37 39 36 31 27	48 175 422 410 283	56 53 47 40 42	172 149 138 146 146	64 59 56 53 51	35 29 22 25 30	14 14 14 14 14	5.0 4.6 4.2 3.4 3.4	1.3 1.3 1.3 1.1 1.1	1.5 2.1 2.4 2.4 2.4 2.1
16 17 18 19 20	.8C .68 .68 2.8 7.9	9.6 12 22 42 43	26 24 24 26 24	225 207 149 117 105	43 48 240 201 188	119 119 117 117 117 110	48 46 41 39 41	33 31 26 23 19	281 29 17 13 11	3.0 2.7 2.4 2.4 2.4 2.4	1.1 1.1 1.1 1.3 1.3	1.8 1.8 1.8 1.8 1.8 1.8
21 22 23 24 25	13 9.0 7.4 7.4 9.0	37 36 39 43 56	23 21 15 15 21	107 88 78 76 72	175 160 155 158 163	122 143 181 152 132	44 44 43 39 35	17 14 20 18 14	10 10 13 13 12	2.4 2.4 2.1 2.1 2.1 2.1	1.1 1.1 1.1 1.1 1.1	1.8 2.1 2.1 2.1 2.1
26 27 28 29 30 31	9.6 7.4 6.4 6.2 0.2 6.2	109 60 30 28 29	15 11 12 13 13 13	56 27 28 28 28 32	236 279 221 178	124 119 100 96 90 92	33 31 29 31 31	15 33 44 33 17 17	15 20 17 13 11	2.1 1.8 1.8 1.5 1.5	1.1 1.1 1.1 1.3 1.5 2.1	1.8 1.8 1.8 1.8 1.8 1.8 1.8
TOTAL MEAN MAX MIN * AC-FT	109.98 3.55 13 .48 218	693.0 23.1 109 2.2 1370	1277 41.2 150 11 2530	3091 99.7 422 13 6130	3353 116 279 35 6650	4321 139 181 90 8570	1588 52.9 88 29 3150	784 25.3 44 14 1560	424.5 14.1 29 7.6 842	135.8 11 4.38 11 10 1.5 269	40.3 1.30 2.1 1.1 80	57.0 1.90 2.4 1.5 113

 CAL YR
 1979
 TOTAL
 25638.14
 MEAN
 70.2
 MAX
 716
 MIN
 .48
 AC-FT
 50850

 WTR
 YR
 1980
 TOTAL
 15874.58
 MEAN
 43.4
 MAX
 422
 MIN
 .48
 AC-FT
 31490

JB

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

					M	EAN VALUE	S			47	3.09	2.47
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.8 2.1 2.1 2.1 2.1	6.5 7.0 7.0 6.5 0.5	8.2 8.2 9.4 13 14	22 21 20 19 18	17 15 21 20 19	54 48 46 44 46	143 119 105 96 85	30 27 25 25 24	56 47 41 35 34	9.4 8.2 7.6 6.5 5.5	1.1 .93 .93 .93 .93	.69 .69 .69 .59 .59
6 7 8 9 10	2.1 2.1 2.1 1.8 2.1	6.5 11 9.4 8.9 3.9	13 11 8.2 8.6 8.9	17 17 15 15 15	17 13 16 16 12	40 43 40 39 36	76 69 65 64 64	23 23 24 23 20	44 46 69 92 82	5.9 7.6 7.0 6.5 5.9	.93 .69 .69 .69 .69	.59 .51 .51 .43 .37
11 12 13 14 15	2.1 2.1 2.4 2.4 3.C	8.2 8.2 7.0 7.0 7.0	9.4 9.4 9.4 8.9 8.9	14 13 12 11 11	16 22 28 169 204	34 32 30 29 28	56 62 69 57 51	19 17 16 16 17	78 64 64 54 47	5.5 5.0 4.6 4.2 3.8	.59 .59 .69 .59 .51	• 37 • 37 • 37 • 37 • 37 • 37
16 17 18 19 20	3.8 3.8 3.8 3.8 3.8 3.8	7.0 7.0 7.0 7.0 7.0 7.0	8.9 9.4 9.9 10 9.9	11 11 11 11 11	243 263 225 279 211	35 46 39 35 34	46 40 38 36 56	23 24 25 65 82	40 38 34 32 30	3.4 3.4 3.0 2.7 2.4	.51 .43 .43 .43 .59	. 37 . 37 . 37 . 37 . 37 . 43
21 22 23 24 25	3.8 3.8 3.8 3.8 5.0	7.0 7.0 7.0 7.0 7.0	9.9 36 30 24 41	11 11 13 14 15	155 127 112 98 84	40 94 119 92 94	51 44 39 39 40	64 51 41 38 214	27 23 21 19 17	2.1 1.8 1.8 1.8 1.8	.59 .59 .59 .59 .59	• 43 • 51 • 59 • 59 • 69
26 27 28 29 30 31	5.0 5.C 5.C 5.C 5.5 5.5	8.2 8.2 8.2 8.2 8.2 8.2	5 0 4 6 3 5 3 0 2 6 2 4	15 14 14 18 23 22	72 64 59 	204 243 197 152 140 122	38 46 46 38 33	211 127 92 74 69 67	15 13 13 12 11	1.8 1.5 1.3 1.1 1.1 1.1	.59 .59 .59 .59 .59	.80 2.1 2.1 1.8 1.5 0
TOTAL MEAN MAX MIN AC-FT	102.4 3.30 5.9 1.5 203	227.2 7.57 11 6.5 451	557.5 18.0 59 8.2 1110	465 15.0 23 11 922	2597 92.7 279 12 5150	2275 73.4 243 28 4510	1811 60.4 143 33 3590	1596 51.5 214 16 3170	1198 39.9 92 11 2380	125.3 1 4.04 9.4 1.1 249	20.46 .66 1.1 .43 41	20.53 .68 2.1 .37 41

 CAL YR 1980
 TOTAL 14681.7
 MEAN 40.1
 MAX 422
 MIN 1.1
 AC-FT 29120

 WTR YR 1981
 TOTAL 10995.39
 MEAN 30.1
 MAX 279
 MIN .37
 AC-FT 21810

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

		DISCHA	RGE, CUBIC	FEET PE	R SECOND,	WATER YE IEAN VALUE	AR OCTOBER	1901 10	SEPTEMBE	R 1982	3.09	2.47	1
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2	1.1	6.5	25 44	55 60	155 149	388 420	133 124	70 65	16 16	9.3	.86	.69	
3 4 5	•93 •93 •93	6.5 7.0 7.0	88 69 67	64 65 51	158 85 70	340 312 302	124 121 115	61 64 56	16 18 26	9.7 10 8.6	1.1 1.1 .95	• 5 5 • 5 5	
6 7 8 9 10	.93 1.1 1.3 1.3 1.5	7.0 7.0 7.0 7.0 7.0	468 300 175 132 122	28 31 34 36 36	75 75 70 73 80	284 263 253 249 239	110 110 100 98 98	50 48 47 47 58	25 21 18 15 14	7.6 7.2 7.6 7.9 6.9	- 86 - 86 - 78 - 69 - 69	.60 .60 .55 .55 .78	
11 12 13 14 15	2 • 1 2 • 4 2 • 4 2 • 7 2 • 7	7.0 7.0 7.0 7.0 7.0 7.6	98 82 74 88 279	36 39 43 45 50	80 82 88 225 540	242 223 214 211 226	223 263 232 246 223	61 52 44 39 36	12 13 26 24 19	6.0 5.0 4.3 4.3 4.0	.78 .86 .78 .78 .86	.95 1.1 1.2 1.1 1.1	
16 17 18 19 20	2.7 3.0 3.0 3.4 3.8	8.9 15 20 16 14	263 207 204 809 525	140 130 117 98	1280 982 690 720 822	205 187 178 151 151	199 184 166 148 139	31 33 49 40 35	16 14 13 11 9.7	4.0 3.6 3.5 2.9 2.4	.86 .69 .60 .55 .55	.95 1.1 1.1 1.4 2.2	
21 22 23 24 25	4 • 2 4 • 6 4 • 6 5 • 0 5 • 0	13 16 21 33 33	344 243 188 163 149	100 82 130 344 316	786 456 396 319 288	139 145 142 142 142	130 124 124 121 108	30 27 23 21 19	9.3 10 9.0 8.3 7.9	2.2 2.1 1.9 1.8 1.5	• 50 • 50 • 50 • 45 • 45	2.7 2.9 2.6 2.9 3.3	
26 27 28 29 30 31	5.0 5.0 5.5 5.9 6.5 6.5	28 28 26 25 25	135 117 107 74 62 55	352 279 232 194 172 166	277 284 277 	154 157 148 151 145 136	103 93 90 83 77	18 18 20 21 19 18	8.3 8.3 8.6 9.0 9.3	1.4 1.3 1.2 .95 .95 .86	.40 .40 .40 .45 .60 .69	5.3 5.0 4.5 4.3 4.5	
TOTAL MEAN MAX MIN AC-FT	96.95 3.13 6.5 .93 192	426.0 14.2 33 6.5 845	5756 186 809 25 11420	3589 116 352 28 7120	9582 342 1280 70 19010	6639 214 420 136 13170	4209 140 263 77 8350	1220 39.4 70 18 2420	430.7 14.4 26 7.9 854	139.56 12 4.50 10 .86 277	21.40 .69 1.1 .40 42	56.17 1.87 5.3 .55 111	

CAL YR 1981 TOTAL 16387.24 MEAN 44.9 MAX 809 MIN .37 AC-FT 32500 WTR YR 1982 TOTAL 32165.78 MEAN 88.1 MAX 1280 MIN .40 AC-FT 63800

		UNITE	D STATES D	EPARTMEN	IT OF THE	INTERIOR -	GEOLOGI	CAL SURVE	Y - OREGO	N OFFICE	1 2	2/04/89	
	STATION LATITUDE	NUMBER 14 451553 1	4047390 LONGITUDE	ROCK CRE 1200115	EK AB WHY DRAINAG	TE PARK NR E AREA	CONDON. 297.	OREG. ST ATUM 171	REAM SOU 4.50 STA	RCE AGENCI TE 41 COU	Y USGS JNTY 021		
•		DISCHAR	RGE, CUBIC	FEET PE	R SECOND,	WATER YEA EAN VALUES	R OCTOBE	R 1982 TO	SEPTEMBE	R 1983	3.09	2.47	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	ΜΑΥ	JUN	JUL	AUG	SEP	
1 2 3 4 5	4.0 4.0 4.3 4.3	25 22 20 19 18	37 33 32 52 77	43 47 47 50 59	110 105 83 67 62	376 404 352 816 816	270 444 348 288 256	157 166 130 124 1860	39 38 35 32 30	18 21 21 18 16	4.9 6.0 7.1 6.0 4.9	5 • 2 4 • 6 4 • 3 4 • 3 4 • 0	
6 7 8 9 10	4.5 4.3 4.3 4.8 5.0	18 18 17 17 16	103 105 61 61 52	260 372 340 256 199	62 65 65 81 95	786 738 625 655 585	226 205 184 169 154	1320 834 708 635 495	29 27 26 32 31	13 12 12 12 12 12	4.0 3.8 3.5 3.5 3.5 3.3	4 • 0 3 • 8 3 • 5 3 • 5 3 • 5 3 • 5	
11 12 13 14 15	5.3 5.3 5.3 5.3 5.3 5.3	15 15 15 14 13	44 44 48 45 43	166 145 127 105 88	130 260 298 239 235	495 515 1070 858 666	145 130 118 108 90	348 309 267 211 184	38 35 30 26 26	11 10 9.1 8.7 8.3	3.0 4.0 4.0 3.8 3.0	3.8 3.8 3.8 3.5 3.5 3.5	Witest yours on Record
16 17 18 19 20	5.5 5.3 5.5 5.8 6.3	15 15 16 18 19	139 281 196 151 121	93 93 93 105 118	356 372 684 625 505	530 444 380 323 281	81 77 72 68 72	199 164 140 128 117	24 23 20 19 20	7.9 8.7 9.1 7.1 6.7	2.6 2.6 2.1 1.9 2.1	3.5 3.3 3.5 6.0 6.0	
21 22 23 24 25	6.5 6.9 8.3 8.3 9.0	18 16 15 15 14	115 173 148 103 81	103 93 90 90 100	4 6 5 5 2 5 5 2 5 4 8 5 4 4 4	260 246 226 208 193	166 142 110 115 98	104 95 85 78 69	18 18 17 17 15	6.0 5.6 5.2 6.0 6.3	2.1 2.1 3.0 4.0, 4.6	6.3 6.0 6.0 6.0 5.6	cloud bust 4.30
26 27 28 29 30 31	9.0 9.7 10 35 62 33	15 15 16 23 41	83 65 55 45 43 43	118 175 169 151 130 118	424 352 356 	184 196 205 193 515 348	81 75 68 199 172	63 59 51 47 43 38	12 11 13 14 15	7.1 6.7 6.3 5.6 5.2 4.9	4.6 4.3 4.0 4.3 4.6 4.3	5.6 5.2 5.2 5.2 6.0 30	
TOTAL MEAN MAX MIN AC-FT	296.1 9.55 62 4.C 587	533 17.8 41 13 1060	2689 86.7 281 32 5330	4143 134 372 43 8220	8075 288 684 62 16020	14489 467 1070 184 28740	4731 158 444 68 9380	9228 298 1860 38 18300	730 24.3 39 11 1450	306.5 3 9.89 21 4.9 608	118.0 3.81 7.1 1.9 234	138.5 4.62 6.3 3.3 275	
CAL YR WTR YR	R 1982 T R 1983 T	OTAL 2940 OTAL 454	4.93 MEAN 77.1 MEAN	80.6	MAX 1280 MAX 1860	MIN .40 MIN 1.9	AC-FT AC-FT	58320					

	STATION LATITUDE	NUMBER 1 451553	4047390 LONGITUDE	ROCK CREE 1200115	K AB WHY	TE PARK N	297. DA	TUM 171	REAM SOUR	RCE AGENCY TE 41 COU	USGS NTY 021			
		DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YE EAN VALUE	AR OCTOBER S	R 1983 TO	SEPTEMBER	R 1984 4-7	309	2.47		
YAC	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP		
1 2 3 4 5	6.0 6.0 6.0 6.0 6.0	13 14 15 15 13	26 25 25 24 22	120 155 450 480 390	95 90 86 77 77	184 344 273 228 207	485 425 375 348 449	221 321 269 249 224	48 46 43 52 79	34 30 29 27 24	15 10 7.0 5.5 5.0	9.7 9.7 9.3 9.0 8.6		
6 7 8 9 10	6.0 5.6 6.0 8.7 11	14 16 16 16 16	24 24 36 91 256	300 240 200 155 130	82 82 82 88 77	194 207 231 294 420	550 437 628 531 511	217 194 171 163 160	130 169 147 116 112	24 21 20 19 17	4 • 7 4 • 7 4 • 7 4 • 7 4 • 7 4 • 7	8.2 9.0 9.3 9.7 9.3		
11 12 13 14 15	11 9.6 9.1 8.7 8.3	18 20 19 19 19	164 115 102 143 280	120 100 80 65 55	70 74 339 425 273	449 362 357 583 576	518 473 415 380 395	157 147 135 123 121	107 99 101 152 107	17 16 15 14 13	4 • 7 4 • 7 4 • 7 4 • 5 4 • 2	9.0 8.6 8.2 8.2 8.2 8.2		
16 17 18 19 20	8.3 7.9 8.3 8.7 8.7	21 50 50 32 26	140 106 82 69 50	46 46 47 47 48	242 210 169 163 174	563 622 443 390 420	390 375 362 628 511	114 101 95 88 84	86 72 63 56 54	11 10 9.7 8.5 7.5	3.9 3.9 3.9 3.9 3.9 3.7	8.2 8.2 8.2 8.2 7.9		and and
21 22 23 24 25	8.7 8.7 9.6 9.6 10	24 22 20 25 35	32 27 25 25 26	55 60 80 130 155	197 184 169 166 163	654 589 615 524 437	415 362 312 285 273	77 72 92 92 77	88 114 101 79 64	7.0 6.7 6.6 6.5 6.4	3.5 3.5 3.5 3.5 3.5 3.5	7.9 8.2 10 12 13	29 part fre	Sa
26 27 28 29 30 31	9.6 9.1 9.1 9.6 9.6 11	31 28 26 30 29	30 55 60 65 100 120	155 140 130 120 110 100	135 147 147 163	524 615 635 596 550 511	249 224 203 197 184	84 76 63 57 53 53	56 51 45 40 36	5.6 5.6 5.7 5.7 8.0 3 1	3.5 3.8 4.5 5.3 6.2 8.6 <u>3</u>]	13 12 12 12 12 11 30		
TOTAL MEAN MAX MIN AC-FT	260.5 8.40 11 5.6 517	692 23.1 50 13 1370	2369 76.4 280 22 4700	4509 145 480 46 8940	4446 153 425 70 8820	13597 439 654 184 26970	11890 396 628 184 23580	4150 134 321 53	2513 83.8 169 36 4980	436.1 14.1 34 5.6 865	157.5 5.08 15 3.5 312	285.8 9.53 13 7.9 567		

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON.OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

,					1	MEAN VALL	JES				3.07	2,41
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	16	55	32	32	177	607	66	23	4 0	2 3	2.2
2	11	26	42	30	31	165	663	61	23	3.8	2.3	2.6
3	11	49	40	29	28	134	611	56	21	3.1	2.2	2.9
4	11	35	38	28	28	139	519	55	20	2.9	2.2	2.8
5	11	27	35	2.7	28	118	489	52	19	2.6	2.2	2.8
6	11	24	28	27	35	110	493	48	21	2.6	2.2	2.9
7	11	22	38	26	49	93	463	43	23	2.6	2.0	3.4
8	11	20	40	27	52	98	411	40	23	2.3	2.0	3.8
9	11	22	36	27	38	98	3/1	38	22	2.3	2.2	4.2
10	11	24	56	27	34	100	548	37	18	2.2	2.2	6.1
11	12	30	58	27	77	114	384	37	17	2.0	2.3	6.1
12	13	122	(4	26	168	127	262	22	15	2.0	2.3	5.5
13	13	130	08	21	107	150	202	71	14	2.0	2.2	5.1
14	13	67	62	20	107	101	200	20	14	2.0	2.2	2.2
	14	01	02	29	107	171	207	29	14	1.9	2.2	0.1
16	15	55	55	29	157	249	195	26	13	1.9	2.0	8.6
17	15	48	51	29	122	312	171	23	10	1.7	2.0	7.6
18	14	50	48	32	110	411	156	23	9.0	1.7	2.0	7.2
19	14	55	46	33	106	443	155	23	8.2	1.6	2.3	7.1
20	14	51	44	61	104	440	145	22	6.7	1.4	2.3	6.9
21	15	65	43	67	97	466	134	21	5.8	1.3	2.3	6.6
22	15	61	80	63	151	342	133	19	5.8	1.3	2.5	6.5
23	15	51	62	20	179	212	134	18	5.8	1.4	2.51	6.4
24	15	74	>>	22	226	452	129	18	5.5	1.4	2.3	6.5
25	15	(1	49	51	223	330	123	18	2.2	1.4	2.2	0.8
26	17	63	48	47	176	255	114	17	5.5	1.4	2.2	7.0
27	19	57	46	42	143	220	104	17	4.9	1.3	2.0	7.0
28	19	58	43	44	142	205	90	18	4.7	1.3	1.9	7.1
29	18	65	44	40		194	79	23	4.5	1.3	2.0	7.3 30
30	18	62	42	35		191	72	30	4.0	1.4	2.0	7.3 00
31	17		41	53		327		26		2.5	2.0	
TOTAL	43C	1618	1535	1135	2927	7053	8320	1001	385.9	62.6	67.5	168.5
MEAN	13.9	53.9	49.5	30.0	105	228	277	32.3	12.9	2.02	2.18	5.62
MAX	19	130	86	67	225	466	663	66	23	4.0	2.5	8.6
MIN	11	16	28	26	28	93	72	17	4.0	1.3	1.9	2.2
AC-FT	853	3210	3040	2250	5810	13990	16500	1990	765	124	134	334
CAL YR	1984	TOTAL 45567	.4 MEAN	125 MA	X 654 M	MIN 3.5	AC-FT 90700					
WTR YR	1985	TOTAL 24703	.> MEAN	01.1 MA	× 003 1	111 1.3	AC-FT 49000					

FEB -1 1995

CEIVED

WATEH RESOURCES DEPT SALEM, OREGON

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON.OREG. STREAM SOURCE AGENCY USGS LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA 297. DATUM 1714.50 STATE 41 COUNTY 021

DISCHARGE, CUBIC FEET REP SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

)		DISCHAR	GET CUBIC	FEEL PER	ME	AN VALUES					200	2.47
DAY	OCT	NCV	DEC	JAN	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP
1 2 3 4 5	7.3 7.3 7.3 7.5 7.5	13 13 13 13 13 13	10 14 21 21 25	19 23 24 22 20	369 339 334 228 185	551 430 338 279 275	95 88 80 74 67	36 35 36 37 37	16 17 18 19 20	5.1 4.7 4.6 6.0 6.8	2.2 2.2 2.1 2.0 2.1	2.9 2.5 2.5 2.5 2.5 2.4
6 7 8 9 10	7.7 12 16 13 12	13 13 14 15 14	40 69 56 40 35	38 28 27 73 134	149 124 94 87 91	251 366 410 390 352	63 58 54 52 50	37 37 36 35 35	19 18 17 15 14	6.01 5.1 4.9 4.6 4.3	2.1 2.1 2.0 2.0 1.8	2.5 2.7 2.6 3.0 3.1
11 12 13 14 15	12 12 12 11 11	12 9.0 10 11 11	30 35 30 27 25	105 86 73 69 65	82 70 70 68 70	338 299 290 270 250	52 52 50 47 47	35 34 32 30 28	13 12 10 9.4 8.5	4.7 4.6 4.4 3.9 3.8	1.7 1.8 1.9 1.8 1.7	3.3 3.3 3.3 3.4 4.0
16 17 18 19 20	11 11 11 11 11 11	11 13 15 17 13	23 22 19 17 16	79 186 151 244 188	369 673 618 420 295	230 220 210 190 180	49 51 52 45 40	25 22 20 19 25	8.7 9.0 9.4 9.7 10	3.7 3.9 3.7 3.5 3.2	1.7 1.8 1.7 1.7 1.7	4.9 6.3 6.1 5.5 6.5
21 22 23 24 25	11 12 15 18 17	11 10 8.5 8.0 8.0	16 16 16 16 16	134 121 141 123 97	259 785 1760 1410 981	160 150 200 210 175	40 40 40 40 40	35 35 29 24 21	8.0 6.0 5.0 4.3 3.8	3.0 2.8 2.6 2.5 2.4	1.8 1.7 1.7 1.8 2.0	7.6 6.8 7.1 8.5 8.7
26 27 28 29 30 31	15 14 14 13 13 13	11 13 10 9.0 9.0	16 15 14 13 14 15	90 85 90 100 437 434	894 644 690 	155 145 135 125 115 100	41 43 43 41 38	22 19 17 16 15 15	3.9 4.8 7.4 6.3 6.0	2.4 2.4 2.5 2.3 2.3 2.3 2.3	1.9 2.0 6.0 7.2 4.1 3.4	8.5 8.5 9.2 9.7 2
TOTAL MEAN MAX MIN -AC-FT	365.6 11.8 18 7.3 725	353.5 11.8 17 8.0 701	742 23.9 69 10 1470	3506 113 437 19 6950	12158 434 1760 68 24120	7789 251 551 100 15450	1572 52.4 95 38 3120	879 28.4 37 15 1740	328.2 10.9 20 3.8 651	119.05 3.84 6.8 2.3 236	71.74 2.31 7.2 1.7 142	156.5 5.22 9.7 2.4 310

CAL YR 1985 TOTAL 22581.6 MEAN 61.9 MAX 663 MIN 1.3 AC-FT 44790 WTR YR 1986 TOTAL 28040.5 MEAN 76.8 MAX 1760 MIN 1.7 AC-FT 55620

D ,		UNIT	ED STATES	DEPARTMENT	OF THE	INTERIOR	- GEOLOG	ICAL SURVE	Y - OREGON	OFFICE	1	2/04/89	
	STATION LATITUDE	NUMBER 1 451553	14047390 LONGITUDE	ROCK CREE 1200115	K AB WHY DRAINAG	TE PARK N E AREA	R CONDON. 297. I	OREG. ST DATUM 171	REAM SOUR	CE AGENCY E 41 COUN	USGS NTY 021		
•		DISCH	ARGE, CUBI	C FEET PER	SECOND	WATER YE EAN VALUE	AR OCTOB S	ER 1986 TC) SEPTEMBER	1987	2.09		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	ΜΑΥ	JUN	JUL	AUG	SEP24	7
1 2 3 4 5	9.5 9.4 9.2 9.1 9.0	14 12 11 11 11	37 35 33 31 32	16 19 19 18 15	101 125 113 95 82	61 63 238 543 740	117 125 127 118 112	36 47 40 32 27	14 13 11 9.8 9.4	2.7 2.7 2.9 2.5 2.7	2.6 2.6 2.4 2.2	1.5 1.6 1.7 1.7 1.7	
6 7 8 9 10	9.0 8.5 8.6 8.7 8.3	11 12 13 14 14	37 37 30 20 18	14 13 13 13 13	77 88 88 85 86	781 525 424 428 352	105 97 90 83 77	23 21 19 16 14	9.0 7.9 7.6 7.2 7.2	2.5 2.5 2.4 2.2 2.3	2 . 2 2 . 2 2 . 2 1 . 9 1 . 8	1.7 1.6 1.6 1.8 1.8	
11 12 13 14 15	8.7 9.0 9.2 9.5 9.4	12 12 14 16 17	17 17 18 19 17	13 16 15 16 14	116 147 548 527 321	302 478 875 549 578	98 87 76 69 65	12 11 12 12 12	6.6 5.7 5.2 4.9 5.4	2.1 1.8 1.7 1.6 1.5	1.8 1.9 2.3 2.6 2.4	1.8 1.9 2.0 2.1 2.2	
16 17 18 19 20	9.5 9.7 9.8 9.6 10	17 21 22 23 23	17 17 16 16 16	12 11 12 12 17	226 186 160 134 111	560 534 556 420 340	58 54 53 48 43	12 11 10 9.0 9.4	6.9 7.3 6.6 6.1 5.6	1.5 1.9 2.6 4.1 3.5	2.3 2.2 2.2 2.1 1.9	2.4 2.5 2.5 2.5 2.5 2.4	
21 22 23 24 25	10 10 9.9 9.4 9.4	23 24 23 28 26	16 16 17 17 17	13 13 12 14 41	103 92 88 69 59	289 243 220 224 199	42 38 36 34 30	9.4 9.4 9.4 9.8 11	6.4 6.2 5.6 5.5 4.8	3.5 3.3 3.4 3.5 3.3	1.9 1.9 1.9 1.9 1.9 1.9	2.4 2.5 2.4 2.5= 2.6	
26 27 28 29 30 31	9.6 12 11 11 11 14 14	26 27 53 49 43	17 15 14 14 14 14	51 65 85 65 56 55	54 65 65 	178 158 142 125 116 113	29 26 27 29 26	12 13 14 14 12 14	4.1 3.5 3.2 3.0 2.8	3.0 2.9 2.9 2.6 2.6 2.6 2.6	1.8 1.8 1.8 1.7 1.6 1.6	2.9 3.1 3.2 3.2 3.3	
TOTAN MEAN MAX MIN AC-F	304.C 9.81 14 8.3 603	622 20.7 53 11 1230	651 21.0 37 14 1290	761 24.5 35 11 1510	4011 143 548 54 796C	11354 366 875 61 22520	2019 67.3 127 26 4000	513.4 16.6 47 9.0 1020	201.5 6.72 14 2.8 400	81.3 2.62 4.1 1.5 161	64.2 2.07 2.6 1.6 127	67.1 2.24 3.3 1.5 133	
CAL WTR	(R 1986 T (R 1987 T	OTAL 2815 OTAL 2064	6.4 MEAN 9.5 MEAN	77.1 MAX 56.6 MAX	1760 M 875 M	IIN 1.7 A IIN 1.5 A	C-FT 5585	0					RECEIVED
							4096	0					FFR -1 1995

FEB -1 1995

WATER RESOURCES DEPT. SALEM, OREGON

0

Sy789 Book 46 OC4 76 Unit sept.

RECEIVED

FEB -1 1995

WATER RESOURCES DEPT. SALEM, OREGON

SEP

.60 .60 .63 .66 .63

.63 .63 .64 . 64 .66

UNITED STATES DEPARTMENT OF THE INTERIOR - GEOLOGICAL SURVEY - OREGON OFFICE 12/04/89

STATION NUMBER 14047390 ROCK CREEK AB WHYTE PARK NR CONDON/OREG. STREAM SOURCE AGENCY USGS 297. DATUM 1714.50 STATE 41 COUNTY 021 LATITUDE 451553 LONGITUDE 1200115 DRAINAGE AREA

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	ИПГ	JUL	AUG	SEP
1 2 3 4 5	3.C 3.C 3.C 3.2 3.3	6.0 6.0 6.1 6.1 6.4	8.1 11 13 12 12	8.0 7.9 e7.5 e7.5 e9.3	16 13 21 20 18	41 39 38 36 47	28 27 28 30 29	e 57 e 57 e 57 e 57 e 55	e 20 20 21 21 21 21	3.3 3.1 2.9 3.0 3.0	.60 .64 .71 .71 .64	.60 .60 .63 .66
6 7 8 9 10	3.5 3.6 3.7 3.7 3.7	6.6 6.7 6.7 7.0 7.0	11 11 10 12 25	9.0 9.0 9.0 9.7 63	16 17 18 39 75	51 43 37 41 44	26 24 22 20 18	e 53 e 49 e 44 e 39 e 34	25 27 28 27 24	2.7 2.5 2.2 2.0 1.8	.65 .68 .71 .67 .67	.63 .63 .64 .64 .66
11 12 13 14 15	3.9 4.1 4.2 4.4 4.3	6.9 7.8 8.9 8.0 7.9	30 21 16 13 e11	46 26 26 164 156	89 80 71 56 53	35 31 28 26 25	17 16 15 14 14	e 30 e 28 e 26 e 25 e 25 e 25	21 18 16 14 12	1.7 1.8 1.9 1.8 1.5	• 58 • 57 • 59 • 64 • 64	.73 .74 .81 .81 .78
16 17 18 19 20	4 • 3 4 • 4 4 • 4 4 • 4 4 • 7	7.7 7.3 7.2 7.2 7.2 7.2	e11 e11 e10 e10 e10	71 43 31 28 25	53 40 39 33 31	23 21 20 20 20	12 21 82 55 54	e23 e22 e20 e18 e15	11 9.5 8.8 7.9 7.0	1.4 1.3 1.2 1.1 .94	.69 .64 .73 .77 .72	.79 .82 .90 1.2 1.3
21 22 23 24 25	4.9 4.9 4.9 4.8 4.7	7.2 7.2 7.4 7.6 7.5	11 12 11 e9.5 e8.0	22 20 19 16 16	33 36 32 29 28	19 20 22 24 24 24	230 615 408 220 161	e14 e13 e11 e10 e10	6.3 5.5 5.0 4.7 4.4	.88 .80 .78 .81 .76	.71 .70 .70 .68 .67	1.3 1.3 1.2 1.2 1.2
26 27 28 29 30 31	4.8 5.0 5.3 5.6 5.7 5.8	6.9 6.9 6.9 6.9 6.6	e8.0 e8.0 8.1 8.2 8.3	16 16 16 20 28 28	28 32 36 39	24 28 28 28 29 29	136 105 96 e70 e57	e15 e17 e20 e26 e25 e21	4.4 4.0 3.8 3.7 3.4	.74 .72 .67 .67 .67	.64 .63 .63 .62 .60	1.2 1.3 1.4 1.4 1.4
TOTAL MEAN MAX MIN AC-FT	133.2 4.30 5.8 3.0 264	211.8 7.06 8.9 6.0 420	368.2 11.9 30 8.0 730	972.9 31.4 164 7.5 1930	1091 37.6 89 13 2160	941 30.4 51 19 1870	2650 88.3 615 12 5260	916 29.5 57 10 1820	404.4 13.5 28 3.4 802	49.28 1.59 3.3 .64 98	20.43 .66 .77 .57 41	28.10 .94 1.4 .60 56
.CAL YR WTR YR	1987 Т 1988 Т	OTAL 1978 OTAL 7786	5.7 MEAN .31 MEAN	54.2 MAX 21.3 MAX	K 875 MIN K 615 MIN	N 1.5 A N .57 A	C-FT 39240 C-FT 15440					

e Estimated

H David Childs 1806 Thompson The Dalles, DR 97058

HAND DeliverED FEB 1 1995

RECEIVED

FEB -1 1995

WATER RESOURCES DEPT. SALEM, OREGON

70251 716

Mr. Mike Mattick Instream Water Rights Water Resources Department Commerce Building 158 120th Street NE Salem, Oregon 97310-0210

While You Were Out To 12/10/90 Date Time_ called of Phone . Telephoned In person **Please call** Wants to see you Will call again **Returned your call** Messa Son S 1058 plication on Taken by **FORM CS 97883**

DAVID C. MOON Attorney at Law

OCT 4 1996

P.O. Box 82 · Eugene, OR 97440 · Phone or FAX: (541) 485-5350

WATER RESOURCES DEPT. SALEM, OREGON

October 4, 1996

Personally Delivered

Oregon Water Resources Department Water Rights and Adjudications Division Commerce Building 158 12th Street N.E. Salem, Oregon 97310-0210

Re: Protest to Proposed Final Order (Application IS 70251)

To Whom It May Concern:

Enclosed please find a Protest to Proposed Final Order for Application IS 70251 on behalf of A. David Childs. Also enclosed is a check for the filing fee of \$200 (Check # 1359).

If anything further is required for this Protest, please contact me. Thanks.

Sincerely,

Daid C. Moon

David C. Moon

cc: Client ODFW

 Bailey; IWR PFO Comments; Miscellaneous Basins Page 2 October 3, 1996

DRAIST

F.4/13

ODFW COMMENTS AND RECOMMENDATIONS INSTREAM WATER RIGHT PROPOSED FINAL ORDERS

WRD BASIN: Miscellaneous Basins ODFW FISH DISTRICT: Micellaneous Districts

Note: unless otherwise specified, all comments/changes apply to both the Proposed Final Order (PFO) and the draft Certificate.

1) 70251 (John Day Basin)

The proposed flow for May should be: 32 cfs.

2) 70569 (Umatilla Basin)

The proposed flow for August should be: 8.05 cfs.

3) 70573 (Umpqua Basin)

Flows to satisfy this instream use in Cow Creek released from store water in Galesville Reservoir and therefore not subject to the exemption of human and livestock as they would be if natural flows were used. The proposed condition number 3. exempting human and livestock consumption from being regulated to satisfy use from stored water should be deleted from this draft Certificate.

4) 71480 (Sandy Basin)

The stream reach applied for begins in one County and ends in another. The two counties are, from upper to lower: Clackamas/Multnomah. If only one county can be listed, ODFW requests that is be the county in which the reach terminates, in this case Multnomah.

RECEIVED

NATER RESOURCES DEPT. SALEM, OREGON Oregon

January 30, 1995

DEPARTMENT OF FISH AND WILDLIFE

Water Resources Department 158 12th Street, NE Salem, OR 97310

RE: Comments; 5 John Day River basin Instream Water Right Technical Reviews; Applications 69960, 70250, 70251, 70263 and 70648.

ODFW has reviewed the subject Technical Reviews and offer the following comments:

General Comments

1. ODFW has previously indicated it does not oppose reducing instream water right flow levels from amounts requested to the estimated average natural flow when this is less than requested flows. This is consistent with OAR 690-77-045 (3e).

2. According to OAR 690-77-026 (1), WRD "shall undertake a technical review ... and prepare a report." This subsection further lists 8 [(a) through (h)] mandatory criteria which, at a minimum, must be assessed during the technical review. ODFW has concerns with the apparent level of assessment relative to subsection (c):

OAR 690-77-026 (1) (c)--Assessing the proposed instream water right with respect to conditions previously imposed on other instream water rights granted for use of water from the same source.

In the subject John Day River basin reports of technical review, WRD is proposing to condition each application to exempt human and livestock consumption from regulation in favor of these instream rights as follows:

This instream right shall not apply to permits for appropriation for domestic or livestock use....

2501 SW First Avenue PO Box 59 Portland, OR 97207 (503) 229-5400 TDD (503) 229-5459 WRD; IWR Comments; John Day River January 30, 1995 Page 2

OR

This instream right shall not have priority over human or livestock consumption.

Instream water rights certificates in the John Day River basin based on conversion of minimum perennial streamflows generally contain similar conditioning language giving preference to the listed uses.

By rule, WRD's technical review process includes assessing conditions previously imposed on other instream water rights from the same source. If found to be appropriate, WRD may propose that new instream water rights contain the same exemption. There is no requirement that this exemption be automatically included as a proposed condition.

When ODFW reviewed WRD files on some of these applications for documentation of assessments of prior conditions, we found nothing to document that any such assessments had been done. ODFW, therefore, assumes the required assessments were not done, contrary to rule. ODFW also objects to the routine placement of exemptions on any of the subject applications on the grounds that to do so does not give adequate consideration to the public's interest in maintaining fishery resources in John Day River basin streams. OAR 690-11-195 (4dA).

Specific Comments

Application 70251; Rock Creek; RM 40 to 0--In its water availability analysis, WRD staff find that water is not naturally available to meet even ODFW's recommended minimum flows for fish in May through December. For the months of July through November, the water availability analysis indicates that only about 1/3 of the minimum recommended flow is available. When these calculated flows are compared with other measured flow records, it appears that the estimated average natural flow levels for July through December are potentially erroneous.

The estimated average natural flow and instream water right should be calculated and measured at the mouth of Rock Creek, the downstream limit of this application. Records for USGS gage 14047390 (50% exceedance; 1975-87; RM 40) indicate actual flows (after cumulative withdrawals above) are similar to what WRD staff WRD; IWR Comments; John Day River January 30, 1995 Page 3

• • • • • • • •

	JUL	AUG	SEP	OCT	NOV	DEC
WRD Water Avail- ability (RM 0)	4.7	3.1	2.5	2.7	6.7	21.8
USGS Gage Records (RM 40)	2.9	1.7	2.1	3.7	11.0	30.0
Robison, 1991 (RM 40)	1.8	0.7	2.3	2.6	10.6	31.9

predict would be naturally available at the mouth of Rock Creek, 40 miles downstream.

The numbers above listed as "Robison, 1991" were extracted from WRD's 1991 Hydrology Report #1, "Water Availability for Oregon's River and Streams: Appendix B". Again, these are natural flow predictions (50% exceedance) for a gage 40 miles upstream from the mouth of Rock Creek, the point of natural flow measurement for the proposed instream water right.

Based on the observation that natural stream flows generally increase as a stream progresses downstream, it is doubtful that the flows cited above accurately represent the instream flow picture.

During physical stream surveys conducted by ODFW personnel in 1971, stream flows in Rock Creek were measured at 1 mile intervals for the lower 9 miles. During this survey, numerous active water diversions were noted. Despite the loss of flow at 22 diversions, measured instream flows (e.g., 4.8 cfs at RM 2) often exceeded the estimated average natural flow.

Although this comparison can not be considered conclusive, ODFW believes significant evidence exists to cast doubt on the results of the water availability analysis performed for this application and is the basis for our objection to same.

Application 70250; Bridge Creek; RM 19 to 13--WRD's water availability analysis indicates water is not naturally available to meet ODFW's recommended minimum flows 10 months out of 12, May through February. There are no gage records available to us for comparison here. We do, however, have limited instream flow measurements taken in July, 1971, that indicated the estimated average natural flow presented in this technical review underestimate natural flow. WRD; IWR Comments; John Day River January 30, 1995 Page 4

The water availability analysis predicts less than one cfs would be available naturally in Bridge Creek during July. ODFW's measurements during July, 1971, recorded a flow at RM 13 of 7.2 cfs after an observed 7 active diversions. Although not conclusive evidence, these measurements, coupled with anecdotal information obtained from field personnel, leads ODFW to believe sufficient doubt exists as to the accuracy of the water availability analysis completed for Bridge Creek.

Application 70263; Bear Creek; RM 11 to 0

The situation on the lower 11 miles of Bear Creek is similar to that of Bridge Creek to which it is tributary. Although no gage data exists for comparison, flow measurements taken by ODFW in July, 1971, recorded flows between 2.2 and 6.2 cfs in this stream section. ODFW district personnel indicate that these observed levels of flow are not extraordinary.

Thank you for this opportunity to review the subject technical reports. We appreciate WRD's efforts to move forward with these applications and encourage you to proceed to certification as quickly as possible.

Sincerely,

(antitude)

 Stephanie Burchfield
 Water Resources Program Manager Habitat Conservation Division

c. Unterwegner, John Day Lauman/Eddy, La Grande WaterWatch of Oregon (public information request)

File: WRD/Instream Water Right/Comments

A David Childs Star Rt., Arlington, OR 97812 (503) 454-2827

March 16, 1988

FOREST SUPERVISOR Umatilla National Forest 2517 S. W. Hailey Avenue Pendleton, Oregon 97801

Written comment on Forest Plan

AUG 1 2 199.

. com

WATER RESOURCES DE SALEM, OREGON

Rock Creek, Gilliam County, flows northwest from the Blue Mountains and the Umatilla National Forest for about 75 miles and outlets to the main stem of the John Day river at McDonald Ferry, approx. 21 miles upstream from the Columbia at I-84. The headwaters, mostly 4000 ft elevation with a small area up to 5000 ft, are in timber and grazing lands.

The stream gauging station is below all of the major tributaries and all of the mountain drainage. Equally significant, the gauging station is above the out-of-stream withdrawals.

Pertinent information.

Years of record 1975 till present

Max annual flow 90,000 acre feet

Min annual flow 4,500 acre feet

Irrigation withdrawals vary from 1500 to 2500 acre feet depending on when the watershed dries up.

Time between summer dry-up and fall flow-through to mouth, varies from 1 to 6 months.

Mean annual flow 1975 - 1985 is 45,500 acre feet/year (USGS EASTERN OREGON 1985)

Correlation with adjoining gauged streams, of the 1905 to 1965 era, predicted the gauged flow would be under 15,000 acre feet/year. (OREGON STATE ENGINEER 1968)

Pioneer settlement on Rock Creek started in the 1860s. Water rights dated after the 1890s are not now filled beyond June. Others only days longer.

Most years during July, August, September there is no usable flow for

any water right or for resident fishery. Former upper rearing areas are intermittently and sparsely puddled with warm water.

During the drought of the 1930s the stream never dried in places that have dried annually the last few years.

Historically, the bottom lands along the stream were irrigated early in the growing season, with water for all users and a surplus for recharge. Irrigators understood that parts of the stream would be dry for as long as a month during August.

The native runs of anadromous fish adapted with this environment many centuries prior. Even through the drought years of the 1930's the timbered slopes nurtured the headwater trickles and seeps, springs and rivulets, and the fry and fingerlings. The headwater tributaries are no longer viable as rearing areas.

Downstream landowners are getting mud and flood with regularity. High-volume, high-velocity runoff events are annually ripping and devastating the riparian areas and the alluvial unprotected zones behind them. Landowners are discouraged by these events. The devastation saps both energy and creativity in focusing only on repair and salvage. We need enhancement.

Transit water is unruly and apparently unavoidable under present watershed management practices.

Sections of streams that have never gone dry before, now become bone dry; yet are receiving the impact of a twenty year runoff event at intervals of only 2 to 5 years.

A stream that historically annually flowed on the order of two to twenty thousand acre-feet is flowing at a volume of 4,500 to 90,000 acre feet.

A flow of 12,000 ac ft, with a reliability of eight years out of ten, now flows at an average of forty five thousand acre feet annually.

Rock Creek once maintained large resident and anadromous fish populations. Currently there are two remnant steelhead spawning areas, both dependent on downstream basalt and gravel aquifers.

Through both luck and error the genes for restocking the watershed are surviving.

The Forest Plan omits Rock Creek tributaries, in Wheeler and

.

Morrow Counties, entirely from its riparian plan, yet five or six Rock Creek tributaries and former rearing areas are in the Umatilla Forest.

The Forest plan states, runoff is tied directly to annual precipitation. This assumption is questionable. The nature of a forest is to buffer flows and to carry groundwater in a reserve account. The present flows are probably dependent on the excellent water years of the early to mid-eighties.

The streams have excellent potential for restored spawning and rearing areas. The potential for both commercial and recreation fishery benefits is considerable. The multi-use benefits for upstream spawning and rearing and downstream recreation, fishery, and agriculture seem to have merit. Upper stream rearing water is the need of fishery. Reduction of devastating floods and drought is the need of agriculture. It would seem that a joint effort would be synergetic: more trees and grass in the uplands, sustained high quality rearing water, reduction of high flows, and dual purpose water for fish and agriculture.

Agriculture users are generally below the rearing areas. The water, after going through rearing areas, could be used to sustain vegetation in the riparian zone.

Currently, highwater devastation is more of a critical problem than summer drought to agriculture. The downstream area ranchers are looking for protection and are taking a new look at a growing problem.

++ The designation of the headwaters of Rock Creek E 1 seems to discourage future improvement or water enhancement.

++ The downstream land owners are being whipsawed by a Jekyll and Hyde water system (too much in February and March and none after the middle of June) Water once was of great benefit both environmentally and economically.

٩.

4.5				5.5%	7,				158	MOT	netin	WIL FREd
12 Column				0,01	- Mi	ct 50	out of	91 M	on this of	May J.	oct. No	V.
Work Sheet D-658		Pro	Dose	TO	INST	YEAH	n Wa	iTER	RIG	HT	- (2	Z)
1												
	act	NOV	DEC	JAN	FEB	MARch	April	MAY	JUNE	July	AUG	SEPT
F3/sec	34	34	34	34	57	57	57	57	34	34	34	34
Maar Floo				1						70	77	17
1476/77	2.7	3.53	3.89	4.58	5.68	11.7	21.7	14.9	3.03	30	1.36	.12
1977/78	.38	9.8	512	a12/2	134	TPL	5/29	28	5.47	5.51	,88	2.13
	0	1.0	- Aller and a			1.		20				
1978/79	2.23	3.61	340	9.86	205	248	204	99.8.1	8.58	2.81	6.60	1.11
langles	5 00	07/	antitent)	10.01077	mandidara	170	-7 Q	252	1111	1120	130	1.90
19/19/30	3,35	23.1	THE.	Lisp	1203	127	52.7	20.3	19.1	4.50	1.30	
1980/81	3.30	757	18.0	15.0	927	23.9	16034	51.5	39.9	4.04	.66	.68
											10	
1981/82	- 3.13	14.2	1813	the B.	342	214	140	39.4	14.4	4.50	,69	1.81
1982/83	9.55	17.8	SIA	134	288	4.67	158	298	24.3	9.89	3.81	4.62
\sum			0017							0		
1983/84	8.4	23,1	Tost	1175	153	#39	396	134	283.8	(14,1)	5.08	9.53
inoulau	1,20	\$2=0	Hantes	zimi.	WENES	220	2.77	222	120	202	210	512
1984/85	13.7	DEDRY	USEE	Jump	KU Di	6-6-0	Leikit	54.0	16.7	2.02	2.10	5,62
1985/86	11.8	11.8	23,9	WIB3	#34	254	52.4	28.4	10.9	3.84	2.31	5.22
	0.11	2 - 7			1110					- 17	- 1 -	
1986/87	9.8/	20.1	21.0	24.5		566	613	16.6	6.72	2.62	2.07	2.24
1987/84	4.3	7.06	11.9	31.4	37.6	30.4	88.3	29.5	13.5	1.59	. 10/0	.94
1987/89	2.16	7.96	15.5	31.5	65.4	326	137	53.5	7.21	1.29	.74	1.03
MET	0	1	7	7	10	10	\$12	. 3	2	0	0	0
1. Ursmat	0	1	R	7	6	9	9	2	1	0	0	0
total	0	2	10	14	176	20	198	5	3	0	0	0
244RS	0%	0.8%	40%	87 /2%	71%	84%	19%	29%	17%	0%	0%	0%
- for	13	9	6	2	2	2	2	7	10	11	11	11
)/me	12	11	3	n h	7	2 4	7	3	10	13	13	74
- F/-	0	0	Y	V	V	V	V	N	N	Ø	Ø	Ø
			/	/	/	/	/					

Work Sheet D-658	Ister	ABOVE	CAYN	SE GAN	vor Pa	& Creak	',					
)	34	34	34	34	57	57	5-7	57	34	34	34	34
	Ođ	NOU	DEC	JAN	FeB	Maech	April	MAY	JUNE	July	August	Sept
Mean		Sec.					-	/		/		
Monthly											4.	
1965 /66	3.48	6.96	6.61	16.3	12.4	111	HG7	5.08	2.58	1090	2.04	0.19
1966/67	A	题	•									
1916/67	: 88	20.2	65.6	White B	86.1	62:7	112	\$37/	7.33	,70	.06	.06
1967/68	122	348	126	1918								
1967/68	,39	1.16	4.06	15.9	40.1	18.3	6.86	3.41	1.62	v/0	.00	,00,
1968/69	.64	4.3	31.8	46.9	97,5	264	262	34.1	14.9	3.37	.33	.73
1969/70	1.41	4.28	9.72	ECH	1/25	149	58	22.8	6.00	1.23	,26	1.Z/
1970/71	1:56	6.71	16.2	122	54.4	10h	al g	25.3	9.10	,92	.03	.47
	·								Zday			
1971/22	.98	7.3	£19.5	8519	\$148	2374	57.01	24.5	(67)	.50	.14	.15
1972/73	.87	3.47	21.9	45.3	24.1	57.4:	26.9	4.01	,72	< 10	Flow	~
1973/74	,15	the la	247	470	120	19.63	17 Car	45.Z	5.96	.88	.20	. 17
in all		0.04		- 1 -		at 1 de Dans	2:51-17	BAN ARCAS		- 17		
1979/75	, (25	231	4.93	31.5	OL 9	CT.O.S.	CCA	103-9401	6.13	2.61	012	0.12
1975/76	,76	4.11	15.1	testa	32.8	V.S.M	126	17.6	4.39	.26	5.84	2.73
HAOS KO												
Flow	00	1	3	7	6	9	9	2	2 dy S 1-minuth	0	0	0
-												
\sum			1.4.5									

September 17, 1990

AUG 1 2 1991 To: A David Childs Fax 298-4106

From: E. George Robison OWRD WATER RESOURCES DEPT Salem OR. SALEM OREGON Concerning: "Natural" flows for three streams in John Day Basin Salem OR.

On this page are the tabulations for the streamflows from the streams you asked for. I did not include the figures to save space.

Rock Cr	at Parkers	Mill (Natural Flows	Rock Cr.	at Butter I	Milk (Natur	al Flow)
Monthe	Pred5	Pred? <p %<="" td=""><td>Months</td><td>Pred5</td><td>Pred2</td><td></td></p>	Months	Pred5	Pred2	
TAN	11000	27 MM	IAN	13.3	40.8	
JAN	1.1	5.7	FFR	23.1	78.4	
FEB	1.9	0.9	MAD	378	114.4	
MAR	3.1	9.6	ADD	317	79.0	
APR	· 2.5	6.9	APR	21.7	34.6	
MAY	1.7	3.4	MAY	21.2	12.7	
JUN	0.6	1.3	JUN	1.3	15.7	
JUL	0.1	0.4	JUL	1.5	3.5	
ALIG	0.0	0.1	AUG	0.4	1.3	
SED	0.0	0.1	SEP	0.5	13	
oor	0.0	0.2	OCT	0.8	1.8	
NOV	0.1	0.2	NOV	2.2	5.2	
NOV	0.2	0.5	DEC	5.9	14.8	i
DEC	0.5	1.3	DEC	2.5		

6.0 = Basin No.15.0 = Drainage Area

- 18.0 = Precipitation
- 0.0 = WR Index

6.0 = Basin No. 166.0 = Drainage Area 17.0 = Precipitation 0.0 = WR Index

Buckhorn Cr. at RM 1.6 (Natural Flow) Months Prods Prod?

WOnus	rieds	rieuz	
JAN	2.5	8.4	
FEB	4.4	16.6	
MAR	7.3	23.6	
APR	5.7	15.5	
MAY	3.4	6.5	
JUN	1.1	2.3	
JUL	0.2	0.6	
AUG	0.1	0.2	
SEP	0.1	0.2	
OCT	0.1	0.3	
NOV	0.4	1.0	
DEC	1.1	2.9	
	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	JAN 2.5 FEB 4.4 MAR 7.3 APR 5.7 MAY 3.4 JUN 1.1 JUL 0.2 AUG 0.1 SEP 0.1 OCT 0.1 NOV 0.4 DEC 1.1	MonusFredsFredsJAN2.58.4FEB4.416.6MAR7.323.6APR5.715.5MAY3.46.5JUN1.12.3JUL0.20.6AUG0.10.2SEP0.10.2OCT0.10.3NOV0.41.0DEC1.12.9

6.0 = Basin No.

- 36.0 = Drainage Area
- 17.0 = Precipitation

These ARE The TRIBUTARY Flows to The GAGE Statud Requesting 34 cts IN July Aug Septydot

BRELEENEIN

WATER RESOURCES DEPT. SALEM, OREGON 70251

JAN 1 4 1991

Gilliam County Soil and Water Conservation District Courthouse - P.O. Box 106 - Condon, OR 97823 - (503) 384-2671

January 9, 1991

App Amlegate

William H. Young, Director Water Resources Department 3850 Portland Road, NE Salem, Oregon 97310

Dear Mr. Young,

Late in November of 1990, the Oregon Department of Fish and Wildlife requested 35 CFS of water in Rock Creek, a tributary of the John Day River Located in Gilliam and Morrow Counties. We ask you to deny this request.

The Gilliam, Morrow, and Wheeler Soil and Water Conservation Districts (SWCD's) have actively engaged in writing a Coordinated Resource Management Plan (CRMP) for the Rock Creek Watershed. The CRMP is addressing soil and water problems, as well as conservation and improvements of the resource base including fish habitat.

The CRMP process involves extensive input from all watershed users. We have held several meetings in the counties to receive input from the users, including Fish & Wildlife. It is crucial that we continue to get a cooperative effort from the users. To impose a 35 CFS streamflow regulation at this time could severely damage the cooperative spirit necessary to write the CRMP because it singles out a specific watershed user and makes the local work appear futile.

Gilliam County Soil and Water Conservation District Courthouse - P.O. Box 106 - Condon, OR 97823 - (503) 384-2671

As mentioned earlier, one of the goals of the CRMP is to protect and improve existing resource bases, including fish habitat. This also appears to be your goal. We ask that in light of our area developing a CRMP, you note that proper timing and cooperation may do more to promote fish habitat and holistic improvement of the watershed than to impose a streamflow quota.

We urge you to let the CRMP process work and thus deny the water right request at this time.

Sincerely yours,

Paul Bato

Paul Bates, Chairman Gilliam Soil and Water Conservation District

PB/ckr

Y.

cc: Water Resources Commission Morrow SWCD Wheeler SWCD Andy Rose, Rock Creek Watershed Planner

MORROW ten Cons Pit

P. O. BOX 127 HEPPNER, OREGON 97836

JAN 2 2 1991

WATER RESOURCES DEPT. SALEM, OREGON

January 11, 1991

William H. Young, Director Water Resources Department 3850 Portland Road NE Salem, Oregon 97310

Dear Mr. Young,

Late in November 1990, the Oregon Department of Fish and Wildlife requested 35 cfs of water in Rock Creek, a tributary of the John Day river, located in Gilliam and Morrow Counties. We ask you to deny this request in conjunction with Gilliam County Soil and Water Conservation District.

The Gilliam, Morrow, and Wheeler Soil and Water Conservation Districts (SWCD's) are actively engaged in writing a Coordinated Resource Management Plan (CRMP) for the Rock Creek Watershed. The CRMP is addressing soil and water problems as well as conservation and improvements of the resource base including fish habitat.

The CRMP process involves extensive input from all watershed user and several meetings have been held to gather input from the users, including ODF&W. To impose a streamflow regulation could severely damage the cooperative spirit necessary to write the CRMP.

The Board of Directors of Morrow SWCD urge you to let the CRMP process proceed and deny the water right request at this time.

Joe Rietmann, Chairman Morrow SWCD

DEAN MONTHLY FLOWS FOR ROCK CREEK, TRIB JOHN DAY RIVER BASED ON BEAVER CREEK NEAR PAULINA, GAGE 14-0780

-

	MEAN	a	A	S	St	E
	FLOW		522.00	57.90	1.42	4.60
OCT	94.47	.00134	93.98	1.00	.61	1.00
NOV	52.81	.00303	214.67	1.00	.85	1.00
DEC	135.64	.00328	241.77	1.00	.90	1.00
JAN	127.54	.11	306.67	1.00	1.00	1.00
FEB	205.71	.928	345.39	1.00	1.00	1.00
MAR	302.56	4.26	188.23	1.00	1.00	.06
APR	816.51	.0202	351.93	1.00	.84	1.00
MAY	681.61	.0195	472.27	2.99	.88	1.00
JUN	1027.88	2.82e-8	408.96	1.00	.77	137.84
JUL	196.37	.00541	61.03	1.00	.77	1.00
AUG	93.70	.00129	67.03	1.00	.60	1.00
SEP	84.73	.000965	88.28	1.00	.57	1.00

Did Not use these #'s for flow. Do vot book realistic.

29753 mbs @RM40.8 Report for station 14047330 ROCK CREEK AB WHYTE PARK NE CONDON, GREG. 0 GMEAN DISCHARGE ONumber of years retrieved is 16 ROCK CREEK AB WHYTE PARK NE CONDON, GREG. 1 Station 14047390 MEAN DISCHARGE Statistics on Normal monthly means (All days) Feb March Jan Oct Nov Dec April June May By rows (Number, Mean, Variance, Standard Deviation, Skewness, Coefficient of Variation 14.80 ØNumber 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 154.23 OMean 5.39 14.38 45.06 71.37 212.79 132.24 62.34 17.7: OVar 2563.35 15526.32 21791.44 10665.82 2238.22 19.07 176.11 5714.94 451.96 124.60 **GStd** 50.63 147.62 4.37 13.27 47.31 103.28 75.60 21.28 1.39 OSkew 0.75 2.14 2.27 0.22 6.34 1.49 2.70 2.68 6.81 0.71 **ØCvar** 6.69 6.81 0.89 1.95 6.78 1.21 1.19 21.26 0Pavg 2.95 9.84 29.33 18.23 8.59 2.45 6.74 6.21 1 Station 14047390 ROCK CREEK AB WHYTE PARK NE CONDON, GREG. 0 MEAN DISCHARGE Guartiles of Normal monthly means (All days) Oct Nov Dec Jan 0 Twenty-Fifth Percentile 2.18 6.25 15.4 29.7 0 Fiftieth Percentile 3.43 10.8 27.2 55.8 0 Seventy-Fifth Percentile 9.61 21.3 57.5 120.2 April July May June 0 Twenty-Fifth Percentile 55.8 24.5 1.51 6.41 Fiftieth Percentile 0 112.6 30.9 3.32 11.9 Seventy-Fifth Percentile G 169.4 65.1 4.75 16.9 ROCK CREEK AE WHYTE PARK NE CONDON, GREG. 1 Station 14047390 MEAN DISCHARGE 0 144pas ave ennuel 592 RMAD.8 Quartiles of Normal annual means (All days) Lopolat yyule Twenty-Fifth Percentile 0 30.8 0 Fiftieth Percentile 55.3 θ Seventy-Fifth Percentile 79.6 NOTE -- PERCENTILES BASED ON AVAILABLE DATA. 1

0

0

0

	July		Aug	Sept	
,	Percentage 14.00	of	Average 14.00	Value) 14.∂0	
9	4.10		2.40	2.81	
5	14.24		4.79	6.62	
5	3.77		2.19	2.57	
3	1./4		1.95	1.50	
5	0.32		0.31	6.31	
5	0.57		0.00	0.00	
	Feb		Ma	arch	
	58.4		5	73.8	
	124.6		23	20.9	
	230.0		30	5.8	
	Aug		٤	Sept	
	.683			1.01	
	1.68			2.92	
	4.13			4.77	

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BASIN SUMMARY REPORT ROCK CR TRIBUTARY OF JOHN DAYR Jur 2025 Support # 10479

Page 2

================================

45.31 TOTAL CFS: 0.00 TOTAL ACF:

TOTALS BY USE ------

	AGRICULTURE	INDUSTRIAL	MUNICIPAL	DOMESTIC	RECREATIONAL	MISCELLANEOUS
(CFS)	45.31	0.00	0.00	0.00	0.00	0.00
(ACF)	0.00	0.00	0.00	0.00	0.00	0.00

BASIN SUMMARY REPORT ROCK CR TRIBUTARY OF JOHN DAY R

Jul 70251

TOTAL DIVERTED

TOTAL CFS: 37.40 TOTAL ACF: 9.62

TOTALS BY USE

•	AGRICULTURE	INDUSTRIAL	MUNICIPAL	DOMESTIC	RECREATIONAL	MISCELLANEOUS
(CFS)	37.30	0.00	0.00	0.00	0.00	0.10
(ACF)	5.62	0.00	0.00	0.00	0.00	4 = 00

Page 3

R	٨	S	T	N	S	υ	M	M	A	ĸ		R	E	Ρ	0	R	Т	
U	~	5	-							-0	10							

BASIN JULARY TO JOHN DAY RIVER PRIMARY

				RC	OCK CREEK	(#10479,	INIDO	Die	TAVER	PRIMA	RY			
• CERTIFICATE	PERMIT	DLC LOT	1/4	1/4	SECTION	TOWNSHIP	RANGE	RATE	UNITS	P.A.S.	USE	PRIORITY	STREAM NAME	STATUS
6258 D	25/95		NE		21		20F	0 = 0000		D	10	12/71/1069	POCK CR	V
46866 D	25485		NE	SE	24	IN	205	0=0000		P	IR	12/31/1000	ROCK CR	v
25115 D	25115		NE	IN W	24	IN	201	0-0000		P	IR	12/31/1000	ROCK CR	v
43564 D	25116		SU	C.E.	11	1.11	10F	0 = 0000		P	IR	12/31/1007	ROCK CR	v
24941 D	2/9/1		DW	SE	11	IN	196	0 = 0000		P	IR	12/31/1009	ROCK CR	v
24851 D	2/ 851				0	0	0	0 = 0000		P	LV	12/31/10/3	ROCK CR	v
2/852 D	24051				0	0	245	0 = 0000		P	LV	12/31/10/0	ROCK CR	v
25315 D	24052		SE	SE	35	50	200	0-0000		P	1 25	12/31/10/0	ROCK CR	v
25036 0	25034				0	0	0	0.0000		P	1 74	12/31/10/9	ROCK CR	V
30828	25050		NE		0	0	205	0.0000		P	IL	12/31/1000	ROCK CR	V
24954 D	22037		NE	SE	24	IN	ZUE	0 = 0000		P	IR	12/31/1003	ROCK CR	V
24934 0	24954				0	0	0	0-0000		P	IR	12/31/1884	RUCK CR	V
	20000				0	0	0	0-0000		P	IR	12/31/1004	RUCK CR	V
23023 U	20820				0	0	0	0_0000		P	1*	12/31/1884	RUCK CR	V
40807 D	25839		NE	NW	24	1N	ZOE	0 0000		P	IR	12/31/1884	RUCK CR	V
• 25514 U	25514				0	0	0	0=0000		Р	IR	12/ 3/1885	RUCK CR	V
25061 U	25061				0	0	0	0.0000		P	IR	12/31/1886	ROCK CR	V
36590 D	25991		SW	SE	32	1N	21E	3=2750	CFS	P	I ×	12/31/1886	ROCK CR	V
25778 D	25778				25	15	21E	0.0000		Р	IR	12/31/1887	ASPR	V
25316 D	25316				0	0	0	0.0000		Р	I*	12/31/1888	ROCK CR	V
24851 D	24851				0	0	0	0_0000		Р	IR	12/31/1890	ROCK CR	V
● 25214 D	25214				0	0	0	0_0000		Р	IR	12/31/1890	ROCK CR	V
25988 D	25988				0	0	0	0.0000		P	I *	12/31/1890	ROCK CR	V
24888 D	24888				0	0	0	0.0000		Р	IR	12/31/1892	ROCK CR	V
● 25192 D	25192				0	0	0	0.0000		Р	IR	6/20/1893	ROCK CR	V
25230 D	25230				0	0	0	0.0000		Р	IR	12/ 3/1893	ROCK CR	۷
25498 D	25498				0	0	0	0.0000		Р	I×	12/31/1893	ROCK CR	۷
a 25159 D	25159				0	0	0	0_0000		Р	I *	12/31/1894	ROCK CR	۷
25895 D	25895				0	0	0	0 0000		Р	IR	12/31/1894	ROCK CR	۷
46868 D	25989		NE	NW	24	1N	20E	0 0000		Ρ	Ι×	12/31/1894	ROCK CR	V
25113 D	25113				0	0	0	0 0000		Р	IR	12/31/1895	ROCK CR	٧
25113 D	25113				14	15	21E	0_0000		Ρ	IR	12/31/1895	SPRINGS	٧
25756 D	25756				0	0	0	0.0000		Р	IR	12/31/1895	ROCK CR	٧
25779 D	25779				0	0	0	0_0000		P	IR	12/31/1895	ROCK CR	٧
25878 D	25878				0	0	0	0.0000		Р	I*	12/31/1895	ROCK CR	٧
25191 D	25191				0	0	0	0_0000		P	IR	12/31/1896	ROCK CR	V
47603 D	25203		SW	NE	15	1N	20F	0_0000	CES	Р	Ι×	12/31/1896	ROCK CR	V
25630 D	25630				0	0	0	0_4700	CIS	P	IR	12/31/1897	ROCK CR	v
25744 D	25744				0	0	0	0_0000		P	IR	12/31/1899	ROCK CR	v
- 25673 D	25673				0	0	0	0.0000		P	IR	12/31/1900	ROCK CR	V
• 40744 D	25044		NE	NW	17	1N	205	0_0000		P	TL	12/31/1900	ROCK CR	V
43565 D	25117		SW	SE	11	1N	195	0.0000		P	IR	12/31/1903	ROCK CR	V
24943 0	24943		0 "		0	0	0	0_0000		P	IR	12/31/1905	ROCK CR	V
• (/303 D	25001		SW	SE	30	1 N	215	0_0000		P	T *	12/31/1905	ROCK CR	V
2/0/1	2/9/1		51	52	0	0	CIE O	0 2200	CFS	P	IR	12/31/1004	ROCK CP	V
24741 0	25072				0	0	0	0 0000		D	CI	12/31/1004	ROCK CR	V
• 25032 U	25616				0	0	0	0 0000		P	TI	12/31/1904	ROCK CR	V
20010 U	25056				0	0	0	0.0000		P	DS	12/31/1907	ROCK CR	V
25056 D	20000				U	0	0	0_0000		F	05	15/21/1901	NUCK CR	V

•													
•	CERTIFICAT	E	PERMIT	DLC LOT	1/4	1/4	SECTION	TOWNSHIP	RANGE	RATE	UNITS	P.A.S.	USE
•	25057 25058 25213 24946 43750 782 1402 2029 2830 3339 5325 6126	00000000000000	25057 25058 25213 24946 331 720 138 1826 1952 2057 5535 6408				0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.2000\\ 0.1600\\ 0.1250\\ 0.6250\\ 0.6250\\ 0.2000\\ 2.0000\\ 2.0000\\ 0.4400\\ 0.1800 \end{array}$	CFS CFS CFS CFS CFS CFS CFS CFS	Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ	DS DS DS IR IR IR IR IR IR IR IR IR IR
•	12267 22203	S S	12379 20730		NW NE	NW SE	24 24	1S 1S	21E 21E	0-5000	CFS CFS	P C	I R I R

25058	D	25058			0	0	0	0.0000		P	DS	12/31/1907	ROCK CR	V
2/0/6	D	23213			0	0	0	0.0000		P	US	12/31/1907	ROCK CR	V
13750	0	24940			0	0	0	0.2000	CEC	P	IR	12/31/1900	ROCK CR	v
43730	S	331			0	0	0	0.1600	CFS	P	IR	6/22/1910	RUCK CR	V
1/02	5	120			0	0	0	0-1250	CFS	P	IR	4/22/1911	RUCK CR	V
1402	E	138			0	0	0	0.6250	CFS	Р	IR	5/18/1912	RUCK CR	V
2029	5	1826			0	0	0	0 2000	CFS	Р	IR	11/1//1913	RUCK CR	v V
2830	5	1952			0	0	0	2 0000	CFS	Р	IR	3/19/1914	RUCK CR	V
3339	S	2057			0	0	0	2.0000	CFS	Р	IR	6/ 9/1914	ROCK CR	V
5525	S	5535			0	0	0	0-4400	CFS	Р	IR	6/ 5/1922	ROCK CR	V
6126	S	6408			0	0	0	0.1800	CFS	Р	IR	7/ 5/1924	ROCK CR	V
12267	S	12379	N	W NW	24	15	21E	0.5000	CFS	Р	IR	9/22/1936	ROCK CR	V
22203	S	20730	N	E SE	24	15	21E	0.8600	CFS	С	IR	9/11/1951	ROCK CR	V
29965	S	21310	S	E NE	32	1N	21E	1.5000	CFS	Р	IR	9/20/1951	ROCK CR	V
21810	S	21305	S	E SW	3	15	21E	0.2300	CFS	Р	IR	4/15/1952	ROCK CR	V
30166	S	22580	N	E NE	27	25	22E	2.0000	CFS	Р	IR	8/ 3/1953	ROCK CR	V
30080	S	23576	S	E NE	25	15	21E	0.0100	CFS	Р	LV	3/ 7/1955	A SPR	V
30313	S	23963	S	W SW	11	55	25E	0.2500	CFS	Р	IR	3/ 5/1956	ROCK CR	V
38437	S	31948	N	W NW	30	15	22E	2.0000	CFS	Р	IR	10/17/1966	ROCK CR	V
38436	R	4860			30	15	22E -	4.0000	AFT	Ρ	FI	12/ 5/1966	A SPR	V
38437	S	31948	S	E NW	30	15	22E	0.1000	CFS	Р	FI	1/12/1967	A SPR	V
37808	S	32337	N	E SE	14	15	21E	0.6000	CFS	Р	IR	2/ 9/1967	ROCK CR	V
37916	S	32494	S	E NE	4	15	21E	0.4500	CFS	Р	IR	2/24/1967	ROCK CR	V
42183	S	36278	N	W SW	11	15	21E	0.3800	CFS	Ρ	IR	6/10/1971	ROCK CR	V
56572	S	38739	S	E SW	7	1N	20E	0.5000	CFS	Ρ	IR	10/11/1973	ROCK CR	V
54169	S	39469	N	W SW	11	15	21E	0.0800	CFS	Р	IR	6/ 2/1975	ROCK CR	V
48134	S	39932	N	W SW	4	25	22E	1.6600	CFS	Р	IR	8/28/1975	ROCK CR	V
0	S	39171	S	E NE	5	25	22E	1.8000	CFS	Ρ	IR	9/25/1975	ROCK CR	V
47505	S	40362	S	W SW	33	1N	21E	0.5100	CFS	Р	IR	11/ 5/1975	ROCK CR	V
47602	S	40175	N	W NE	15	1N	20E	0.0900	CFS	Р	IR	12/26/1975	A SPR	V
48653	S	40216	N	W NW	30	15	22E	0.1600	CFS	Ρ	IR	2/ 6/1976	ROCK CR	V
48654	S	40217	N	E SW	3	15	21E	0.5700	CFS	Ρ	IR	2/ 6/1976	ROCK CR	V
49027	S	40215	S	E SW	3	15	21E	0.5800	CFS	P	IR	2/ 6/1976	ROCK CR	V
56641	S	40235	N	W NE	10	15	21E	0.0900	CFS	Р	IR	2/19/1976	ROCK CR	V
47702	S	40468	S	W SE	11	1N	19E	0.5500	CFS	P	IR	3/ 1/1976	ROCK CR	V
0	S	40264	N	W NW	24	15	21E	0.5500	CFS	Р	IR	3/ 8/1976	ROCK CR	V
56645	S	40844	N	W SW	11	15	21E	0.1200	CFS	Р	IR	6/28/1976	ROCK CR	V
0	S	40864	S	W NW	32	15	22E	0.4200	CFS	Р	IR	7/ 8/1976	ROCK CR	V
54170	S	41208	N	W SW	11	15	21E	0.9900	CES	Р	IR	12/ 1/1976	ROCK CR	v
0	S	44677	N	W NE	14	15	21F	0.5700	CES	Р	IR	6/29/1979	ROCK CR	V
								0.2300						
									CES					
								26.0850	AFT					
								4.0000						
25573	D	25573			0	25	22E	0.000		Р	IR	12/31/1902	DRY CR	V
								=======================================						

.

۷

۷

PRIORITY STREAM NAME STATUS

12/31/1907 ROCK CR

Page	3														
• CERTI	FICATE	PERMIT	DLC LOT	1/4	1/4	SECTION	TOWNSH	IP RANGE	RATE	UNITS	P.A.S	USE	PRIORITY	STREAM NAME	STATUS
• 2 2 2	5618 D 4942 D 5917 D	25618 24942 25917				0 0 0	0 0 0	0 0 0	0.0000 0.0000 0.0000		P P P	LV IR IR	12/31/1880 12/31/1890 12/31/1898	S FK ROCK CR S FK ROCK CR S FK ROCK CR	V V V
• 2	5564 D	25564				0	45	22E	0.0000		Ρ	LV	12/31/1880	SIXMILE CAN	٧
• 2 2 2 2 2 2 2 2 2 5 2 2 3 4	5357 D 5358 D 5483 D 5483 D 5483 D 5483 D 7697 D 5617 D 7917 S 7803 S 0 S	25357 25358 25483 25483 25483 25483 25682 25617 33691 36175 41464		NE SE NW NE SW NW	NW SW SW NE SW	0 0 23 14 31 0 36 5 31	0 0 5 S 5 S 5 S 0 5 S 6 S 5 S	0 0 23E 23E 24E 0 23E 24E 24E 24E 24E	0 - 0000 0 - 0000 0 - 0000 0 - 0000 0 - 0000 0 - 0000 0 - 0000 1 - 3200 1 - 3800 0 - 7300	CFS CFS CFS	P P P P P P P P P	I* I* I* I I I I I R I R I R	12/31/1880 12/31/1880 12/31/1887 12/31/1887 12/31/1887 12/31/1887 12/31/1897 12/31/1897 12/31/1907 6/17/1968 4/21/1971 1/31/1977	LONE ROCK CR LONE ROCK CR LONE ROCK CR SPRINGS LONE ROCK CR LONE ROCK CR LONE ROCK CR LONE ROCK CR LONE ROCK CR	V V V V V V V V V V
•									3.4300) CFS					
• 2	5476 D	25476	2			6	65	24E	0.0000		Ρ	MU	9/ 5/1908	2 SPRINGS	٧
• 2 6	1648 S 3477 R	17353 9997		NW SE	NW NW	9 6	6S 7S	24E 25E	0.3000 3.3000 ======== 3.6000	CFS CFS) CFS	P P	IR LV	10/ 7/1946 8/30/1982	BROWN CR UNN STR	V V
• 22	4972 D 4973 D	24972 24973				10 10	65 65	24E 24E	0.0000		P P	IR IR	12/31/1884 12/31/1884	BIG DUTCH CAN BIG DUTCH CR	V V
• 6 6	1214 R 3945 S	9046 49154		N W N W	SW NW	27 27	65 65	24E 24E	0.0190 0.0030 ======= 0.0030 0.0190	AFT CFS CFS AFT	P P	L V L V	8/25/1983 8/25/1983	UNN STR PERRY SPR	V V
•	0 R 0 R	10161 10161	1 1	NW NW	NW NW	35 35	65 65	24E 24E	0 <u>1760</u> 0 <u>3000</u>	AFT AFT	P P	L W L W	12/ 7/1983 12/ 7/1983	UNN STR/OLD HO UNN STR/THUNDE	SS RES V RHD RS V

0

•

•

•

•

.

•

۲

۲

0

۲

0

.

.

•

0

•

0

0

-	Page 4															
•	CERTIFICATE	PERMIT	DLC LOT	1/4	1/4	SECTION	TOWNSHIP	RANGE	RATE	UNITS	P.A.S.	USE	PRIORITY	STREAM NAME	STATUS	
•	0 R 0 R 0 R 0 R	10161 10162 10163 10164		SE SE SW SW	NW SW SE SE	35 26 26 27	65 65 65 65	24E 24E 24E 24E 24E	0.1620 0.0510 0.0270 0.0740 ===================================	AFT AFT AFT AFT 0 AFT	P P P		12/ 7/1983 12/ 7/1983 12/ 7/1983 12/ 7/1983 12/ 7/1983	UNN STR/BRANDEN UNN STR UNN STR UNN STR	BRG R V V V V	
• • •	63464 R 0 R 0 R 61210 R 61211 R	9984 10105 10107 9042 9043		NW NE NE SE NE	SW NW SW SE NW	1 2 6 35 7	7S 7S 7S 6S 7S	24E 24E 25E 24E 25E	0.3600 0.0950 0.0420 0.1080 0.0810 ====== 0.360 0.326	CFS AFT AFT AFT AFT 0 CFS 0 AFT	P P P P	LV LW LV LV	8/30/1982 9/30/1982 9/30/1982 8/25/1983 8/25/1983	UNN STR UNN STR UNN STR CRAWFORD CR CRAWFORD CR	V V V V V	
•	61212 R 61213 R	9044 9045		NW NE	SW NW	12 11	7S 7S	24E 24E	0.0570 0.0450 ===== 0.102	AFT AFT 0 AFT	P P	LV LW	8/25/1983 8/25/1983	UNN STR UNN STR	V V	
•	25357 D 25358 D 25683 D 25683 D	25357 25358 25683 25683		SW NW NW	SW SE NW	5 8 14 24	65 65 65 65	24E 24E 23E 23E	0.0000 0.0000 0.0000 0.0000		P P P P	I* I* DS DS	12/31/1880 12/31/1880 12/31/1886 12/31/1886	A SPR A SPR A SPR A SPR	V V V V	
•	0 R 0 R 0 R 0 R	10118 10160 10160 10119		NW SW NE NW	NE SW SW SE	33 27 28 28	65 65 65 65	24E 24E 24E 24E 24E	0.0200 0.0180 0.0590 0.0140 ========= 0.111	AFT AFT AFT AFT 0 AFT	P P P P	LW LW LW LW	9/30/1982 12/ 7/1983 12/ 7/1983 12/19/1983	UNN STR UNN STR/ROCKY R UNN STR/SEDGE R UNN STR	ES V ES V V	
•	61222 R 61222 R	9055 9055		NW SE	SW NE	4 8	7S 7S	24E 24E	0.3380 0.0360 ========= 0.374	AFT AFT 0 AFT	P P	L V L V	8/25/1983 8/25/1983	UNN STR/YELLOW UNN STR/TOWER P	J RES V OND R V	
•	0 R	10103		NE	NE	8	75	24E	0.0180 ===================================	AFT 0 AFT	Ρ	LW	9/30/1982	UNN STR	V	

•

Page 5

•	CERTIFICAT	E -	PERMIT	DLC LOT	1/4	1/4	SECTION	TOWNSHIP	RANGE		RATE	UNITS	P.A.S.	USE	PRIORITY	STREAM NAME STA	TUS
•	0 0	RR	9057 9057		S W N E	NW NW	10 9	75 75	24E 24E	====	0.0070 0.0150 ===== 0.0220	AFT AFT	P P	L V L V	8/25/1983 8/25/1983	UNN STR/UP STAHL RS UNN STR/W STAHL P RS	V 5 V
•	0 0	RR	9056 9056		SW SE	SW NE	3 4	75 75	24E 24E	====	0.0320 0.0220 ====== 0.0540	AFT AFT AFT	P P	L V L V	8/25/1983 8/25/1983	UNN STR/E STAHL PON UNN.STR/LWR STAHL R) V 5 V
•	0 0	R R	10104 10127		NE SW	NW NW	11 11	75 75	23E 23E		0.0270 0.0080 ====== 0.0350	AFT AFT AFT	P P	LW LW	9/30/1982 9/30/1982	UNN STR UNN STR	V V
•	38984	S	33692		SE	NW	16	65	25E		3.6800 ====== 3.6800	CFS CFS	Ρ	IR	6/17/1968	E FK JUNIPER CR	٧
•	38723 38723	R R	4645 4645		N W N W	SW SW	31 31	5 S 5 S	25E 25E		0.0600 0.1200 ====== 0.1800	AFT AFT AFT	P P	L V L V	8/26/1965 10/26/1965	LONG HOL LONG HOL	V V
•	0 63379	R R	6209 9605		N E N W	NW SE	19 12	65 65	26E 26E	====	3.5000 0.2400 ====== 0.2400 3.5000	AFT CFS CFS AFT	P P	L V L W	8/29/1973 10/11/1982	UNN STR UNN STR	V V
•	24850 61303	D R	24850 9365		SW	NW	0 31	0 5 S	0 27E	====;	0.0000 0.0320 ===== 0.0320	AFT AFT	P P	IR LV	12/31/1890 6/18/1982	TUPPER CR TUPPER CR	V V
•	0	R	9090		SW	SW	29	55	27E	====;	0.0445 ====== 0.0445	AFT AFT	Ρ	LW	1/17/1983	UNN STR	٧
•	61206	R	9038		SE	NE	14	65	26E		0.0150	AFT	Ρ	LV	8/25/1983	WESLER CAN	٧
•																	
---------------------	------------																
Page 6																	
rage 0 =====																	
	0.0150 AFT																
TOTALS	•																
TOTAL CFS: 37-3980																	
• TOTAL AFT: 9.6225	•																
•	C																
•	•																
•																	
•																	
•																	
•																	
•																	
•																	
•																	
	•																

70251

Water Availability Analysis Rock Cr. at Mouth

20251

Water Availability Rock Cr. at Mouth

WATER AVAILABILITY TABULATION NATURAL Flow

.. .

Rock Cr.	Rock Cr. at Mouth 50									
Months	Pred59	Pred2	Inswr	WA5	WA2					
JAN	40.1	122.6	0.0	40.1	122.6					
FEB	71.9	250.2	0.0	71.9	250.2					
MAR	118.9	373.0	0.0	118.9	373.0					
APR	96.7	235.5	0.0	96.7	235.5					
MAY	57.1	88.1	0.0	57.1	88.1					
JUN	18.4	33.6	0.0	18.4	33.6					
JUL	3.6	8.1	0.0	3.6	8.1					
AUG	1.0	3.1	0.0	1.0	3.1					
SEP	1.4	3.4	0.0	1.4	3.4					
OCT	2.0	4.8	0.0	2.0	4.8					
NOV	6.3	14.5	0.0	6.3	14.5					
DEC	16.8	42.5	0.0	16.8	42.5					

- 6.0 = Basin No.522.0 = Drainage Area
- 16.0 = Precipitation
- 0.0 = WR Index

DEAN MONTHLY FLOWS FOR ROCK CREEK, TRIB JOHN DAY RIVER BASED ON BEAVER CREEK NEAR PAULINA, GAGE 14-0780

	MEAN	a	A	S	St	E	
			522.00	57.90	1.42	4.60	
OCT	94.47	.00134	93.98	1.00	.61	1.00	
VOV	52.81	.00303	214.67	1.00	.85	1.00	
DEC	135.64	.00328	241.77	1.00	.90	1.00	
JAN	127.54	.11	306.67	1.00	1.00	1.00	
FEB	205.71	.928	345.39	1.00	1.00	1.00	
MAR	302.56	4.26	188.23	1.00	1.00	.06	
APR	816.51	.0202	351.93	1.00	.84	1.00	
MAY	681.61	.0195	472.27	2.99	.88	1.00	
JUN	1027.88	2.82e-8	408.96	1.00	.77	137.84	
JUL	196.37	.00541	61.03	1.00	.77	1.00	
AUG	93.70	.00129	67.03	1.00	.60	1.00	
SEP	84.73	.000965	88.28	1.00	.57	1.00	

BASIN SUMMARY REPORT

.

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

•

•

•

•

•

•

.

0

•

ROCK CR TRIBUTARY OF JOHN DAY R

*

• SOURCE > TRIBUTARY	TOTAL DIVERTED	AGRIC.	INDUST.	MUNIC.	DOMEST.	RECREAT.	MISC.	UNKNOWN
• ROCK CR > JOHN DAY R	26.08 CFS 4.00 ACF	25.99	0.00	0.00	0.00 0.00	0.00 0.00	0.104.00	48
• DRY CR > ROCK CR	0.00 CFS 0.00 ACF	0 = 0 0 0 = 0 0	0.00	0.00	0.00	0.00	0.00	1
S FK ROCK CR > ROCK CR	0.00 CFS 0.00 ACF	0.00	0.00	0.00	0.00	0.00	0.00	3
• SIXMILE CAN > ROCK CR	0.00 CFS 0.00 ACF	0.00	0.00	0.00	0.00	0.00	0 = 0 0 0 = 0 0	1
• LONE ROCK CR > ROCK CR	3.43 CFS 0.00 ACF	3.43 0.00	0.00	0.00	0.00	0.00	0.00	7
JOHNSON CR > LONE ROCK CR	0.00 CFS 0.00 ACF	0 = 00 0 = 00	0.00	0.00	0.00	0.00	0.00	1
BROWN CR > LONE ROCK CR	3.60 CFS 0.00 ACF	3 - 60 0 - 00	0.00 0.00	0.00	0.00	0.00	0.00	0
BIG DUTCH CAN > BROWN CR	0.00 CFS 0.00 ACF	0 = 00 0 = 00	0.00	0.00	0_00 0_00	0.00	0.00	2
• UNN STR > BROWN CR	0.00 CFS 0.02 ACF	0.00 0.02	0.00	0.00	0.00 0.00	0.00	0.00	0
DRY FK > BROWN CR	0.00 CFS 0.79 ACF	0 <u>0</u> 00 0 <u>79</u>	0.00 0.00	0.00	0.00	0 _ 0 0 0 _ 0 0	0 = 0 0 0 = 0 0	0
• CRAWFORD CR > BROWN CR	0.36 CFS 0.33 ACF	0 36 0 33	0.00	0.00	0.00 0.00	0.00	0.00	0
• UNN STR > CRAWFORD CR	0.00 CFS 0.10 ACF	0.00 0.10	0.00	0.00	0.00	0.00	0.00	0
BUCKHORN CR > LONE ROCK CR	0.00 CFS 0.00 ACF	0.00	0.00	0 = 0 0 0 = 0 0	0.00	0.00	0.00	4
• STAHL CAN > BUCKHORN CR	0.00 CFS 0.11 ACF	0.00 0.11	0.00	0.00	0.00	0.00	0.00	0
• UNN STR > WINELAND CAN	0.00 CFS 0.37 ACF	0.00 0.37	0.00	0 = 0 0 0 = 0 0	0.00	0.00	0.00	0
• UNN STR > WINELAND CAN	0.00 CFS 0.02 ACF	0.00	0.00	0 = 0 0 0 = 0 0	0.00	0.00	0.00	0
UNN STR > STAHL CAN	0.00 CFS 0.02 ACF	0.00	0.00	0.00	0.00	0.00	0.00	0

BASIN SUMMARY REPORT

Page 2	ROCK CR TRIBUTARY OF	JOHN DAY	R					
SOURCE > TRIBUTARY	TOTAL DIVERTED	AGRIC.	INDUST.	MUNIC.	DOMEST.	RECREAT.	MISC.	UNKNOWN
UNN STR > STAHL CAN	0.00 CFS 0.05 ACF	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0
UNN STR > BUCKHORN CR	0.00 CFS 0.04 ACF	0.00 0.04	0.00	0.00	0.00	0.00 0.00	0.00	0
E FK JUNIPER CR > JUNIPER CR	3.68 CFS 0.00 ACF	3.68	0.00	0.00	0.00	0.00	0.00	0
LONG HOL > M FK ROCK CR	0.00 CFS 0.18 ACF	0.00 0.18	0.00	0.00	0.00	0.00 0.00	0.00	0
INDIAN CR > CHAPIN CR	0.24 CFS 3.50 ACF	0.24 3.50	0.00	0.00	0.00	0.00	0.00	0
TUPPER CR > ROCK CR	0.00 CFS 0.03 ACF	0.00 0.03	0.00	0.00	0 _ 0 0 0 _ 0 0	0.00	0.00	1
HOLLYWOOD CR > TUPPER CR	0.00 CFS 0.04 ACF	0 <u>0</u> 0 0 0 <u>0</u> 0 4	0.00	0.00	0.00	0 = 0 0 0 = 0 0	0.00	0
WESLER CAN > ROCK CR	0.00 CFS 0.01 ACF	0.00	0.00	0.00	0.00	0.00	0.00	0

{

0

•

•

•

۲

۲

0

BASIN SUMMARY REPORT ROCK CR TRIBUTARY OF JOHN DAY R # 2025/

TOTAL DIVERTED

TOTAL CFS: 37.40 TOTAL ACF: 9.62

Page 3

37.40

TOTALS BY USE

•	AGRICULTURE	INDUSTRIAL	MUNICIPAL	DOMESTIC	RECREATIONAL	MISCELLANEOUS
(CFS)	37.30	0.00	0.00	0.00	0.00	0.10
(ACF)	5.62	0.00	0.00	0.00	0.00	4.00

										70	251	
Report	for station	14047200					· · ·			l		
ROCK CR	REEK AB WHYTH	E PARK NE	CONDON, OR	EG.								
GMEAN DI	SCHARGE								0		ł	
0Number	of years ret	trieved is	5 16			UTT DARK N	R CONDAN	5	1 40.0		read	
9	STAT MFAI	LION 1404	1/390	ROCK C	REEK AB WH	YIE PART I	CONDON, O	REG. K	p. v in	las to cu		
	Star	tistics or	n Normal m	onthiv mea	ng (Ail da	YE)		1	9758 000	,975 000		
								0	~ ~ ~ ~	1		
	Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug	Sept
	By rows (Nu	umber, Mea	an. Varian	ce. Standa	rd Deviati	on, Skewne	ss, Coeffi	clent of Va	riation.	Percentage	of Average	Value)
ØNumber	14.00	14.00	14.20	14.20	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
OMean	5.39	14.88	45.06	71.37	154.23	212.79	132.24	62.34	17.79	4.10	2.40	2.81
OVar	19.07	176.11	2238.22	2563.35	15526.32	21791.44	10665.82	5714.94	451.96	14.24	4.79	6.62
OStd	4.37	13.27	47.31	50.63	124.60	147.62	103.28	75.60	21.26	3.77	2.19	2.57
USKew	0.75	2.14	2.27	0.22	1.09	6.34	1.49	2.70	2.68	1.74	1.06	1.56
OCVAL	0.81	0.89	1.05	0.71	6.81	20 33	6.78	1.21	1.19	0.32	0.31	0.31
1	Sta	z.05	47.390	POCK C	REEK AR WH	YTE PARK N	E CONDON O	8.59 RFG	2.45	0.57	0.00	0.09
0	MEAL	N DISCHARO	GE	NOON C	KEEK ND HI	112 11111 1	e compon, or	MLC.				
	Quar	rtiles of	Normal mos	nthly mean	s (All day	2)						
		C+								-		
G		OCT		NOA		Dec Twenty-	Fifth Perce	Jan		reb	E.	arcn
		2.18		6.25		15.4	1100 10100	29.7		58.4		73.8
0						Fifti	eth Percent	tile				
		3.43		10.8		27.2		55.8	1	124.6	2.	20.9
9		9 61		21 3		Seventy	-Fifth Perc	centile		220 0	3	25 3
		5.01		21.0		5:.5		120.2	-	200.0	0.	20.0
	A	oril		May		June		July		Aug	:	Sept
0						Twenty-	Fifth Perce	entile				
	-	55.8		24.5		6.41		1.51		.683		1.81
9	1 7			20.0		Fifti	eth Percent	tile		1 10		
9	13	12.0		30.9		11.9	Rifth Dar	3.32		1.58		2.92
	16	59.4		65.1		16.9	-Filon Fer	4.75		4.13		4 77
1	Stat	tion 1404	17390	ROCK CI	REEK AB WH	YTE PARK NI	R CONDON, OI	REG.				
0	MEAN	DISCHARC	GE			mick m						
	Quar	ctiles of	Normal and	nual means	(All days)						
0	T	nto Dift	Demantit	10								
9	1 % 6	20 g	Fercentl	Le								
9	Fi	Litieth Pe	ercentile						4			
		55.3					1A, 10as	0	59-			
0	Seve	enty-Fifth	Percentil	e			144	gunnel	-			
		73.6					ave					

NOTE -- PERCENTILES BASED ON AVAILABLE DATA.

DATE	LOCATION	GAGE-HEIGHT	DISCHARGE SECOND-FEET
Mar. 10, 1966	SE4SW4 sec.15, T.2 S., R.22 E.,		153
Oct. 25, 1966	above bridge Sec.36, T.3 S., R. 22 E., ab bridge		
Oct 01 7011	Hwy 206		3.47
000. 20, 1966	Sec.6, T.4 S., R.23 E., at Murtah Ranch		0.67
Dec. 6, 1966	Sec.26, T.2 S., R.22 E., bl Dry Cr.		51.6
do	Sec.15, T.2 S., R.22 E., 9/10 mile		50.7
Dec. 3, 1970	$SE_{\mu}^{1}SW_{\mu}^{1}$ sec.15, T.2 S., R.22 E.		14.6
Dec. 3, 1970	NE_{14}^{1} sec.10, T.1 S., R.21 E.		13.1
Mar.25, 1971	NWINEI sec.10, T.1 S.,R.21 E.		284
Mar 26, 1971	NWTNET sec.13, T.1 N., R.19 E.		277
Mar.26, 1971	$SE_{1}^{L}SW_{1}^{L}$ sec.15, T.1 N., R.20 E.		245
May 25, 1971	$SE_{4}^{I}SW_{4}^{I}$ sec.15, T.2 S., R.22 E.		9.34
do	$NW_{4}^{\perp}NE_{4}^{\perp}$ sec.10, T.1 S., R.21 E.		9.28
Oct. 28, 1975	NW4NE4 sec.10, T.1 S., R.21 E. at		0.52
Nov. 25, 1975	Hwy brdg at Olex		0.84
	1 tran		
STATE PRINTING 50716		_	
	bace		

	LOCATION	GAGE-HEIGHT	DISCHARGE SECOND-FEET
June 6, 1976 June 22, 1976 Aug. 24, 1976	do do do		0.77 0.77 2.21
Aug. 24, 1976 Oct.28, 1975 Dec. 23, 1976 Jan. 27, 1976 Feb. 25, 1976 Mar. 23, 1976 May 6, 1976 May 24, 1976 June 9, 1976 June 22, 1976 July 27, 1976 Aug. 24, 1976	SW4NE4 sec.24, T.1 N., R.20 E., 6 mi nw of Olex do do do do do do do do do do do do do		0.38 0.30 0.51 38.0 31.5 107 20.8 0.20 2.0 1.19 0.51 0.43
SP*23940-119	1	1	

HISCELLANEOUS ST	TRIBUTARY TO OR DIVERTING FROM		COUNTY
MEASUREMENT NO. D	D4 17070201		
	John Day River	Grant	Co
Rock Creek	LOGATION	GAGE-HEIGHT	DISCHARGE SECOND-FEET
DATE			-
a 1 77 7010	Mouth, 6 mi northwest of Dayville		0
Sept. 1/, 1949	Mouth		0.8 Est
Aug. 31, 1951	Mouth in Et sec. 18. T.12 S., R.26		0.36
Aug. 23, 1951	Moutin, In 12 booties, and		0.83
Aug.4, 1952	do		20.4
Auly 15, 1953			2.15
Sept. 8, 1953	do		* 1.5 Est
July 27, 1955			
	Drainage area, 292		1 0 03
Sent. 18, 1956	0.5 mi abo mouth		* 9.00
July 16 1057	At mouth		10.0
July 10, 1991	do		3.30
Aug. 10, 1959			2.19
Aug. 12, 1960	NE4 sec.21, T.12 S., R.25 E.	mi	
July 18, 1961	NEt sec. 18, T.12 S., R.20 E., 0.9	all >	7 07
	horthwest of Dayville(292 sq mi Dr.	Ar.)	1.01
1110 24 1962			1.05
Tul 70 1067			7.22
July 30, 1903			38.0
Jan. 6, 1964			32 6
Feb. 11. 1964			12.0

0.17 0.56 0.56 0.56 0.55 32.8 0.55 38.0 32.8 0.55 38.0 38.0 38.0 55 38.0 55 38.0 55 38.0 55 38.0 55 38.0 55 55 38.0 55 55 55 55 55 55 55 55 55 55 55 55 55	GAGE-HEIGHT	Ĵŝ) E*	R.20	••N	0p 0p 0p 0p 0p 0p	° <u>c</u>	ec.le	ላን ይኒ. ለጉ ይኒ.	서H V ⁹ EMS	926 926 926 926 926 926 926 926 926 926	L 'L' L 'Z' L 'Z' Sol ' Sol ' ' Sol ' ' Sol ' ' ' Sol ' ' Sol ' ' ' ' Sol ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	2226	to0 νοΝ πεύ γελ γελ γελ γεν γεν γεν γεν γεν γεν γεν γεν γεν γεν
тииоэ ШБГГГРД	E	25	ЕВОМ	1 Ver	A KE			іят 	h	C wya	ars) &	Cree	K I	BOC
	1-													

MISCELLANEOUS MEASUREMENT No. BO Rock Creek	EAM DY 17070 204 JOHN DAY RIVER	3 ³	
NOCK OF CCK		GAGE-HEIGHT	DISCHARGE
DATE	LOCATION	FEET	SECOND-FEET
Dec. 23, 1975 Jan. 27, 1976 Feb. 25, 1976 Mar. 23, 1976 May 6, 1976 May 26, 1976 June 7, 1976 June 22, 1976 July 27, 1976 Aug. 24, 1976 Dec. 23, 1975 Jan. 27, 1976 Feb. 25, 1976 Mar. 23, 1976 May 6, 1976 May 26, 1976 June 6	NW¼NE¼ sec.10, T.1 S., R.21 E. do do do do do do do do do do		6.49 41.2 34.7 114 33.2 13.6 6.22 2.96 0.40 5.09 4.32 37.6 31.7 108 32.4 9.65

MISCELLANEOUS MEASUREMENT NO. 3 6	DY TRIBUTARY TO OR DIVERTING FROM (C JOhn Day River	63 Gill	COUNTY
ROCK OF BER		GAGE-HEIGHT	DISCHARGE
DATE	LOCATION	FEET	SECOND-FEET
Apr. 28, 1931	At Condon		14.1
May 24, 1934	Bl springs .5 mi ab West's Dam, 2.3		1 1
	mi ab mouth, nr klondike		1.1
May 24, 1934	300 yds ab West's dain		1.1
June 1948	At mouth, nr Rock Creek station		* 163
Nov. 10. 1965	SWANWA sec. 32, T.1 S., R.22 E.,		4.33
Mar. 8, 1966	NEISWI sec. 36, T.3 S., R.22 E. ab		
Mai . 0, 1/00	Heppner Condon Hwy		2].11
Mar. 8, 1966	SEASEA sec.22, T.2 S., R.22 E., bl		
1101. 09 2700	Dry Cr., nr Dam site (Condon)		21.5
Mar. 8, 1966	SW1NE1 sec.24, T.1 S., R.21 E.,		
	nr Condon		19.9
ob	SEANWA sec. 32, T.1 N., R.21 E., 300		
uo	ft bl barn.		18.2
do	NE1NW1 sec.24, T.1 N., R.20 E., ab		
uo	Rock Cr. 2.5 mi.		17.8
do	SWHNEH sec. 15. T.1 N., R.20 E.,		
·	Rock Creek, 30 ft ab bridge		35.5

RECEIVI	ED .	STATE OF ORECON	
AUG 1 2 199	1 WATER F	RESOURCES DEPART	MENT
SALEM, OREGO	Application	for Instream W	ater Right OREGC
ie veli pr	2 pissto more r by	a State Agency	int capities in entrer ofs
	There is	no fee required for this applicati	on.
AApplicant:	Randy Fisher	for_ <u></u> _	egon Deptof Fish & Wildlife (Agency)
Mailing Add	ress: 2501 S.W. F	irst Ave., P. O. Box	59
	Portland City	OR 97 State 2	7207 229-5400 Ext. 438 Op Phone No:
3. Applicant:		for	
Mailing Add	(Director)		(Agency)
	City	State Z	p Phone No.
C. Applicant:		for	
	(Director)		(Agency)
Mailing Add	ess:		
	City	State Z	p Phone No.
. The name of Rock	stream or lake of the Creek	proposed instream wate	er right is
a tributary or	source (if lake) of	John Day River	•
. The public us	e(s) this instream wa	ter right is based upon i	nclude:
Upstream	passage of adult a	and juvenile fish incl	uding summer steelhead and

1

~

er ex

:

Instream Application No. ______

CARCELLAND CONSIGNAD DUTA C

Certificate No.

3. The amount of water needed by month and/or year for each category of public use. If more space is needed, use a separate sheet of paper. avitability of A

List	quantiti	es in ei	ther cf	s, acre	-feet, c	r lake e	elevati	on abo	ve Mea	n Sea	Level	
Use(s)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept.	Oct	Nov	Dec
Migration	of Anad	romous	fish	and re	sident	fish		* 13				
	34	57	57	57	57	34	34	34	34	34		.34
				•	• • •			the Analysis	* *** **** ***		•	
										2250	oh mm	1.24
				•								

4. The reach of the stream identified for an instream water right is from the:

upstream end at USGS Guaging station @ White Park (Station #14047390) ...

- River Mile (if known) RM 40.0
 - within the _____ 1/4 of the _____ SW___ 1/4 of ._____
 - Section ______ Township ______ Range _____ 22E ____ W.M.,
- County _____Gilliam _____.

downstream end at _____ The mouth

River Mile (if known) _____0.0

within the _____ NE__ 1/4 of the _____ SW___ 1/4 of

Section _____ Township ____N Range ____9E ___W.M., County _____Gilliam _____.

Lake identified for an instream water right is

within the _____ 1/4 of the _____ 1/4 of

Section _____ Township _____ Range _____ W.M., County _____

5. Method(s) used to determine the requested amounts:

<u>Elow required to operate proposed fish passage facilities during migration</u> <u>period for adults and juveniles. Required flows are based on engineering determin</u> <u>using USGS data and passage facility design.</u>

stroom	Anotantia	A la
Nu balli	ADDICALION	NO.

Certificate No.

6. When were the following state agencies notified of the intent to file for the instream water right?

Department of Environmental Quality	Date <u>2-7-90</u>
Department of Fish and Wildlife	Date
Parks and Recreation Division and Diversion	Date Date Descut227-90in them equilate be and the
	The state of the Out Dist, Added the filles
· · · · · · · · · · · · · · · ·	and the state of the second
7. If possible, include recommendations for mea	suring locations or methods:

Measure @ USGS station 14047390 and by staff gauge @ the mouth RM 0.0

and the constant of press and press and press and the second second second second second second second second s

8. If possible, include recommendations for assisting the Water Resources Department (WRD) in measuring and monitoring procedures:

_local_watermaster_will_measure w/ periodic_assistance_from_ODEW__Monitoring____ plan to be developed.

If possible, include other recommendations for methods or conditions necessary for managing the water right to protect the public uses (see OAR 690-77-020 (5)(c)): Monitoring plan to be developed.

Remarks: The Department of Fish and Wildlife is aggressively persuing the completion of a series of passage facilities at eight existing irrigation diversion structures. Once adult steelhead have access to the upper reaches of Rock Creek we expect an annual return of 1000 adults. Upstream passage of juvenile fish will be a critical component of the passage facilities function.

This application must be accompanied by a basin map with the applicable lake or stream reach identified.

An instream water right may be allowed for an instream beneficial use of water subject to existing water rights with an effective date prior to the filing date of this application.

This type of beneficial use is for the benefit of the public and a certificate issued confirming an instream water right shall be held in trust by the Water Resources Department for the people of the State of Oregon, pursuant to ORS 537.341.

3/21/90

Agency

Mancy M. Machush Signature

Oregon Dept. of Fish & Wildlife Assistant Director Title

70%	ani entrati a construit a	. estiles componistion en	name and principal and france
		ati yashi Ismamoni	mitte memoringett
This is to certifing maps and the	y that I have examined the, lata, and return them for:	foregoing application, toget	her with the accompa
	enhadenen en analian i ani		
In order to re	tain its priority, this applic	cation must be returned t	o the Water Resour
Department wi	th corrections on or before	and a second paralleline bas	ponuseron autoria
Date:	, 19	· · · · · · · ·	······································
•		· • • • • • • • • • • • • • • • • • • •	· · · · ·
	and can a car a c a me contain a car a	Water Resource	s Department
		Title	
	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·
	and a second second		Arige and Arisin
-			
	have been a set of the set of the set of the	e in the side of the second	
This document the 2151	was first received at the Wa day of	ater Resources Department 19 $\underline{90}$, at $\underline{2:50}$	in Salem, Oregon, or o'clock N
a da anti-			
			d als trained to the
in the states	Liber Chinattis and a down	a set of a s	

R 20 E

R 22 E

RECEIPT # 7	STATE OF WATER RESOURC 158 12TH SALEM, OR 378-8455 / 378	OREGON ES DEPARTM ST. N.E. 97310-0210 3-8130 (FAX)	ENT INVOICE #.	
RECEIVED FROM	M: Moon Consul	ting	APPLICATION	70251
BY:		1	PERMIT	
			TRANSFER	
CASH: CHE	CK: # OTHER: (IDENTIFY)	T	OTAL REC'D	\$200 ²⁰
0417	WRD MISC CASH ACCT			A State State
	ADJUDICATIONS			s
	PUBLICATIONS / MAPS	VED		s
	OTHER: (IDENTIFY RECEI	COUNTER		s
	OTHER: ONER THE	LUUM		s
BEDUC	TION OF EXPENSE			
ILLDOO	THOM OF EXI ENDE	CASH AC	CT.	s
	PCA AND OBJECT CLASS	VOUCHE	R #	<u> </u>
0427	WRD OPERATING ACCT			
	MISCELLANEOUS			
0407	COPY & TAPE FEES			5
0410	RESEARCH FEES			S
0408	MISC REVENUE: (IDENTIFY)	A STATE OF A		s
10105	DEPOSIT LIAB. (IDENTIFT)		San Star	÷
	WATER RIGHTS:	EXAM FEE		RECORD FEE
0201	SURFACE WATER	S	0202	S
0203	GROUND WATER	\$	0204	S
0205	TRANSFER	\$	0206	S
	WELL CONSTRUCTION	EXAMPLE	0219	CICENSE FEE
0218	LANDOWNER'S REPAIL	5	0220	s
0223	OTHER (IDENTIFY)	otest	-\$1	00000
0437	WELL CONST. START FEE		-	
0211	WELL CONST START FEE	S	CARD #	
0210	MONITORING WELLS	S	CARD #	and the second
1.1	OTHER (IDENTIFY)	-		
0539	LOTTERY PROCEEDS			CHARLES
1302	LOTTERY PROCEEDS			S
0467	HYDRO ACTIVITY	LIC NUMBER		
0233	POWER LICENSE FEE (FW/WRD)			S
0231	HYDRO LICENSE FEE (FW/WRD)			\$
	HRDRO APPLICATION	5.000 CC2		S
RECEIPT # 7	176 DATED: 10	- 4-96 opy-Fiscal, Blue Copy	BY:	Stan

DEPARTMENT OF FISH AND WILDLIFE 2501 SW First Ave., P.O. Box 59 Portland, Oregon 97207

1

Mike Mattick Water Resources Dept. 158 12th Street, NE Salem, OR 97310

97310-0705

Helialanda Harallillanda and Haralda helialada helialada

INS MODEL
Application No.
Permit No
3-21-90
Name OR Dept. of Fish & Wildlife
Address PO Box 59, Portland, OR 97207
Assigned
Address
Beginning construction
Completion of construction
Extended to
Complete application of water
Extended to

Form 111