PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights S	ection				D	ate	Augu	<u>st 21, 20</u>	015			
FRO	М·	Groun	ndwater So	ection		Aurora C. Bouchier									
SUBJ	IECT:	Applie	cation G-	<u>18076</u>		Reviewer's Name Supersedes review of August 12, 2015 Date of Review(s)									
PUB OAR welfan to dete the pro	PUBLIC INTEREST PRESUMPTION; GROUNDWATER OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation. A. GENERAL INFORMATION: Applicant's Name: Meza County: Clackamas														
A1.	A1. Applicant(s) seek(s) <u>0.25</u> cfs (112 gpm) from <u>2</u> well(s) in the <u>Willamette</u> Basin, 														
A2. A3.	 A2. Proposed use <u>Irrigation of 20 acres</u> Seasonality: <u>March 1 – October 31</u> A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid): 														
Well	Logie	đ	Applicant Well #	's Propos	ed Aquifer*	Prop Rate	Proposed La Rate(cfs) (T/R		Location Loc (T/R-S OO-O) 22:		ation, metes and bounds, e.g. 0' N, 1200' E fr NW cor S 36				
1	CLAC 2	150	1	A	lluvium	0.2	25	T5S/R1W-14-NWSE		50:	5' S, 100' E	fr CENTE	R S 14		
2	PROPOS	SED	2	A	lluvium	0.2	25	T5S/R1W-1	4-NWSE	87	'5' S, 80' E	fr CNETEF	R S 14		
4															
5															
* Allu	vium, CRB,	Bedrock													
Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perfor Or Sc (fr	ations reens t)	Well Yield (gpm)	Draw Down (ft)	Test Type		
1	190	18	47	November 1972	89	0-32	0-89				35	27	Bailer		
2	190			-, 12	160(+/-)	0-40	160(+/-)		120-)-160					

A4. **Comments:** For the proposed well, the application provides distances from the property corner rather than the center of the section. The application does not provide meets and bounds for the existing well. The meets and bounds provided in this review are estimated based on the information provided. There are some discrepancies between the well log for CLAC 2150 and this application. These include inconsistent quarter-quarters and a note on the well lot stating that the well is locate "20 ft from SE corner of house". Other well logs in the immediate area provide similar lithology.

For the purpose of this review, the full rate is evaluated at each well rather than being distributed between the wells.

A5. **Provisions of the** <u>Willamette</u> Basin rules relative to the development, classification and/or management of groundwater hydraulically connected to surface water **are**, *or* **are not**, activated by this application. (Not all basin rules contain such provisions.) Comments: <u>The applicant's wells are greater than ¹/₄ mile from a perennial surface water body, so the pertinent basin rules (OAR 690-502-0240) do not apply.</u>

_____, ____, ____, ____, tap(s) an aquifer limited by an administrative restriction.

A6. Well(s)

 Well(s) # ______, _____, _____, _____, _____

 Name of administrative area: ________, ______

 Comments: ________

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. **is** over appropriated, **is not** over appropriated, *or* **is cannot be determined to be** over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **Will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. **will not** *or* **will** likely to be available within the capacity of the groundwater resource; or
 - d. **will, if properly conditioned**, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) Please see notes in B3
 - ii. The permit should be conditioned as indicated in item 2 below.
 - iii. The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;

b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;

- c. Condition to allow groundwater production only from the groundwater reservoir between approximately ______ ft. and ______ ft. below land surface;
- d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks:

Over 900 feet of alluvial sediments occur beneath land surface in the vicinity of the proposed POA. The water table occurs 30-60 feet below land surface in this region. Productive sand and gravel beds occur throughout the sequence separated layers of lower permeability silts and clay which progressively confine deeper water-bearing zones (Gannet and Caldwell, 1998, and Woodward et al., 1998).

Observation from nearby wells indicate relatively stable long-term trends for alluvial wells in the immediate vicinity of the proposed POA (see attached hydrograph), but increased groundwater development in the area indicates a need for additional water-level monitoring (7N) if this permit is issued. According to the Water Master Joel Plahn (personal communication, 8/12/2015) both Butte Creek and the Pudding River (which Butte Creek is tributary to), are currently regulated. Any additional withdrawals from the streams would be undesirable.

3

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium	\boxtimes	
2	Alluvium	\boxtimes	

Basis for aquifer confinement evaluation: The well logs for nearby wells indicate static water levels above the water-bearing zones. Published maps of the groundwater table corroborate this (Woodward et al., 1998).

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO	
1	1	Butte Creek	~140	~105- 120	2,220			
2	1	Butte Creek	~140	~105- 120	2,030			

Basis for aquifer hydraulic connection evaluation: : <u>Published water-table maps indicate that groundwater in the alluvial</u> aquifer flows toward, and discharges to, Butte Creek (Woodward et al., 1998).

Water Availability Basin the well(s) are located within: <u>69799 (BUTTE CR< PUDDING R- AT MOUTH)</u>

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked ⊠ box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			69799	12	\square	9.78	\boxtimes	12.6%	\boxtimes
2	1			69799	12	\square	9.78	\boxtimes	13.3%	\boxtimes

C3b. **690-09-040 (4):** Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #		Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: <u>Stream depletion was estimated using the Hunt 2003 model (see attached results). An aquifer saturated thickness value of 40 feet was used based upon published maps (Gannet and Caldwell, 1998). Butte Creek cuts through the Willamette Silt in this region. Therefore, stream clogging was modeled by using an aquitard thickness below stream value of 3 feet.</u>

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
Distail	utod Woll	a											
Well	SW#	Ian	Feb	Mar	Apr	May	Iun	In1	Aug	Sen	Oct	Nov	Dec
wen	5₩#	Ja11 0/	1.60		Api ø/	1v1ay	Juli 0/	Jui 0/	Aug	sep ø/	000	1NUV 0/	Dec
Wall O		70	-70	70	70	70	70	70	70	-70	70	70	70
Interfer	as CFS												
Interfere		0/.	0/2	0/_	0/_	0/_	0/_	0/-	0/-	0/2	0/_	0/_	0/-
Well O) as CES	/0	/0	/0	/0	/0	/0	/0	/0	/0	/0	/0	/0
Interfere	ence CES												
merren		%	0/2	%	%	%	%	0/2	0/2	%	%	%	0/2
Well O) as CFS	70	70	70	70	70	70	70	70	70	70	70	70
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well O) as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
	4.11.4 8												
$(\mathbf{A}) = \mathbf{T}0$	tai Interf.												
$(\mathbf{B}) = 80$	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = ($(\mathbf{A}) > (\mathbf{C})$	\checkmark	\checkmark	\checkmark	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	\checkmark		~	$\overline{\checkmark}$	~	\checkmark
(E) = (A)	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%
$(\mathbf{L}) = (\mathbf{A})$, D) A 100	/3	,0	/3	, 3	, 3	, 3	/3	,0	, 3	× 9	/3	/3

Application G-18076	Date: August 21, 2015	Page	5
 (A) = total interference as CFS; (B) = WAB calculated natural flow at CFS; (D) = highlight the checkmark for each month where (A) is grea Basis for impact evaluation: 	80% exceed. as CFS; (C) = 1% of calculated natural flot ter than (C); (E) = total interference divided by 80% flow	w at 80% exceed. a w as percentage.	.8
C4b. 690-09-040 (5) (b) The potential to impair or detrin Rights Section.	mentally affect the public interest is to be detern	uined by the Wa	ter
 If properly conditioned, the surface water source(s) can under this permit can be regulated if it is found to substance. The permit should contain condition #(s) The permit should contain condition #(s) 	an be adequately protected from interference, and/o tantially interfere with surface water:	r groundwater us	ie ;
	n(s) as indicated in Remarks below;		
C6. SW / GW Remarks and Conditions:			
			<u> </u>
References Used: Gannett, Marshall W., and Caldwell, Rodney R., 1998, Geo and Washington: U. S. Geological Survey Professional Pap	logic Framework of the Willamette Lowland Aquif per 1424-A.	er System, Orego	<u>on</u>
Hunt, B., 2003, Unsteady stream depletion when pumping f January/February, 2003.	rom semiconfined aquifer: Journal of Hydrologic E	ungineering,	
Woodward, Dennis BG., Gannett, Marshall W., and Vaccar Lowland Aquifer System, Oregon and Washington: U. S. G	o, John J., 1998 Hydrogeologic Framework of the Veological Survey Professional Paper 1424-B.	Willamette	
Nearby well logs and water level data, especially well logs levels for: CLAC 2051, CLAC 2054, CLAC 2083, CLAC 2 2183, CLAC 2952, CLAC 55526, MARI 1756, MARI 1758 58373.	for: CLAC 2123, CLAC 2150, CLAC 2153, CLAC 2114, CLAC 2164, CLAC 2171, CLAC 2173, CLA 3, MARI 1936, MARI 1944, MARI 2004, MARI 54	2154, and water C 2175, CLAC 1954, and MARI	

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:
D2.	THE WELL does not appear to me a. review of the well log; b. field inspection by c. report of CWRE d. other: (specify)	t current well construction standards based upon: ; ;
D3.	THE WELL construction deficiency	or other comment is described as follows:

D4.

Route to the Well Construction and Compliance Section for a review of existing well construction.

Water Availability Tables

DETAILED REPORT ON THE WATER AVAILABILITY CALCULATION													
Watershed ID Time: 12:21 F	#: 69799 PM			BUTTE C	DING R I: WILLA	- AT MOU METTE	лтн			Exce	edance Lo Date: 08,	evel: 80 /11/2015	
Month	40nth Natural Co Stream Flow				Expected Stream Flow			Reserved Stream Flow	Re	Instream Requirements		A	Net Water Vailable
Monthly values are in cfs. Storage is the annual amount at 50% exceedance in ac-ft.													
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN	$\begin{array}{c} 169.00\\ 181.00\\ 172.00\\ 142.00\\ 89.20\\ 39.00\\ 15.10\\ 9.90\\ 9.78\\ 15.10\\ 66.00\\ 170.00\\ 121,000\\ \end{array}$		3.93 3.76 2.82 2.34 5.61 10.30 17.00 13.60 6.97 1.00 1.90 4.09 4,440		16 17 16 14 8 2 - - 1 6 16 117	5.00 7.00 9.00 3.60 8.70 1.87 3.70 2.81 4.10 4.10 6.00 7,000		$\begin{array}{c} 0.00\\$		75, 75, 75, 75, 75, 75, 25, 12, 20, 75, 75, 75, 44,1	00 00 00 00 00 00 00 00 00 00 00 00 00		90.10 102.00 94.20 64.70 8.59 -46.30 -26.90 -15.70 -17.20 -60.90 -10.90 90.90 78,900
			DETAI	LED REF	PORT OF	INSTREA	4 REQUIR	EMENTS					
Watershed ID Time: 12:24 F	#: 69799 PM			BUTTE C	CR > PUD	DING R	- AT MOU	тн			Ba	asin: WIL Date: 08,	LAMETTE /11/2015
Application Number	Status	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
						Monthl	y values	are in c	fs.				
IS69799A	CERTIFICATE	75.0	75.0	75.0	75.0	75.0	75.0	25.0	12.0	20.0	75.0	75.00	75.0
MAXIMUM		75.0	75.0	75.0	75.0	75.0	75.0	25.0	12.0	20.0	75.0	75.0	75.0

Well Location Map

Water-Level Trends in Nearby Wells

7

Stream Depletion Results

8

9

