Groundwater Application Review Summary Form

Application # G- <u>19302</u>

GW Reviewer <u>Phillip I. Marcy</u> Date Review Completed: <u>12/01/2023</u>

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

December 1, 2023

TO: Application G-<u>19302</u>

FROM: GW: <u>Phillip I. Marcy</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- □ YES The source of appropriation is hydraulically connected to a State Scenic Waterway or its tributaries
- □ YES
 □ Use the Scenic Waterway Condition (Condition 7J)
 □ NO
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>[Enter]</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section	—	2/01/2023
FROM:	Groundwater Section	Phillip I. Marcy Reviewer's Name	
SUBJECT:	Application G- 19302	Supersedes review of	
20202011			Date of Review(s)
OAR 690-310 welfare, safety to determine v	<i>y and health as described in ORS 5</i> whether the presumption is establish	GROUNDWATER esume that a proposed groundwater use will ensu 37.525. Department staff review groundwater ap hed. OAR 690-310-140 allows the proposed use pon available information and agency policies	plications under OAR 690-310-140 be modified or conditioned to meet
A. <u>GENER</u> A	AL INFORMATION: App	blicant's Name: Dan & Angela Chapman	County: Yamhill
A1. Appl	icant(s) seek(s) <u>0.417</u> cfs from	4 well(s) in the <u>Willamette</u> subbasin	Basin,

Proposed use Irrigation (52.7 acres) Seasonality: March 1st – October 31st (245 days) A2.

Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid): A3.

		Well #	Proposed Aquifer*	Rate(cfs)	(T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	Proposed	1	Alluvium	0.417	5S/4W-10 SW-NW	1585'S, 970'E fr NW cor S 10
2	Proposed	2	Alluvium	0.417	5S/4W-10 SW-NW	1510'S, 1215'E fr NW cor S 10
3	YAMH 1649	3	Alluvium	0.417	5S/4W-10 NW-NW	965'S, 1275'E fr NW cor S 10
4	Proposed	4	Alluvium	0.417	5S/4W-10 SW-NW	1390'S, 1090'E fr NW cor S 10

* Alluvium, CRB, Bedrock

POA Well	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Drawdown (ft)	Test Type
1	200	0-20	0-200	Unknown	TBD	NA	NA	NA
2	200	0-20	0-200	Unknown	TBD	NA	NA	NA
3	132	0-22	0-132	None	112-132	100	NA	Air
4	200	0-20	0-200	Unknown	TBD	NA	NA	NA

POA	Land Surface Elevation at Well	Depth of First Water	SWL	SWL	Reference Level	Reference Level
Well	(ft amsl)	(ft bls)	(ft bls)	Date	(ft bls)	Date
1	156	NA	NA	NA		
2	149	NA	NA	NA		
3	160	80	25	07/31/1992	25	07/31/1992
4	160	NA	NA	NA		

Use data from application for proposed wells.

Comments: Only one of the proposed POA wells has been constructed (POA 3 – YAMH 1649). POA wells 1, 2, and 4 are A4. anticipated to target the same sand and gravel aquifer zone as the existing well.

A5. A Provisions of the Willamette Basin rules relative to the development, classification and/or

management of groundwater hydraulically connected to surface water \Box are, or \boxtimes are not, activated by this application. (Not all basin rules contain such provisions.)

Comments: None of the proposed POA locations lie within 1/4 mile of a surface water source, therefore pertinent basin rules do not apply.

A6. Well(s) # _____, ____, ____, ____, ____, tap(s) an aquifer limited by an administrative restriction.

Name of administrative area: Comments:

4

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. is over appropriated, is not over appropriated, *or* cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. \Box will not or \Box will likely to be available within the capacity of the groundwater resource; or
 - d. 🛛 will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. \square The permit should contain condition #(s) 7RLN, Large water use reporting
 - ii. \Box The permit should be conditioned as indicated in item 2 below.
 - iii. \Box The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the ______ groundwater reservoir between approximately______ ft. and ______ ft. below land surface;
 - d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks:

The wells on this application will produce water from the lower sedimentary unit of the Willamette Aquifer (Conlon et al., 2005; Woodward et al., 1998; local well logs), consisting of lenses of sand and gravel interbedded with clays. In this area, the aquifer is 20-40 feet thick; it is overlain by 60- 80 feet of fine-grained Willamette Silt. The regional water table resides in the Willamette Silt, generally within 30 feet of land surface and the silt acts as a leaky confining unit in relation to the underlying aquifer. Recharge to the aquifer is primarily through the silt unit. Regional discharge is to the Willamette River which is incised completely through the silt unit into the underlying Willamette aquifer. Smaller streams, such as the Yamhill River, are entrenched in, but do not fully penetrate, the silt unit. Although these smaller streams are hydraulically connected to the underlying aquifer. Because the Willamette Confining Unit is confined, pumping impacts will propagate rapidly to aquifer boundaries. The principal boundaries are the Willamette River and the Willamette Silt (diffuse downward seepage over a large area). Smaller streams will be weak boundaries (diffuse seepage over a small area). Pumping withdrawals will be offset by a decrease in stored water in the aquifer, reduced streamflow in the Willamette River, downward leakage of water from the overlying silt into the aquifer, and reduced streamflow to smaller streams.

<u>Available water level data do not suggest long-term declines in the area (see attached hydrograph). Seasonal fluctuations appear to be from 10-20' in the target aquifer. As seasonal fluctuations increase due to increased use, hydraulic interference during the irrigation season will become more pronounced over time and shallow wells may need to be deepened to compensate for these impacts. Water level and water use reporting is recommended for this reason.</u>

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium	\boxtimes	
2	Alluvium	\boxtimes	
3	Alluvium	\boxtimes	
4	Alluvium	\boxtimes	

Basis for aquifer confinement evaluation: <u>Local well logs report resulting static water levels above the elevation of the</u> productive sand and gravel aquifer.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	l YES	Čonne	ilically ected? ASSUMED	Potentia Subst. In Assum YES	terfer.
1	1	South Yamhill River	~134	105	5740	Χ				\boxtimes
2	1	South Yamhill River	~134	105	5870	Χ				\boxtimes
3	1	South Yamhill River	~134	105	5580	\boxtimes				\boxtimes
4	1	South Yamhill River	~134	105	5700	\boxtimes				\boxtimes

Basis for aquifer hydraulic connection evaluation: There are no surface water sources within one mile of the proposed POA wells, but elevation of confined groundwater indicates upward movement of groundwater discharging to surface water. Ultimately, depletion of surface water by reduction in storage induced by groundwater pumping will likely have the greatest effect on the South Yamhill River, just over one mile WNW of the POA locations.

Water Availability Basin the well(s) are located within: <u>S YAMHILL R > YAMHILL R - AT MOUTH</u>

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖂 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

5

C3b. **690-09-040** (**4**): Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

	SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: <u>This section does not apply as all proposed POA locations are greater than one mile from the South Yamhill</u> <u>River.</u>

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Dis	tributed	l Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
3	1	1.32 %	1.37 %	.22 %	.33 %	.46 %	.59 %	.74 %	.89 %	1.05 %	1.22 %	1.19 %	1.26 %
Well Q a	as CFS	0	0	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0.417	0	0
Interferen	ice CFS	.005	.006	.001	.001	.002	.002	.003	.004	.004	.005	.005	.005
Distribu	ted Wel	ls											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q a	as CFS												
Interferen	ice CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q a	as CFS												
Interferer	ice CFS												
(A) = Tota	l Interf.	.005	.006	.001	.001	.002	.002	.003	.004	.004	.005	.005	.005
(B) = 80 %	6 Nat. Q	1330	1520	1300	783	386	174	81	49.5	41.7	55.0	365	1250
(C) = 1 % Nat. Q		13.3	15.2	13.0	7.83	3.86	1.74	0.81	.495	.417	.550	.365	1.25
~													
$(\mathbf{D}) = (\mathbf{A}$	(C) > (C)	√	V	√	V	√	√	√	V	√	√	√	√
(E) = (A / E)	B) x 100	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %	<.001 %

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation: The distance from the South Yamhill River and the presence of fine-grained sediments above the productive aquifer minimize the effects of pumping at the proposed POA locations within the period of one year. The above results for stream depletion were calculated using the analytical model of Hunt (2003), which accounts for the presence of a confining aquitard that extends below the streambed of the surface water body in question. A combination of parameters were used from published values (Conlon, et al. 2005) in addition to those observed in local well logs and pump tests.

_;

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

- C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:
 - i. \Box The permit should contain condition #(s)
 - ii. \Box The permit should contain special condition(s) as indicated in "Remarks" below;

C6. SW / GW Remarks and Conditions:

References Used:

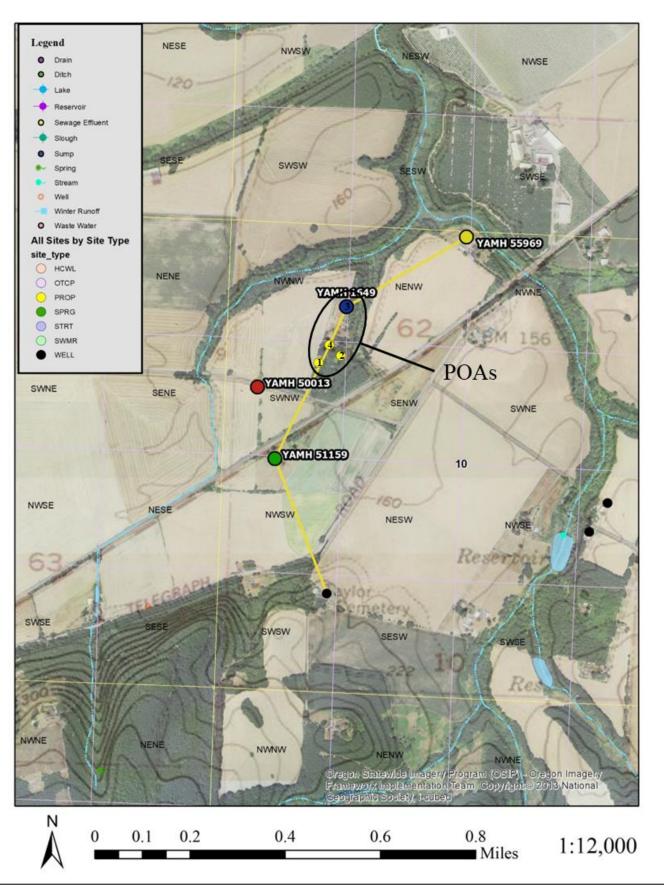
Conlon, T.D., Wozniak, K.C., Woodcock, D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Ground-water hydrology of the Willamette Basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2005-5168.

Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, 2003.

OWRD GWIS database, including well logs, water level data, accessed 11/30/2023.

Woodward, D.G., and others, 1998. Hydrogeologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington. USGS Professional Paper 1424-B.

D. WELL CONSTRUCTION, OAR 690-200

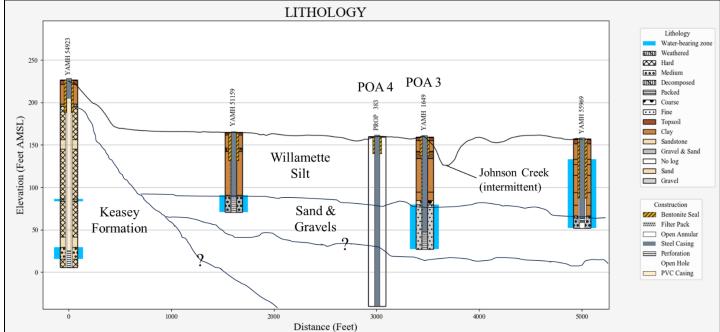

D1.	Well #: Logid:
D2.	THE WELL does not appear to meet current well construction standards based upon: a. □ review of the well log; b. □ field inspection by
D3.	THE WELL construction deficiency or other comment is described as follows:

D4. Route to the Well Construction and Compliance Section for a review of existing well construction.

Water Availability Tables

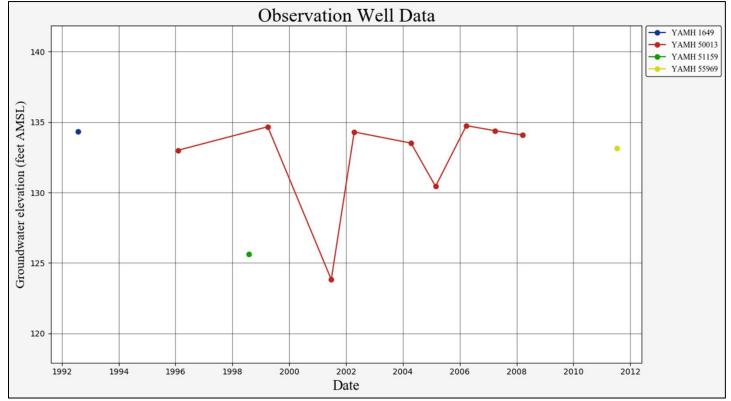
vi uver 11 vuni	ionity rabits			S VAMH	ILL R > 1	AWHTT.T.		TITH					
Watershed ID Time: 4:26 PM				5 IAM		n: WILLAM		50111				dance Le ate: 11/3	
Month	Natural Stream Flow		Use an Storag	nd ge	Flow			Stream Flow	Re	Instream Requirements		Ne Wate Availab	
					Month	ly value:	s are in	cfs. exceedance					
			51010	age is ci	ne annua.				e III ac-				
JAN	1,330.00		36.9	90	1,2	90.00		0.00		200.	00	1	090.00
FEB	1,520.00		34.	70	1,4	90.00		0.00		200.	00	1	290.00
MAR	1,300.00		21.5	50	1,2	30.00		0.00		200.	00	1	,080.00
APR	783.00		20.1	10	7	63.00		0.00		200.	00		563.00
MAY	386.00	27.60		3.	58.00		0.00		200.	00			
JUN	174.00		49.2	20	125.00			0.00		150.00		-25	
JUL	81.00		75.0	00	6.02			0.00		62.00		-56.	
AUG	49.50		62.5	50	-13.00			0.00		62.00			-75.00
SEP	41.70		37.60		4.06			0.00		62.	00		-57.90
OCT	55.00		9.68			45.30		0.00		150.	00		-105.00
NOV	365.00		18.8	30	346.00			0.00		200.	00		146.00
DEC	1,250.00		34.6	60	1,2:	20.00		0.00		200.			
ANN	872,000		25,90	00	84	7,000		0		114,0	00		743,000
				S YAMH	ILL R >	YAMHILL	R - AT M	OUTH					
Watershed ID Time: 4:26 P	1 March 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											sin: WIL ate: 11/	
Application Number	Status	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
						Monthl	y values	are in c	fs.				
ME1627	CERTIFICATE	200.0	200 0	200.0	200.0	200.0	150.0	62 0	62.0	62 0	150 0	200.00	200.0
	CERTIFICATE	200.0	200.0	200.0	200.0	200.0	21.2	21.2	21.2	21.2	21.2	200.00	
	CERTIFICATE	15.0	15.0					15.0			15.0		
IS73555A	CERTIFICATE	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.60	14.6
MAXIMUM		200.0	200.0			200.0		62.0	62.0	62.0		200.0	

Well Location Map



Page

9


10

Cross-Section

The proposed POA wells are anticipated to produced from sands and gravels beneath the confining Willamette Silt, which in turn underlies many smaller streams in the area.

Water-Level Measurements in Nearby Wells

Available water level data do not suggest long-term declines for the immediate area surrounding the proposed POA wells.

Stream Depletion (Hunt) Model Analysis

0.02	Transient Stream Depletion (Jenkins, 1970; Hunt, 1999, 2003) G-19302 to S. Yamhill R.												green, blue, red	l = required	Input data	yellow = rec	ommended	
	-												Parameter	Scenario 1	Scenario 2	Scenario 3	Unit	Description
0.01	8	-											Plot Title	(3-19302 to S.	Yamhill R.		Plot title
0.01							. J.						Qw		0.417		cfs	Net steady pumping rate of well
	0						100						tpon		245		days	Time pump on (pumping duration)
B 0.014	4						-						a	5580	5580	5580	ft	Perpendicular distance from well to stream
on						1000							d		132		ft	Well depth
depletion well dischar	2				1	r							K	100	200	400	ft/day	Aquifer hydraulic conductivity
well 0.010					100								b	20	20	20	ft	Aquifer saturated thickness
of	Ŭ			11									S	0.001	0.001	0.001		Aquifer storativity or specific yield
Stre Stre	8	-											Kva	0.1	0.1	0.1	ft/day	Aquitard vertical hydraulic conductivity
ac			1 mm										ba	50	50	50	ft	Aquitard saturated thickness
된 0.00	0	1		/									babs	10	10	10	ft	Aquitard thickness below stream
0.00-	4		-										n	0.2	0.2	0.2		Aquitard porosity
	1000	-											ws	40	40	40	ft	Stream width
0.00	0	30 6	i0 9			50 18 start of pu			270	300	330	360			Recalculate			_
													Parameter	Scenario 1	Scenario 2	Scenario 3	Units	
			-Hunt 20	03 s1	-	-Hu	nt 2003 s2			-Hunt200	03 s3		Qw	0.417	0.417	0.417	cfs	1
													Т	2,000	4,000	4	ft*ft/day	= K*b
	itream De	•				Time pu							Т	14,960	29,920	59,840	gpd/ft	= K*b
Output for S		60	90	120	150	180	210	240	270	300	330	360	sbc	0.400000	0.400000	0.400000	ft/day	= Ks*ws/bs
Days	30						89.2%	89.9%	21.1%		8.3%	6.3%	sdf	15.568200	7.784100	3.892050	days	$= (a^{2*S})(T)$
Days I SD	71.9%	79.9%	83.5%	85.7%	87.2%	88.3%					21.6%	17.8%	sbf	1.116000	0.558000	0.279000		= sbc*a/T
Days I SD H SD 1999	71.9% 26.1%	79.9% 37.3%	44.1%	49.0%	52.6%	55.6%	58.0%	60.1%	38.5%	27.6%								
Days I SD H SD 1999 H SD 2003	71.9% 26.1% 0.22%	79.9% 37.3% 0.33%	44.1% 0.46%	49.0% 0.59%	52.6% 0.74%	55.6% 0.89%	58.0% 1.05%	1.22%	1.19%	1.26%	1.32%	1.37%	ť	0.064234	0.128467	0.256934	1/days	= T/(a^2*S) input #1 for Hunt's Q_4 function
Days (SD H SD 1999 H SD 2003 Qw, cfs	71.9% 26.1% 0.22% 0.417	79.9% 37.3% 0.33% 0.417	44.1% 0.46% 0.417	49.0% 0.59% 0.417	52.6% 0.74% 0.417	55.6% 0.89% 0.417	58.0% 1.05% 0.417	1.22% 0.417	1.19% 0.417	1.26% 0.417	1.32% 0.417	1.37% 0.417	ť K'	0.064234 31.136400	0.128467	7.784100	1/days	= T/(a^2*S) input #1 for Hunt's Q_4 function = (Ks/bs)*a^2/T input #2 for Hunt's Q_4 function
Days I SD H SD 1999 H SD 2003	71.9% 26.1% 0.22%	79.9% 37.3% 0.33%	44.1% 0.46%	49.0% 0.59%	52.6% 0.74%	55.6% 0.89%	58.0% 1.05%	1.22%	1.19%	1.26%	1.32%	1.37%	ť	0.064234	0.128467		1/days	= T/(a^2*S) input #1 for Hunt's Q_4 function