Groundwater Application Review Summary Form

Application # G- <u>19331</u>
GW Reviewer Phillip I. Marcy Date Review Completed: 09/20/2023
Summary of GW Availability and Injury Review:
Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.
Summary of Potential for Substantial Interference Review:
\square There is the potential for substantial interference per Section C of the attached review form.
Summary of Well Construction Assessment:
☐ The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.
This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

Version: 07/28/2020

WATER RESOURCES DEPARTMENT

MEM	O							_5	Septemb	er 20, 2	023_	
TO:		Applica	tion G-	19331	-							
FRON	1 :	GW: <u>P</u>	hillip I. I Reviewer									
SUBJ	ECT: S	cenic Wa	aterway	Interf	erence l	Evaluat	ion					
	YES NO		source of		-	is hydr	aulically	y connec	cted to a	state S	Scenic	
	YES NO	Use	the Scer	nic Wate	erway C	Condition	n (Cond	ition 7J))			
	interfer	RS 390.8 rence with rence is d	n surfac	e water	that con					_		
	interfer Depart propos	as 390.83 ence with ement is ed use on the fr	h surfac unable will me	e water to find easurab	that cor that the ly redu	ntributes ere is a p ace the	to a sce prepone surface	enic wat derance water	erway; e of evid	therefo	re, the at the	
Calcula per crite	te the per eria in 39	ON OF II centage of 0.835, do r s unable to	consump 10t fill in	tive use b the table	y month c but check	the "und	ıble" optic					
Water	way by	s permit the follov flow is re	wing an			•					use by v	vhich
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]

Version: 07/28/2020

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights Se	ction					Date	09/20/	2023			
FROM:	:	Grour	ndwater Se	ction					tin Iverson					
SUBJE	СТ·	Appli	cation G	19331			ver's Name s review							
DODIL	C1.	тррп		13331_		dipersede	5 TC VIC V	7 01				ate of Revi	ew(s)	
DI IRI I	C INTE	DECT	DDFSII	1PTION;	CRATIND	WATED	,							
								wate	er use will en	sure th	e preser	vation of	the publi	c
									groundwater					
									e proposed us					
the presi	umption c	riteria.	This review	w is based u	ıpon availa	ble inforn	nation a	nd a	gency polici	es in p	lace at t	he time o	of evalua	tion.
A. <u>GE</u>	NERAL 1	INFO	<u>RMATIO</u>	<u>N</u> : Ap	plicant's N	ame: R	Richard a	and	Tamera Mo	rrow	Co	ounty: <u>I</u>	<u>inn</u>	
A1.	Applican	t(s) se	ek(s) <u>0.2</u>	cfs from	1	well(s)) in the _	7	Willamette					Basin,
						subbas	sin							
A2.	Proposed	l use _	Irrig	ation (17.5 a	icres)	Seaso	nality: _	May	y 1 st – Septer	mber 30	0 th (153 c	days)		
A3.	Well and	aquife	er data (atta	ch and nun	nber logs fo	or existing	wells: n	ıark	x proposed v	vells as	such m	nder logi	d):	
Well			Applicant'	· c		Propo			Location			n, metes a		s, e.g.
	Logic		Well #		ed Aquifer*	Rate(c			(T/R-S QQ-Q			I, 1200' E t S, 340'E fr		
2	Propose	ea	1	Al	luvium	0.20	J	1	4S/2W-6 NW-S	s W	240	S, 340 E Ir	W ¹ / ₄ cor S	6
3														
4 * Alluviu	ım, CRB, E	Bedrock	-											
	337 11	E.	. 1	ı	337 11	0 1	<u> </u>	1	τ.	D. C		337 11	Б	1
Well	Well Elev	Firs Wate	SWL SWL	SWL	Well Depth	Seal Interval	Casin Interva		Liner Intervals		orations creens	Well Yield	Draw Down	Test
	ft msl	ft bl		Date	(ft)	(ft)	(ft)		(ft)		(ft)	(gpm)	(ft)	Туре
1	335	NA	NA	NA	~60	18+	18+		Unknown	Uni	known	NA	NA	NA
Use data	from appli	cation f	or proposed	wells.								<u> </u>		
	• •												_	
A4.	Commer irrigation			proposes to	construct	one well to	produce	gro	undwater fro	m sanc	l and gra	vel for p	rimary	
	migation	10117	.J acres.											
A5. ⊠			he Willame						es relative to					
	_		-	-		ted to surfa	ace water	r \square	are, $or \boxtimes$	are no	t , activat	ed by this	s applicat	ion.
				such provis						41 C.		1	. 1 (0	A D
			do not apply		ter than 1/4 i	mile from a	any surta	ice w	vater source,	tnereic	ore pertii	ient basir	rules (U	<u>AK</u>
	070 302	0240)	ио пос иррг	y •										
A C \	TT 11() /	,								1: :.	1.1	1		. ,.
A6. ∐									s) an aquifer				ıtıve restr	iction.
	Commen	aumm ts:	istrative are	a										

Version: 07/28/2020

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

Bas	sed upon available data, I have determined that groundwater* for the proposed use:
a.	□ is over appropriated, □ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
b.	\square will not or \boxtimes will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: The permit should contain condition #(s)
	iii. The permit should contain special condition(s) as indicated in item 3 below;
a.	☐ Condition to allow groundwater production from no deeper thanft. below land surface;
b.	☐ Condition to allow groundwater production from no shallower thanft. below land surface;
c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
d.	☐ Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.
	Describe injury —as related to water availability— that is likely to occur without well reconstruction (interference w/senior water rights, not within the capacity of the resource, etc):
<u>hyd</u> wh	oundwater availability remarks: Available data from nearby wells suggest groundwater levels are relatively stable (see drograph below). The area around the well is underlain by less than 10 feet of low permeability sediment (Willamette Silt), ich is underlain by a series of sand and gravel beds interbedded with silts and clays (Gannett and Caldwell, 1998). Indition 7N and the Medium Water Use Reporting Condition are recommented.
LIN	NN 59124 is the closest well authorized under a water right at a distance of 1,250' from the proposed POA well. Using
aqu	uifer parameters derived from local pump tests and common to unconfined sand and gravel aquifers, the anticipated wdown induced by pumping at the proposed POA location and rate is between 1.5 and 3.5 feet after 153 days.
_	

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Sand & Gravel		

Basis for aquifer confinement evaluation: Citing the proposed construction of POA 1, shallow portions of the alluvial
aquifer at this location are unlikely to penetrate any significant barrier to vertical migration of groundwater. Nearby LINN
13530 is constructed similarly to the proposed POA and reports two instances of relatively thin fine-grained horizons above the
water-bearing zone within the well, and our conceptual model anticipates that these clay lenses do not represent a laterally
continuous horizon in the vicinity of the proposed development. Furthermore, groundwater elevations in the area appear
concordant with elevations of local surface waters.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Connected		•	Potentia Subst. Int Assum	terfer. ed?
1	1	Calapooia River	~330	325-	3320				YES	NO 🛮
1	2	Courtney Creek	~330	335 325-	4900	M				⊠
	2	Courtney Creek	~330	335	4900		Ц	П		

Basis for aquifer hydraulic connection evaluation:	Sands and	gravels utilize	ed by the	proposed POA	are incised	by the
Calapooia River and there is evidence of a significant	barrier to g	roundwater mi	igration b	etween surface	water and	groundwater
in the shallow alluvium.	•	•				•

Water Availability Basin the well(s) are located within: CALAPOOIA R > WILLAMETTE R - AB MOUTH

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked ⋈ box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			MF76A	20.0		22.70		<<25%	

Application G-19331 Date: 09/20/2023 6 Page C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above. Instream Instream 80% Qw > 1%Potential Ow > Interference SW Qw > Water Water Natural of 80% for Subst. 1% @ 30 days # 5 cfs? Right Right Q Flow Natural Interfer. ISWR? (%) ID (cfs) (cfs) Flow? Assumed? Comments: The impact to the nearby Calapooia River is anticipated to be much less than 25% of the pumping rate at the proposed POA due to the large storage capacity of the unconfined alluvial aquifer system accessed by the well and the

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed numping rate. Limit evaluation to the effects that will occur up to one year after numping begins

percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

significant distance between the well and the river.

Non-Di	stributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
Distrib Well	uted Wells	s Jan	Feb	Mar	Apr	May	Jun	Jul	Αμα	Sep	Oct	Nov	Dec
WEII	S W #				Apr	•			Aug	_			
XV 11 O	CEC	%	%	%	%	%	%	%	%	%	%	%	%
	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
(A) = To	tal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
		-											
$(\mathbf{D}) = ($	$\mathbf{A}) > (\mathbf{C})$	√	√	√	\checkmark	√	\checkmark	√	√	√	\checkmark	√	√
$(\mathbf{E}) = (\mathbf{A})$	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

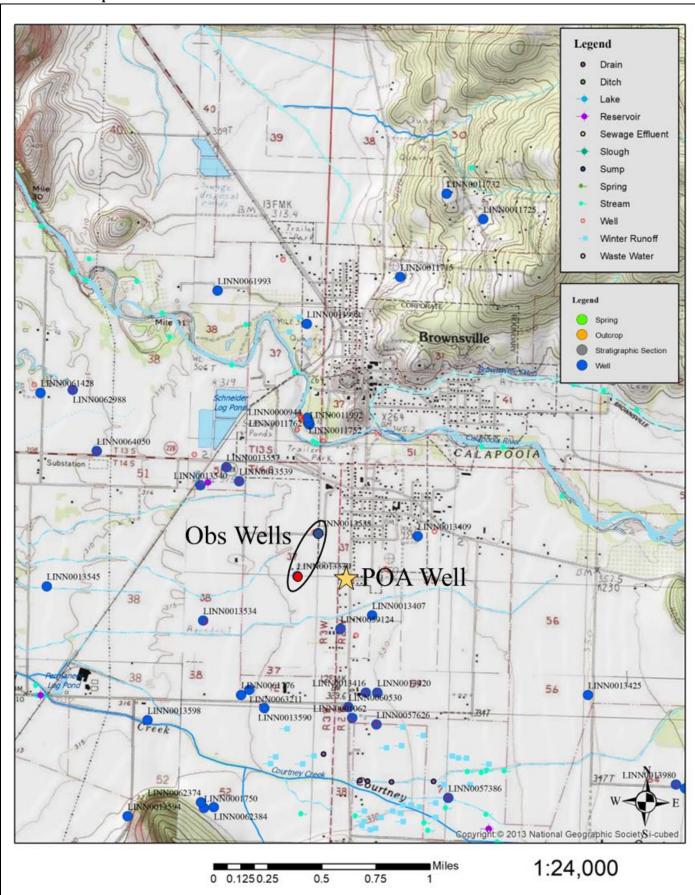
(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:

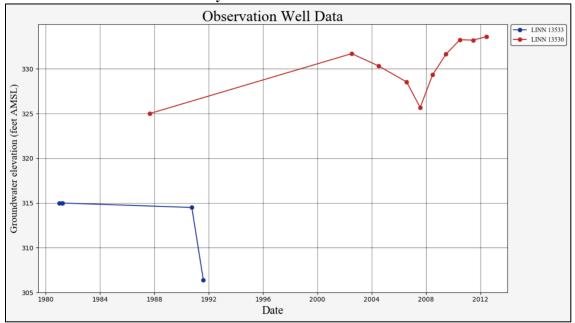
Application G-19331 Date: 09/20/2023 Page 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section. C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. \square The permit should contain condition #(s)_ ii.

The permit should contain special condition(s) as indicated in "Remarks" below; C6. SW / GW Remarks and Conditions: **References Used:** Gannett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-A. Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Conlon, T. D., Wozniak, K. C., Woodcock, D., Herrera, N.B., Fischer, B.J. Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Ground-Water Hydrology of the Willamette Basin, Oregon: U. S. Geological Survey Scientific Investigations Report 2005-5168.

Application file G-19331, GWIS Water level and lithology databases, local well logs, NWIS Hydrography GIS coverage.

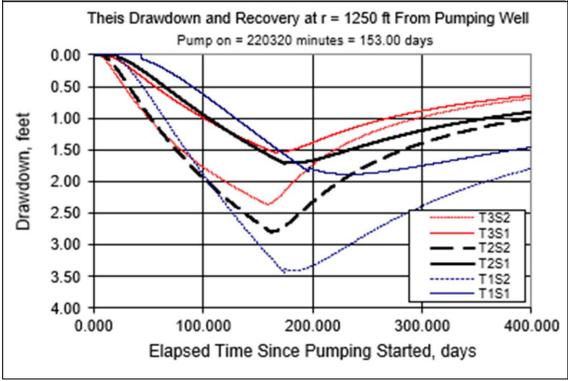

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.	THE WELL doe	es not appear to meet current well construction standards based upon:	:
	a. \square review o	of the well log;	
	b. field insp	pection by	;
		CWRE	
		pecify)	
D3.		struction deficiency or other comment is described as follows:	
	-		
D4. [Route to the Wo	ell Construction and Compliance Section for a review of existing well	construction.


Water Availability Tables

		C	ALAPOOI	A R > WIL	LAMETTE	R - AB N	HTUON					
Watershed ID #: Time: 10:19 AM	76		Exceedance Level: 80 Date: 09/20/2023									
Month	Natural Stream Flow	Consumptiv Use an Storag	d				Stream Flow		Instrea quirement	S		Net Water ilable
		Stora	ge is th	Monthl	y values	are in						
DEC	592.00 650.00 575.00 423.00 234.00 111.00 49.00 26.00 22.70 29.60 133.00 499.00	4.7 4.6 3.5 3.1 19.6 15.4 23.9 17.2 8.8 2.8 3.3 4.7 6,80	8 0 8 0 0 0 0 0 9 3 4	64 57 42 21 9 2 1 1 2 13	6.80		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	0 0 0 0 0 0 0 0 0 0 0		567.00 625.00 551.00 400.00 194.00 75.60 5.10 -11.20 -6.19 6.77 110.00 474.00 83,000
Watershed ID #: Time: 10:20 AM	: 76	С	ALAPOOI	A R > WIL	LAMETTE	R - AB N	HTUON				sin: WILL ate: 09/2	
Application Number	Status	JAN FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NON	DEC
					Monthly	values	are in cf	s.				
MF76A CE	ERTIFICATE	20.0 20.0	20.0		20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0

Well Location Map



Water-Level Measurements in Nearby Wells

Theis Interference Analysis

Theis interference Analysis						
Input Data:	Var Name	Scenario 1	Scenario 2	Scenario 3	Units	
Total pumping time	t		153		d	
Radial distance from pumped well:	r		1250		ft	Q conversions
Pumping rate	Q		0.2		cfs	89.76 gpm
Hydraulic conductivity	K	10	20	30	ft/day	0.20 cfs
Aquifer thickness	b		30	-	ft	12.00 cfm
Storativity	S_1		0.1			17,280.00 cfd
100	S_2		0.05			0.40 af/d
Transmissivity Conversions	T_f2pd	300	600	900	ft2/day	
The state of the s	T_ft2pm	0.2083333	0.4166667	0.625	ft2/min	Recalculate
	T_gpdpft	2244	4488	6732	gpd/ft	

