Groundwater Application Review Summary Form

Application # G- <u>19337</u>

GW Reviewer <u>Darrick E. Boschmann</u> Date Review Completed: <u>08/11/2023</u>

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

L The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

08/11/2023

TO: Application G-<u>19337</u>

FROM: GW: <u>Darrick E. Boschmann</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- □ YES The source of appropriation is hydraulically connected to a State Scenic Waterway or its tributaries
- □ YES
 □ Use the Scenic Waterway Condition (Condition 7J)
 □ NO
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>[Enter]</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Page

3

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section		Date	08/11/2023
FROM:	Groundwater Section	Darrick E. Boschmann		
		Reviewer's Name		
SUBJECT:	Application G- <u>19337</u>	Supersedes review of <u>N/</u>	A	
	· · · · ·	*		Date of Review(s)

PUBLIC INTEREST PRESUMPTION; GROUNDWATER

OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation.

A. <u>GENERAL INFORMATION</u>: Applicant's Name: <u>Ryan Kiely</u> County: <u>Lake</u>

A1. Applicant(s) seek(s) <u>8.91</u> cfs from <u>2</u> well(s) in the <u>Goose and Summer Lakes</u> Basin, Warner Lakes subbasin

A2. Proposed use <u>94.8 acres primary irrigation; 275.5 acres supplemental irrigation</u> Seasonality: <u>Irrigation season</u>

A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid):

Wel l	Logid	Applicant's Well #	Proposed Aquifer*	Proposed Rate(cfs)	Location (T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	LAKE 1881/1882	1	Basalt and tuffaceous sediments	8.91 (3999 gpm)	36.00S-24.00E-32-NE NE	100 FEET SOUTH AND 100 FEET WEST FROM NE CORNER, SECTION 32
2	Proposed	2	Basalt and tuffaceous sediments	8.91 (3999 gpm)	36.00S-24.00E-32-SE SE	5200 FEET SOUTH AND 100 FEET WEST FROM NE CORNER, SECTION 32
3						
4						

* Alluvium, CRB, Bedrock

Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type
1	4500	216	23.7	01/15/1981	340	0-18	+2-58.5	None	None	200*	-	Air
2	4475	-	-	-	340	0-18	+2-58.5	None	None	-	-	-

Use data from application for proposed wells.

A4. Comments: ____

The proposed wells are located in the Crump Lake watershed just south of Plush, Oregon. The area underlying the proposed wells was mapped by Walker and Repenning (1965) as QTs (sedimentary deposits; lacustrine gravels), which is likely underlain at this location by Tb (basalt flows) and Tts (tuffaceous sedimentary rocks). The well logs for LAKE 1881/LAKE 1882 describe interbedded lava/basalt and sedimentary rocks and deposits, which is consistent with the mapping of Walker and Repenning, 1965.

*Note: this air test is from the original well log LAKE 1881; no pump/air test was reported on the deepening log LAKE 1882.

4

A5. Provisions of the Goose and Summer Lakes Basin rules relative to the development, classification and/or

management of groundwater hydraulically connected to surface water \Box are, or \boxtimes are not, activated by this application. (Not all basin rules contain such provisions.) Comments: OAR 690-513-0040 (Warner Lake Subbasin) does not apply

A6. Well(s) # _____, ____, ____, tap(s) an aquifer limited by an administrative restriction. Name of administrative area:

Comments: Currently no administrative area.

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- Based upon available data, I have determined that groundwater* for the proposed use: B1.
 - \Box is over appropriated, \boxtimes is not over appropriated, or \Box cannot be determined to be over appropriated during any a. period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. □ will not or ⊠ will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - \boxtimes will not or \square will likely to be available within the capacity of the groundwater resource; or c.
 - d. **will, if properly conditioned**, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s)
 - ii. \Box The permit should be conditioned as indicated in item 2 below.
 - iii. \Box The permit should contain special condition(s) as indicated in item 3 below;
- B2. Condition to allow groundwater production from no deeper than ______ ft. below land surface; a.
 - Condition to allow groundwater production from no shallower than ______ ft. below land surface; b.
 - Condition to allow groundwater production only from the c. groundwater reservoir between approximately______ft. and______ft. below land surface:
 - d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury -as related to water availability- that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

5

B3. Groundwater availability remarks:

The nearest current State Observation Well, LAKE 1886 is located approximately 0.5 miles east of proposed well 1 (LAKE 1881). This well is 262 feet deep, is completed in lava and cinders, and has a water level record from 1962 to 2023. The water level record for this well indicates approximately 6.5 feet of total decline since 1986. Between 2020 and 2023 the water level record for this well indicates approximately 3.5 feet of decline, a decline rate of over 1 foot per year. 2023 is the lowest March measurement on record for this well.

Approximately 2.5 miles to the north, two additional wells with reported water level data are present in this area: LAKE 1840 and LAKE 52568. Both wells develop groundwater from basalt and tuffaceous sediments. The water level record for both wells depicts a parallel water level decline trend with LAKE 1886 since 2020 of approximately 1 foot per year.

The available water level record does not meet the Division 8 definition of excessively declining or declined excessively (for the storage portion of the source of water to wells).

Even with the rate of decline occurring in this area it is not likely that any interference with nearby wells would meet the standard for substantial or undue interference.

There is a long-term trend of declining water levels in this area since the late 1980s, and an increased rate of decline since 2000. Additional groundwater development in this area will likely contribute to existing declines which could impair the function of the aquifer by precluding its perpetual use. Therefore, the new use is found to be not within the capacity of the resource as defined in OAR 690-400-0010.

If a permit is issued the following conditions are recommended: •7N

•Large water use reporting

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Basalt and tuffaceous sediments		\boxtimes
2	Basalt and tuffaceous sediments		\boxtimes

Basis for aquifer confinement evaluation:

The groundwater system is identified as generally unconfined with discontinuous low permeability layers causing local (discontinuous, limited) confinement. Generally, a lower transmissivity basin fill unit overlies a higher transmissivity volcanic rocks and sediment unit. Groundwater occurs in both the basin fill and volcanic rocks and sediment unit, and groundwater is vertically connected within each unit and between each unit. Sammel and Craig (1981) note that groundwater within the deeper rocks is hydraulically connected to the overlying basin fill deposits.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H YES	Iydra Conn NO	ulically ected? ASSUMED	Potentia Subst. In Assum YES	ll for terfer. ed? NO
1	1	Honey Creek	4476	4506	3200	\boxtimes				\boxtimes
1	1	Honey Creek	4476	4506	8300	\boxtimes				\boxtimes

Basis for aquifer hydraulic connection evaluation:

Available reports indicate groundwater and surface water are connected in the Warner Lake Valley.

The GW elevations cited above are from the 1981 measurement from LAKE 1881.

Water Availability Basin the well(s) are located within: <u>No WAB data available for well locations</u>. Honey Creek is located within HONEY CR > HART L - AT MOUTH

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked ⊠ box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1		\boxtimes	IS89316A	2.67	\boxtimes	2.07	\boxtimes	*	\boxtimes

Page

C3b. **690-09-040** (**4**): Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:

C3a. Qw is greater than 1% of the ISWR for Well 1 and SW 1. Qw is greater than 1% of the 80% natural flow for Well 1 and SW 1. *Interference at 30 days not calculated due to triggering of PSI under other criteria.

C3b. No distributed rate requested.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a

percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040(5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2	1	0.01 %	0.02 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Well (Q as CFS	0	0	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	0	0
Interfer	rence CFS	.001	.002	0	0	0	0	0	0	0	0	0	0
D' 4 ''													
Distrib		Ţ	F 1	м		м	т	T 1		C	0.4	N	D
well	<u>SW#</u>	Jan	Feb	Mar	Apr	мау	Jun	Jul	Aug	Sep	Oct	NOV	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	rence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	rence CFS												
		1			1		T		1	1	1	1	T
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	otal Interf.	.001	.002	0	0	0	0	0	0	0	0	0	0
(B) = 80) % Nat. Q	5.06	6.64	12.60	41.50	53.80	26.80	4.32	2.27	2.07	2.14	3.01	3.74
(C) = 1	% Nat. Q	0.0506	0.0664	0.126	0.415	0.538	0.268	0.0432	0.0227	0.0207	0.0214	0.0301	0.0374
(D) =	(A) > (C)	\checkmark											
(E) = (A	/ B) x 100	0.019	0.03	0	0	0	0	0	0	0	0	0	0

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.
 Basis for impact evaluation: ______

Stream depletion between Well 2 and SW 1 was estimated using Hunt (2003) and a range of parameter values representative of the geologic conditions present in the area. Interference is less than 1% of the 80% natural flow in all months, even at the full proposed pumping rate of 8.91 cfs.

;

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:

i. \Box The permit should contain condition #(s)

ii. \Box The permit should contain special condition(s) as indicated in "Remarks" below;

C6. SW / GW Remarks and Conditions:

C1. 690-09-040 (1)

It is determined that all wells will produce water from an unconfined aquifer.

C2. 690-09-040 (2) (3)

It is determined that all wells are hydraulically connected with the Honey Creek.

<u>C3a./C3b. 690-09-040 (4)</u>

PSI is assumed for well 1 and SW 1. Qw is greater than 1% of the ISWR and 1% of the 80% natural flow.

C4a. 690-09-040 (5)

PSI cannot be assumed for Well 2 and SW 1.

References Used:

Walker, G.W., Repenning, C.A., 1965. Reconnaissance geologic map of the Adel quadrangle, Lake, Harney, and Malheur Counties, Oregon. U.S. Geological Survey Miscellaneous Geologic Investigations Map I-446. Scale 1:250,000.

Sammel, E., A., Craig, R.W., 1981. The geothermal hydrology of Warner Valley, Oregon: a reconnaissance study. U.S. Geological Survey Professional Paper 1044-I.

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Lo	ogid:			
D2.	THE WELL does n	ot appear to meet cur	rent well construction	on standards bas	ed upon:	
	a. review of the	ne well log:				
	$h \square$ field inspec	tion by				
	0. 🗆 field filspec	11011 Uy				
	c. \square report of C	WRE				
	d. 🗌 other: (spec	:ify)				
)3.	THE WELL constr	ruction deficiency or of	ther comment is des	cribed as follows	:	
4. [Route to the Well	Construction and Con	npliance Section for	a review of exist	ng well construction.	
Vater	Availability Tables	DETATLED REPORT	ON THE WATER AVAIL			
Vater	Availability Tables	DETAILED REPORT	ON THE WATER AVAILA	BILITY CALCULATI	DN	
Vater Vaters Fime:	Availability Tables thed ID #: 31300713 11:18 AM	DETAILED REPORT	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM	BILITY CALCULATIO MOUTH IER LAKE	DN Exceed Da	dance Level: 80 ate: 08/11/2023
Vaters Vaters Fime: Month	Availability Tables hed ID #: 31300713 11:18 AM Natural Stream Flow	DETAILED REPORT HO Consumptive Use and Storage	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow	BILITY CALCULATIO MOUTH HER LAKE Reserved Stream Flow	DN Exceed Da Instream Requirements	dance Level: 80 ate: 08/11/2023 Net Water Available
Vaters Time: Nonth	Availability Tables hed ID #: 31300713 11:18 AM Natural Stream Flow	DETAILED REPORT HO Consumptive Use and Storage	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow	BILITY CALCULATIO MOUTH MER LAKE Reserved Stream Flow	DN Exceed Da Instream Requirements	lance Level: 80 ate: 08/11/2023 Net Water Available
Vater laters ime: lonth	Availability Tables hed ID #: 31300713 11:18 AM Natural Stream Flow	DETAILED REPORT HOI Consumptive Use and Storage Storage is t	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at	BILITY CALCULATIO MOUTH MER LAKE Reserved Stream Flow are in cfs. 50% exceedance	DN Exceed Da Instream Requirements in ac-ft.	dance Level: 80 ate: 08/11/2023 Net Water Available
Vater laters ime: lonth	Availability Tables thed ID #: 31300713 11:18 AM Natural Stream Flow	DETAILED REPORT HO Consumptive Use and Storage Storage is 1	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at	BILITY CALCULATIO MOUTH MER LAKE Reserved Stream Flow The in cfs. 50% exceedance	DN Exceed Da Instream Requirements in ac-ft.	ance Level: 80 ate: 08/11/2023 Net Water Available
JAN	Availability Tables thed ID #: 31300713 11:18 AM Natural Stream Flow 5.06 6 64	DETAILED REPORT HO Consumptive Use and Storage Storage is 1 0.21 0 33	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6 32	BILITY CALCULATION MOUTH MER LAKE Reserved Stream Flow The in cfs. 50% exceedance 0.00 0.00 0.00	DN Exceed Da Instream Requirements in ac-ft. 5.00 12 40	ance Level: 80 ate: 08/11/2023 Net Water Available -0.15 -6.08
JAN FEB MAR	Availability Tables thed ID #: 31300713 11:18 AM Natural Stream Flow 5.06 6.64 12.60	DETAILED REPORT HOI Consumptive Use and Storage Storage is 1 0.21 0.33 2.06	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10-50	ABILITY CALCULATION MOUTH MER LAKE Reserved Stream Flow The in cfs. 50% exceedance 0.00 0.00 0.00 0.00	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00	ance Level: 80 te: 08/11/2023 Net Water Available -0.15 -6.08 -4.46
JAN FEB MAR APR	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is t 0.21 0.33 2.06 8.36	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10	BILITY CALCULATION MOUTH MER LAKE Reserved Stream Flow Ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00	lance Level: 80 ate: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3 14
JAN FEB MAR APR MAY	Availability Tables thed ID #: 31300713 11:18 AM Natural Stream Flow 5.06 6.64 12.60 41.50 53.80	DETAILED REPORT HOI Consumptive Use and Storage Storage is t 0.21 0.33 2.06 8.36 20.20	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60	ABILITY CALCULATION MOUTH MER LAKE Reserved Stream Flow Ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 30.00 30.00	lance Level: 80 hte: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3.14 3.64
JAN FEB MAR APR MAY JUN	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is t 0.21 0.33 2.06 8.36 20.20 15.50	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60 11.30	ABILITY CALCULATION MOUTH MER LAKE Reserved Stream Flow Ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 30.00 20.00	lance Level: 80 ste: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3.14 3.64 -8.73
JAN FEB MAR APR JUN JUI	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is t 0.21 0.33 2.06 8.36 20.20 15.50 4.32	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60 11.30 0.00	ABILITY CALCULATION MOUTH MER LAKE Reserved Stream Flow Ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 30.00 20.00 5.00	lance Level: 80 ate: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3.14 3.64 -8.73 -5.00
Vaters Time: JAN FEB MAR APR MAR JUN JUL AUG	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is t 0.21 0.33 2.06 8.36 20.20 15.50 4.32 2.23	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60 11.30 0.00 0.04	ABILITY CALCULATION MOUTH MER LAKE Reserved Stream Flow Ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 30.00 20.00 5.00 2.67	lance Level: 80 ate: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3.14 3.64 -8.73 -5.00 -2.63
Waters Time: Month JAN FEB MAR APR MAR JUL JUL AUG SEP	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is t 0.21 0.33 2.06 8.36 20.20 15.50 4.32 2.23 2.01	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60 11.30 0.00 0.04 0.06	ABILITY CALCULATION MOUTH NER LAKE Reserved Stream Flow Ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 30.00 30.00 20.00 5.00 2.67 2.67	lance Level: 80 ate: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3.14 3.64 -8.73 -5.00 -2.63 -2.61
Waters Time: Month JAN FEB MAR APR MAY JUN JUN JUN JUN JUN JUN JUN JUN	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is t 0.21 0.33 2.06 8.36 20.20 15.50 4.32 2.23 2.01 1.29	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60 11.30 0.00 0.04 0.06 0.85	ABILITY CALCULATION MOUTH NER LAKE Reserved Stream Flow Ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 30.00 30.00 20.00 5.00 2.67 2.67 3.54	dance Level: 80 ate: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3.14 3.64 -8.73 -5.00 -2.63 -2.61 -2.69
Waters Time: Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is 1 0.21 0.33 2.06 8.36 20.20 15.50 4.32 2.23 2.01 1.29 0.14	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60 11.30 0.00 0.44 0.06 0.85 2.87	ABILITY CALCULATION MOUTH HER LAKE Reserved Stream Flow ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 30.00 30.00 20.00 5.00 2.67 2.67 3.54 5.00	dance Level: 80 ate: 08/11/2023 Net Water Available -0.15 -6.08 -4.46 3.14 3.64 -8.73 -5.00 -2.63 -2.61 -2.69 -2.13
Waters Time: Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	Availability Tables	DETAILED REPORT HOI Consumptive Use and Storage Storage is 1 0.21 0.33 2.06 8.36 20.20 15.50 4.32 2.23 2.01 1.29 0.14 0.19	ON THE WATER AVAILA NEY CR > HART L - AT Basin: GOOSE & SUMM Expected Stream Flow Monthly values a the annual amount at 4.85 6.32 10.50 33.10 33.60 11.30 0.00 0.44 0.06 0.85 2.87 3.55	ABILITY CALCULATION MOUTH HER LAKE Reserved Stream Flow ore in cfs. 50% exceedance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DN Exceed Da Instream Requirements in ac-ft. 5.00 12.40 15.00 30.00 20.00 5.00 2.67 2.67 3.54 5.00 5.00 5.00 5.00	dance Level: 80 ate: 08/11/2023 Net Water Available

Page 11

Water-Level Measurements in Nearby Wells

January-April measurements

Aquifer saturated thickness

Aquitard saturated thickness

Aquitard thickness below stream

Streambed conductance (lambda)

input #1 for Hunt's Q_4 function

input #2 for Hunt's Q_4 function

input #3 for Hunt's Q_4 function

input #4 for Hunt's Q_4 function

Aquitard vertical hydraulic conductivity

Aquifer transmissivity Aquifer storativity or specific yield

Aquitard porosity

Streambed factor

Stream depletion factor

Stream width

			Trans	ient Str	eam De	pletion	(Jenkir	ns, 1970	; Hunt,	1999, 20	03)		
	0.900							G-1933	7				_
	0.800												
	0.700						*****	••••	`				
(in the second s					****								
arge	0.600									\			
sch	0.500									X			
a di di	0.000											Jenkins s2	-
n de ve	0.400											Hunt 1999	s2
n of	0.300]	Hunt 2003	s1
ŝ	0.000	1									٦	Hunt 2003	e2
(fra	0.200										-	Hunt 2003	32 c2
-	0 100	1/										Tiuni 2003	53
	0.100	1											
	0.000	<u> </u>											
	0 100	φ :	30 6	0 90	0 120	0 150	180	210	240	270	300	330	360
	-0.100				Tir	me since s	start of pu	mpina (da	ivs)				
								1 3(
Jutnut	for St	ream De	nletion 9	cenerio	2 (e2).		Time nu	mn on (r	umping	duration)	– 245 da	ave	
)avs		30	60	90	120	150	180	210	240	270	300	330	360
J SD		42.4%	57.2%	64.5%	69.0%	72.1%	74.4%	76.3%	77.8%	40.8%	24.5%	17.5%	13.4%
HSD 1	999	17.6%	30.5%	38.7%	44.5%	48.9%	52.4%	55.2%	57.6%	45.0%	32.5%	25.3%	20.6%
H SD 2	003	0.00%	0.00%	0.00%	0.00%	-0.01%	-0.01%	-0.01%	-0.01%	0.00%	0.00%	0.01%	0.02%
Qw, cfs		8.910	8.910	8.910	8.910	8.910	8.910	8.910	8.910	8.910	8.910	8.910	8.910
H SD 9	9, cfs	1.566	2.721	3.451	3.967	4.357	4.665	4.918	5.129	4.008	2.900	2.257	1.836
H SD 0	3, cfs	0.000	0.000	0.000	0.000	-0.001	-0.001	-0.001	-0.001	0.000	0.000	0.001	0.002
											_		
Param	eters:					Sc	enario 1	Sc	enario 2	Sc	enario 3		Units
Net ste	ady pu	mping rate	e of well	,	Qw		8.91		8.91		8.91		cfs
I ime pi	ump on	(pumping	g duration)	tpon		245		245		245		days
Perpen	dicular	trom well	to stream	1	a		8300		8300		8300		ft
Aquifar	eptn budrou	ulia aandu	otiviti (a		340		340		340		TT ft/dou/
Aquiler	Aquiter hydraulic conductivity						18		18		١ð		ivuay

100

1800

0.001

1

50

50

0.2

20

0.400000

38.272222

1.844444

0.026129

0.005000

1.844444

765.444444

b

Т

S

Kva

ba

babs

n

ws

sbc

sdf

sbf

ť

K'

epsilon'

lamda'

100

1

50

50

0.2

20

0.400000

38.272222

1.844444

0.026129

0.005000

1.844444

765.444444

1800

0.001

100

1800

0.001

1

50

50

0.2

20

0.400000

38.272222

1.844444

0.026129

0.005000

1.844444

765.444444

ft

ft

ft

ft

ft/day

days

ft*ft/day

ft/day