Groundwater Application Review Summary Form

Application # G- <u>19427</u>

GW Reviewer <u>Darrick E. Boschmann</u> Date Review Completed: <u>12/11/2024</u>

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

The wells do not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

12/11/2024

TO: Application G-<u>19427</u>

FROM: GW: <u>Darrick E. Boschmann</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- □ YES
 The source of appropriation is hydraulically connected to a State Scenic
 Waterway or its tributaries
- □ YES
 □ Use the Scenic Waterway Condition (Condition 7J)
 □ NO
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>[Enter]</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section	Date	12/11/2024
FROM:	Groundwater Section	Darrick E. Boschmann	
		Reviewer's Name	
SUBJECT:	Application G- 19427	Supersedes review of <u>N/A</u>	
	· · ·	•	Date of Review(s)

PUBLIC INTEREST PRESUMPTION; GROUNDWATER

OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation.

A. GENERAL INFORMATION: Applicant's Name: Green Fields III LLC County: Harney

A1.	Applicant(s) seek(s)	1.74	_cfs from	3	well(s) in the	Malheur Lake	 Basin,
	Alvord Lake/P	ueblo V	/alley		subbasin		

42.	Proposed use	104.2 acres	primary irrigation	Seasonality:	March 15 to October 1
				•	

A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid):

POA Well	Logid	Applicant's Well #	Proposed Aquifer*	Proposed Rate(cfs)	Location (T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	HARN 1803	SW-2	Basin fill	1.74	39.00S-35.00E-23- NW SW	2245 FEET NORTH AND 2420 FEET WEST FROM S1/4 CORNER, SECTION 23
2	HARN 1800	SW-3	Basin fill	1.74	39.00S-35.00E-22-SE SW	760 FEET NORTH AND 40 FEET WEST FROM S1/4 CORNER, SECTION 22
3	HARN 1802	TC-3	Basin fill	1.74	39.00S-35.00E-23- NW NE	1310 FEET SOUTH AND 80 FEET EAST FROM N1/4 CORNER, SECTION 23
4						

* Alluvium, CRB, Bedrock

POA Well	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Drawdown (ft)	Test Type
1	448	0-20	0-448	None	165-448	1525	56	Р
2	448	0-20	0-448	None	118-448	2470	88	Р
3	296	0-20	0-296	None	None	2950	115	Р
4	('							

POA	Land Surface Elevation at Well	Depth of First Water	SWL	SWL	Reference Level	Reference Level
Well	(ft amsl)	(ft bls)	(ft bls)	Date	(ft bls)	Date
1	4135	48	40.00	2/3/1978		
2	4181	?	86.33	3/22/2017		
3	4110	25	18.16	3/22/2017		
4		,			,	

Use data from application for proposed wells.

A4. Comments:

The proposed wells are located in Pueblo Valley about 8 miles southeast of Fields.

The area immediately underlying the proposed wells is mapped as Qal (Quaternary alluvium – unconsolidated fluviatile gravel, sand, and silt; in places includes talus, fanglomerate, and slope wash), which is underlain by Tcs (conglomerate and sandstone) and Tts (tuffaceous sediments) (Rytuba and others, 1982). At the existing depths the wells will likely develop groundwater from the Quaternary valley filling alluvium.

The proposed wells are currently authorized under certificate 97614. Additionally, proposed well HARN 1800 is also authorized under certificate 64436.

A5. A5. A5. A5. A5. A5. A5. A5. Basin rules relative to the development, classification and/or

management of groundwater hydraulically connected to surface water \Box are, or \boxtimes are not, activated by this application. (Not all basin rules contain such provisions.) Comments:

A6. Well(s) # _____, ____, ____, tap(s) an aquifer limited by an administrative restriction.

Name of administrative area: Comments: Currently no administrative area.

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. is over appropriated, is not over appropriated, *or* cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. \square will not or \square will likely to be available within the capacity of the groundwater resource; or
 - d. uill, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. \Box The permit should contain condition #(s)
 - ii. \Box The permit should be conditioned as indicated in item 2 below.
 - iii. \Box The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the ______ groundwater reservoir between approximately______ ft. and ______ ft. below land surface;
 - d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks:

The available water level record does not meet the Division 8 definition of excessively declining or declined excessively (for the *storage* portion of the source of water to wells).

If this application is approved it would likely result in an increase in interference with existing water rights, however any increase in interference with existing wells will not meet the standard for substantial or undue interference given the thickness of the aquifer system in Pueblo Valley.

The nearest current State Observation Well HARN 1806 (SOW 198) is located about 2 miles southeast of the proposed wells. The hydrograph for HARN 1806 shows approximately 8-10 feet of overall decline since the late 1960s.

Wells in this project area including the wells under this application have limited water level data with which to evaluate groundwater level trends. Application G-18918 provides 3/2017 water levels for four wells. The only other water level data available is from the 1978-1979 drillers wells logs, and three measurements for HARN 1798. Overall, these records suggest fairly stable to slightly declining water levels in this project area, however these limited records and reliance on drillers' measurements are limiting for this analysis.

Approximately three miles to the northwest, HARN 52803 has been equipped with a static water level data logger since 2019 and recorded approximately 2 feet per year of decline from 2020 to 2022. Over the significantly wetter seasons of 2023 and 2024 water level trends in this well were relatively stable.

Elsewhere in the Pueblo Valley, including further south on the Nevada side of the border, water level records from the Nevada Division of Water Resources (NDWR) associated with areas of groundwater development indicate water level declines over the available period of record. While these records may not be representative of groundwater conditions in the immediate vicinity of the proposed groundwater development, they may be indicative of the effect of groundwater development within the Pueblo Valley.

The proposed project area has similar climate and underlying geology as other areas within the Pueblo Valley that are experiencing water level declines in response to groundwater development. Issuance of a permit for groundwater withdrawals at the rate and duty proposed here will likely contribute to these water level declines and could impair the function of the aquifer by precluding its perpetual use. Therefore, the proposed use is found to be not within the capacity of the resource as defined in OAR 690-400-0010.

If a permit is issued the following conditions are recommended:

7N: Annual Measurement and Decline Condition

7P: Well Tag Condition

7T: Dedicated Measuring Tube Condition for all POA wells

Flow meter condition: Use the water rights "large" permit condition requiring a totalizing flow meter and reporting

Special Permit Condition:

The permittee shall construct one (1) minimum six-inch diameter observation well to penetrate the same aquifer as the production wells. The well shall meet the Department's minimum well construction standards and shall be drilled, cased and sealed to the same depth as the production wells. The well shall be constructed at a location approved by the Department for the purpose of instrumentation with continuous water-level monitoring equipment. The landowner, permittee, or agent shall consult with the Department on the details of well construction and well location prior to construction of the well. The landowner or permittee shall provide access to Department staff to install and maintain the monitoring equipment. The well shall be completed prior to water use under the terms of any permit issued. Water level data collected by the Department from the observation well will be used in addition to water level data collected under condition 7N for any evaluation of water level decline or interference.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Basin fill		\boxtimes
2	Basin fill		\boxtimes
3	Basin fill		\boxtimes

Basis for aquifer confinement evaluation:

The unconsolidated alluvial material (Qal) is unconfined. The deeper valley fill may become semi-confined at depth.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H YES	Iydra Conn NO	ulically ected? ASSUMED	Potentia Subst. In Assum YES	al for terfer. ed? NO
1	1	Little Cottonwood Creek	~4090	4225	2700	\boxtimes				\boxtimes
2	1	Little Cottonwood Creek	~4090	4225	6000	\boxtimes				\boxtimes
3	1	Little Cottonwood Creek	~4090	4225	8900	\boxtimes				\boxtimes

Basis for aquifer hydraulic connection evaluation:

Perennial reaches of streams in this setting generally infiltrate into the alluvial valley fill material along the valley margins, below which the streams are intermittent/seasonal, only flowing during spring high-flow runoff events. Groundwater downgradient of these perennial reaches generally does not provide base flow to these streams, however, where groundwater is hydraulically connected, pumping in proximity to these perennial losing reaches can induce streamflow depletion by increasing the hydraulic gradient between the stream and the groundwater system. The point at which these creeks are hydraulically connected with groundwater is likely variable seasonally and from year to year. The lowermost point of the perennial reach as depicted on the NHD was used to calculate the distances listed above.

Water Availability Basin the well(s) are located within: No WAB data available.

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖂 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			N/A	N/A		N/A		0.19	

C3b. **690-09-040** (**4**): Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:

<u>C3a.</u>

There are no instream water rights in this part of Pueblo Valley.

There is no WAB data available for evaluation against 80% natural flow.

Hunt (2003) was used to calculate the interference between the proposed wells within a mile of hydraulically connected surface water. Very little data is available about aquifer parameters at this location. The values used for the calculation are conservative and appropriate until better values become available. The calculations used the average transmissivity derived from pump tests on area wells (see report attached) (6,285 ft2/day). Additionally, the calculation used an assumed intermediate storage coefficient (0.001). The pumping rate used is the maximum rate proposed for the application (1.74 cfs). Interference is much less than 25% at 30 days. See reports attached.

<u>C3b.</u> No distributed rate requested.

Version: 07/28/2020

Page

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	Q as CFS												
Interfer	ence CFS												
D ! / !!	4 1 3 3 7 1	-	-						-			-	-
Distrib	outed Well	S								a	0		
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	Q as CFS												
Interfer	ence CFS												
$(\mathbf{A}) = \mathbf{T}0$	otal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = ($(\mathbf{A}) > (\mathbf{C})$	\checkmark											
(E) = (A	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.
 Basis for impact evaluation:

No analysis here as no PSI was found above in C3a.

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:

- i. \Box The permit should contain condition #(s)_____
- ii. \Box The permit should contain special condition(s) as indicated in "Remarks" below;

C6. SW / GW Remarks and Conditions:

C1. 690-09-040 (1)

It is determined that all proposed wells will produce water from an unconfined aquifer.

C2. 690-09-040 (2) (3)

It is determined that all proposed wells are hydraulically connected with Little Cottonwood Creek.

C3a. 690-09-040(4)

PSI is not assumed for any of the proposed wells.

C3b. 690-09-040(4)

This section does not apply

C4a. 690-09-040(5)

No analysis here as no PSI was found in C3a.

References Used:

Rytuba J.J., Vander Meulen, D.B., Vercoutere, T.L., Minor, S.A., Caress, M.E., Kriens, B.J.C., 1987. Reconnaissance geologic map of the Tum Tum Lake quadrangle, Harney County, Oregon. U.S. Geological Survey Open File Report OF-82-1127.

Hunt, B., 2003. Unsteady stream depletion when pumping from semiconfined aquifer. Journal of Hydrologic Engineering, 8(1), pp.12-19.

USGS National Hydrology Dataset

NDWR water level data.

OWRD water well reports, water level data, and/or hydrographs

Oregon Administrative Rules

D. WELL CONSTRUCTION, OAR 690-200

D1. Well #: 1; 2; 3

Logid: <u>HARN 1803; HARN 1800; HARN 1802</u>

D2. THE WELL does not appear to meet current well construction standards based upon:

- a. \square review of the well log;
- b. 🗌 field inspection by _____
- d. other: (specify) Findings in the IR for application G-18918

D3. **THE WELL construction deficiency or other comment is described as follows:** The following findings are from the IR for application G-18918, which involved the wells proposed here.

SW1 (HARN 1799), SW2 (HARN 1803, and SW3 (HARN 1800) – The well report indicates that the wells were constructed with a 16-inch diameter steel casing sealed with concrete in a 20-inch diameter bore hole. Concrete can only be used when the oversized drill hold is a minimum of eight inches larger in diameter than the well casing used in construction of the well. In addition, the well report also indicates that the 16-inch diameter, 0.25 gage steel casing extends from zero feet above ground surface to a depth of 448 feet below ground surface. To meet minimum well construction standards, the casing must extend a minimum of 1 foot above ground surface and the 16-inch diameter, 0.25 gage steel casing must not exceed a maximum depth of 250 feet below land surface. The annular seals and well casings on all three wells will need to be properly replaced.

TC3 (HARN 1802) – The well report indicates that the well was constructed with a 16-inch diameter steel casing sealed with concrete in a 20-inch diameter bore hole. Concrete can only be used when the oversized drill hold is a minimum of eight inches larger in diameter than

G-18918

Page 2 of 7

Initial Review

the well casing used in construction of the well. In addition, the well report also indicates that the 16-inch diameter, 0.25 gage steel casing extends from zero feet above ground surface to a depth of 296 feet below ground surface. To meet minimum well construction standards, the casing must extend a minimum of 1 foot above ground surface and the 16-inch diameter, 0.25 gage steel casing must not exceed a maximum depth of 250 feet below land surface. The annular seal and well casing will need to be properly replaced.

D4. D4. Construction and Compliance Section for a review of existing well construction.

Well Location Map

Page 13

Water-Level Measurements in Nearby Wells

NDWR Well Location Maps and Hydrographs

15

Page

Version: 07/28/2020

Stream Depletion (Hunt) Model Analysis

Transmissivity	from Specific Canacity usir	a the Theic	Faultion		Application:	G-19427					
(Adapted from	Vorhis (1979))	is the meis	Equation		Basin:	Malheur lake					
	. "										
Theis Equation	: [\\/()]				SPECIFIC CAPA						
$u = (r^{*}r^{*}S)/(4^{*}T)$	*t)				Well Log ID	Pumping Rate (O)	Drawdown (s)	Specific Capacity			
W(u) = (-In u)-(0).5772157)+(u/1*1!)-(u*u/2	2*2!)+(u*u*ı	1/3*3!)-			(gnm)	(ft)	(gnm/ft)			
(u*u*u*u/4*4!)	+	(1)	- radial distance (I) C -	torage		(6911)	56	1501171			
coefficient (dim	ensionless) t = time (T)	ni = 3 1415	= radial distance (L) $=$ $=$ $=$ $=$ $=$ dimensionle	storage	HARN 1005	1525	50	27.2321			
W(u) = well fur	ction	pi = 3.1413	52054 u = unicrisionic	33	HARN 1800	2470	88	28.0682			
					HARN 1802	2950	115	25.6522			
Note: Transmi	ssivity is derived using an i	terative pro	cess . The calculations use	a known or	HARN 1798	1514	81	18.6914			
assumed Storag	e Coeficient (S) provided b	y the user. S	pecific Capacity (Q/s) is us	ed to first	HARN 1801	2700	100	27.0000			
Transmissivity	approximate the Transmissivity (T) used to calculate u in the first Theis equation iteration. The HARN 1804 2950										
iteration Total	Theis Equation iterations =	25 iteration	s Can accept answer if dif	ference in							
calculated Trans	smissivity (T(diff)) for the la	st 2 iteration	ns is < 0.0001. Can accept	answer if u in							
the last iteratio	n is < 7.1										
Note: Well effi	ciency is not included in t	he calculatio	ons								
Note: An inter	mediate storage coefficier	1t of 0.001 is	used in all calcuations.				MIN:	18.69			
References:							MAX:	28.07			
Theis, C.V. 193	5. The relation between th	e lowering o	f the piezometric surface	and the rate			AVE:	25.38			
and duration of	discharge of a well using g	round water	storage. American Geoph			STDEV	3 41				
Transactions, 1	6 annual meeting, vol. 16, p	og. 519-524.				SIDEV.	5.41				
Vorhis, R.C. 19	 Iransmissivity from put reletter yol 10 pp 11 De 	mped welld	ata. Well Log, National Wa	ater Well							
Associationnev	vsietter, vol. 10, 10. 11, De	c. 1979, pg	JU-JZ.								
		TRANSM	IISSIVITY/HYDRAULIC			ON					
Well Log ID	T/R-S Q-Q	Time (t)	Well Diameter (d)	T (diff)	u	Transmissivity (T)	Transmissivity (T)				
		(hours)	(inches)			(ft2/day)	(gpd/ft)				
HARN 1803	0	22	16	0.0000E+00	1.68E-08	7228	54068				
HARN 1800	0	8	16	0.0000E+00	4.76E-08	7001	52372				
HARN 1802	0	4	16	0.0000E+00	1.10E-07	6070	45407				
HARN 1798	0	6	16	0.0000E+00	9.99E-08	4450	33289				
HARN 1801		3	16	0.0000E+00	1.41E-07	6284	47010				
HARN 1804	0	17	16	0.0000E+00	2.35E-08	6676	49940				
0	0										
0	0										
0	0										
0	U										
					MIN:	4450	33289				
					MAX:	7228	54068				
					AVE:	6285	47015				
					STDEV:	997	7456				

	Transient Stream Depletion (Jenkins, 1970; Hunt, 1999, 2003)													Innut data							
C 10/07									vollow – roqui	rod	input data	blue ree	ommondod								
	1.200	1		1				G-1942				T		yellow = requi	Converte 4	Converia 0	Diue = rec	ommended	Description	_	
									Parameter	Scenario 1	enario 1 Scenario 2 Scenario 3 Unit Description										
	1.000									_	Plot litle		G-1942/ Plot title					-fII			
	1.000									QW		1.74		CIS	Net steady	pumping rate	or well				
(e)														tpon	0700	200	0700	days	Time pump	on (pumping	duration)
۲	0.800										_	_		a	2700	2/00	2700	11	Perpendicu	lar distance i	rom well to stream
sch														d	40.57	448	10.57	π.	vveil depth		
aple II di								Jenkins s2			ĸ	12.57	12.57	E00 E00 t Aquifer nydraulic conductivity				tivity			
we	0.600	1	Hunt 1999				\$2	<u>b</u> 500 500 π						Aquiter saturated thickness							
ean													-4	5	0.001	0.001	0.001	64/ala	Aquiler stor	ativity of spe	cilic yield
Str		I										Hunt 2003	\$1	Kva	0.02	0.02	0.02	ft/day	Aquitard ve	rtical hydraul	ic conductivity
rac	0.400	1									Hunt 2003 s		s2	ba	3	3	3	TT ()	Aquitard sat	turated thick	less
(f		1						\neg				Hunt 2003 s3		babs	3	3	3	π	Aquitard thi	CKNESS DEIOV	/ stream
	0 200	<u>+</u>												n	0.2	0.2	0.2	4	Aquitard po	rosity	
	0.200	ł						×.		\rightarrow				ws	20	20	20	π	Stream widi	in	
			T													Recalculate					
	0.000	¥							_	******	•••	*****	-								
		0 3	30 6	0 9	0 1 1 2	me sintë	start of pu	mpin ²¹ (da	iys) ²⁴⁰	270	300	330 3	360								
														Deservator	Conversion 4	Converte O	Conversion 2	11			
														Parameter	Scenario 1	Scenario 2	Scenario 3	Units			
														QW T	6.295	6.095	6.095	tt*ft/dov	- K*b		
Output	for Str	oam Dor	lation S	conorio	2 (02).		Time pu	mn on (r	umping	duration)	- 200 da	VE		T	47.012	47.012	47.012	and/ft	= K b		
Dave	101 30	20		on	2 (52).	150	190	210	240	270	200 ua	ys 220	260	she	47,012	47,012	47,012	gpu/n ft/day	= K D = Ke*we/be		
LED		00.00/	00 29/	02.6%	04.5%	05.09/	05 59/	14.99/	240 5 70/	2/0	2.6%	2.0%	1 69/	suc	1 150005	1 150005	1 150005	dovo	= KS WS/US	י ד)	
JSD		88.9%	92.2%	93.6%	94.5%	95.0%	95.5%	14.8%	5.7%	3.6%	2.0%	2.0%	1.6%	sar	1.159905	1.159905	1.159905	days	= (a'2'5)/(1)	
H SD 1	999	12.2%	17.4%	21.0%	23.9%	26.3%	28.3%	23.7%	17.6%	14.5%	12.5%	11.1%	9.9%	sbt	0.057279	0.057279	0.057279		= sbc*a/1		
H SD 2	003	0.19%	0.34%	0.50%	0.66%	0.81%	0.97%	1.02%	1.03%	1.02%	1.01%	0.98%	0.96%	ť	0.862140	0.862140	0.862140	1/days	$= 1/(a^{2}S)$) input #1 fc	r Hunt's Q_4 function
Qw, cfs		1.740	1.740	1.740	1.740	1.740	1.740	1.740	1.740) 1.740 1.740 1.740 1.740			K'	7.732697	7.732697	7.732697		= (Ks/bs)*a^2/T input #2 for Hunt's Q_4 function			
H SD 9	9, cfs	0.212	0.302	0.365	0.415	0.457	0.493	0.412	0.306	0.253	0.218	0.193	<u>3 0.173 epsilon' 0.005000 0.005000 0.005000</u>				= S/n input #3 for Hunt's Q_4 function				
H SD 0	3, cfs	0.003	0.006	0.009	0.011	0.014	0.017	0.018	0.018	0.018	0.017	0.017	0.017	lamda'	0.057279	0.057279	0.057279		= sbc*a/T	input #4 for	Hunt's Q_4 function
_						-															
Param	eters:					Scenario 1 Scenario 2			Scenario 3 Units			Units									
Net ste	ady pur	nping rate	e of well		Qw		1.74		1.74		1.74		cfs								
Time p	ump on	(pumping	duration)	tpon		200		200		200		days								
Perpen	dicular	from well	to stream	1	а		2700		2700		2700		ft								
Well de	pth				d		448		448		448		ft								
Aquifer	Aquifer hydraulic conductivity K					12.57		12.57		12.57		ft/day									
Aquifer	Aquifer saturated thickness b				b		500		500		500		ft								
Aquifer transmissivity T					6285	6285		6285		ft*ft/day											
Aquifer storativity or specific yield S				-	0.001	0.001			0.001												
Aquitard vertical hydraulic conductivity Kva 0.02						0.02 0.02			tt/day												
Aquitar	Aquitard saturated thickness ba				3	3 3			3 ft												
Aquitar	Aquitard thickness below stream babs			3		3		3		ft											
Aquitard porosity			n		0.2		0.2		0.2												
Stream width			ws		20		20		20		ft										
Streambed conductance (lambda)			sbc		0.133333	(0.133333	0	.133333		ft/day										
Stream depletion factor			sdf		1.159905		1.159905	1	.159905		days										
Stream	Streambed factor			sbf		0.057279	(0.057279	0	.057279											
input #	input #1 for Hunt's Q_4 function			ť		0.862140	().862140	0	.862140											
input #2	2 for Hu	int's Q_4	function		K'		7.732697		7.732697	7	.732697										
input #3	3 for Hu	int's Q_4	function		epsilon'		0.005000	(0.005000	0	.005000										
input #4 for Hunt's Q_4 function				lamda'		0.057279	(0.057279	0	.057279											