Groundwater Application Review Summary Form

Application # G- <u>19460</u>

GW Reviewer <u>Stacey Garrison</u> Date Review Completed: <u>3/5/2025</u>

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

□ There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

March 5 2025

TO: Application G-<u>19460</u>

FROM: GW: <u>Stacey Garrison</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- □ YES The source of appropriation is hydraulically connected to a State Scenic Waterway or its tributaries
- □ YES
 □ Use the Scenic Waterway Condition (Condition 7J)
 □ NO
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>[Enter]</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBL	IC INTERES	T REVIEW	FOR GROUN	DWA	TER A	PPL	ICATIONS				
TO:	Wate	r Rights Secti	on				Date _	3/5/2	<u>025</u>		
FROM	: Grou	ndwater Secti	on	S	tacey Ga	rrisor	1				
				C	Reviewe	r's Nan					
SORIE	CI: Appl	ication G- $\underline{19}$	9460_	Supe	ersedes	revie	w of		Date of I	Review(<u></u>
									Date of I		3)
PUBLI OAR 69 welfare, to detern the pres	C INTERES 20-310-130 (1) <i>safety and heal</i> mine whether th umption criteria	T PRESUMP The Departmen th as described e presumption . This review i	TION; GROU t shall presume th in ORS 537.525. is established. Of s based upon ava	NDWA hat a pro Depart AR 690- ailable	ATER coposed g tment sta -310-140 informa	g <i>round</i> ff rev allov allon a	dwater use will ensitiew groundwater a iew groundwater a vs the proposed us and agency policie	sure the pres applications e be modifie es in place a	<i>ervation</i> under O d or con i t the tin	n of the AR 69 dition ne of e	<i>e public</i> 0-310-140 ed to meet evaluation .
A. <u>GE</u> I	NERAL INFO	ORMATION:	Applicant's	s Name	: <u>Cle</u>	earlak	e Farms, LLC		County:	Ma	rion
A1.	Applicant(s) se	eek(s) <u>2.88</u>	_cfs from4		well(s) i	n the	Willamette				Basin
	Molalla	-Pudding			subbasir	1					
A2.	Proposed use _	Nurser	ý		Seasona	ality:	Year round				
A3.	Well and aquif	er data (attach	and number log	gs for ex	xisting w	ells;	mark proposed w	ells as such	under l	ogid):	
POA Well	Logid	Applicant's Well #	Proposed Aquife	er*	Propose Rate(cfs	d 5)	Location (T/R-S QQ-Q	Loca 2250	tion, met)' N, 1200	es and E fr N	bounds, e.g. W cor S 36
1	MARI 17388	1	Alluvium		2.88		6S/3W-23 SE-N	E 40)' N, 580' '	W fr E !	/4 cor S 23
2	MARI 5169	2	Alluvium		2.88		6S/3W-24 NW-N	W 1,6	80' N, 40'	E fr W	¹ / ₄ cor S 24
3	PROP 600	3	Alluvium		2.88		6S/3W-23 NE-N	E 1,0	40' S, 825	'WfrN	$\frac{1E \operatorname{cor} S 23}{14 \operatorname{cor} S 24}$
4 * Alluviu	im, CRB, Bedroc	k 4	Alluviulli		2.00		05/3 W-24 S W-IN	W 8/0	N, 510 I	EIFWI	.4 cor 3 24
POA	Well Depth	Seal Interval	Casing Intervals	Liner I	Intervals	Perfo	orations Or Screens	Well Yield	Drawd	lown	Test Type
Well	(ft)	(ft)	(ft)	((ft)		(ft)	(gpm)	(ft)	Test Type
1	200	0 to 19	+1 to 200			120	0 to 150, 183 to 200	500	23	,	Air
2	360	0 to 20	0 to 140	-			8010139	700	55)	Pullip
4	112	0 to 20	0 to 300				75 to 111	300	60)	Pump
											· · ·
POA	Land Surface El	evation at Well	Depth of First Wa	ter	SWL		SWL	Reference	Level	Refe	rence Level
Well	(ft ar	nsl)	(ft bls)		(ft bls)		Date	(ft bl	s)		Date
1	18.	3°	75		62		6/19/1991	63.53	a	2	3/7/2018
2	183	3 c	80		42		2/16/1971	40.2	o b	3	/21/2001
4	18.	f	75		36		9/10/1958	38.2	,	3	/21/2001
A 4.	Comments: <u>1</u> <u>a Reference lev</u> <u>b Reference lev</u> <u>c Well head ele</u>	The proposed Portugated Port	OU/POAs are imit from reference le d from nearby we d based on LIDA	<u>mediate</u> evel for ell MAF R meas	<u>ly north</u> MARI 1 <u>RI 5148</u> surement	of cit 7388 s at p	y limits for Keizer set for application roposed well locat	, Oregon. 1 G-18341/p ions (Waters	ermit G- shed Scie	17828 ences,	<u>.</u> 2009).
A5. 🗌	Provisions of	the <u>Willamette</u>				Basi	n rules relative to t	he developn	nent, cla	ssifica	tion and/or
	management o	f groundwater	hydraulically con	nected t	to surfac	e wate	er \Box are, or \boxtimes a	are not, acti	vated by	this a	pplication.
	(Not all basin 1	ules contain su	ch provisions.)								. –
	Comments: Tl	ne proposed PC	As are greater th	an 0.25	miles fr	om th	e nearest surface w	vater source.	Per OA	R 690	-502-0240.
	the relevant \overline{ba}	sin rules do not	apply.								

A6. Well(s) # _____, ___, ___, tap(s) an aquifer limited by an administrative restriction. Name of administrative area: Comments:

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. is over appropriated, is not over appropriated, *or* cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. \square will not or \square will likely to be available within the capacity of the groundwater resource; or
 - d. uill, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) 7RLS, Large Water Use
 - ii. \square The permit should be conditioned as indicated in item 2 below.
 - iii. \Box The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the <u>alluvial</u> groundwater reservoir between approximately______ft. and ______ft. below land surface;
 - d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. **Groundwater availability remarks:** <u>The POAs are located on 60 to 80 ft of fine-grained Missoula flood deposits, which overlies the 100 to 120 ft thick Willamette Aquifer that the POAs are likely to develop (O'Connor et al., 2001; Gannett and Caldwell, 1998). Within a mile of the POAs the sand and gravel water-bearing zones, WBZs, of the Willamette Aquifer are between 35 and 400 ft bls [-214 to 129 ft ams]] and range in thickness from 7 to 290 ft^a.</u>

A review of statistics for nearby well records was completed and compared with the proposed rate of 2.88 cfs (~1,293 gpm) for this application (see Well Statistics). The median reported well yield is 50 gpm and the maximum reported well yield is 2,000 gpm; of the 754 wells included in the statistical review, only six wells are reported with yields exceeding 1,000 gpm. The proposed rate for this application is 2,585% of the median and 65% of the maximum reported yield. Within one mile of the POAs, the median well yield is 368 gpm and the maximum is 1,200 gpm. The three POAs that are developed (POA 1/MARI 17388, POA 2/MARI 5169, POA 4/MARI 5170) have significantly lower yields (500 gpm, 700 gpm, and 300 gpm, respectively) than the proposed rate of 2.88 cfs (~1,293 gpm), however, the proposed rate of use of 2.88 cfs (~1,293 gpm) is likely within the capacity of the groundwater resource.

Water levels are stable (see Water Level Measurements in Nearby Wells). Of the eleven observation wells within one-and-ahalf miles of the POAs, four have records over the last five years: MARI 17269, MARI 68355, MARI 58798, and POA 1/MARI 17388. A couple of observation wells show declines between 20 and 30 years ago, however, more recent measurements indicate recovery of water levels since then. There are 57 POAs for 63 groundwater rights within one mile of the POAs, however, the overall steady water levels described above indicate that there is a low likelihood of interference with other groundwater users. The groundwater resource is not likely over-appropriated.

The nearest groundwater user to POA 1/Johnson Well (MARI 17388) is MARI 5080 (a POA on Claim GR 3285 with priority date 4/30/1950), located 556 ft southeast and at an elevation of 182 ft amsl. It is likely the proposed use would cause some degree of well-to-well interference with MARI 5080. To assess the degree of drawdown, a Theis drawdown analysis was conducted for the proposed use (see attached Theis Drawdown Analysis). **Results indicate that the proposed use is likely**

Page

to cause well-to-well interference with MARI 5080 that exceeds the threshold under the standard condition for alluvial aquifers in the Willamette Basin. Therefore, the proposed use is not in the capacity of the resource. The nearest groundwater user to POA 2/Main Well (MARI 5169) is MARI 5110 (a POA on Certificate 55417 with priority date 6/13/1983), located 1,436 ft southeast and at an elevation of 177 ft amsl. It is likely the proposed use would cause some degree of well-to-well interference with MARI 5110. To assess the degree of drawdown, a Theis drawdown analysis was conducted for the proposed use (see attached Theis Drawdown Analysis). Results indicate that the proposed use is likely to cause well-to-well interference with MARI 5110 that exceeds the threshold under the standard condition for alluvial aquifers in the Willamette Basin. Therefore, the proposed use is not in the capacity of the resource. The nearest groundwater user to POA 3/Proposed New Well (PROP 600) is MARI 71298 (an exempt domestic well) located 972 ft southwest and at an elevation of 184 ft amsl. To assess the degree of drawdown, a Theis drawdown analysis was conducted for the proposed use (see attached Theis Drawdown Analysis). Results indicate that the proposed use is likely to cause well-to-well interference with MARI 71298 that exceeds the threshold under the standard condition for alluvial aquifers in the Willamette Basin. Therefore, the proposed use is not in the capacity of the resource. The nearest groundwater user to POA 4/CL Canyard Well (MARI 5170) is MARI 5110 (a POA on Certificate 55417 with priority date 6/13/1983), located 639 ft southeast and at an elevation of 177 ft amsl. It is likely the proposed use would cause some degree of well-to-well interference with MARI 5110. To assess the degree of drawdown, a Theis drawdown analysis was conducted for the proposed use (see attached Theis Drawdown Analysis). Results indicate that the proposed use is likely to cause well-to-well interference with MARI 5110 that exceeds the threshold under the standard condition for alluvial aquifers in the Willamette Basin. Therefore, the proposed use is not in the capacity of the resource.

Based on this analysis of the available data and under the assumptions previously identified, groundwater for the proposed use is likely not within the capacity of the resource; if a permit is issued for this application, the conditions in B1(d)(i) and B2(c) are recommended to protect senior users and the groundwater resource.

NOTE: This evaluation considers a conservative scenario for the nearest authorized POA not owned by the applicant. Other authorized POAs in the area may also experience an increase in interference as a result of this application, although to a lesser extent than the scenario evaluated here.

^a Well logs within one mile utilizing confined alluvium: MARI 4878, MARI 4880, MARI 4902, MARI 4916, MARI 4991, MARI 5030, MARI 5059, MARI 5064, MARI 5078, MARI 5079, MARI 5084, MARI 5089, MARI 5110, MARI 5148, MARI 5164, MARI 5165, MARI 5167/5112/8106/5098, MARI 5169, MARI 5170, MARI 5180, MARI 5182/5099, MARI 5279, MARI 5280, MARI 17269, MARI 17319, MARI 17388, MARI 17870, MARI 51900, MARI 57704, MARI 58798, MARI 68355, MARI 70362, MARI 71120, MARI 71280, MARI 71298.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Confined sand and gravel	Ø	
2	Confined sand and gravel	X	
3	Confined sand and gravel	X	
4	Confined sand and gravel	\boxtimes	

Basis for aquifer confinement evaluation: The three developed POAs (POA 1/MARI 17388, POA 2/MARI 5169, POA 4/MARI 5170) report static water levels (SWL) well above the top of the WBZ. There were 39 well logs identified within a mile of the POAs^a, of those, 32 in addition to the three developed POAs above reported a SWL higher than the top of the WBZ. The 60-to-80-ft-thick Missoula Flood Deposits mapped at the surface are a confining layer to the underlying sand and gravel WBZs.

^a Well logs within one mile: MARI 4878, MARI 4880, MARI 4902, MARI 4911, MARI 4914, MARI 4916, MARI 4991, MARI 5030, MARI 5059, MARI 5064, MARI 5076, MARI 5078, MARI 5079, MARI 5080, MARI 5084, MARI 5089, MARI 5110, MARI 5148, MARI 5164, MARI 5165, MARI 5167/5112/8106/5098, MARI 5169, MARI 5170, MARI 5180, MARI 5182/5099, MARI 5279, MARI 5280, MARI 17269, MARI 17319, MARI 17388, MARI 17870, MARI 51900, MARI 57704, MARI 58798, MARI 68355, MARI 70362, MARI 71120, MARI 71280, MARI 71298.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	I YES	Hydra Conn NO	ulically ected? ASSUMED	Potentia Subst. In Assum YES	ll for terfer. ed? NO
1	1	Clear Lake/Claggett Creek	119-121	105-106	4,250	\boxtimes				Ø
2	1	Clear Lake/Claggett Creek	141	105-106	5,050	\boxtimes				Ø
3	1	Clear Lake/Claggett Creek	107-165 ^a	105-106	4,210	\boxtimes				\boxtimes
4	1	Clear Lake/Claggett Creek	145	105-106	5,200	\boxtimes				Ø

Basis for aquifer hydraulic connection evaluation: The groundwater elevation is above or coincident with the surface water elevation for SW 1 (Clear Lake/Claggett Creek), indicating groundwater discharges to surface water and the water table is between 120 and 140 ft amsl (O'Connor et al., 2001; Gannett and Caldwell, 1998). The surface water drainage of SW 1 (Clear Lake/Claggett Creek) has not incised below the elevation of the WBZs of the confined alluvial POAs. Hydraulic connection to SW 1 (Clear Lake/Claggett Creek) is likely but anticipated to be inefficient due to the horizontal distance and the low vertical permeability of the overlying fine-grained sediments.

a Well logs within one mile utilizing confined alluvium: MARI 4878, MARI 4880, MARI 4902, MARI 4916, MARI 4991, MARI 5030, MARI 5059, MARI 5064, MARI 5078, MARI 5079, MARI 5084, MARI 5089, MARI 5110, MARI 5148, MARI 5164, MARI 5165, MARI 5167/5112/8106/5098, MARI 5169, MARI 5170, MARI 5180, MARI 5182/5099, MARI 5279, MARI 5280, MARI 17269, MARI 17319, MARI 17388, MARI 17870, MARI 51900, MARI 57704, MARI 58798, MARI 68355, MARI 70362, MARI 71120, MARI 71280, MARI 71298.

Water Availability Basin the well(s) are located within: <u>WILLAMETTE R>COLUMBIA R-AB MOLALLA R</u>

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			MF182A	1500		3830		<25%	

2	1		MF182A	1500	3830	<25%	
3	1		MF182A	1500	3830	<25%	
4	1		MF182A	1500	3830	<25%	

Comments: Potential depletion (interference with) SW 1 (Clear Lake/Claggett Creek) by proposed pumping at Well 3 (PROP 600) was estimated using Hunt 2003 analytical model. Hydraulic parameters used for the model were derived from regional data or studies of the hydrogeologic regime (OWRD Well Log Query Report; Conlon et al., 2003, 2005; Iverson, 2002; McFarland and Morgan, 1996; Woodward et al., 1998) or are within a typical range of values for the parameter within the hydrogeologic regime (Freeze and Cherry, 1979; Domenico and Mifflin, 1965). See attached "Stream Depletion Analysis" for the specific parameters used in the analysis. The Hunt 2003 analytical model results indicate that depletion of (interference with) SW 1 due to pumping of the proposed POA is anticipated to be much less than 25 percent of the well discharge at 30 days of continuous pumping.

Because only the distance is expected to vary between the POA and surface water sources, only the POA-SW pair with the shortest distance (in this case, POA 3 and SW 1) was analyzed quantitatively for interference (stream depletion). All other POA-SW pairs would presumably result in less interference due to their greater separation relative to POA 3 and SW 1. Therefore, the interference of both proposed POA with all surface water sources within 1 mile are anticipated to result in much less than 25 percent of the well discharge at 30 days of continuous pumping.

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

S	SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: <u>N/A-Q is not distributed.</u>

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	Non-Distributed Wells												
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	rence CFS												
Distrik	uted Well	e.											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	rence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	rence CFS												
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	otal Interf.												
$(\mathbf{B}) = 80$) % Nat. Q												
(C) = 1	% Nat. Q												
(D) =	$(\mathbf{A}) > (\mathbf{C})$	\checkmark											
$(\mathbf{E}) = (\mathbf{A}$	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.
 Basis for impact evaluation: N/A-streams within one mile evaluated above.

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:

i. \Box The permit should contain condition #(s)

ii. \Box The permit should contain special condition(s) as indicated in "Remarks" below;

C6. SW / GW Remarks and Conditions:

References Used:

Application File: G-19460

- Pumping Test Files: MARI 4160, MARI 4614, MARI 5368, MARI 5367, MARI 4792, MARI 17319, MARI 18339, MARI 18339, MARI 4510, MARI 3846, MARI 17870, MARI 58798, MARI 17388, MARI 60275, MARI 5079, MARI 4218, MARI 4218, MARI 4880, MARI 18338, MARI 54503
- Well Reports: MARI 4878, MARI 4880, MARI 4902, MARI 4911, MARI 4914, MARI 4916, MARI 4991, MARI 5030, MARI 5059, MARI 5064, MARI 5076, MARI 5078, MARI 5079, MARI 5080, MARI 5084, MARI 5089, MARI 5110, MARI 5148, MARI 5164, MARI 5165, MARI 5167/5112/8106/5098, MARI 5169, MARI 5170, MARI 5180, MARI 5182/5099, MARI 5279, MARI 5280, MARI 17269, MARI 17319, MARI 17388, MARI 17870, MARI 51900, MARI 57704, MARI 58798, MARI 68355, MARI 70362, MARI 71120, MARI 71280, MARI 71298
- Conlon, T.D., Wozniak, K.C., Woodcock, D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, *Ground-water hydrology of the Willamette Basin, Oregon*, Scientific Investigations Report 2005-5168: U.S. Geological Survey, Reston, VA.
- Gannett, M.W. and Caldwell, R., 1998, *Geologic framework of the Willamette Lowland aquifer system, Oregon and Washington*, Professional Paper 1424-A, 32 p: U. S. Geological Survey, Reston, VA.
- Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, 2003.
- Iverson, J., 2002, Investigation of the hydraulic, physical, and chemical buffering capacity of Missoula flood deposits for water quality and supply in the Willamette Valley of Oregon: Unpublished M.S. thesis, Oregon State University, 147 p.
- O'Connor, J.E., Sarna-Wojcick, A., Woznikak, K.C., Polette, D.J., Fleck, R.J., 2001, Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon; U.S. Geological Survey, Professional Paper 1620, 51 p.
- Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: American Geophysical Union transactions, v. 16, p. 519-524.

United States Geological Survey, 2013, National Elevation Dataset (NED) [DEM geospatial data]. 1/9th arc-second, updated 2013.

- Watershed Sciences, 2009, LIDAR remote sensing data collection, Department of Geology and Mineral Industries, Willamette Valley Phase I, Oregon: Portland, OR, December 21.
- Woodward, D.G., Gannett, M.W., and Vaccaro, J.J., 1998, Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington: U.S. Geological Survey Professional Paper 1424-B, 82 p.

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #	: Logid:
D2.	THE V	VELL does not appear to meet current well construction standards based upon:
	a. 🗆	review of the well log;
	b. 🗆	field inspection by;
	c. 🗆	report of CWRE;
	d. 🗆	other: (specify)
D3.	THE V	WELL construction deficiency or other comment is described as follows:

D4. 🗌 Route to the Well Construction and Compliance Section for a review of existing well construction.

Water Availability Tables

Oregoi Water J	n Water Resources Department Availability Analysis					♣ Main④ Return	 Help Contact Us
		Water A	vailability Ar etailed Reports	nalysis			
		WILLAMETTE	R > COLUMBIA R - AB M WILLAMETTE BASIN	OLALLA R			
Watershed ID #: Date: 1/21/2025	182 (<u>Map</u>)	Wate	r Availability as of 1/21/202	25		Exceed	lance Level: 80% - Time: 12:23 PM
	Water Availability Calculation	Consumptive Uses and Storages		Instream Flow Requirements	Watershed Characteristics	vations	
		Water A	vailability Calcu	lation			
		Monthly Str Annual Volum	eamflow in Cubic Feet per ne at 50% Exceedance in	Second Acre-Feet			
Month	Natural Stream Flow	Consumptive liese and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement		Not Water Available
JAN	21 400 00	2 310 00	19 100 00	0.00	1 500 00		17 600 00
FEB	23 200 00	7 490 00	15,700,00	0.00	1,500.00		14 200 00
MAR	22 400 00	7 260 00	15 100 00	0.00	1 500 00		13 600 00
APR	19.900.00	6.910.00	13.000.00	0.00	1.500.00		11.500.00
MAY	16 600 00	4 250 00	12 300 00	0.00	1 500 00		10 800 00
JUN	8 740 00	1 980 00	6 760 00	0.00	1 500 00		5 260 00
JUL	4,980.00	1.810.00	3.170.00	0.00	1.500.00		1.670.00
AUG	3.830.00	1.650.00	2,180.00	0.00	1.500.00		681.00
SEP	3.890.00	1.390.00	2.500.00	0.00	1.500.00		998.00
OCT	4,850.00	753.00	4,100.00	0.00	1.500.00		2 600.00
NOV	10,200.00	887.00	9,310.00	0.00	1,500.00		7,810.00
DEC	19,300.00	975.00	18,300.00	0.00	1.500.00		16,800.00
ANN	15,200,000.00	2,250,000.00	13,000,000.00	0.00	1,090,000.00		11,900,000.00
Download Data (Text	Formatted., Text-Tab Delimited., Excel.) n Water Resources Department Availability Analysis					₩ MainG Return	HelpContact Us
		Water A	vailability An Detailed Reports	nalysis			
		WILLAMETTE	R > COLUMBIA R - AB N WILLAMETTE BASIN	IOLALLA R			
Watershed ID #: Date: 1/21/2025	182 (<u>Map)</u>	Wate	er Availability as of 1/21/20	25		Excee	dance Level: 80% 🗸 Time: 12:24 PM
	Water Availability Calculation Water Availability Calculation	Consumptive Uses and Storages er Rights		Instream Flow Requirements	Rese Watershed Characteristics	rvations	
		Detailed Report Instream Flow F	of Instream Flow Requirements in Cubic Fee	/ Requirements et per Second			

instream Flow Requirements in Cubic Feet per Second													
Application #	Status	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MF182A	APPLICATION	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00
Maximum		1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00	1,500.00

Download Data (<u>Text - Formatted</u>, <u>Text - Tab Delimited</u>, <u>Excel</u>)

Well Location Map

Service Layer Credits: Copyright/0 2013 National Geographic Society, i-cubed

Application G-19460

Cross-Section

Well Statistics

Radial distance from pumping well (r)=556 ft [estimated radial distance to nearest user, MARI 5080] **Pumping Rate (Q)= 3.1723 cfs (~1,423.8 gpm)**

Aquifer Transmissivity (T1)= 9,350 gpd/ft (1,250 ft²/day), (T2)= 23,562 gpd/ft (3,150 ft²/day), (T3)= 179,520 gpd/ft (24,000 ft²/day) Storativity (s1) = 0.0001, (s2) = 0.001 [Conlon et al 2005, Table 1 and 2 values for MSU] Total pumping time=104 days*

*The full pumping rate could not be utilized continuously for the entire 365-day period of use without exceeding the 638.75 ac-ft maximum allowed duty. For the maximum allowed duty of 638.75 ac-ft, continuous pumping would occur for 104 days at a rate of 3.1723 cfs (~1,423.8 gpm).

Radial distance from pumping well (r)=1,436 ft [estimated radial distance to nearest user, MARI 5110] **Pumping Rate (Q)= 3.94 cfs (~1,768.3 gpm)**

Aquifer Transmissivity (T1)= 9,350 gpd/ft (1,250 ft²/day), (T2)= 23,562 gpd/ft (3,150 ft²/day), (T3)= 179,520 gpd/ft (24,000 ft²/day) Storativity (s1) = 0.0001, (s2) = 0.001 [Conlon et al 2005, Table 1 and 2 values for MSU] Total pumping time=84 days*

*The full pumping rate could not be utilized continuously for the entire 365-day period of use without exceeding the 658.25 ac-ft maximum allowed duty. For the maximum allowed duty of 658.25 ac-ft, continuous pumping would occur for 84 days at a rate of 3.94 cfs (~1,768.3 gpm).

Radial distance from pumping well (r)=972 ft [estimated radial distance to nearest user, MARI 71298] **Pumping Rate (Q)= 2.88 cfs (~1,292.63 gpm)**

Aquifer Transmissivity (T1)= 9,350 gpd/ft (1,250 ft²/day), (T2)= 23,562 gpd/ft (3,150 ft²/day), (T3)= 179,520 gpd/ft (24,000 ft²/day) Storativity (s1) = 0.0001, (s2) = 0.001 [Conlon et al 2005, Table 1 and 2 values for MSU] Total pumping time=101 days*

*The full pumping rate could not be utilized continuously for the entire 365-day period of use without exceeding the 576.5 ac-ft maximum allowed duty. For the maximum allowed duty of 576.5 ac-ft, continuous pumping would occur for 101 days at a rate of 2.88 cfs (~1,292.63 gpm).

Theis Interference Analysis-POA 4/CL Canyard Well (MARI 5170) and MARI 5110

Radial distance from pumping well (r)=639 ft [estimated radial distance to nearest user, MARI 5110]

Pumping Rate (Q)= 2.88 cfs (~1,292.63 gpm)

Aquifer Transmissivity (T1)= 9,350 gpd/ft (1,250 ft²/day), (T2)= 23,562 gpd/ft (3,150 ft²/day), (T3)= 179,520 gpd/ft (24,000 ft²/day) Storativity (s1) = 0.0001, (s2) = 0.001 [Conlon et al 2005, Table 1 and 2 values for MSU]

Total pumping time=101 days*

*The full pumping rate could not be utilized continuously for the entire 365-day period of use without exceeding the 576.5 ac-ft maximum allowed duty. For the maximum allowed duty of 576.5 ac-ft, continuous pumping would occur for 101 days at a rate of 2.88 cfs (~1,292.63 gpm).

Page

Stream Depletion (Hunt) Model Analysis

						Parameter					l Scen	ario 1	Scenario 2	Scenario 3	Units
Арр	lication type:			G	_	Distar	nce from v	vell to stre	am	а	4210		4210	4210	ft
Арр	lication number:			19460		Aquif	er transmi	ssivity		т	240	00	3150	1250	ft2/day
Wel	number:			3	_	Aquif	er storativ	ity		S	0.001		0.0005	0.0001	-
Stre	am Number:			1		Aquit	ard vertica	al hydrauli	c conductiv	rity Kva	Kva 0.01		0.005	0.001	ft/day
Pun	Pumping rate (cfs): 0.79					Aquitard saturated thickness					11		11	11	ft
Pun	ping duration (days)		Aquitard thickness below stream					2		2	2	ft			
Pun	Pumping start month number (3=March)					Aquit	ard specif	ic yield		Sya	0.2		0.2	0.2	-
Plot	ting duration (days)			365		Strear	n width			ws	265		265	265	ft
					Str	eam dep	oletion f	or Scena	ario 2:						
	Days	1	31	62	92	122	153	183	213	244 2	274	304	335	365	
	Depletion (%)	2	5	5	5	6	6	7	7	7	3	8	9	9	
Depletion (cfs) 0.02 0.04 0.04 0.04					0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.07		

