PUBLIC INTEREST REVIEW FOR GROUND WATER APPLICATIONS

TO:		Water Rights Section							Date	Fe	bruar	y 13, 200)9	
FROM	:	Grou	ind Water/	Hydrolog	y Section	M	like Z	Zwart						
SUBJE	СТ	Annl	ication G-	17143				wer's Name ersedes rev	view of					
SCDIL	C1.	1 ippi	icution G	17110			Бир	cracaes re-				Date of Rev	view(s)	
PUBLI	C INTE	RES	T PRESU	MPTION	; GROU	NDWA	TER	<u> </u>						
welfare, to determ	safety an	<i>id hea</i> ther th	<i>lth as descr</i> ne presumpt	<i>ibed in OR</i> ion is estal	S 537.525 blished. O	. Depart AR 690-	ment 310-1	staff review 40 allows t	nter use will of ground water by ground water the proposed agency policy policy.	er applio use be r	cations and anodified	under OA d or condi	R 690-3 tioned to	10-140 meet
A. GEN	ERAL IN	NFOR	MATION:	Applicant	's Name:	Josep	oh Wi	lliams		Count	y:	Harney		
A1.	Applica	nt(s) s	eek(s) <u>7.0</u>	cfs	from <u>13</u>	well(s	s) in th	ne	Malheur L	ake				_Basin,
	P	oison	Creek Slo	ıgh			subba	asin Qua	ad Map: <u>Po</u>	oison Cı	eek Slo	ough		
A2. A3.	Proposed Well and	d use:	<u>Irr</u> fer data (att	igation, 56 ach and n	0 acres umber log	gs for ex	Seaso sisting	onality: g wells; ma	March 1 to	Octob wells a	er 31 s such	under log	gid):	
Well	Logi	d	Applicant'	s Propo	sed Aquife		oposed		Location			n, metes a		
1	Propos		Well # 8-1		Basin fill	Ra	te(cfs)		/R-S QQ-Q) 32E-8 SW-SW	V		I <u>, 1200' E f</u> E , 10' N fr		
2	"	<u>scu</u>	8-2	-	"		"		32E-8 SW-SW			E, 10' N f		
3	"		8-3		"		"		32E-8 SE-SW			E, 10' N f		
5	"		8-4		"		"		23S/32E-8 SW-SE		3970' E, 10' N fr SW cor S 8			
6	"		8-5 8-6			-	"	23S/32E-8 SE-SE 23S/32E-8 SE-SE			5270' E, 10' N fr SW cor S 8 5270' E, 1310' N fr SW cor S 8			
7	"		8-7		"		"	23S/32E-8 NE-SE			5270 E, 1610 N II SW cor S 8			
8	"		8-8		"		"	23S/32E-8 SE-NE			5270' E, 3950' N fr SW cor S 8			
9	"		8-9		"		"	23S/32E-8 SW-NE			3970' E, 3950' N fr SW cor S 8			
10	"		8-10		"		"		32E-8 SE-NW					
11 12			8-11 8-12				"		32E-8 NE-NW 2E-8 NW-NV					
13	"		8-13		"		"		2E-8 NW-NV			5270' N f		
	ım, CRB, I	Bedroc		<u>I</u>								, , , , , , , , , , , ,		
	Well	Firs	t		Well	Sea	1	Casing	Liner	Perfor	ations	Well	Draw	
Well	Elev	Wate	er SWL	SWL	Depth	Interv	val	Intervals	Intervals	Or So	creens	Yield	Down	Test
	ft msl	ft bl	ft bls	Date	(ft)	(ft)		(ft)	(ft)	(1	t)	(gpm)	(ft)	Type
2	4132 4130				260	0-20 or	r 30	0-260						
3	4130				"	"		"						
4	4130				"	"		"						
5	4130				"	"		"						
6	4130				"	"		"						
7 8	4130 4130				"	"		"						
9	4130				"	"		"						
10	4130				"	"		"						
11	4130			•	"	"		"			•			
12	4133				"	"		"						
Use date	4135	iosti	for proposed	Lwalla		••		••						
A4.	Comme			i wells.										

Applicat	tion: G- 1/143 continued	Date:	February 13, 2009
A5. 🛛	Provisions of the Malheur Lake management of ground water hydraulically connected to surfa (Not all basin rules contain such provisions.) Comments:	ce water \square are, $or \boxtimes a$	he development, classification and/or are not, activated by this application.
A6. 🗌	Well(s) #	, tap(s) an aquifer l	imited by an administrative restriction
	Comments:		

ROUN	ND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070								
Bas	sed upon available data, I have determined that ground water* for the proposed use:								
a.	is over appropriated, is not over appropriated, or is cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;								
b.	■ will not or ■ will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;								
c.	\square will not or \square will likely to be available within the capacity of the ground water resource; or								
d.	 will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i.								
a.	Condition to allow ground water production from no deeper than ft. below land surface;								
b.	Condition to allow ground water production from no shallower than ft. below land surface;								
c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;								
d.	■ Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section.								
	ound water availability remarks: <u>Region Manager Ivan Gall recommends consistent use of Condition 7N in the</u>								
wel wel the app con pric ma	e wells shall be continuously cased and continuously sealed to a minimum depth of 70 feet below land surface. The ll may not be completed in such a manner that it allows ground water to be developed from If during a construction, it becomes apparent that the wells can be constructed to eliminate interference with nearby shallow the hydraulically connected streams in a manner other than specified in this permit, the permittee can contact Department Hydrogeologist for this permit or the Ground Water/Hydrology Section Manager to request proval of such construction. The request shall be in writing, and shall include a rough well log and a proposed astruction design for approval by the Department. The request can be approved only if it is received and reviewed or to placement of any permanent casing and sealing material. If the well is constructed first and then the request de, requested modification will not be approved. If approved, the new well depth and construction specifications I be incorporated into any certificate issued for this permit.								
pur	rsuant to figure 200-5 in OAR 690-200. This requirement does not apply to flowing wells and wells without mps.								

Date: February 13, 2009

3

Application: G- 17143 continued

Application: G- 17143 continued

Date: February 13, 2009

horizon assume	tal dis	stance less t	han ¼ mil ally conne	le from a sur	nd hydraulic of face water so urface water s	urce that p	roduce water	from ar	n unco	onfined aqui	fer shall	be
Well	SW #	S	Surface Water Name		(††)		(Hydraulically Connected? YES NO ASSUMED			ntial f Inter umed	
All	1	Pe	oison Creel	k Slough	4120±	4135	≥4860		\boxtimes			*
							_					
								Ц_	<u> </u>			
-												
								-	H			
1									Щ			
separati connect	on be ion wi	tween the th nearby	shallow at reaches o	nd deeper w f the slough	ation: <u>Resu</u> vater-bearings.	zones wh	ich leads to	a findin	ng tha	t there is po	oor hydr	aulic
Water A 590-09-0 connecte that are j	Availa O40 (4 ed and pertinge the r	bility Basical: Evaluated less than ent to that sequested ra	n the wellow and the wellow of street and the water against	(s) are located am impacts om a surface ter source, at the 1% of 80	vater-bearing is.	31200106 that has be Limit eva SW source ow for the	POISON CE een determined luation to ins s to which the pertinent Wa icates the we	a finding A SL> N ed or asstream rite stream ter Ava	Sumed ights an under ilabiliumed	MILE SL- A to be hydra and minimum er evaluation ty Basin (W	T MOU nulically n stream is tribut AB). If potential	flow ary. Q is to ca
Water A 590-09-0 connecte that are j Compare distribut	Availa O40 (4 ed and pertine e the red by	bility Basing Property of the second of the	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, at the 1% of 80 each well. A	ted within: for each well water source. nd not lower so 0% natural fle Any checked Instream Water	31200106 that has be Limit eva SW source ow for the	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with the week solution with the solution with th	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed	MILE SL- A to be hydra and minimum er evaluation ty Basin (W	at MOU nulically n stream is tribut AB). If potential	flow ary. Q is to ca
Water A 590-09-0 connecte that are p Compared distribut PSI.	Availa O40 (4 ed and pertine te the red by	bility Basing Evaluated less than ent to that sequested rawell, use fu	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, a the 1% of 80 each well. A	ted within: for each well water source. nd not lower so natural fle Any checked [Instream Water Right Q	that has be Limit eva SW source by for the box ind	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with t	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed 1% 0% ural	t there is po	at MOU aulically n stream is tribut AB). If potential	flow cary. Q is to captential Substiterfer
Water A 590-09-0 connecte that are p Compared distribut PSI.	Availa O40 (4 ed and pertine e the red by	bility Basing Property of the second of the	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, at the 1% of 80 each well. A	ted within: for each well water source. nd not lower so 0% natural fle Any checked Instream Water	that has be Limit eva SW source by for the box ind	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with the week solution with the solution with th	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed 1% 0% ural	t there is possible. MILE SL- A to be hydra and minimurer evaluation ty Basin (W to have the p	at MOU aulically n stream is tribut AB). If potential	flowary. Q is to ca
Water A 590-09-0 connecte that are p Compared distribut PSI.	Availa O40 (4 ed and pertine e the red by	bility Basing Property of the second of the	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, a the 1% of 80 each well. A	ted within: for each well water source. nd not lower so natural fle Any checked [Instream Water Right Q	that has be Limit eva SW source by for the box ind	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with t	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed 1% 0% ural	t there is possible. MILE SL- A to be hydra and minimurer evaluation ty Basin (W to have the p	at MOU aulically n stream is tribut AB). If potential	flow cary. Q is to captential Substiterfer
Water A 590-09-0 connecte that are p Compared distribut PSI.	Availa O40 (4 ed and pertine e the red by	bility Basing Property of the second of the	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, a the 1% of 80 each well. A	ted within: for each well water source. nd not lower so natural fle Any checked [Instream Water Right Q	that has be Limit eva SW source by for the box ind	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with t	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed 1% 0% ural	t there is possible. MILE SL- A to be hydra and minimurer evaluation ty Basin (W to have the p	at MOU aulically n stream is tribut AB). If potential	flow ary. Q is to ca
Water A 590-09-0 connecte that are p Compared distribut PSI.	Availa O40 (4 ed and pertine e the red by	bility Basing Property of the second of the	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, a the 1% of 80 each well. A	ted within: for each well water source. nd not lower so natural fle Any checked [Instream Water Right Q	that has be Limit eva SW source by for the box ind	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with t	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed 1% 0% ural	t there is possible. MILE SL- A to be hydra and minimurer evaluation ty Basin (W to have the p	at MOU aulically n stream is tribut AB). If potential	flow cary. Q is to captential Substiterfer
Water A 590-09-0 connecte that are p Compared distribut PSI.	Availa O40 (4 ed and pertine e the red by	bility Basing Property of the second of the	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, a the 1% of 80 each well. A	ted within: for each well water source. nd not lower so natural fle Any checked [Instream Water Right Q	that has be Limit eva SW source by for the box ind	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with t	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed 1% 0% ural	t there is possible. MILE SL- A to be hydra and minimurer evaluation ty Basin (W to have the p	at MOU aulically n stream is tribut AB). If potential	flow cary. Q is to captential Substiterfer
Water A 590-09-0 connecte that are p Compared distribut PSI.	Availa O40 (4 ed and pertine e the red by	bility Basing Property of the second of the	n the wellow are the wellow of street against all rate for	(s) are locate am impacts om a surface ter source, a the 1% of 80 each well. A	ted within: for each well water source. nd not lower so natural fle Any checked [Instream Water Right Q	that has be Limit eva SW source by for the box ind	POISON CF een determined luation to insect the week stoward which the pertinent Walicates the week solution with t	ed or ass stream rite stream ater Ava all is assu	Sumed ights an under ilability umed 1% 0% ural	t there is possible. MILE SL- A to be hydra and minimurer evaluation ty Basin (W to have the p	at MOU aulically n stream is tribut AB). If potential	flow cary. Q is to captential Substiterfer

Basis for aquifer confinement evaluation: Regionally the basin-fill aquifer is unconfined and discharges to Malheur Lake or more local surface water sources. The deeper water-bearing zones appear to be semiconfined to confined, based on a recent aquifer test. Also, the proposed well construction condition will ensure that shallow unconfined

Date: February 13, 2009

Confined

5

Unconfined

Application: G- 17143 continued

Well

All

C1. **690-09-040 (1):** Evaluation of aquifer confinement:

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

Aquifer or Proposed Aquifer

Basin-fill sediments: sand, clay and volcaniclastic seds.

Qal and Tvs of Leonard, 1970

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

 	ii ana miii	<u>.</u>	pry us m est						
SW #		Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: _	This section does not apply.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed V	Vells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
Distrib	uted Wells												
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
***************************************	1	%	%	%	%	%	%	%	%	% %	%	%	%
Well Q	as CFS	,,,	,,,	, ,	, ,	, ,	, 0	, 0	, 0	, 0	,,	, ,	,,,
_	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
_	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q													
Interfer	ence CFS												
(A) = To	otal Interf.												
	% Nat. Q												
	% Nat. Q												
				l .									
$\mathbf{(D)} = \mathbf{(A)}$		✓	√	√	√	√	√	√	√	√	✓	√	✓
(E) = (A	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:

6

plication: G- 17143 continued	Date: February 13, 2009
o. 690-09-040 (5) (b) The potential to im Rights Section.	npair or detrimentally affect the public interest is to be determined by the Wa
under this permit can be regulated if it is	ater source(s) can be adequately protected from interference, and/or ground water is found to substantially interfere with surface water:
ii The permit should contain s	pecial condition(s) as indicated in "Remarks" below;
ii. The permit should contain s	pecial condition(s) as indicated in Kemarks below,
SW / GW Remarks and Conditions:	
-	
	recent reviews; GW Report 16, by Leonard, 1970; Greene, Walker, and
	ns Quadrangle, Oregon, USGS Miscellaneous Geologic Investigations Map
680; Memo by Ivan Gall, 1/15, 2008, Strea	m Assessment for Division 9 Review in the Malheur Lakes Basin.

	#: Logid:	
D2.	WELL does not meet current well construction standards based upon: review of the well log; field inspection by report of CWRE other: (specify)	;
D3.	WELL construction deficiency: constitutes a health threat under Division 200 rules; commingles water from more than one ground water reservoir; permits the loss of artesian head; permits the de-watering of one or more ground water reservoirs; other: (specify)	
D4.	E WELL construction deficiency is described as follows:	
D5.	a. was, or was not constructed according to the standards in effect at the time of original construction or most recent modification.	
	b. I don't know if it met standards at the time of construction.	
D6. 🗌	te to the Enforcement Section. I recommend withholding issuance of the permit until evidence of well reconstrued with the Department and approved by the Enforcement Section and the Ground Water Section.	ction
THIS S	TION TO BE COMPLETED BY ENFORCEMENT PERSONNEL	
D7		
J/	construction deficiency has been corrected by the following actions:	
	(Enforcement Section Signature)	

Application: G- 17143 continued

Date: February 13, 2009

8

POISON CR SL> NINEMILE SL- AT MOUTH MALHEUR LAKE BASIN

Water Availability as of 2/11/2009

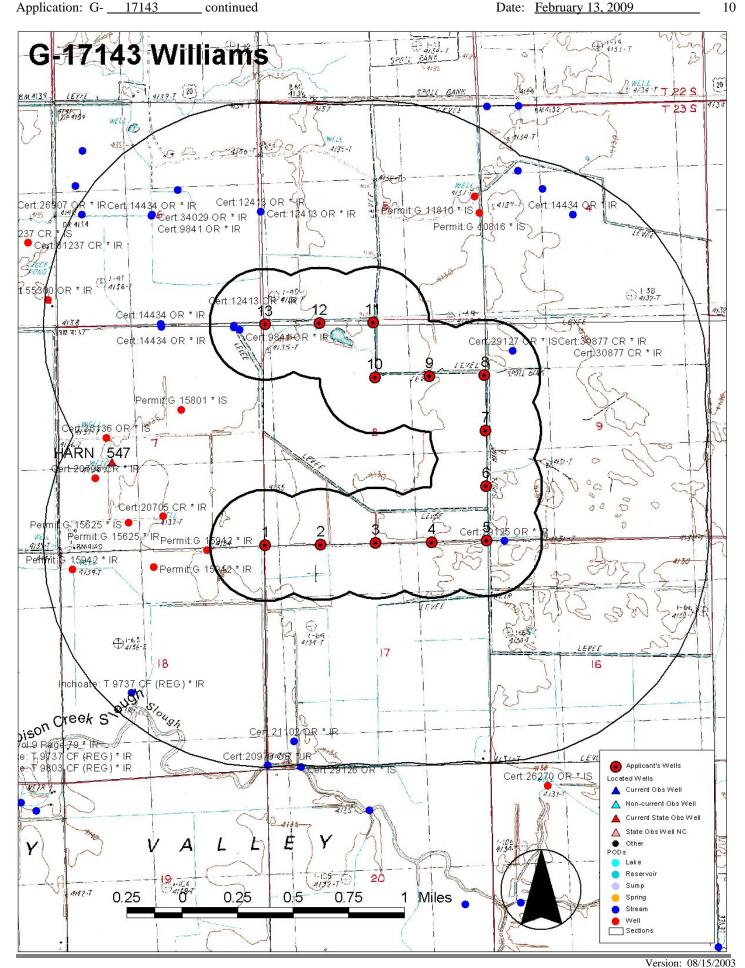
Watershed ID #: 31200106

Exceedance Level:

Date: February 13, 2009

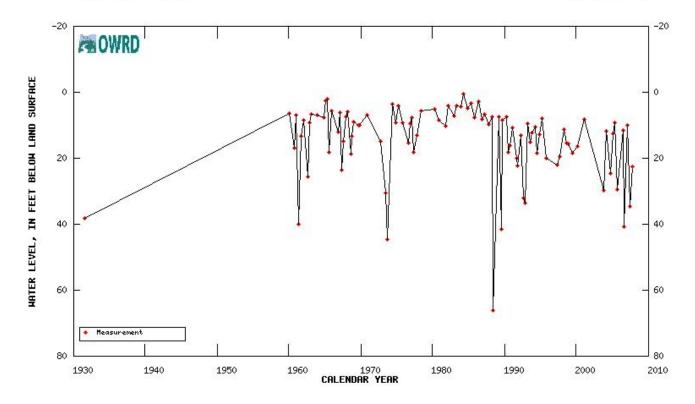
80%

Date: 2/11/2009


Time: 10:58 AM

Water Availability Calculation	Ca	onsumptive Uses and <u>S</u> torages	In <u>s</u> trean	n Requirements		Reservations
	Water Rights			Watershed Cha	aracterist	tics

Water Availability Calculation


Monthly Streamflows in Cubic Feet per Second Storage at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirement	Net Water Available
Jan	1.43	0.05	1.38	0.00	0.00	1.38
Feb	4.59	0.37	4.23	0.00	0.00	4.23
Mar	11.30	2.52	8.78	0.00	0.00	8.78
Apr	25.20	7.61	17.60	0.00	0.00	17.60
May	14.80	16.40	-1.56	0.00	0.00	-1.56
Jun	7.49	13.20	-5.74	0.00	0.00	-5.74
Jul	1.74	4.40	-2.66	0.00	0.00	-2.66
Aug	0.69	1.76	-1.07	0.00	0.00	-1.07
Sep	0.49	0.91	-0.42	0.00	0.00	-0.42
Oct	0.42	0.44	-0.02	0.00	0.00	-0.02
Nov	0.51	0.02	0.49	0.00	0.00	0.49
Dec	0.90	0.04	0.86	0.00	0.00	0.86
Storage Acre-Feet at 50%	6,830.00	2,890.00	5,250.00	0.00	0.00	5,250.00

Date: February 13, 2009

Well Location23,00532,00E7CABOregon Water Resources Department Well Log IDHARN 547Oregon Water Resources Department State Observation Well Number169Well depth, in feet below land surface93Land surface elevation, in feet above mean sea levelPrimary use of wellnot determined

