PUBLIC INTEREST REVIEW FOR GROUND WATER APPLICATIONS

TO:		Water	Rights S	ection				Date	<u>11 Ma</u>	11 March 2009				
FROM	[:	Groun	d Water/	Hydrology	Section _	Gerald		lin						
SUBJE	ECT:	Applic	ation	G-17178		Review Su	ver's Name persedes re	eview of	N.A.					
		• •					perseues re	eview of	110220	Date of Re	view(s)			
OAR 69 welfare, to deter	90-310-1 safety a mine who	30 (1) 7 and health therether the	The Depar h as descr presump	rtment shall ribed in ORS tion is estab	presume to 537.525. I	DWATER hat a propo Department R 690-310-	sed ground staff review 140 allows t	water use w ground wat the proposed agency policy	ill ensure the er application	ne preservations under Odified or con	tion of the AR 690- anditioned	e public 310-140 to meet		
A. <u>GE</u> I	NERAL	INFO	RMATI(<u>ON</u> : A	pplicant's l	Name:	Balin	Farm Tru	ıst	County:_	Klama	<u>th</u>		
A1.	Applica		· · · · · · · · · · · · · · · · · · ·					e <u>K</u>				_Basin,		
	Lost River sub basin Quad Map: Merrill													
A2.	Proposed use: Irrigation (supplemental 88.2 acres) Seasonality: 1 April through 31 October (214 days)													
A3.	A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid):													
Well	Log	id	Applicate Well		roposed Aquifer*	Propose Rate(cfs		Location R-S QQ-Q)		tion, metes 50' N, 1200' E				
	KLAM 52797 ? Basalt		1.11		E-sec 13 CI	OC 200)' N, 1900' E	fr SW co	r S 13					
2 * Alluviı	ım, CRB,	Bedrock												
	Well	First			337.11	G 1	l C : Lines I			ns Well	D			
Well	Elev	Water	SWL ft bls	SWL Date	Well Depth	Seal Interval	Casing Intervals	Liner Intervals	Perforation Or Screen		Draw Down	Test Type		
1	ft msl 4115	ft bls 48	39	6/19/01	(ft) 187	$ \begin{array}{c} \text{(ft)} \\ 0 - 25 \end{array} $	$\begin{array}{c} \text{(ft)} \\ +1-25 \end{array}$	(ft) None	(ft) None	(gpm) 2500	(ft)	A		
2					107	0 20	11 20	Tione	Tione	2500	•	11		
Use data A4.	Commo	ents:	ı request:	s 1.11 cfs (5	500 gpm) f	or supplem 0 cfs (495 g	ental irriga	tion of 88.2	acres. Of	en, the allo	wed rate	e is 1/80		
								m land surf						
								ell reports (in both the						
	well rep	orts (w	ell logs) f					in the basin						
	below 1	and surf	ace.											
								<u>permit G-1</u>), G-16417 (24), G-		
	ground suppler	water p nental i	oermit ap rrigation	plications a	are for sup ater when	plemental i	rrigation w	ell KLAM : ithin the Us is not avai	SBOR Klaı	nath Proje	ct. A per	rmit for		
A5. 🗌	(Not all Comme	basin ru nts:]	les contai No basin	n such prov rule appli	isions.) es. Only	the Klama	th River C	es relative t are, or [Compact Oly, not groun	RS 542.610					
A6. 🗌	Name o	f admini	strative ar	ea: , y , no admin			, tap(s) a	n aquifer lin	nited by an	administrati	ve restric	tion.		

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

a. b. c.	 is over appropriated, ☐ is not over appropriated, or ☒ cannot be determined to period of the proposed use. * This finding is limited to the ground water proposed in OAR 690-310-130; will not or ☐ will likely be available in the amounts requested without injury to prove is limited to the ground water portion of the injury determination as prescribed in or ☐ will likely to be available within the capacity of the ground water in the c	portion of the over-appropriation prior water rights. * This finding										
c.	is limited to the ground water portion of the injury determination as prescr											
	will not or will likely to be available within the capacity of the ground water in											
d.	\square will not or \square will likely to be available within the capacity of the ground water resource; or											
	 Will, if properly conditioned, avoid injury to existing ground water rights or to the i. i. ☐ The permit should contain condition #(s)											
a.	Condition to allow ground water production from no deeper than	ft. below land surface;										
b.	Condition to allow ground water production from no shallower than	ft. below land surface;										
c.	Condition to allow ground water production only from the water reservoir between approximately ft. and ft. below l	ground land surface;										
d.	 ■ Well reconstruction is necessary to accomplish one or more of the above condit to occur with this use and without reconstructing are cited below. Without withholding issuance of the permit until evidence of well reconstruction is filed we by the Ground Water Section. ■ Describe injury –as related to water availability– that is likely to occur without we senior water rights, not within the capacity of the resource, etc): 	out reconstruction, I recommend with the Department and approved ell reconstruction (interference w/										
Grou												
Reco	mmend conditions 7B and 7N											
		97 (well tag = L 29452) shall be										
coop grou	erative Upper Klamath Basin ground water investigation (Gannett and others, and water levels are generally controlled by climate and short-term (seasonal) ground water levels are generally controlled by climate and short-term (seasonal) ground water levels are generally controlled by climate and short-term (seasonal) ground water investigation (Gannett and others, and water investigation).	2007) indicate basin long-term										
Klan obse	eath Lake since 2001, including wells in the vicinity of Spring Lake. The decreed during drought periods. Gannett and others (2007) noted annual declines from	clines are greater than typically rom 2001 to 2004 of 10 to 15 feet										
on fi annu obsei	le at OWRD. The data is primarily after the year 2000. The measurements	show seasonal fluctuations and and Gannett and others (2007)										
	Grou Grou Reco Reco 38.2 f Data coope group by gr Addi Klam obser in the At th 1999 Grou on fil annu	Condition to allow ground water production from no shallower than C. Condition to allow ground water production only from the water reservoir between approximately ft. and ft. below to occur with this use and without reconstructing are cited below. With withholding issuance of the permit until evidence of well reconstruction is filed to by the Ground Water Section. Describe injury —as related to water availability—that is likely to occur without w senior water rights, not within the capacity of the resource, etc): Ground water availability remarks: Recommend conditions 7B and 7N Recommend conditions aying: "The ground water reference level at well KLAM 527 38.2 feet below land surface" Data from the eastern Lost River sub-basin ground water investigation (Grondin cooperative Upper Klamath Basin ground water investigation (Gannett and others, ground water levels are generally controlled by climate and short-term (seasonal) ground water use. Additionally, the USGS (2005) has documented annual ground water level declim Klamath Lake since 2001, including wells in the vicinity of Spring Lake. The decobserved during drought periods. Gannett and others (2007) noted annual declines finthe Spring Lake area. They appear related to the USBOR Klamath Project Water At this time, future ground water use for the USBOR water bank is uncertain, and 1999 ground water level declines in the Spring Lake vicinity will continue, stabilize at Ground water level measurements at two Balin wells (KLAM 52824 and KLAM 5270 on file at OWRD. The data is primarily after the year 2000. The measurements annual ground water level declines since 2001 consistent with the USGS (2005) and 2001 consistent with the USGS (

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Wel 1	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Basalt		\boxtimes
2			
3			
4			
5			

Basis for aquifer confinement e	valuatione

System is identified as generally unconfined with discontinuous low permeability layers causing local (discontinuous, limited) confinement. Generally, low transmissivity (low permeability) sediment of varying thickness overlies high transmissivity (high permeability) basalt. Ground water occurs in both the sediment and basalt.

Water well reports (well logs) for wells in the Spring Lake vicinity indicate the sediment thickness varies from less than 25 feet to more than 1000 feet.

C2. **690-09-040 (2) (3):** Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential Subst. Inter Assumed YES	rfer.
1	1	Lost River	4075	4070	9600			\boxtimes
1	2	Klamath River	4075	4080	37100			\boxtimes

Daaia	£	:	1	J12 -		l4:
basis	lor	aquiier	ny	araunc	connection	evaluation:

Ground water elevation is based upon OWRD measurement at KLAM 52797 on 25 March 2003 (SWL = 38.24 blsd).

The ground water elevation measurement used here occurred prior to a seasonal decline due to seasonal ground water use in the area, prior to annual ground water level declines in the area related to ground water use for the USBOR water bank, but after the onset of smaller annual ground water declines related to climate.

Gannett and others (2007) show ground water flow from the uplands north, west, and east of the Spring Lake vicinity toward the Lost River and Tule Lake. This includes flow across the proposed well site. Generally in the Upper Klamath Basin, ground water and surface water are hydraulically connected.

Given available data, it appears ground water at the proposed well (KLAM 52797) is hydraulically connected to the Lost River and the Klamath River. The connection with the Lost River appears to be primarily at the nearest reach and north. Further south towards Merrill, it appears the ground water elevation drops below the Lost River.

Water Availability Basin the well(s) are located within: LOST R > TULE L - AT STATE LINE

KLAMATH R > PACIFIC OCEAN - AB JOHN C BOYLE RES

C3a. **690-09-040 (4):** Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells.** Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:
Well KLAM 52797 is more than 1.00 mile from the Lost River and the Klamath River.
THE INDICATOR IS MOTE than 1.00 time from the Bost River and the indimati River.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1	0.4%	0.4%	0.4%	0.1%	0.2%	0.2%	0.3%	0.3%	0.4%	0.4%	0.4%	0.4%
Well Q	Well Q as CFS		0.00	0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	0.00	0.00
Interfer	ence CFS	0.004	0.004	0.004	0.001	0.002	0.002	0.003	0.003	0.004	0.005	0.004	0.004
						•		•	•				
Distrib	outed Well	ls											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
(4) -		0.004	0.004	0.004	0.001	0.000	0.002	0.003	0.003	0.004	0.005	0.004	0.004
` ′	otal Interf.	0.004	0.004	0.004	0.001	0.002	0.002	0.003	0.003	0.004	0.005	0.004	0.004
$(\mathbf{B}) = 80$	% Nat. Q	182.0	403.0	453.0	336.0	223.0	139.0	124.0	110.0	97.00	95.40	104.0	151.0
(C) = 1	% Nat. Q	1.820	4.030	4.530	3.360	2.230	1.390	1.240	1.100	0.970	0.954	1.040	1.510
$(\mathbf{D}) = (A$	A) > (C)	No											
$(\mathbf{E}) = (\mathbf{A}$	/B) x 100	0.002	0.001	0.001	0.000	0.001	0.001	0.002	0.003	0.004	0.005	0.004	0.003

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:	
-	

Well KLAM 52797 is more than 1.00 mile from the Lost River.

Given available data, it appears ground water at the proposed well (KLAM 52797) is hydraulically connected to the Lost River. The connection with the Lost River appears to be primarily at the nearest reach and north. Further south towards Merrill, it appears the ground water elevation drops below the Lost River.

Interference at the Lost River was calculated using Hunt (2003) given the well obtains ground water predominantly from basalt below basin fill. The basin fill in this vicinity near the Lost River likely exceeds 500 feet thickness, but thins to less than 100 feet near the upland areas. The values used in the model were basalt transmissivity of 26,300 ft2/day (based upon specific capacity data for nearby well KLAM 52824 and is within the range of values in Gannett and others (2007)), an intermediate storage coefficient of 0.001, basin fill thickness of 1,000 based on nearby well KLAM 52824 with a hydraulic conductivity of 2.09 ft/day based upon Upper Lost River sub-basin data.

The potential interference with distant springs to the northeast (west of Olene Gap) was not evaluated due conditions that exceed assumptions and capabilities of models currently available for analyses.

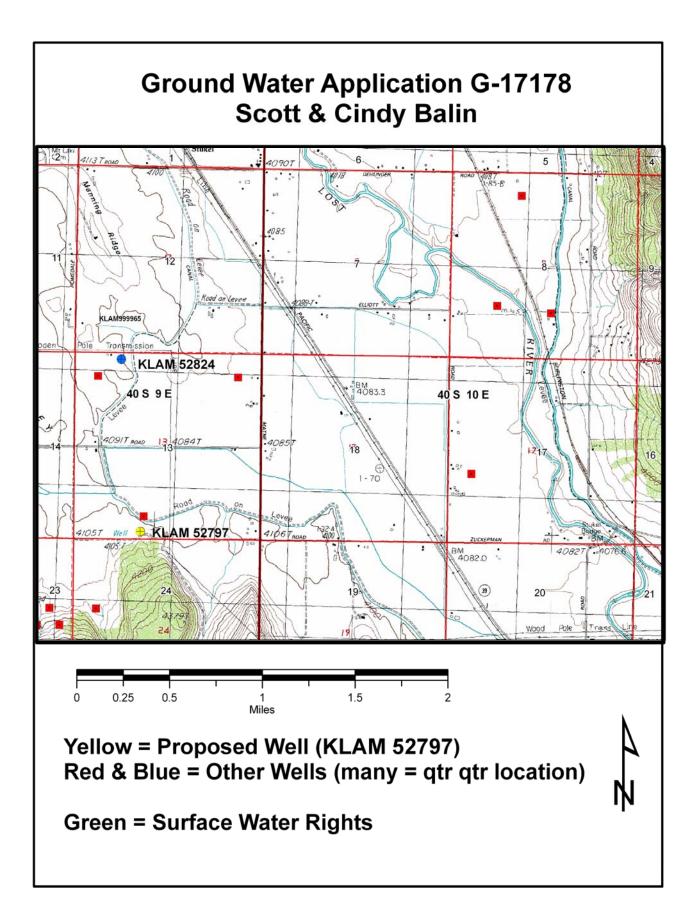
C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Well Q	as CFS	0.00	0.00	0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	0.00	0.00
Interference CFS		0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Distrib	outed Wel	ls											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	otal Interf.	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
(B) = 80	% Nat. Q	1470.	1530.	1710.	2240.	2110.	1670.	1180.	915.0	831.0	810.0	955.0	1240.
(C) = 1	% Nat. Q	14.70	15.30	17.10	22.40	21.10	16.70	11.80	9.150	8.310	8.100	9.550	12.40
$(\mathbf{D}) = (A$	(C)	No											
` ' `	$\frac{A) > (C)}{A \setminus B \times 100}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
(E) – (A	, D) A 100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

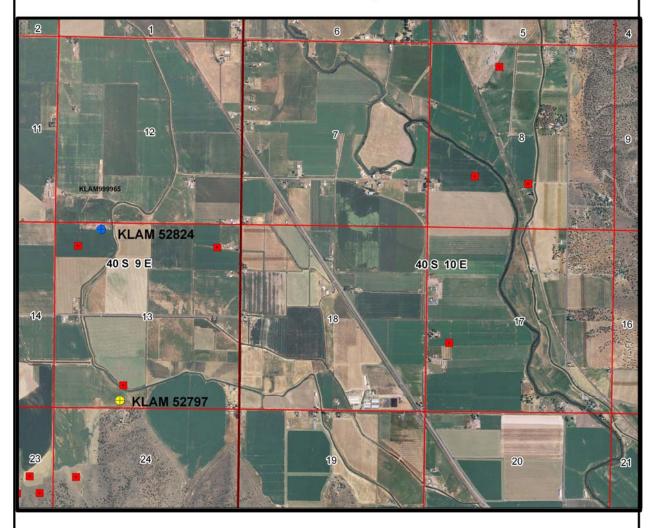
(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:	

Well KLAM 52797 is more than 1.00 mile from the Klamath River.


Given available data, it appears ground water at the proposed well (KLAM 52797) is hydraulically connected to the Klamath River.

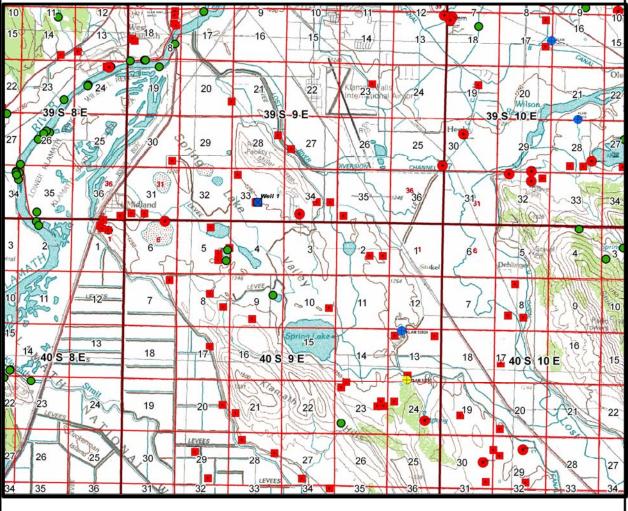
Interference at the Klamath River was calculated using Hunt (2003) given the well obtains ground water predominantly from basalt below basin fill. The basin fill near the Klamath River is about 100 feet thick, but thickening toward the valley and thinning toward upland areas. The values used in the model were basalt transmissivity of 26,300 ft2/day (based upon specific capacity data for nearby well KLAM 52824 and is within the range of values in Gannett and others (2007)), an intermediate storage coefficient of 0.001, basin fill thickness of 100 feet based on well log data for wells near the nearest reach of the Klamath River with a hydraulic conductivity of 2.09 ft/day based upon Upper Lost River subbasin data.


C4b. 6	90-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
	If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or ground water use under this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s) ii. The permit should contain special condition(s) as indicated in "Remarks" below;
CC CW	
C6. SW	/ GW Remarks and Conditions
Rec	ommend conditions 7B and 7N
	ommend condition saying: "The ground water reference level at well KLAM 52797 (well tag = L 29452) shall be 38.2 below land surface"
Refe	erences Used:
	mett, M.W., Lite, K.E., La Marche, J.L., Fisher, B.J., and Polette, D.J. 2007. Ground-Water Hydrology of the Uppermath Basin, Oregon and California. USGS Scientific Investigations Report 2007-5050.
the	GS, 2005. Assessment of the Klamath Project pilot water bank: a review from a hydrologic perspective. Prepared by U.S. Geological Survey Oregon Water Science Center, Portland, Oregon for the U.S. Bureau of Reclamation Klamatlin Area Office, Klamath Falls, Oregon, May 3, 2005.
of S	ondin, G.H., 2004. Ground Water in the Eastern Lost River Sub-Basin, Langell, Yonna, Swan Lake, and Poe Valley Southeastern Klamath County, Oregon. Ground Water Report 41, Oregon Water Resources Department, Salem gon.
	nard, A.R. and Harris, A.B. 1974. Ground water in selected areas in the Klamath Basin, Oregon. OWRD Ground ter Report No. 21, 104 pgs.
	nt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic ineering, January/February, 2003.
	is, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge o ell using ground water storage. American Geophysical Union Transactions, 16 annual meeting, vol. 16, pg. 519-524.
Hyd	lrographs and ground water level data for wells KLAM 52824, KLAM 52797
Wat	ter well reports (well logs) for wells within T40S/R09E-sec 13, T40S/R10E-sec 6 & 7, T40S/R08E-sec 1, 2, 3, 11,12
USC	GS Lost River quadrangle map (1:24,000 scale)

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #: _	1			Logid:	KLAM 52797	
D2.	THE WE	'II doos not r	meet current well c	construction stands	rde boead upor	••	
D2.		eview of the w		onstruction standa	rus baseu upoi	1.	
							:
	c. 1	eport of CWR	E				
	d. 🔲 o	other: (specify)					
		(1 3/					
D.0							
D3.			ion deficiency:	200 - 1			
			ealth threat under Di ater from more than				
			s of artesian head;	one ground water re	eservoir;		
			watering of one or n	more ground water r	eservoirs.		
)				
	с. Ц	other. (speetry)	' 				
D4.	THE WE	LL construct	ion deficiency is de	escribed as follows:			
D5.	THE WE	LL a. [\boxtimes was, or \square was	not constructed acc	ording to the sta	andards in effect at the time of	
			original constru	ction or most recent	modification.		
		-	_				
		b. [I don't know if	it met standards at t	he time of const	ruction.	
	Common	4.					
	Commen	ι:					
	Well KL	AM 52797 anı	nears to be cased a	nd sealed through	the basin fill (0	to 17 feet depth) and 8 feet int	o annarently
	consolida	ted basalt. T	his is consistent wi	ith with OAR 690-	210-0150 (Seal	ing of Water Supply Wells in	Consolidated
	Formatio				(1		
	¬ _						
D6	☐ Route to	the Enforcen	nent Section.				
THIS	SECTION	N TO BE CO	MPLETED BY H	ENFORCEMENT	T PERSONNI	$\mathbf{E}\mathbf{L}$	
D7.	Well cons	struction defici	ancy has been corre	octed by the followin	a actions:		
D7	_ wen cons	struction derici	chey has been corre	cica by the followin	ig actions		
			-				
	-						
							, 200 .
	(Enforcement S	Section Signature)				
D8.	Route to	Water Rights	s Section (attach w	ell reconstruction l	ogs to this page	e).	

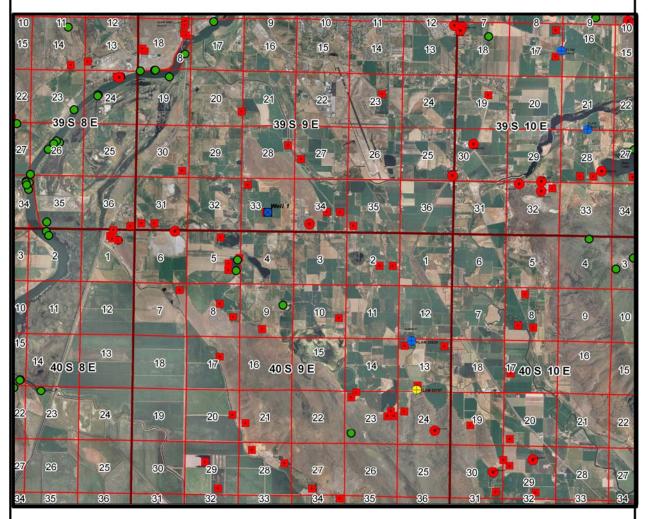
Ground Water Application G-17178 Scott & Cindy Balin



Yellow = Proposed Well (KLAM 52797)
Red & Blue = Other Wells (many = qtr qtr location)

Green = Surface Water Rights

Ground Water Application G-17178 Scott & Cindy Balin


00.2**5**.5 1 1.5 2

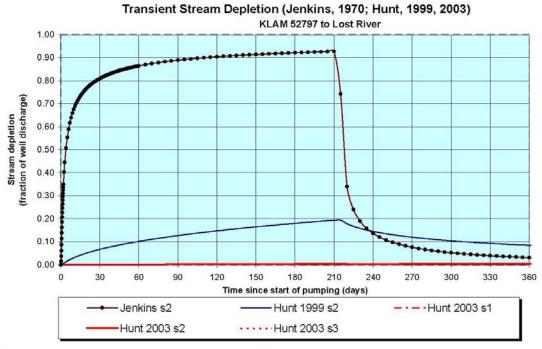
Yellow = Proposed Well (KLAM 52797)
Red & Blue = Other Wells (many = qtr qtr location)

4

Green = Surface Water Rights

Ground Water Application G-17178 Scott & Cindy Balin

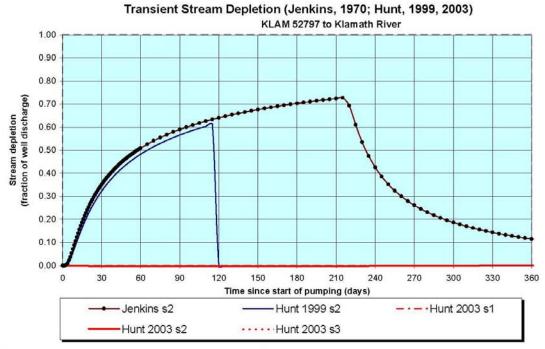
Yellow = Proposed Well (KLAM 52797)
Red & Blue = Other Wells (many = qtr qtr location)



Green = Surface Water Rights

KLAM 52797

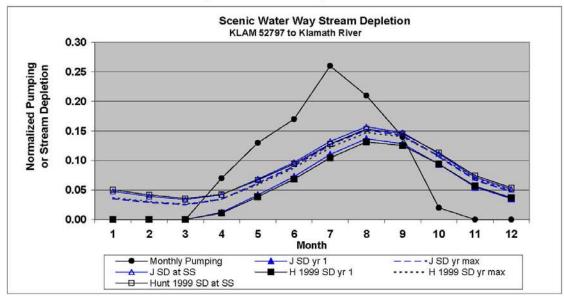
		CEIVI	ED						
STATE OF		naoam o	04			WELL I.D. # L_	L294	25	
(as required by	PLY WELL (age of this form		START CARD#	1073	רו	
Instructions fo	completing this	ECOUNCE	SUE	T			1.0		
(1) OWNER:	SALI	EM, OREG	6 Numl	per #	(9) LOCATION OF W			gitude	
, , , , , , , , , , , , , , , , , , , ,	OTT BAL		RO					E or V	ww.
Address 60	67 0,0	JOHNER .	FL		Township 40 S Section 13			1/4	. 17174.
City KCA	WITH FALLS	State Cit		Zip 97603	Tax Lot RY009 Lo			77.00	
(2) TYPE OF V	ORK			a) C Abandonment	Street Address of Well	(or nearest address)	6062	00	ととき
		ration (repair/	econditio	n) Abandonment	LLAMAT	H FAUS	OA.		
(3) DRILLME	Rotary Mud	Cable	Auge	1 66	(10) STATIC WATER			. /	1
Other			ш		39 ft. belo	w land surface.	D	ate 6/1	9/0
(4) PROPOSE	USE:				Artesian pressure	lb. per squa	re inch. D	atc	
		☐ Industrial	91	rigation	(11) WATER BEARIN	NG ZONES:			
Thermal	Injection	Livestock	o	ther			a =		
(5) BORE HO	LE CONSTRUC	CTION:	e acc	KU.2	Depth at which water was	first found	DFF		
Special Construct	on approval Ye	s No Dept	h of Com	pleted Well 187 ft.		To	Detimated	Flow Rate	sv
	Yes No T	SEAL	An	nount	From	10	Estillacco	. IOH RAIC	134
HOLE	To Mate	Special Section of	То	Sacks or pounds	48	187	2000	>	3
Diameter From	Nate		1 "	Cares of Position					
22 D	as con	NT D	25	40 SKS			ECE	VED	
	167							G 1001 —	
1244 67					(12) WELL LOG:		JUL 1 %	2001	
How was seal pla]B [[DD DE		Elevation	D DECOLU	Marie es	
Other							R RESOUR		SWI
Backfill placed fr			Materi		TOPSOIL		O	1	SWI
Gravel placed fro		ft.	Size of	gravel		CHALL	7	6	_
(6) CASING/				Welded Threaded	DECOMPOSOO		6	12	
Diameter	From To	Gauge Steel	Plastic		HAND BLACK		17	is	
Casing:	1	HH	ă	5 5	BROWN SA	MLE	15	17	
16	+1 25	250	<u> </u>		14 144	NA	17	30	
N=====					HAND GAC		30	43	
Liner:					A-7	ASALT	43	56	-
					HATO GAC	1/4	56	61	-
Final location of		FORT				ASACT	70	70	-
	TIONS/SCREE	ENS:			BLACK BA		76	84	_
Perforation	000000000000000000000000000000000000000		1/-	terial	HAMO GAE		84	90	
Screens	Type	to a constant	Tele/pi	pe	BLACK BA		90	119	
From To	size Numb	er Diameter	size	Casing Uner	Homo GAG		119	129	
					BLACK &		129	150	_
					Homo GLEY		150	152	-
	02.0				BLACK GA		152	160	-
					HAND GACY		160	166	-
	and the second second			122	BLACK	BASALT		135	9 0
(8) WELL TE	STS: Minimum	testing time	is I ho		(unbonded) Water Well			1	7,
-	C	m /		Flowing	I certify that the work			ration or al	andonn
Pump	Bailer	Drill s	em af	☐ Artesian Time	of this well is in complian	nce with Oregon water	supply well co	nstruction	standard
Yield gal/min	Drawdowa	Dials		1 hr.	Materials used and inform and belief.	nation reported above	are muc to the	ocas of my i	TIOMICO
2500				5 Hrs	The state of the s	•	WWC Nu	mber	
				7,	Signed			Date	
Temperature of	vater DIOF	Depth Artes	ian Flow	Found	(bonded) Water Well Co	onstructor Certificati	on:		
Was a water ana		Yes By who			I accept responsibility	for the construction,	teration, or al	andonment	work
	ntain water not sui			Too little	I accept responsibility performed on his well do performed during this tim construction standards.	is in compliance w	n Oregon wate	r supply w	LI .
Salty M	iddy Ddor	Colored	Other		construction standards.	his report is true to the	best of my k	owledge a	od belief
					1 / / - /-		WWC No	imoer	-/-
Depth of strata:					Signed /		1	Date	7/~


Transmissivity ft	om Specific Capac	Transmissivity from Specific Capacity using the Theis Equation	; Equation					Data Entry		Enter Data Below	
Adapted from Vorhis (1979)	vrhis (1979)									(Vellow Dokes Olly)	
Theis Equation:	T = fQ/(4*s*pi)][W(u)]	[[n						Well Log ID or Comment for Records	nt for Records	KLAM 62824	
		$u = (r^{**}S)(4^{**}T^{*})$ $\lambda(r) = (r + \lambda)(4^{**}T^{*})$	HE SECTOR SAN THE SECTOR SAN	Library of references				Pumping Rate (gpm) = Q =	= 0	3,000,00	(mdB)
	אומן – נ-ווו מאומן	מליום ווחליו מוליו	e em n n). list zin	ואות מי מי מי אולבייי				Drawdown (feet) = s =		33.00	(feet)
	T = transmisswity (L*L/T) s = drawdown (L)	(1)		5	r = radial distance (L)			Time (hours) = t =		8,0000	(hours)
	S = storage coeffic pi = 3.141592654	S = storage coefficient (dimensionless) pi = 3.141592654			t = time (T) u = dimensionless			Storage Coefficient = S =		0090000	(dimensionless)
			1000000		W(u) = well function					00000	
Note: Iransmis	The calculations u: Specific Capacity (Note: Transmissivity is derived using an iterative process The calculations use a known or assumed S Specific Capacity (G/S) is used to first appro	ned Storage Coefic. approximate the Tra	ient (S) provided by ansmissivity (T) use	the user d to calculate u in th	vity is certified using an installive process. The calculations use a known on assument on the user. The calculations use a known on assumed Storage Coeficient (S) provided by the user. Specific Capacity (G)s is used to first approximate the Transmissivity (T) used to calculate un the first Theis equation iteration	ration	Well Diameter (inches) = 0 =		Press F9 to Calculate	(inches)
	The Transmissivity Total Theis Equation	The Transmissivity of the previous iteration is used to calculate u in a given Theis equation iteration Total Theis Equation iterations = 25 fee attons	ation is used to calc	culate u in a given T	heis equation iterati	8		Calculated Results		Calculated Results	
	Can accept answe	Can accept answer if difference in calculated. I familiassivity for the last, 2 fleranons is < 0.000. Can accept answer if u in the last iteration is < 7.1	culated Transmissiv.	ty for the last 2 item	ations is < 0.0001			Transmissivity (ft2/day) = T=	11.	26,284.50	(ft2/day)
Note: Well effici	ency is not include	Note: Well efficiency is not included in the calculations	SU					Transmissivity (gpd/ft) = T	-T-	196,622.46	(Bbdiff)
References:	Theis, C.V. 1935. ground water st	eis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of di ground water storage. American Geophysical Union Transactions, 16 amusi meeting, vol. 16, pg. 519-524	en the lowering of the sophysical Union Tr	ne piezometric sunta ransactions, 16 ann	nce and the rate and wai meeting, vol. 16	Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a wall using ground water storage. American Geophysical Union Transactions, 16 annual meeting, vol. 16, pg. 519-524.	a well using	Transmissivity Difference= (last 2 iterations)		0.0000E+00 okay to use T if diff < 0.0001	(ft2/day)
	Vorhis, R.C. 1979. Tran Dec. 1979, pg. 50-52	Vorhis, R.C., 1979. Transmissivity from pumped Dec. 1979, pg. 50-52.		3. Well Log, Nations	al Water Well Assoc	well data. Well Log, National Water Well Association newsletter, vol. 10, no. 11,	, no. 11,	(last iteration)		okay to use T if u <7.1	
Drawdown s (feet)	Storage Coefficient S	Pumping Rate Pumping Rate Q Q Qal/min) (ff3/sec)	Pumping Rate Q (ft3/sec)	Time t (days)	Distance r=d/2 (feet)	n	W(u)	Transmissivity T (#2/day)	Transmissivity difference from previous	Comments	Theis Equation Iteration
Note	yellow grid areas	Note: yellow grid areas are where values are calculated	are calculated			Note: W(u) calculation valid when u < 7.1	valid when u < 7.1				
						7.0000	1.1545E-04			W(u) calculation test	
33.00	000000	3,000.00	6.68	0.33	090			17,500.00		T= 0/s	
33.00	0.00050	3,000 00	6.68	0.33	050	5.3571E.09	18.4676	25,718.11	8.2181E+03	T = Theis Equation	100
33.00	0.00050	3,000,00	668	0.33	0.50	3.5708E.09	18 8526	26,282,99	5.3615E+02 2.8733E+01	T = Theis Equation	300
33.00	050000	3,000 00	6.68	0.33	050	3.5669E-09	18.8743	26,284.51	1 5233E+00	T = Theis Equation	4 00
33 00	0.00050	3,000.00	999	0.33	050	3.5867E-09	18.8744	26,284.60	4.2761E-03	T = Theis Equation	9009
33.00	0.00050	3,000,00	668	0.33	0.50	3.5667E.09	18 8744	26,284.60	2.2655E-04 1.2003E-05	T = Theis Equation	7.00
33.00	0 00000	3,000.00	8899	0.33	050	3.5667E-09	18 8744	26,284.60	6.3595E-07	T = Theis Equation	9.00
33.00	0 000000	3,000,00	668	0.33	0.50	3.5667E.09	18.8744	26.28.460 26.28.450	3,3691E-08 1,7826E-09	T = Theis Equation	11.00
33.00	0.00050	3,000.00	0,08	0.33	050	3 5667E-09	18.8744	26,284.60	9.4587E-11	T = Theis Equation	12.00
33.00	0.00050	3,000,00	6.68	0.33	0.50	3.5667E-09	18.8744	26,284,60	0.0000E+00	T = Theis Equation	14.00
33.00	0.00050	3,000,00	6.68	0.33	050	3.5667E-09	18 8744	26,284,60	0.0000E+00	T = Theis Equation	15.00
33.00	0.00000	3,000.00	6.68	0.33	050	3.5667E-09	18.8744	26,284.60	0.000000	T = Theis Equation	17.00
33.00	0.00050	3,000,00	6.68	0.33	0.50	3.5667E.09	18.8744	26,284,60	0.0000E+00	T = Theis Equation	18.00
33 00	0.00050	3,000 00	999	0.33	0.50	3.5667E-09	18.8744	26,284.60	0 00000 +00	T = Theis Equation	20.00
33.00	0 000050	3,000.00	6.68	0.33	0.50	3.5667E.09 3.5667E.09	18.8744	26,284.60	0.0000E+00	T = Theis Equation	22.00
33.00	0.00050	3,000.00	89.9	0.33	050	3.5667E.09	18 8744	26,284.60	0.0000E+00	T = Theis Equation	23.00
33.00	0,00000	3,000 00	899	0.33	0.50	3.5667E-09	18.8744	26,284,60	0.0000E+00	T = Theis Equation	25.00

Output for St	ream De	oletion, S	cenerio	2 (s2):		Time pur	np on (p	umping o	luration)	= 214 da	ys	
Days	30	60	90	120	150	180	210	240	270	300	330	360
JSD	80.9%	86.4%	88.9%	90.4%	91.4%	92.1%	92.7%	13.7%	7.6%	5.3%	4.0%	3.2%
H SD 1999	6.7%	10.2%	12.7%	14.8%	16.5%	18.0%	19.4%	14.5%	12.0%	10.4%	9.3%	8.5%
H SD 2003	0.1%	0.2%	0.2%	0.3%	0.3%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
Qw, cfs	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100
H SD 99, cfs	0.074	0.112	0.140	0.162	0.182	0.198	0.214	0.160	0.132	0.115	0.103	0.093
H SD 03, cfs	0.001	0.002	0.002	0.003	0.003	0.004	0.005	0.004	0.004	0.004	0.004	0.004

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate of well	Qw	1.10	1.10	1.10	cfs
Time pump on (pumping duration)	tpon	214	214	214	days
Perpendicular from well to stream	а	9600	9600	9600	ft
Well depth	d	1414	1414	1414	ft
Aquifer hydraulic conductivity	K	52.6	52.6	52.6	ft/day
Aquifer saturated thickness	b	500	500	500	ft
Aquifer transmissivity	T	26300	26300	26300	ft*ft/day
Aquifer storativity or specific yield	S	0.001	0.001	0.001	
Aquitard vertical hydraulic conductivity	Kva	2.09	2.09	2.09	ft/day
Aquitard saturated thickness	ba	1000	1000	1000	ft
Aquitard thickness below stream	babs	950	950	950	ft
Aquitard porosity	n	0.2	0.2	0.2	
Stream width	ws	75	75	75	ft
Streambed conductance (lambda)	sbc	0.165000	0.165000	0.165000	ft/day
Stream depletion factor	sdf	3.504183	3.504183	3.504183	days
Streambed factor	sbf	0.060228	0.060228	0.060228	
input #1 for Hunt's Q_4 function	ť	0.285373	0.285373	0.285373	
input #2 for Hunt's Q_4 function	K'	7.323741	7.323741	7.323741	
input #3 for Hunt's Q_4 function	epsilon'	0.005000	0.005000	0.005000	
input #4 for Hunt's Q_4 function	lamda'	0.060228	0.060228	0.060228	

G_17178_Balin_Spring_Lake_sd_hunt_2003_1.01.xls



Output for St	ream De	oletion, S	cenerio	2 (s2):		Time pu	mp on (p	umping o	duration)	= 214 da	ys	
Days	30	60	90	120	150	180	210	240	270	300	330	360
JSD	35.0%	50.9%	59.0%	64.1%	67.6%	70.3%	72.4%	42.5%	26.1%	18.7%	14.3%	11.5%
H SD 1999	32.2%	48.3%	56.6%	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
H SD 2003	-0.2%	-0.3%	-0.3%	-0.3%	-0.3%	-0.3%	-0.3%	-0.1%	0.0%	0.0%	0.0%	0.0%
Qw, cfs	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.100
H SD 99, cfs	0.355	0.531	0.623	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
H SD 03, cfs	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.001	0.000	0.000	0.000	0.001

Parameters:	18	Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate of well	Qw	1.10	1.10	1.10	cfs
Time pump on (pumping duration)	tpon	214	214	214	days
Perpendicular from well to stream	а	37100	37100	37100	ft
Well depth	d	1414	1414	1414	ft
Aquifer hydraulic conductivity	K	52.6	52.6	52.6	ft/day
Aquifer saturated thickness	b	500	500	500	ft
Aquifer transmissivity	Т	26300	26300	26300	ft*ft/day
Aquifer storativity or specific yield	S	0.001	0.001	0.001	
Aquitard vertical hydraulic conductivity	Kva	2.09	2.09	2.09	ft/day
Aquitard saturated thickness	ba	100	100	100	ft
Aquitard thickness below stream	babs	75	75	75	ft
Aquitard porosity	n	0.2	0.2	0.2	
Stream width	ws	900	900	900	ft
Streambed conductance (lambda)	sbc	25.080000	25.080000	25.080000	ft/day
Stream depletion factor	sdf	52.334981	52.334981	52.334981	days
Streambed factor	sbf	35.379011	35.379011	35.379011	
input #1 for Hunt's Q_4 function	ť	0.019108	0.019108	0.019108	
input #2 for Hunt's Q_4 function	K'	1093.801103	1093.801103	1093.801103	
input #3 for Hunt's Q_4 function	epsilon'	0.005000	0.005000	0.005000	
input #4 for Hunt's Q_4 function	lamda'	35.379011	35.379011	35.379011	

G_17178_Balin_Spring_Lake_sd_hunt_2003_1.01.xls

Oregon Water Resources Department

Region	18	Steady s	tate strea	am deple	tion as a	fraction	of pumpi	ng norma	alized to	crop wate	er use co	nsumptio	on.
Month	Jan	Feb	Mar	Арг	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Resid
Qw	0.00	0.00	0.00	0.07	0.13	0.17	0.26	0.21	0.14	0.02	0.00	0.00	0.00
Jenkins SD	Ų.												
yr1	0.000	0.000	0.000	0.012	0.042	0.073	0.110	0.137	0.128	0.094	0.055	0.036	0.313
yrmax-1	0.035	0.029	0.025	0.034	0.061	0.091	0.127	0.152	0.142	0.107	0.067	0.047	0.081
yrmax	0.035	0.029	0.025	0.034	0.061	0.091	0.127	0.152	0.142	0.107	0.067	0.047	0.081
yrmax-yr1	0.035	0.029	0.025	0.022	0.020	0.018	0.016	0.015	0.014	0.013	0.012	0.012	0.233
J SD SS	0.048	0.040	0.034	0.042	0.068	0.097	0.132	0.157	0.147	0.112	0.072	0.051	0.000
Hunt SD 19	Hunt SD 1999												
yr 1	0.000	0.000	0.000	0.011	0.039	0.068	0.104	0.132	0.125	0.094	0.057	0.037	0.333
yr max-1	0.037	0.031	0.027	0.034	0.060	0.087	0.122	0.148	0.140	0.108	0.070	0.049	0.087
yr max	0.037	0.031	0.027	0.034	0.060	0.087	0.122	0.148	0.140	0.108	0.070	0.049	0.087
yrmax-yr1	0.037	0.031	0.027	0.023	0.021	0.019	0.017	0.016	0.015	0.014	0.013	0.012	0.246
H99 SD SS	0.050	0.042	0.036	0.043	0.067	0.094	0.128	0.153	0.146	0.113	0.074	0.054	0.000

Parameters:		Values	Units	
Maximum number of years pumped	yrmax	25	years	
Days pumped each month	tpoff	30.4375	days/month	
Perpendicular from well to stream	a	37100	ft	
Well depth	d	1414	ft	
Aquifer hydraulic conductivity	K	52.6	ft/day	
Aquifer saturated thickness	b	500	ft	
Aquifer transmissivity	T_ft	26,300	ft*ft/day	= K*b
Aquifer transmissivity	T_gal	196,724	gpd/ft	= K*b
Aquifer storativity or specific yield	S	0.001		11555X
Streambed conductivity (Hunt 1999)	Ks	2.09	ft/day	
Streambed thickness, Hunt 1999	bs	75	ft	
Stream width (Hunt 1999)	ws	900	ft	
Streambed conductance (lambda)	sbc	25.0800	ft/day	= Ks*ws/bs
Stream depletion factor	sdf	52.3350	days	= (a^2*S)/(T)
Streambed factor	sbf	35.3790		= sbc*a/T

S:\groups\gwater\grondin\areas\klamath\water_rights\G_17178_Balin_Spring_Lake_scenic_stream_depletion_sd_1033 _3_30.xls