		<u>PUBI</u>	LIC INT	EREST	REVIEW	FOR GI	ROUND	WATER	APP	LICAT	<u>IONS</u>			
TO:		Water	Rights S	ection				Dat	e <u>3</u>	3 June 2	009			
FROM	1:	Groun	d Water/	Hydrology	Section	Gerald	H. Grond wer's Name	lin						
SUBJI	ECT:	Applic	ation	G-17219)		ver's Name	eview of	I	N.A.				
PUBL	IC INTI	EREST	PRESU	MPTION	: GROUN	DWATER	-				Date of Re	view(s)		
OAR 6 welfare to deter	90-310-1 , <i>safety a</i> mine wh	.30 (1) <i>T</i> <i>nd health</i> ether the	The Depar h as descr presump	<i>rtment shal</i> <i>ribed in OR</i> tion is esta	<i>l presume t</i> S 537.525. blished. OA	that a propo Department R 690-310- ilable inform	sed ground staff review 140 allows	ground wathe propose	iter app d use l	plications be modifi	under O ed or con	AR 690-	310-140 to meet	
A. <u>GE</u>	NERAL	INFO	RMATIO	<u>DN</u> : A	Applicant's	Name: Je	ffrey & Sa	ndi Hunte	r	(County:	Klama	<u>th</u>	
A1.	Applica	int(s) see	ek(s) <u>6.2</u>	8 (2818 g	<u>pm)</u> cfs f	rom <u>1</u>	well(s) in th	el	Klama	th			_Basin,	
		L	ost River			sub ba	isin Qua	d Map:	L	ost Rive	r			
A2.	Propose	ed use:	Irriga	tion (supp	lemental 50	02.0 acres)	Season	nality: <u>1</u>	Marcl	h throug	h 31 Oct	ober (24	5 days)	
A3.	Well an	d aquife	r data (att	ach and n	umber logs	for existing	g wells; mar	·k proposed	l wells	as such	under lo	gid):		
Well	Log	id	Applicat		Proposed	Propose		Location			n, metes			
1	KLAM		Well = 1 ID#49		Aquifer* Basalt	Rate(cf		(R-S QQ-Q) 0E-sec 8 A			N, 1200' E S, 2957' I			
2			1 12 1 1		200000	0120		02.00011	00		,			
* Alluvi	uvium, CRB, Bedrock													
Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Interval s (ft)	Or S	orations Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type	
1 2	4090	249	11	08/09/01	558	0 - 240	+1 - 240	230-356	230) - 356	2500	110	Р	
_	from app	lication fo	or proposed	l wells.										
A4.	Comme	ents: <u> </u>	Well also	under: G	-15487 (per	mit G-1533	2), G-16221	l (drought)	permi	t G-1560	3), LL-5	17, and I	LL-559.	
	The an	nlicatior	n requests	s 2818 gnm	- (6.28 cfs) (for supplem	ental irrig	ation of 502	.0 acr	es. This	is 1/80 cf	fs per ac	re.	
						<u>n notes the</u> n primary								
	obtaine	ed at this	s time.											
						d from well						G-Canal	l and/or	
	the Los	t River	to the pla	ces of use	(POU) in T	'40S/R9E-se	ec 33 and in	T408/R10	E-sec 2	21, 22, 27	, 28.			
						52973 exten The water								
	Howev	er, grou	nd water	occurs in	both the b	asin fill and	l the basalt	. Other wa	ater w	ell repor	ts (well l	ogs) for	wells in	
						<u>in the basi</u> is hydraulic						w land	<u>surface.</u>	
A5. 🗌	Provis manage (Not all	ions of t ment of basin ru	he ground w lles contai	N.A. ater hydrau n such prov	lically convisions.)	nected to sur	Basin rul face water	les relative are , <i>or</i>	to the	developr e not , act	nent, clas ivated by			
						ies to surfac								
A6. 🗌			A.,		,		, tap(s) a	ın aquifer li	mited I	by an adr	ninistrativ	ve restric	tion.	

Name of administrative area: _______ Comments: ______ **Currently, no administrative area.**

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>ground water</u>* for the proposed use:
 - a. **is** over appropriated, **is not** over appropriated, *or* **is cannot be determined to be** over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;
 - c. **will not** *or* **will** likely to be available within the capacity of the ground water resource; or
 - d. **will, if properly conditioned**, avoid injury to existing ground water rights or to the ground water resource:
 - i. The permit should contain condition #(s) **7B and 7N and 7K**
 - ii. ____ The permit should be conditioned as indicated in item 2 below.
 - iii. \square The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow ground water production from no deeper than ______ ft. below land surface;
 - b. Condition to allow ground water production from no shallower than ______ ft. below land surface;
 - c. Condition to allow ground water production only from the predominantly consolidated basalt below the predominantly basin fill ;
 - d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Ground water availability remarks:

Recommend conditions 7B and 7N and the modified (shortened) condition checked in B2 (the proposed well (KLAM 52973) meets that condition).

Recommend condition saying: "The ground water reference level at well KLAM 52973 (well tag = L 49301) shall be 8.7 feet below land surface." This is the first March measurement at the well (26 March 2003).

Data from the eastern Lost River sub-basin ground water investigation (Grondin, 2004) and the USGS-OWRD cooperative Upper Klamath Basin ground water investigation (Gannett and others, 2007) indicate basin long-term ground water levels are generally controlled by climate and short-term (seasonal) ground water levels are controlled by ground water use.

Additionally, the USGS (2005) has documented annual ground water level declines in the basin south of Upper Klamath Lake since 2001, including wells in the vicinity of Spring Lake. The declines are greater than typically observed during drought periods. Gannett and others (2007) noted annual declines from 2001 to 2004 of 10 to 15 feet in the Spring Lake area. They appear related to the USBOR Klamath Project Water Bank. At this time, future ground water use for the USBOR water bank is uncertain, and it is uncertain whether the post-1999 ground water level declines in the Spring Lake vicinity will continue, stabilize at a lower level, or recover.

Ground water level measurements at the proposed well (KLAM 52973) in T40S/R10E-section 8, and two wells to the west in T40S/R09E-section 13 (KLAM 52824 and KLAM 52797) are on file at OWRD. Additionally, ground water level measurements at one well to the north in T40S/R10E-section 5 and one well to the south in T40S/R10E-section 29 are on file at the USGS. The data is primarily after the year 2000. The measurements show seasonal fluctuations of 2 to 10 feet and annual ground water level declines since 2001 consistent with the USGS (2005) and Gannett and others (2007) observations noted above. The measurements show a net decline of 5 to 10 feet since 2002. The annual decline moderated with decreased USBOR water bank activity. There was some recovery in 2008.

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Wel 1	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Basalt		\boxtimes
2			
3			
4			
5			

Basis for aquifer confinement evaluation:

System is identified as generally unconfined with discontinuous low permeability layers causing local (discontinuous, limited) confinement. Generally, low transmissivity (low permeability) sediment of varying thickness overlies high transmissivity (high permeability) basalt. Ground water occurs in both the sediment and basalt.

Water well reports (well logs) for wells in the Spring Lake vicinity indicate the sediment thickness varies from less than 25 feet to more than 1000 feet.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential Subst. Inte Assume YES	erfer. ed? NO
1	1	Lost River	4080	4070	1,550	\boxtimes \Box \Box		\boxtimes
1	2	Klamath River	4080	4085	42,200	\boxtimes \Box \Box		\boxtimes

Basis for aquifer hydraulic connection evaluation: _

Ground water elevation is based upon OWRD measurement at KLAM 52973 on 26 March 2003 (SWL = 8.69 ft blsd). Gannett and others (2007) indicate a ground water elevation of 4070 close to the well location,

The ground water elevation measurement used here occurred prior to a seasonal decline due to seasonal ground water use in the area, prior to annual ground water level declines in the area related to ground water use for the USBOR water bank, but after the onset of smaller annual ground water declines related to climate.

<u>Gannett and others (2007) show ground water flow from the uplands north, west, and east of the Spring Lake vicinity</u> toward the Lost River and Tule Lake. This includes flow across the proposed well site. Generally in the Upper Klamath Basin, ground water and surface water are hydraulically connected.

Given available data, it appears ground water at the proposed well (KLAM 52973) is hydraulically connected to the Lost River and the Klamath River. The connection with the Lost River appears to be primarily at the nearest reach and north. Further south towards Merrill, it appears the ground water elevation drops below the Lost River.

Water Availability Basin the well(s) are located within: LOST R > TULE L – AT STATE LINE KLAMATH R > PACIFIC OCEAN - AB JOHN C BOYLE RES

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ^{1/4} mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1		\boxtimes	N.A.	N.A.		95.40	\square	1.5%	\boxtimes

C3b. **690-09-040** (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:

Well KLAM 52973 is less than 1.00 mile from the Lost River and more than 1.00 mile from the Klamath River.

Given available data, it appears ground water at the proposed well (KLAM 52973) is hydraulically connected to the Lost River.

Interference at the Lost River was calculated using Hunt (2003) given the well obtains ground water predominantly from basalt below basin fill. The basin fill thickness varies generally thickening toward the valley and thinning toward upland areas. The values used in the model were basalt transmissivity of 6,500 ft2/day (based upon specific capacity data for proposed well KLAM 52973 and is within the range of values in Gannett and others (2007)), an intermediate storage coefficient of 0.001, a basin fill thickness of 400 feet was used based on KLAM 52697 located in section 8 near the Lost River with a hydraulic conductivity of 2.09 ft/day based upon Upper Lost River sub-basin data.

A potential for substantial interference is assumed given the proposed maximum pumping rate is greater than 5 cfs and greater than one-percent of the natural flow (80% exceedance).

C4a. **690-09-040 (5):** Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Well Q	as CFS	0.00	0.00	6.28	6.28	6.28	6.28	6.28	6.28	6.28	6.28	0.00	0.00
Interfere	ence CFS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Distrib	uted Wel	ls											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
(1) E		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
. /	tal Interf.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(B) = 80	% Nat. Q	1470.	1530.	1710.	2240.	2110.	1670.	1180.	915.0	831.0	810.0	955.0	1240.
(C) = 1	% Nat. Q	14.70	15.30	17.10	22.40	21.10	16.70	11.80	9.150	8.310	8.100	9.550	12.40
$(\mathbf{D}) = (\mathbf{A})$	(C)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
. , .	$(B) \times 100$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:

Well KLAM 52973 is more than 1.00 mile from the Klamath River.

Given available data, it appears ground water at the proposed well (KLAM 52973) is hydraulically connected to the Klamath River.

Interference at the Klamath River was calculated using Hunt (2003) given the well obtains ground water predominantly from basalt below basin fill. The basin fill near the Klamath River is about 100 feet thick, but thickening toward the valley and thinning toward upland areas. The values used in the model were basalt transmissivity of 6,500 ft2/day (based upon specific capacity data for proposed well KLAM 52973 and is within the range of values in Gannett and others (2007)), an intermediate storage coefficient of 0.001, basin fill thickness of 100 based on well log data for wells near the nearest reach of the Klamath River with a hydraulic conductivity of 2.09 ft/day based upon Upper Lost River sub-basin data.

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or ground water use under this permit can be regulated if it is found to substantially interfere with surface water:

- i. \Box The permit should contain condition #(s)
- ii. The permit should contain special condition(s) as indicated in "Remarks" below;

C6. SW / GW Remarks and Conditions

A potential for substantial interference is assumed given the proposed well (KLAM 52973) is less than 1 mile from the Lost River, ground water is in hydraulic connection with the river, and the maximum pumping rate is greater than 5 cfs and greater than one-percent of the natural flow (80% exceedance).

If a permit is issued, include conditions 7B and 7N and the modified (shortened) condition checked in B2 (see page 2, the proposed well (KLAM 52973) meets that condition).

If a permit is issued, include condition saying: "The ground water reference level at well KLAM 52973 (well tag = L 49301) shall be 8.7 feet below land surface." This is the first March measurement at the well (26 March 2003).

If a permit is issued, include condition that requires metering and reporting well discharge, water conveyance, and water application to permitted lands. This is needed given application file documents indicating water will be pumped from well KLAM 52973 in T40S/R10E-sec 8 and conveyed via G-Canal and/or the Lost River to the places of use (POU) in T39S/R9E-sec 33 and in T40S/R10E-sec 21, 22, 27, 28.

References Used:

Gannett, M.W., Lite, K.E., La Marche, J.L., Fisher, B.J., and Polette, D.J. 2007. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California. USGS Scientific Investigations Report 2007-5050.

USGS, 2005. Assessment of the Klamath Project pilot water bank: a review from a hydrologic perspective. Prepared by the U.S. Geological Survey Oregon Water Science Center, Portland, Oregon for the U.S. Bureau of Reclamation Klamath Basin Area Office, Klamath Falls, Oregon, May 3, 2005.

Grondin, G.H., 2004. Ground Water in the Eastern Lost River Sub-Basin, Langell, Yonna, Swan Lake, and Poe Valleys of Southeastern Klamath County, Oregon. Ground Water Report 41, Oregon Water Resources Department, Salem, Oregon.

Leonard, A.R. and Harris, A.B. 1974. Ground water in selected areas in the Klamath Basin, Oregon. OWRD Ground Water Report No. 21, 104 pgs.

Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, 2003.

Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. American Geophysical Union Transactions, 16 annual meeting, vol. 16, pg. 519-524.

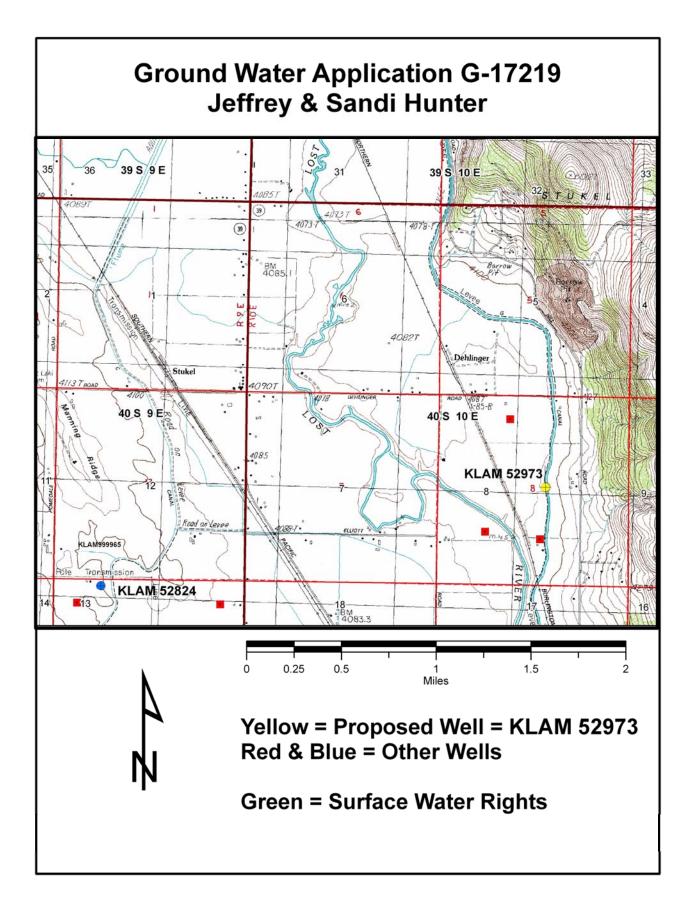
Hydrographs and ground water level data for wells KLAM 52973, KLAM 52824, KLAM 52797, KLAM 11059, and KLAM 10518

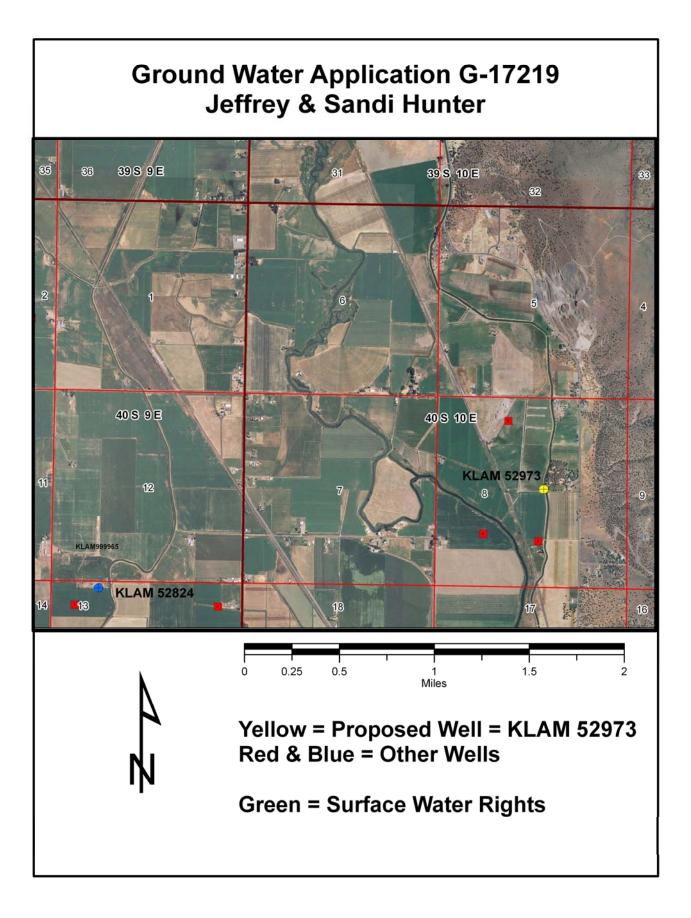
Water well reports (well logs) for wells within T40S/R10E-sec 8,

USGS Lost River quadrangle map (1:24,000 scale)

_____, 200_____.

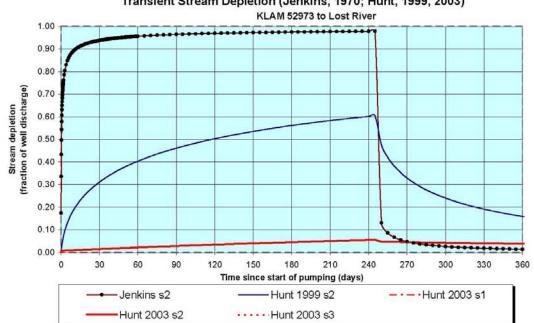
D. WELL CONSTRUCTION, OAR 690-200


D1.	Well #:	1			Logid:	KLAM 52973
D2.	a b c	review of the w field inspection report of CWRI	by			:
D3.	a b c d	commingles wa permits the loss permits the de-v	on deficiency: alth threat under Divis ter from more than on of artesian head; watering of one or mo	e ground water re	eservoirs;	
D4.	THE W	ELL constructi	on deficiency is desc	ribed as follows:		
D5.	THE W	ELL a. [original constructi	on or most recent	modification.	ndards in effect at the time of
	Commo					
	Comme	nt:				
	<u>The pro</u> conditio		LAM 52973) meets	well construction	n standards an	d recommended well construction permi
D6.	Route t	o the Enforcem	ent Section.			
THIS S	SECTIO	N TO BE CO	MPLETED BY EN	FORCEMENT	FPERSONNE	L
D7. 🗌	Well con	nstruction deficie	ency has been correcte	ed by the followin	g actions:	


(Enforcement Section Signature)

-

D8.
Route to Water Rights Section (attach well reconstruction logs to this page).

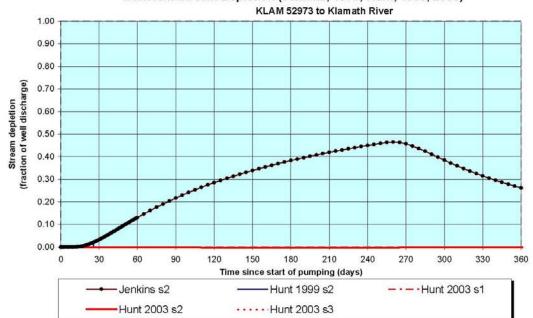

	¢					KLAM	52973					
STATE	OF OR	EGON LY WEI	L REPORT						WELL ID # 1 START CAR		27	
(as requ		ORS 537.	765)	l Number	e. Fel		(9) LOCAT	ON OF WELL		iption: ongitude		_
Name:	Jack & C	onnie Fra			4.00		Township: 4	0S Range	: <u>10E</u>	05		
		Dehlinger		20. 7	Lip: 9780		Section: 8	001 Lot: N/A	¹ / ₄ Block:	SE Subd	V4 ivision	
	lamath F		State: 0			<u></u>	Street Addre	ss of Well (or ne	arest address)			
(2) TY	PE OF V	VORK:	ng Alteratio	(repai		handonment	9002 Dehlin	ger Klamath Fal	<u>ls OR</u>			
New	Well	Deepenir		on recondit		Dandonment	· · · ·	C WATER LEV				
(3) DR Rota		Rotary 1	Mud Cable	e 🗌 Aug	ger		11 Ft. be Artesian pres	elow land surface ssure <u></u> lb.	per sq. in.		e <u>8/09/0</u> e <u></u>	<u></u>
(4) PR	OPOSEL	USE:	2				(11) WATE	R BEARING ZO	ONES:			
	estic [Comm	unity 🔲 Ind	ustrial	Irriga		Depth at whi	ch water was first	st found 249			
Ther		Injectio		estock	Other	<u> </u>	From	To		ow Rate		SWL
(5) BO	RE HOL	E CONS	roval Yes	: MNo			249 299	260	1000			11
Special Depth c	Construc	eted Well					. 445	504	500	-	20.0.0	
Explosi	ves Used	Yes	No Type =	-	Amount	<u>O'</u>	504	558	1000			11
	HOLE			SEA		sacks or						
	r From	To	Material	From	To 240'	pounds 175 Sacks						
24'	0'	240'	Cement	0'			(12) WELL		Ground Elev			
19"	240'	356'					Coll Main	Material		From	To 2	SWL
12"	356'	558'					Soil Med E Sand Silty			2	41	-
							Cinders As			41	66	-
How w	as seal pl	aced: M	ethod A	🗆 В 🛛		D DE	Clay Brn S			66	113	
Oth				Matani	-1		Sand Brn F			113	126	
Backfil	l placed f		to =	Materi Materi			Clay Brn M			126	210	
Graval	placed	from	to == to ==		gravel		Cap Rock			210	230	_
	SING/I			01200			Basalt Blk			230	249	+
CASIN		JINER.					Basalt Wea Basalt Blk	thered Brn		249	260	11
	r From					ded Threaded	Cinders Re			299	356	11
20"	+1	240	.375				ClayStone			356	445	
							Basalt Loo			445	504	-
	_						Basalt Blk	Fract, Loose		504	558	11
	_	_							- 1941			
LINE	R:	356	.375							-		10000
16"	-230	330	.315		H							
Final lo	cation of	Shoe(s):		, –	<u> </u>						+	
(7) PE	RFORA	TIONS/S	CREENS: od: Fact Saw				R	CEIVE	D	-	-	-
	reen	Type: Slot	=		e/pipe	_	S	EP 2 8 200	1		-	+
From 230'	To 356	Size 1/8x2	No. Dia 6210 16		size	Casing Liner		RESOURCES				
								ALLM, UNLUU				
-	-	-				HH I						
	-					66	Date Started	Cardina and a second second		pleted: §	8/09/01	
(8) W ⊠ Pu Yield gr 2500	mp m		finimum tes iler □ m Dril	ting tim Air [Il Stem at	e is 1 h	ing Artesian	I certify abandonment of construction st to the best of n Signed	ater Well Construct that the work I per of this well is in cost andards. Materials by knowledge and b	formed on the con pliance with Ore used and informa elief.	gon water s tion report	supply we	ell are true 2 <u>3</u>
Wasa	rature of water ana y strata co	lysis don	Depth Art e? By tter not suitabl	whom:		C	I accept work performe work performe	Well Constructor tresponsibility for the d on this well during d during this time is on standards. This	he construction, a g the construction s in compliance w	dates repo ith Oregon	water su	ve. All pply

ORIGINAL & FIRST COPY - Water Resources Department

SECOND COPY - Constructor

THIRD COPY - Customer

Transmissivity fr	om Specific Capa	fransmissivity from Specific Capacity using the Theis Equation	Equation					Data Entry		Enter Data Below	
Adapted from Vorhis (1979)	rhis (1979)							-		(Allo sayon Moles)	
Theis Equation:	Theis Equation: $T = [Q/(4^*s^*p^*)][V/(u)]$	[(n)						Well Log IJ or Comment for Records	TI TOF RECORDS	KLAM 62973	
	$u = (r^{-1}S)/(4^{-1})$	u = (rrf:S/(4*1*i) W(u) = (Ja u\-(0.5272457)+/u/1*1)(rf:u/2*2))+/u/1/2*3)(u/1/4*1/4*1/4*1)	ILE ADDI + DI + DI + DI C + C/D	-411-11-11-11-11-11-11-11-11-11-11-11-11				Pumping Rate (gpm) = Q =	-	2,600.00	(mdB)
	the second se		12 A 8 9 8 1 4 4 6					Drawdown (feet) = s =		110.00	(feet)
	s = drawdown (L)				r = radial distance (L)	0		Time (hours) = t =		24,0000	(hours)
	S = storage coeff) pi = 3.141592654	S = storage coefficient (dimensionless) pi = 3.141592654	2		t = time (T) u = dimensionless			Storage Coefficient = S =		0.000500	(dimensionless)
Note: Transmiss	tivity is derived us The calculations u	W(u) = W lote: Transmissivity is derived using an iterative process The calculations use a known or assumed Storage Coeficient (S) provided by the user	cess ned Storage Coefici	ent (S) provided by	W(u) = well function / the user			Well Diameter (inches) = d =	= P =	12.0000 Press F9 to Calculate	(inches)
	Specific Capacity The Transmissivit Total Theis Equal	Specific Capacity (US) is used to first approximate the infransmissing (1) used to calculate unit the The Transmissing) of the previous ferration is used to calculate unit a given Theis equation iteration (Tag Thate Specific duption relations = 25) literations	approximate the 1 ra ation is used to calo rations	nsmisswity (T) use ulate u in a given T	d to calculate u in th heis equation iterati	Specific capacity (curs) is used to tirst approximate the irransmissiwny (1) used to calculate unit the first. Theis equation theration The Transmissionly of the previous iteration is used to calculate u in a given Theis equation iteration Total Theis Equation fractions = 26 iterations is	ration	Calculated Results		Calculated Results	
	Can accept answi Can accept answi	Can accept answer if difference in calculated. Transmissivity for the last 2 iterations is < 0.000° Can accept answer if u in the last traction is < 7.1	ulated Transmissivit tion is < 7.1	ty for the last 2 ten	ations is < 0.0001			Transmissivity (ft2/day) = T =)=T=	6,465.34	(ff2/day)
Note: Well efficie	ency is not includ	Note: Well efficiency is not included in the calculations	su					Transmissivity (gpd/ft) = T =	-T-	48,364.11	(gpd)ft)
References	Theis, C.V. 1935 ground water s	eis, C.V. 1935. The relation between the lowe ground water storage. American Geophysical	in the lowering of th eophysical Union Tr	e piezometric surfa ansactions, 16 ann	ring of the piezometric surface and the rate and duration of di Union Transcrisons, 16 annual meeting, vol. 16, pg. 519-524	Theis, C.V. 1935. The relation between the lowering of the plezometric surface and the rate and duration of discharge of a well using ground water storage. American Geophysical Union Transactions, 16 annual meeting, vol. 16, pg. 519-524.	a well using	Transmissivity Difference = (last 2 iterations)	IC# =	0.0000E+00 okay to use T if diff < 0.0001	(ft2/day)
	Vorhis, R.C. 1979, Trar Dec. 1979, pg 50-52	 Transmissivity from 50-52. 	n pumped well data	. Well Log, Nation	al Water Well Assoc	Vorhis, R.C. 1979, Transmissivity from pumped well data. Well Log, National Water Well Association newsletter, vol. 10, no. 11, Dec. 1973, pg. 50-52.	.no, 11.	u = (last iteration)		4.8335E-09 okay to use T if u <7.1	
Drawdown	Storage	Pumping Rate	e Pumping Rate	Time	Distance	2	(n)M	Transmissivity	Transmissivity	Comments	Theis
s (feet)	Coefficient	(gal/min)	Q (ft3isec)	t (days)	r = d/2 (feet)			(ft2/day)	difference from previous		Equation
Note:	yellow grid areas	Note: yellow grid areas are where values are calculated	rre calculated		-	Note : W(u) calculation valid when u < 7.1	valid when u < 7.1				
						7.0000	1.1545E-04			W(u) calculation test	
110.00	0.00050	2,500.00	6.67	1.00	0.60			4,375,00		T= Q/s	
110.00	0,00050	2,500.00	5.57	100	020	7,1429E-09	18,1799	6,329.37	1 9544E+03	T = Theis Equation	100
110.00	0.00050	2,500.00	i lo	180	0.50	4.83/3E-09 4.8390E-09	18 5693	6,464.94	7 0012E+00	T = Theis Equation	300
110.00	0.00050	2,500.00	221	100	0.50	4.8338E-09	18.5704	6,465.32	3.7724E-01	T = Theis Equation	400
110.00	0.00050	2,500.00	222	100	0.50	4,8335E-09 4,8335E-09	18,5705	6,465.34 6,465.34	2.0314E-02 1.0939E-03	T = Theis Equation	00.9
110.00	0.00050	2,500.00	199	100	0.50	4.8335E.09	18.5705	6,465.34	5,8906E.05	T = Theis Equation	7.00
110.00	0.00050	2,500.00	557	100	0.50	4.8335E-09	18.5705	0,400 34 6,465 34	3.1720E-00 1.7081E-07	T = Theis Equation	8.00
110.00	0.00050	2,500.00	222	100	0.50	4.8335E-09	18.5705 18.5705	6,465.34 6,465.34	9.1959E-09 4.0658E-10	T = Theis Equation T = Theis Equation	10.00
110.00	0.00050	2,500.00	222	1.00	0.50	4.8335E.09	18 5705	6,465.34	2.6376E-11	T = Theis Equation	12.00
110.00	0.00050	2,500.00	100	100	050	4.8335E.09	18.5705	6,465,34 6,465,34	0.0000E+00	T = Theis Equation T = Theis Equation	13.00 14.00
110.00	0.00050	2,500.00	557	100	0.50	4 8335E-09	18.5705	6,465,34	0.0000E+00	T = Theis Equation	15.00
110.00	0.00050	2,500.00	557	100	0.50	4,8335E-09	18 5705	6,465.34	0.0000E+00	T = Theis Equation	17.00
110.00	0.00050	2,500.00	199	100	0.50	4.8335E-09 4.8335E-09	18 5705 18 5705	6,465,34 6,465,34	0.0000E+00	T = Theis Equation T = Theis Equation	18.00
110.00	0.00050	2,500.00	557	100	0.50	4 8335E-09	18.5705	6,465.34	0.0000E+00	T = Theis Equation	20.00
110.00	0.00050	2,500.00	100	100	0.50	4,8335E.09	18.5705	6,405,34 6,465,34	0.0000E+00	T = Theis Equation	22.00
110.00	0.00050	2,500 00	5.57	1.00	0.50	4 8335E-09	18 5705	6,465.34	0 0000E+00	T = Theis Equation	23.00
110.00	0.00050	2,500.00	221	100	0.50	4,8335E-09 4,8335E-09	18.5705	6,465.34 6,465.34	0.0000E+00 0.0000E+00	T = Theis Equation T = Theis Equation	24.00



Transient Stream Depletion (Jenkins, 1970; Hunt, 1999, 2003)
KLAM 52973 to Lost River

Output for St	ream Dep	oletion, S	cenerio	2 (s2):		Time pur	mp on (pi	umping d	luration)	= 245 day	ys	
Days	30	60	90	120	150	180	210	240	270	300	330	360
J SD	93.7%	95.6%	96.4%	96.9%	97.2%	97.4%	97.6%	97.8%	4.8%	2.6%	1.8%	1.4%
H SD 1999	31.1%	40.4%	46.2%	50.3%	53.5%	56.1%	58.3%	60.2%	32.9%	24.0%	19.1%	15.9%
H SD 2003	1.5%	2.2%	2.9%	3.5%	4.0%	4.5%	5.0%	5.5%	4.6%	4.3%	4.1%	3.8%
Qw, cfs	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280
H SD 99, cfs	1.956	2.536	2.898	3.159	3.361	3.525	3.662	3.779	2.066	1.509	1.202	1.000
H SD 03, cfs	0.096	0.139	0.179	0.217	0.252	0.285	0.317	0.347	0.286	0.270	0.255	0.241

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate of well	Qw	6.28	6.28	6.28	cfs
Time pump on (pumping duration)	tpon	245	245	245	days
Perpendicular from well to stream	а	1550	1550	1550	ft
Well depth	d	558	558	558	ft
Aquifer hydraulic conductivity	к	13	13	13	ft/day
Aquifer saturated thickness	b	500	500	500	ft
Aquifer transmissivity	Т	6500	6500	6500	ft*ft/day
Aquifer storativity or specific yield	S	0.001	0.001	0.001	
Aquitard vertical hydraulic conductivity	Kva	2.09	2.09	2.09	ft/day
Aquitard saturated thickness	ba	400	400	400	ft
Aquitard thickness below stream	babs	400	400	400	ft
Aquitard porosity	n	0.2	0.2	0.2	
Stream width	ws	75	75	75	ft
Streambed conductance (lambda)	sbc	0.391875	0.391875	0.391875	ft/day
Stream depletion factor	sdf	0.369615	0.369615	0.369615	days
Streambed factor	sbf	0.093447	0.093447	0.093447	
input #1 for Hunt's Q_4 function	ť	2.705515	2.705515	2.705515	
input #2 for Hunt's Q_4 function	ĸ	1.931240	1.931240	1.931240	
input #3 for Hunt's Q_4 function	epsilon'	0.005000	0.005000	0.005000	
input #4 for Hunt's Q_4 function	lamda'	0.093447	0.093447	0.093447	

G_17219_Hunter_Spring_Lake_sd_hunt_2003_1.01.xls

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999, 2003)

Output for Stream Depletion, Scenerio 2 (s2):						Time pump on (pumping duration) = 245 days						
Days	30	60	90	120	150	180	210	240	270	300	330	360
J SD	3.3%	13.1%	21.7%	28.5%	33.9%	38.3%	41.9%	45.0%	45.7%	38.5%	31.5%	26.2%
H SD 1999	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
H SD 2003	0.0%	-0.1%	-0.1%	-0.1%	-0.2%	-0.2%	-0.2%	-0.2%	-0.1%	-0.1%	0.0%	0.0%
Qw, cfs	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280	6.280
H SD 99, cfs	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
H SD 03, cfs	-0.002	-0.006	-0.008	-0.009	-0.010	-0.010	-0.010	-0.010	-0.008	-0.004	-0.002	0.000

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate of well	Qw	6.28	6.28	6.28	cfs
Time pump on (pumping duration)	tpon	245	245	245	days
Perpendicular from well to stream	а	42200	42200	42200	ft
Well depth	d	558	558	558	ft
Aquifer hydraulic conductivity	ĸ	13	13	13	ft/day
Aquifer saturated thickness	b	500	500	500	ft
Aquifer transmissivity	Т	6500	6500	6500	ft*ft/day
Aquifer storativity or specific yield	S	0.001	0.001	0.001	
Aquitard vertical hydraulic conductivity	Kva	2.09	2.09	2.09	ft/day
Aquitard saturated thickness	ba	100	100	100	ft
Aquitard thickness below stream	babs	75	75	75	ft
Aquitard porosity	n	0.2	0.2	0.2	
Stream width	ws	900	900	900	ft
Streambed conductance (lambda)	sbc	25.080000	25.080000	25.080000	ft/day
Stream depletion factor	sdf	273.975385	273.975385	273.975385	days
Streambed factor	sbf	162.827077	162.827077	162.827077	
input #1 for Hunt's Q_4 function	ť	0.003650	0.003650	0.003650	
input #2 for Hunt's Q_4 function	ĸ	5726.085538	5726.085538	5726.085538	
input #3 for Hunt's Q_4 function	epsilon'	0.005000	0.005000	0.005000	
input #4 for Hunt's Q 4 function	lamda'	162.827077	162.827077	162.827077	

G_17219_Hunter_Spring_Lake_sd_hunt_2003_1.01.xls