PUBLIC INTEREST REVIEW FOR GROUND WATER APPLICATIONS

TO:	: Water Rights Section						Date <u>August 27, 2009</u>							
FROM	:	Grou	nd Water/I	Hydrology	Section _		C. Woz							
SUBJE	CT:	Appl	ication G	17185		Reviewer's Name Supersedes review of June 17, 2009 Date of Reviewer's Name					view(s)			
OAR 69 welfare, to determ the press A. GEI	safety as mine who umption	30 (1) and head ether the criteria	T PRESULT The Departs the as describe presumption. This revies DRMATIC	ment shall pribed in ORS on is estable wis based	stresume the 537.525. ished. OAl upon ava	at a propos Departmen R 690-310- ilable infor	t staff reveloped the staf	riew grows the promote that the promote	ound water roposed tency poli- asmusse	er appuse becies i	re the press olications u e modified in place at	ervation of ander OA or condi	of the pub R 690-31 tioned to of evalu	0-140 meet ation.
A 1.			eek(s) <u>0.66</u>											_ Basin,
A2.	Propose	ed use:	Creek Nui	sery		Seas	sonality:	Ye	ear Roun	d	Mountain_			
A3.	Well an	d aquif	er data (att	ach and nu	mber logs	for existin	ig wells;	mark p	roposed	well	s as such ı	ınder log	id):	
Well	Logi	id	Applicant Well #	Ac	oposed quifer*	Propos Rate(ct	fs)	(T/R-S	ation QQ-Q)		2250' N	n, metes a V, 1200' E	fr NW cor	S 36
2	$\frac{1}{2}$	_	$\frac{1}{2}$		luvium luvium	0.668			6 SW/NY 6 SW/SV		150' N, 1800' W fr C1/4 cor, S 16 1420' S, 1340S' W fr C1/4 cor, S 16			
3				All	iuviuiii	0.000	, ,	S/1E-10	<u> </u>	<u> </u>	1420 5, 1	13405 11	11 01/40	51,510
5					_									
_	ım, CRB,	Bedroc	<u></u>											
Well 1 2	Well Elev ft msl 567 565	First Wate ft bls	r SWL	SWL Date	Well Depth (ft) 60 60	Seal Interval (ft) 0-18 0-18	Casing Interva (ft) 0-60 0-60		Liner atervals (ft)			Well Yield (gpm)	Draw Down (ft)	Test Type
Use data	from app	lication	for proposed	wells.										
acres of	nt has cla land. Tl	rified t ne prop	This re-revie hat he is apposed rate of 5 cfs or 561	olying for a f 300 gpm is	total of 30	0.6 gpm (0.6	68 cfs) fr	om eith	er or bot	h we	ls for year	-round nu	rsery use	on 50
A5. ⊠	(Not all Comme	basin i	the Willan f ground wa rules contain Proposed OAR 690-50	n such prov well 1 will	isions.) produce f		nfined all	uvium,	is within	n ½-r		ler Creel	and the	
A6. □	Name of	of admi	nistrative ar	ea:										striction.

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

Date: August 27, 2009

Bl.	Bas	ed upon available data, I have determined that ground water* for the proposed use:								
	a.	is over appropriated, ⊠ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;								
	b.	■ will not or ■ will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;								
	c.	\square will not or \boxtimes will likely to be available within the capacity of the ground water resource; or								
	d.	will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i.								
B2.	a.	Condition to allow ground water production from no deeper than ft. below land surface;								
	b.	Condition to allow ground water production from no shallower than ft. below land surface;								
	c.	∑ Condition to allow ground water production only from the water reservoir between approximately ft. and ft. below land surface; ground ft. below land surface;								
	d.	 Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/senior water rights, not within the capacity of the resource, etc): 								
В3.	Rive age. logs San Wes	ound water availability remarks: The proposed wells are located within the Holocene floodplain of the North Santiam er. The area is underlain by 40-80 feet of alluvial sands and gravels that probably range from Pleistocene to Holocene in The upper sands and gravels are largely unconsolidated but cemented gravels and sands are noted at depth on some wells. Nearby well logs indicate shallow water levels which are expected to fluctuate in phase with the stage of the North tiam River. Well logs and geologic maps indicate that the alluvial sediments are underlain by by older, low-permeability stern Cascade rocks and volcaniclastic sediments. Water-level data is lacking in the area but water-level delines are kely because the aquifer is likely to have an efficient connection with the North Santiam River.								
	_									

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium		
2	Alluvium		

Date: August 27, 2009

Basis for aquifer confinement evaluation:	Geologic setting and sediment characteristics indicate that the valley-fill
alluvium is generally unconfined.	

C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potentia Subst. Int Assume YES	erfer.
1	1	Alder Creek			750		\boxtimes	
1	2	North Santiam River			3700			
2	1	Alder Creek			2300			
2	2	North Santiam River			2400			
_								

Basis for aquifer hydraulic connection evaluation: Field observations indicate that the streambed of the North Santiam River is composed of unconsolidated sands and gravels equivalent to the materials that form the matrix of the alluvial aquifer adjacent to the river. This fact and shallow water levels reported on well logs in the area indicate a direct hydraulic connection between the aquifer and the river.

Water Availability Basin the well(s) are located within: N Santiam R > Santiam R - At Mouth (141)

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ½ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1						627		11	\boxtimes
1	2			MF141A	430		627		6	
2	1						627		3	
2	2			MF141A	430		627		21	

Date: August 27, 2009

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: The Hunt (1999) model was used to estimate interference with Alder Creek. A 3-foot clogging layer was
assumed with an hydraulic conductivity of 1 ft/ day. This was assumed to be appropriate for a small volume stream that that is
likely to have a streambed lined by fine-grained sediments. The Jenkins model was used to estimate interference with the Nort
Santiam River as the hydraulic connection between the stream and the aquifer is likely to be very efficient.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well	stributed SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
<u> </u>		%	%	%	%	%	%	%	%	%	%	%	%
Well Q a	s CFS			_									
Interfere						_		_					-
TITLETTETE	nec er s												
Distrib	uted Wells												
Well	SW#	Jan_	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q a	as CFS												
Interfere	nce CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	nce CFS												
		%	- %	%	- %	%	%	%	%	%	%	%	- %
Well Q a	as CFS												
Interfere	nce CFS												
		%	%	%	%	%	%	%	%	%	%	- %	- %
Well Q	as CFS												
	nce CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	- %	%	-%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
(A) = To	tal Interf.												
													
	% Nat. Q												
$(C) = 1^{-6}$	% Nat. Q												_
(D) = (A	(C)	√	V	V	1	V	✓	V	√	✓	✓	V	√
	/B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

Application G-17185continued	Date: August 27, 2009
(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference in the proposed wells are reaches of the North Santiam River as the hydraulic connection between the alluviate efficient. Therefore, streams greater than 1 mile from the proposed wells are unliked.	erference divided by 80% flow as percentage. are unlikely to extend beyond the local al aquifer and the river is likely to be very
C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the publi	ic interest is to be determined by the Water
25. If properly conditioned, the surface water source(s) can be adequately protected under this permit can be regulated if it is found to substantially interfere with sur i. The permit should contain condition #(s) ii. The permit should contain special condition(s) as indicated in "Rem	face water:
ii. The permit should contain special condition(s) as indicated in Rem	arks below;
C6. SW / GW Remarks and Conditions	
References Used: Conlon, T.D., Wozniak, K.C., Woodcock, D., Herrera, N.B., Fisher, B.J., Morgan, D. Ground-water hydrology of the Willamette Basin, Oregon: U.S. Geological Survey S	
Gannett, M.W. and Caldwell, R., 1998, Geologic framework of the Willamette Lowle U.S. Geological Survey Professional Paper 1424-A, 32p.	and aquifer system, Oregon and Washington:
Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Wat	ter, v. 37, no. 1, p. 98-102.
Jenkins, C.T., 1968, Techniques for computing rate and volume of stream depletion by	by wells: Ground Water, v. 6, no. 2, p. 37-46.
Woodward, D.G., Gannett, M.W., and Vaccaro, J.J., 1998, Hydrogeologic framework Oregon and Washington: U.S. Geological Survey Professional Paper 1424-B, 82p.	k of the Willamette Lowland aquifer system,

D. WELL CONSTRUCTION, OAR 690-200

D 1.	Well #:	Logid:	
D2.	 a. review of the w b. field inspection c. report of CWR 	teet current well construction standards based upon: ell log; by	
D3.	b. commingles was c. permits the loss d. permits the de-	alth threat under Division 200 rules; ter from more than one ground water reservoir;	
D4.		on deficiency is described as follows:	
D5. D6.	b. [was, or was not constructed according to the stand original construction or most recent modification. I don't know if it met standards at the time of constructions. I recommend withholding issuance of the perfect that and approved by the Enforcement Section and the Gro	tion. rmit until evidence of well reconstruction
TH	IS SECTION TO BE CO	MPLETED BY ENFORCEMENT PERSONNEL	
D7.	Well construction deficie	ency has been corrected by the following actions:	
	(Enforcement S	ection Signature)	, 200
D8.	☐ Route to Water Rights	Section (attach well reconstruction logs to this page).	

Date: August 27, 2009

Well Location Map

Water Availability Tables

Date: August 27, 2009

N SANTIAM R > SANTIAM R - AT MOUTH WILLAMETTE BASIN

Water Availability as of 6/17/2009

Watershed ID #: 141

Date: 6/17/2009

Exceedance Level:

Time: 1:57 PM

Water Availability Calculation

Monthly Streamflows in Cubic Feet per Second Storage at 50% Exceedance in Acre-Feet

Mont h	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	2,330.00	482.00	1,850.00	0.00	430.00	1,420.00
FEB	2,670.00	1,490.00	1,180.00	0.00	430.00	752.00
MAR	2,540.00	1,320.00	1,220.00	0.00	430.00	792.00
APR	2,500.00	1,480.00	1,020.00	0.00	430.00	592.00
MAY	2,590.00	804.00	1,790.00	0.00	430.00	1,360.00
JUN	1,500.00	436.00	1,060.00	0.00	430.00	634.00
JUL	858.00	333.00	525.00	0.00	430.00	94.80
AUG	661.00	320.00	341.00	0.00	430.00	-88.50
SEP	627.00	297.00	330.00	0.00	430.00	-100.00
OCT	694.00	267.00	427.00	0.00	430.00	-2.79
NOV	1,380.00	268.00	1,110.00	0.00	430.00	682.00
DEC	2,540.00	269.00	2,270.00	0.00	430.00	1,840.00
STO	1,960,000.00	464,000.00	1,500,000.00	0.00	312,000.00	1,190,000.00

Detailed Report of Instream Flow Requirements

Instream Flow Requirements in Cubic Feet per Second

Application #	Status	_Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MF141A	APPLICATION	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00
Maximum		430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00	430.00

Stream Depletion Estimates

Output for Hunt Stream Depletion, Scenerio 2 (s2): Time pump on = 240 days												
Days	30	60	90	120	150	180	210	240	270	300	330	360
Qw, cfs	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668
Jenk SD %	0.699	0.784	0.823	0.846	0.862	0.874	0.884	0.891	0.199	0.118	0.084	0.065
Jen SD cfs	0.467	0.524	0.550	0.565	0.576	0.584	0.590	0.595	0.133	0.079	0.056	0.043
Hunt SD %	0.106	0.167	0.210	0.243	0.271	0.295	0.316	0.334	0.245	0.200	0.171	0.150
Hunt SD ofe	0.071	0.111	0.140	0.162	0.181	0 107	0.211	0.223	0.164	0.133	0.114	0.100

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	0.668	0.668	0.668	cfs
Distance to stream	а	750	750	750	ft
Aquifer hydraulic conductivity	K	100	250	500	ft/day
Aquifer thickness	b	50	50	50	ft
Aquifer transmissivity	T	5000	12500	25000	ft*ft/day
Aquifer storage coefficient	S	0.2	0.2	0.2	
Stream width	ws	10	10	10	ft
Streambed hydraulic conductivity	Ks	1	1	1	ft/day
Streambed thickness	bs	3	3	3	ft
Streambed conductance	sbc	3.333333333	3.333333333	3.333333333	ft/day
Stream depletion factor (Jenkins)	sdf	22.5	9	4.5	days
Streambed factor (Hunt)	sbf	0.5	0.2	0.1	

Date: August 27, 2009

	Jenkins s2	—Hunt s2	→ Jenkins s2 residual	— Hunt s2 residual
14				

Output for Hunt Stream Depletion, Scenerio 2 (s2):							Time pump on = 240 days					
Days	30	60	90	120	150	180	210	240	270	300	330	360
Qw, cfs	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668
Jenk SD %	0.235	0.401	0.493	0.553	0.595	0.628	0.653	0.675	0.457	0.306	0.227	0.179
Jen SD cfs	0.157	0.268	0.329	0.369	0.398	0.419	0.437	0.451	0.305	0.205	0.152	0.120
Hunt SD %	0.027	0.070	0.107	0.138	0.166	0.190	0.211	0.231	0.222	0.195	0.173	0.156
Hunt SD cfs	0.018	0.046	0.071	0.092	0.111	0.127	0.141	0.154	0.148	0.131	0.116	0.104

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	0.668	0.668	0.668	cfs
Distance to stream	а	2300	2300	2300	ft
Aquifer hydraulic conductivity	K	100	250	500	ft/day
Aquifer thickness	b	50	50	50	ft
Aguifer transmissivity	T	5000	12500	25000	ft*ft/day
Aquifer storage coefficient	S	0.2	0.2	0.2	
Stream width	ws	10	10	10	ft
Streambed hydraulic conductivity	Ks	1	1	1	ft/day
Streambed thickness	bs	3	3	3	ft
Streambed conductance	sbc	3.333333333	3.333333333	3.333333333	ft/day
Stream depletion factor (Jenkins)	sdf	211.6	84.64	42.32	days
Streambed factor (Hunt)	sbf	1.533333333	0.613333333	0.306666667	

Date: August 27, 2009

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

Output for Hunt Stream Depletion, Scenerio 2 (s2): Time pump on = 240 days												
Days	30	60	90	120	150	180	210	240	270	300	330	360
Qw, cfs	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668	0.668
Jenk SD %	0.056	0.177	0.270	0.339	0.393	0.435	0.470	0.499	0.468	0.369	0.295	0.242
Jen SD cfs	0.037	0.118	0.180	0.227	0.262	0.291	0.314	0.334	0.313	0.247	0.197	0.162
Hunt SD %	#NUM!											
Hunt SD cfs	#NUM!											

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	0.668	0.668	0.668	cfs
Distance to stream	а	3700	3700	3700	ft
Aquifer hydraulic conductivity	K	100	250	500	ft/day
Aquifer thickness	b	50	50	50	ft
Aquifer transmissivity	Т	5000	12500	25000	ft*ft/day
Aquifer storage coefficient	S	0.2	0.2	0.2	
Stream width	ws	300	300	300	ft
Streambed hydraulic conductivity	Ks	10	10	10	ft/day
Streambed thickness	bs	3	3	3	ft
Streambed conductance	sbc	1000	1000	1000	ft/day
Stream depletion factor (Jenkins)	sdf	547.6	219.04	109.52	days
Streambed factor (Hunt)	sbf	740	296	148	

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999) G-17185, Well 2 & North Santiam River

Date: August 27, 2009

Time pump on = 240 days Output for Hunt Stream Depletion, Scenerio 2 (s2): 360 180 270 300 330 Days 30 60 90 120 150 210 240 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 Qw, cfs 0.668 0.668 0.314 0.234 0.185 Jenk SD % 0.215 0.381 0.474 0.535 0.579 0.613 0.639 0.661 0.464 0.310 0.317 0.358 0.387 0.409 0.427 0.442 0.210 0.157 0.124 Jen SD cfs 0.144 0.254 Hunt SD % #NUM! Hunt SD cfs #NUM! #NUM!

Parameters:	Scenario 1	Scenario 2	Scenario 3	Units	
Net steady pumping rate	Qw	0.668	0.668	0.668	cfs
Distance to stream	а	2400	2400	2400	ft
Aquifer hydraulic conductivity	K	100	250	500	ft/day
Aquifer thickness	b	50	50	50	ft
Aquifer transmissivity	Т	5000	12500	25000	ft*ft/day
Aquifer storage coefficient	S	0.2	0.2	0.2	
Stream width	ws	300	300	300	ft
Streambed hydraulic conductivity	Ks	10	10	10	ft/day
Streambed thickness	bs	3	3	3	ft
Streambed conductance	sbc	1000	1000	1000	ft/day
Stream depletion factor (Jenkins)	sdf	230.4	92.16	46.08	days
Streambed factor (Hunt)	sbf	480	192	96	