Water Right Conditions Tracking Slip

Ground Water/Hydrology Section

File No: <u>G-17298</u>

Routed To: Water Rights (Plaha)

Township/

Range-Section: 385/108-52216

Conditions Attached? (X) yes () no

Remarks or Further Instructions:

- * Note drawdown at High spring comments (pg &)
- * Previously arged applicant try options other than new permit
 * If issued: condition with 7B, 7N, "large"
 ((townmeter)

Reviewer: Gerald Grondin

WATER RESOURCES DEPARTMENT

MEN	10							<u> 25</u>	Februar	4 , ?	<i>2</i> 00_	<u> 201</u>
TO:		Appli	cation (G- <u>172</u>	98							
FRO	M:	GW:	GERA	-o GRO	אומט							
SUBJ	JECT:	Scenic	•	eviewer's N way In	^{tame)} terferei	ice Eva	luation					
	_YES	Tri .						_				
<u>×</u>	_NO	The so	ource of	appropi	riation i	s within	or abov	e a Sce	nic Wat	erway		
	_YES	Usa th	a Saanie	. Watam		dition (Canditi	on 71)				
X	_NO	Ose the	c Scenic	water	way cor	idition (Conun	OH 73)				
X	interfe calcula Per OI interfe	RS 390.8 rence wated inte	ith surface reference 835, the ith surfa	ace wate e is distr Ground ace wate	er that c ributed in d Water er that c	ontribut below. Section ontribut	is unal	Scenic V ble to ca	Waterwa alculate vaterway	ground y; there	wate	e,
	that th	e property to r	osed us	e will m	ieasura	bly red	uce the	surface	water	flows		
Calcula calcula	RIBUTI ate the per ted, per c ng Water	rcentage o riteria in	of con <mark>sun</mark> 390.835,	iptive use do not fil	by mont	ible but c	heck the	"unable"	option a	bove, thu	S	be
Water	ise of the way by surface	the follo	wing a	mounts			•		e consu		Scer use	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De	с

PUBLIC INTEREST REVIEW FOR GROUND WATER APPLICATIONS

TO:		Water	Rights S	ection				Date	e	25 Febru	ary 201	10	
FROM	[:	Groun	nd Water/	Hydrology	Section		d H. Gron	din					
SUBJE	ст.	A nnli	cation G	17298			ewer's Name persedes rev	viou of					
SUDJE	CI.	Appn	cation G-	1/290_		Sup	bersedes re	view oi			Date of Re	view(s)	
OAR 6 welfare, to deter	90-310-1 safety a mine wh	30 (1) nd heal ether th	The Depar th as descr e presump	<i>ribed in ORS</i> tion is establ	presume the 537.525. I lished. OA	hat a prop Departmen R 690-310	osed ground t staff review -140 allows	dwater use waw ground wante the proposed agency pol	ter ap d use	plications be modifi	under O ed or cor	AR 690-3 iditioned	310-140 to meet
A. <u>GE</u> i	NERAL	INFO	RMATIC	<u>ON</u> : A _l	oplicant's N	Name:	Jonathan :	Holdaway			County:_	Klamat	<u>h</u>
A1.	Applica	nt(s) se	ek(s) (7	5 gpm) 0.1 7	* cfs fr	om 1 v	vell(s) in the	eKla	amatl	1			Basin.
				sul				w					
A2.	Propose	d use:	Irrigatio	n (primary	= 6.0 acres	<u>s)</u> Se	asonality: _	1 May to	o 30 S	eptember	r (153 d	ays)	
A3.	Well an	d aquif	er data (att	ach and nu	mber logs	for existin	g wells; ma	rk proposed	l well:	s as such	under lo	gid):	
Wel	Log	id	Applicar s Well #	Pro	oposed quifer*	Propose Rate(cf		Location /R-S QQ-Q)				and boun	
1	Well #				Basalt	0.17*	38S/1	0E-sec 16 D	DC	1900' S,	1848'E	fr center	S 16*
2	ium, CRB, Bedrock												
* Alluvii	um, CRB,	Bedrock	<u> </u>										
Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	I I		Perforations Wel Or Screens (ft) (gpm		Draw Down (ft)	Test Type
1	4222	200	126	04/14/08	206	0-60 & 100-192	+1-193	None	!	None ————	75	?	Air
Úse data	from app	lication	for proposed	d wells.				<u> </u>					
A4.	Comm	ents:											
				ts maximur y allowed.	n pumping	rate of 7	75 gpm (0.1	7 cfs). For	6 acı	res, 34 gp	m (0.07	5 cfs) ma	ximum
	Metes a	ınd boı	ınds locat	ion is from t	he applica	tion. It p	uts the well	north and e	ast of	its actua	location	n	
	are: el	evation	= 4221.8	USGS surve ft +/- 0.1 fe gitude, both	et (NGVD	29 datum), lat-long l	evation surv ocation = 42 1)	ey in deg	the sumn 15 min 32	ner of 20 2.14 sec	002. The	results and 121
								pril 2008 (
A5. 🗌	manage (Not all Comme	ment of basin r ents:	ules contai	in such prov rule appli	ically conn isions.) es. Only	ected to su the Klam	rface water	ales relative to are, or [Compact Conly, not grou	are	not, activ 642.610 to	ated by	this applic	cation.
A6. 🗌	Well(s)	# N	i.A. ,	rea:	istrativo o	,	, tap(s)	an aquifer li	mited	by an adn	ninistrati	ve restric	tion.

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

B1.	Based upon available data, I have determined that ground water* for the proposed use:											
	a.	is over appropriated, is not over appropriated, or cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;										
	b.	■ will not or ■ will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;										
	c.	will not or will likely to be available within the capacity of the ground water resource; or										
	d.	will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i. The permit should contain condition #(s)										
32.	a.	Condition to allow ground water production from no deeper than ft. below land surface;										
	b.	Condition to allow ground water production from no shallower than ft. below land surface;										
	c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;										
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section.										
		Describe injury -as related to water availability- that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):										
B3.	Gro	ound water availability remarks:										
	If is	ssued, the permit should contain conditions: 7B and 7N and "Large" water use condition (flowmeter required).										
	imp gro dec and	ta from the upper (eastern) Lost River sub-basin ground water investigation (Grondin, 2004) and the USGS-VRD cooperative Upper Klamath Basin ground water investigation (Gannett and others, 2007) indicate an ortant influence on long-term ground water levels is climate and an important influence on short-term (seasonal) und water levels is ground water use. It is possible for ground water use to cause long term ground water level lines. Additionally, the USGS-OWRD cooperative Upper Klamath Basin ground water investigation (Gannett lothers, 2007) found an exception to the basin-wide ground water level trends at wells in the vicinity of Upper limath Lake. Ground water levels at these wells are highly influenced by lake levels.										
	wit	e proposed well (KLAM 50493) is located in southwest Swan Lake Valley. The valley is a naturally closed basin h surface water draining to Swan Lake. Artificial surface water drainage occurs at a pumping station on the west of Pine Flat which is connected to and south of Swan Lake Valley.										
	des Val rela gro	e proposed well is located within the central, main portion of the Swan Lake Valley to Poe Valley sub-area cribed in Grondin (2004). Both Grondin (2004) and Gannett and others (2007) show ground water in Swan Lake lley and Pine Flat flows southwest and west respectively to converge at a ground water "trough" that appears ated to a geologic structure. It subsequently flows southeast along the "trough" axis to western Poe Valley where und water discharges to the Lost River, primarily at fault controlled valley springs and secondarily via direct erbed seepage to the river. There are senior water rights on the springs, including springs owned by Taylor High.										
	sou ter	ell KLAM 12221 is the closest state observation well (#285) located in southwest Swan Lake Valley about 1.8 miles theast of the proposed well. The water level data is from 1957 through 2008. The hydrograph shows both long-m climate influences and short-term (seasonal) ground water pumping influences. Net ground water levels may be declined 2 to 5 feet overall since 1957.										

Additionally, there are OWRD ground water level measurements at the proposed well (KLAM 50493) from 1998 through 2009. The hydrograph also shows both long-term climate influences and short-term (seasonal) ground water pumping influences. For the period represented, the water level elevations and variability on this hydrograph are similar to those for state observation well 285 (KLAM 12221).

C.	GROUND	WATER/SU	RFACE V	WATER	CONSIDERATIONS.	OAR 690-09-040

C1.	690-09-040	(1):	Evaluation	of aquifer	confinement:

Wel l	Aquifer or Proposed Aquifer	Confined	Unconfined		
1	Basalt		Ø		
eis fa	or aquifer confinement evaluation:				
115 10	aquiter confinement evaluation.				
	ound water system is identified as generally unconfined w	ith discontinuous low normas	hility layors aqueing le		
	tinuous, limited) confinement. Water well reports (wel				
	bility) basin fill sediment of varying thickness (156 fee				
aher	permeability) basalt in the area. Ground water occurs in	n both the sediment and basa	It and the ground wate		
21101			it and the ground wat		
		both the seament and basis	it and the ground water		
	lically connected laterally and vertically.	Dotti the Segment with Susa	trand the ground water		
			tand the ground water		
			to and the ground water		
			to and the ground water		
			to and the ground water		
			icano the ground water		
			to and the ground water		
			it and the ground water		
			to and the ground water		
drau	lically connected laterally and vertically.				
-09-	040 (2) (3): Evaluation of distance to, and hydraulic cor	nnection with, surface water s	ources. All wells locate		
-09-	lically connected laterally and vertically.	nnection with, surface water s	ources. All wells locate		

C2. that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msI	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Swan Lake	4096	4180	20,900		
1	2	Lost River	4096	4095	29,500		
1	3	Taylor High un-named spring	4096	4095	37,000		

Basis for aquifer hydraulic connection evaluation:	
--	--

The Ground water elevation shown is based upon an OWRD quarterly ground water level measurement of 125.73 ft blsd at the proposed well on 14 April 2008 by this reviewer and ground surface elevation derived from a USGS survey quality GPS location and elevation survey at the proposed well in the summer of 2002.

The surface water elevations are from the USGS Swan Lake and Dairy quadrangle maps (1:24,000 scale)

The proposed well (KLAM 50493) is hydraulically connected	to the Lost	River and to	Taylor	High ur	n-named	spring
and other springs that discharge to the Lost River.						

Water Availability Basin the well(s) are located within: LOST R > TULE L - AT OLENE GAP

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
					·					

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:																
No evaluation.	The propose	d well	(KLAM	50493)	is more	e than	1.00	mile f	rom	Swan	Lake.	Lost	River	and	High	ur
named spring.			•													
numeu spring.																_
																_
										_						_
				_												_
																_
										_						
																_
			_			_										_
																_
																_
																_
						-	_			_						
	_															
																_
																_
																_
																_
										_						

Basis for impact evaluation:

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1	%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS									_			
Interfer	ence CFS												
Distrib	outed Well	s											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS										_		
Interfer	ence CFS												_
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
WeII Q	as CFS												
Interfer	ence CFS	_											
(A) = To	otal Interf.		_										
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q		_										
(D) = (A	A) > (C)			_									
(E) = (A	/B) x 100												

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

No evaluation. The proposed well (KLAM 50493) is more than 1.00 mile from Swan Lake and the ground water level at
the well is more than 80 feet below the lake level. Ground water directly below the lake appears to be about 40 feet
below the lake level. The lake appears to lose water to ground water.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2	0.60%	0.70%	0.70%	0.80%	0.00%	0.00%	0.10%	0.10%	0.20%	0.30%	0.40%	0.50%
Well Q	as CFS	0.0000	0.0000	0.0000	0.0593	0.0593	0.0593	0.0593	0.0593	0.0593	0.0000	0.0000	0.0000
Interfere	ence CFS	0.000 356	0.000 415	0.000 415	0.000 474	0.000 000	0.000 000	0.000 059	0.000 059	0.000 119	0.000 178	0.000 237	0.000 297
Distrib	outed Wel	ls				_					_		_
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS										_		
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
(A) = To	otal Interf.	0.000 356	0.000 415	0.000 415	0.000 474	0.000	0.000	0.000 059	0.000 059	0.000 119	0.000 178	0.000	0.000 297
(B) = 80	% Nat. Q	165.0	371.0	391.0	246.0	178.0	122.0	118.0	106.0	92.5	89.7	94.6	137.0
(C) = 1 °	% Nat. Q	1.650	3.710	3.910	2.460	1.780	1.220	1.180	1.060	0.925	0.897	0.946	1.370
$(\mathbf{D}) = (\mathbf{A}$	(C)	No											
(E) (A	/ B) x 100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	3	%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
Distrib	outed Well	s											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		<u>%</u>	%	%	%	%	%	%	%	%	%	%	9/
Well Q	as CFS					_							
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
(A) = To	otal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = (A	A) > (C)												
(E) = (A	/B) x 100												

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:	

The proposed well (KLAM 50493) is more than 1.00 mile (about 37,000 feet = 7.0 miles) from Taylor High un-named spring and other springs that discharge to the Lost River and is hydraulically connected.

No evaluation of interference to spring flow discharge can be made at this time due to model limitations.

Ground water level drawdown at Taylor High un-named spring due to pumping the proposed well was evaluated. The calculated drawdown at the spring due to pumping the well at the proposed rate of 75 gpm (0.167 cfs) is 0.023 ft and 0.035 ft at the end of 30 days pumping and 150 days pumping respectively. The calculated drawdown at the spring due to pumping the well at the maximum allowable rate of 33.66 gpm (0.075 cfs) is 0.010 ft and 0.016 ft at the end of 30 days pumping and 150 days pumping respectively. The calculated drawdown at the spring due to pumping the well at the pro-rated rate (total volume / total time) of 26.62 gpm (0.059 cfs) is 0.008 ft and 0.012 ft at the end of 30 days pumping and 150 days pumping respectively.

The drawdown calculation used a pro-rated pumping rate (total volume allowed/total time) = 0.0593 cfs (26.62 gpm), transmissivity = 150,000 ft2/day and storage coefficient = 0.0004 (these values are from Grondin (2004) for the Swan Lake Valley to Poe Valley sub-area).

The additional drawdown at Taylor High un-named spring and other springs that discharge to the Lost River is very problematic even though it is relatively "small" (0.01 to 0.05 ft depending on the pumping scenario). However, Mr. High has discussed with Department staff periodically about possible regulation of ground water pumping to protect the spring flow.

	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
C5.	If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or ground water use under this permit can be regulated if it is found to substantially interfere with surface water: i
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
C6. SV	W / GW Remarks and Conditions
iss	sued, the permit should contain conditions: 7B and 7N and "Large" water use condition (flowmeter required).
G Fl st to	he proposed well is located within the central, main portion of the Swan Lake Valley to Poe Valley sub-area described in rondin (2004). Both Grondin (2004) and Gannett and others (2007) show ground water in Swan Lake Valley and Pine lat flows southwest and west respectively to converge at a ground water "trough" that appears related to a geologic ructure. It subsequently flows southeast along the "trough" axis to western Poe Valley where ground water discharges the Lost River, primarily at fault controlled valley springs and secondarily via direct riverbed seepage to the river, here are senior water rights on the springs, including un-named springs owned by Taylor High.
	he proposed well (KLAM 50493) is hydraulically connected to the Lost River and to Taylor High un-named spring and
<u>ot</u>	ther springs that discharge to the Lost River.
st ca ex	the evaluation calculated the interference with the Lost River via reduced ground water seepage to the river through the reambed, but not reduced flow at Taylor High un-named spring and other springs that discharge to the river. The alculated interference for each month all remained less than one-percent of the natural stream flow (80 percent sceedance). The results still remain less than one-percent of the natural stream flow if the proposed pumping rate of 1.17 cfs (75 gpm) is used.
<u>pi</u> ca sh de	nother evaluation calculated the ground water level drawdown at Taylor High un-named spring due to pumping the roposed well. At present, available models can not calculate interference with spring flow. An additional drawdown was alculated at Taylor High un-named spring for three different pumping rates and for different periods of pumping. All now additional drawdown. This is very problematic even though the drawdowns are relatively "small" (0.01 to 0.05 ft epending on the pumping scenario). Mr. High has discussed with Department staff periodically about possible egulation of ground water pumping to protect the spring flow.
=	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	

References Used:
Gannett, M.W., Lite, K.E., La Marche, J.L., Fisher, B.J., and Polette, D.J. 2007. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California. USGS Scientific Investigations Report 2007-5050.
USGS, 2005. Assessment of the Klamath Project pilot water bank: a review from a hydrologic perspective. Prepared by the U.S. Geological Survey Oregon Water Science Center, Portland, Oregon for the U.S. Bureau of Reclamation Klamath Basin Area Office, Klamath Falls, Oregon, May 3, 2005.
Grondin, G.H., 2004. Ground Water in the Eastern Lost River Sub-Basin, Langell, Yonna, Swan Lake, and Poe Valleys of Southeastern Klamath County, Oregon. Ground Water Report 41, Oregon Water Resources Department, Salem, Oregon.
Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102.
Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer:
Jenkins, C.T., 1970, Computation of rate and volume of stream depletion by wells: U.S. Geol. Survey Techniques of Water- Resources Investigations of the Unites States Geological Survey, Chapter D1, Book 4,17 p.
Leonard, A.R. and Harris, A.B. 1974. Ground water in selected areas in the Klamath Basin, Oregon. OWRD Ground Water Report No. 21, 104 pgs.
Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. American Geophysical Union Transactions, 16 annual meeting, vol. 16, pg. 519-524.
Theis, 1941, The effect of a well on the flow of a nearby stream: American Geophysical Union Trans., v. 22, pt. 3, p. 734-738.
Hydrographs and ground water level data for wells KLAM 12221 (state observation well 285) and KLAM 50493
USGS Whiteline Reservoir, Swan Lake, Altamont, and Dairy quadrangle maps (1:24,000 scale)

D. <u>V</u>	VELL CONSTRUCTION, OAR 690-200	
D1.	Well #: Logid:KLAM 50493	
D2.	THE WELL does not meet current well construction standards based upon: a. review of the well log; b. field inspection by report of CWRE d. other: (specify)	;
D3.	THE WELL construction deficiency: a. constitutes a health threat under Division 200 rules; commingles water from more than one ground water reservoir; permits the loss of artesian head; permits the de-watering of one or more ground water reservoirs; e. other: (specify)	
D4.	THE WELL construction deficiency is described as follows:	
D5.	THE WELL a. was, or was not constructed according to the standards in effect at the time of original construction or most recent modification.	
D6.	b. \(\sum \) I don't know if it met standards at the time of construction. Route to the Enforcement Section. I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Enforcement Section and the Ground Water Section.	tion
		_
THI	S SECTION TO BE COMPLETED BY ENFORCEMENT PERSONNEL	
D7.	Well construction deficiency has been corrected by the following actions:	
	(Enforcement Section Signature), 200_	·
D8.	Route to Water Rights Section (attach well reconstruction logs to this page).	

(1) OWNER: Name RICHARU Address 3660 City KLAMATH FAU (2) TYPE OF WORK	SWAN LAKE RO	her #2 40 Zip 97603		N or S Range SE 1/4 COCOO Block 1	cription: Lor Lor SE DR30/ Su	E or W	000.
(3) DRILL METHOD:	Aud Cable Auge		(10) STATIC WATER		I	Date 10/1	1/96
Thermal Injection (5) BORE HOLE CONS	Livestock C	rigation Other	(11) WATER BEARIS	57 W. Albert 1995	3 F		
			P	Ψ-	Pathwest		Tour.
Explosives used Yes	SEAL SEAL	nount	From	To		Flow Rate	SWL
HOLE		0.1.	300	906	/3	SM	-
Diameter From To	Material From To	Sacks or pounds			-		
01/0 0 00 0	- 10. 100	No cur			-		-
	mar 100 192	40 SKS					-
	30000 0 60	29 545					
6 197 206			(12) WELL LOG:				
		C D DE	Ground	Elevation			
Last Curio.	210 - 340						
Backfill placed from	ft. to ft. Materi	al	Materia		From	To	SWL
Gravel placed from	ft. to ft. Size of	gravel		BBLOJ & BOW	CUT D	6	
(6) CASING/LINER:			YELLOW CLAY		6	20	
Diameter From	To Gauge Steel Plastic	Welded Threaded	Brown CLAY		20	86	
Casing:		0.0	VELLOW CLA	1	86	74	
690 +1	1932 380 1	6	Brown CRAY		74	90	
0.0.11			DECOMPISOD B		90	93	
					93	185	
						-	
Liner:			GLEY SHATE		135	150	
			GREY CLAY		120	156	-
	2 192 12 FOR		BLACE CAN		156	185	
(7) PERFORATIONS/SC	CREENS:		BLACK MISA	T	185	206	
Perforations Met	hod						
Screens Typ Slot From To stage	Number Diameter Heldph	erial					
				ī		, ,	
(8) WELLTESTS: Mini	mum testing time is I hou	ır	Date started ID 19	96 Com	pleted 10/	11,101	
.,			(unbonded) Water Well (Con	- manual and	11/16	
Pump Baile	er Takir	Flowing	I certify that the work I			ation or she	ndonmer
Yield gal/min Drawd		Time	of this well is in compliant	e with Oregon water	supply well co	nstruction st	andards.
76	906	1 hr.	Materials used and informand belief.	ation reported above	are true to the b	est of my kn	owledge
	300	I III.	and benef.		110101	And the same	
			0:		WWC Nur	-	
	OE		Signed			Date	
Temperature of water 6	Depth Artesian Flow	Found	(bonded) Water Well Con	structor Certification	on:		
Was a water analysis done?	Yes By whom		I accept responsibility f	or the construction, a	iteration, or abo	indonment w	ork
Did any strata contain water r	ot suitable for intended use?	Too little	performed on this well dur performed during this time construction standards. The	is in compliance with	h regon water	Summer well	ork
			i i and all dies miles		TATE OF THE PARTY OF	Legit	
To a seed to 100	or Colored Other	Fra	construction standards. Th	is apport is true to the	best of my kno	owledge and	belief.
To a seed to 100	or Colored Cother	FAN	construction standards.	is sport is true to the	WWC Nu		belief.

Hydrograph for State Well KLAM 50493

Table showing water-level data for State Well KLAM 50493

						Time pump on (pumping duration) = 153 days						
Days	30	60	90	120	150	180	210	240	270	300	330	360
JSD	84.4%	88.9%	91.0%	92.2%	93.0%	10.0%	5.4%	3.7%	2.7%	2.1%	1.7%	1.4%
H SD 1999	32.6%	43.2%	49.5%	54.0%	57.4%	29.1%	19.9%	15.2%	12.2%	10.1%	8.6%	7.4%
H SD 2003	0.0%	0.0%	0.1%	0.1%	0.2%	0.3%	0.4%	0.5%	0.6%	0.7%	0.7%	0.8%
Qw, cfs	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
H SD 99, cfs	0.019	0.026	0.029	0.032	0.034	0.017	0.012	0.009	0.007	0.006	0.005	0.004
H SD 03, cfs	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate of well	Qw	0.06	0.06	0.06	ds
Time pump on (pumping duration)	tpon	153	153	153	days
Perpendicular from well to stream	2	29500	29500	29500	Ħ
Well depth	d	206	206	206	fi
Aquifer hydraulic conductivity	K	300	300	300	ft/day
Aquifer saturated thickness	b	500	500	500	ft
Aquifer transmissivity	T	150000	150000	150000	ft*ft/day
Aquifer storativity or specific yield	S	0.0004	0.0004	0.0004	
Aquitard vertical hydraulic conductivity	Kva	2.09	2.09	2.09	ft/day
Aquitard saturated thickness	ba	100	100	100	ft
Aquitard thickness below stream	babs	100	100	100	fi
Aquitard porosity	n	0.2	0.2	0.2	
Stream width	ws	75	75	75	f
Streambed conductance (lambda)	sbc	1.567500	1.567500	1.567500	ft/day
Stream depletion factor	sdf	2.320667	2.320667	2.320667	days
Streambed factor	sbf	0.308275	0.308275	0.308275	
input #1 for Hunt's Q_4 function	*	0.430911	0.430911	0.430911	
input #2 for Hunt's Q_4 function	K,	121.254833	121.254833	121.254833	
input #3 for Hunt's Q_4 function	epsilon'	0.002000	0.002000	0.002000	
input #4 for Hunt's Q 4 function	lamda'	0.308275	0.308275	0.308275	

G_17298_Holdaway_Swan_Lake_sd_hunt_2003_1.01.xls

Date 25 February 2010

	Their Equation: is = (0.(411)p.)(W/y/). Indy) = (in u)=(0.572157)e(y/111)e(x/u/2725)=(x/u/u/373)-(x/u/u/3725)=(x/u/u/3725)=(x/u/u/373)-(x/u/u/3725)=(x/u/u/3725)=(x/u/u/3725)=(x/u/u/3725)=(x/u/u/3725)=(x/u/u/3725)=(x/u/u/3725)=(x/u/u/3725)=(x/u/u/3725)=(x/u/u/u/3725)=(x/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u				r with 49 + r = radial distan t = tone (T) u = coneccionis Wr(u) = well fun	Nete: drawdown sithriates uses Their equation and "effective" equify properties which include boundary influences Nete: boust aguiter is generally separated from Lest Pilver by finer grained sedimentary Blyes Nete: no direct connection to Borsinz a Big Springs					
	Mail cyconisses	W(u)									
	T.0000E+00	1.1545E-04									
	Note: With cal	culation wild	when u < 7.1								
Transmissivity	Transmissivity	Borage		Pumping Rate		Distance	.Pt		Wiuj	Theis	Comments
(sp4ft)	(N2 day)	Coefficient	(gatimini	(FC2 sect)	(days)	(000)			-	eniculated	
199-010	t-Carel		18	-	(041	644	1.7		- 1000	s (feet)	
HLAMBOHO to	High Un-Hame	Spring							-	-	
1,122,078,00	150,000.00	0.00040	75,0000	0.1671	30.00	37 200 66	314	0.0304	2.9456	0.0226	Continuous Pumping at Proposed Full Rate
1,122,078.00	150,000.00	0.00040	75,0000	0.1671	60.00	97000.00	314	0.0102	3.6207	0.0278	Continuous Pumping at Proposed Full Rate
1,122,078,00	150,000,00	C 00040	75.0000	0.1671	90.00	37 000 00	3 14	0.0101	4 9241	0.0308	Continuous Pumping at Proposed Full Pate
1,122,073.00	150,000.00	0.00040	75 0000	0.9671	120.00	37,000.00	3 14	0.0076	4 3093	0.0000	Centruous Pumping at Proposed Full Race
1,122,078,00	150,000,00	0.00040	75 0000	D 1671	150.00	37,000,00	3.14	0.0061	4.5309	0.0347	Centruous Portoing at Proposed Full Rade
1,122,078.00	150,000.00	0.00040	75 D000	0 1671	160.00	37,000,00	3.14	0.0051	4.7122	0.0361	Continuous Pumping at Proposed Full Rate
1,122,078,00	150,000 00	0.00040	75.0000	0.1671	210.03	57,000,00	3.14	0.0045	4 8656	0.0313	Continuous Pumping at Proposed Full Rate
1,122 078 00	150,000.00	0.00040	75.0000	0.1671	240.00	37,000,00	3.14	0.0058	4.9986	0.0383	Continuous Purriging it Proposed Full Rate
1,122,078.00	150,000.00	0.00040	75 0000	0.1671	270.00	37,000,00	3.14	0.0034	5 1160	9:0392 0:0400	Continuous Pumping at Proposed Full Rate Continuous Pumping at Proposed Full Rate
1,122,075,00	150,000.00	0.00040	75.0000	0.9679 0.9678	200 00	37,000.00 37,000.00	3.14	0.0000	5 3160	0.0407	Continuous Pumping at Proposed Full Rate
1,122,075,00	150 (00 00	0.00040	75,0000	0.1671	36000	37,000,00	3 14	0.0025	5.4000	0.0414	Conditions Pur party at Proposed Full Rate
1,122,015.00	150,000.00	S. (E)EMILI	PS.DOBO	201011	340'00	37200.00	1	0,0025	1	1	Control of
1,122,075.00	150,000.00	0.00040	33.6623	0.0750	30.00	37,000.00	3.14	0.0004	2.9456	0.0101	Continuous Fumping at Allowate Rate
1,122,078.00	150,000,00	0.00040	33.6623	0.0750	60.00	37,000.00	314	0.0157	3.6237	0.0126	Continuous Fumping at Allowable Ride
1,122,078,00	150,000.00	0.00040	33.6623	0.0750	90.00	37,000,00	3.14	0.0101	430341	0.0138	Continuous Fumping at Allowable Rate
1,122 078 00	150,000.00	0.00040	33.6623	0.0760	120:00	37,000,00	8.14	0.0076	4 3093	0.0148	Continuous Furning at Altowable Rate
1,122,078,00	150 D00 B0	0.00040	\$3,6623	0.0750	150 00	37,000.00	3.14	0.0061	4.5309	0.0156	Continuous Pumping at Altowable Rate
1,122,078.00	150,000.00	0.00040	33.6623	0.0750	180 00	37,000.00	3.14	3.0051	4.7122	0.0162	Continuous Pumping at Allowable Rate
1,122,078.00	150,000.00	0.00040	33.6623	0.0750	210.00	37,000.00	3 14	9.0043	4.8656	0.0167	Continuous Pumping at Allowable Rate
1,122,078.00	150,000 00	0.00040	33,6629	0.0750	248.00	37,000,00	3.14	0.0039	4 9906	0.0170	Continuous Pumping of Allowable Rate Continuous Pumping of Allowatire Rate
1,122,079.00	150,000,00	0.00040	33.6623	0.0750	270.00	37,000.00	3.14	0.0034	5 2210	0.0176	Continuos Fumping at A lowable Place Continuos Fumping at A lowable Place
1,122 078 00	150 000 00	0.00040	33.6623	0.0750	330.00	37000 00	314	8,000.0	5.3360	0.0183	Continuous Pumping at Allowasse Rate
4,400,312,00	600 000 00	0.00040	33 6623	0.6750	360.00	37,000.00	3 14	0.0006	6.7872	0.0068	Coronuous Purnoing at Allowatrie Race
-	1					0.3000		*****	1	1	
1,122,078.00	150,000.00	0.00040	26.6219	0.0599	33.00	37,000.00	3.14	0.0364	2.9456	0.0080	Continuous Pumping at Pro-Rates Pumping Rate
1,122,073.00	150,000.00	0.00040	26.6219	0.0593	60.00	37,000.00	314	D.0152	3.6297	0.0099	Continuous Pumping at Pro-Prated Fumping Plate
1,122,076.00	150,000.00	0.00040	26.6719	0.0593	90.00	37000 00	3.14	0.0101	4.9041	0.0109	Continuous Pumping at Pre-Rateo Pumping Rate
1,122,079.00	150,000,00	0.00040	26.6219	0.0593	120.00	37,000 00	3.14	0.0076	4 3093	0.0117	Cantinuous Pumping at Pro-Rates Pumping Rate
1,122,078,00	150,000.00	0.00040	26.6219	0.0593	150.00	37,000.00	314	0.0061	4.5309	0.0129	Continuous Pumping at Pro-Rates Pumping Rate Continuous Pamping at Pro-Rates Pumping Rate
1,122,076,00	150,000,00	5.00040	36.6219	0.0593	210.00	37,000.00	3 14	0.0061	4.7122	0.0120	Continuous Pumping at Pro-Potes Pumping Plate Continuous Pumping at Pro-Potes Pumping Rate
1,122,078,00	150,000.00	0.00040	26.6219	0.0593	24000	37,000,00	3.14	0.0038	4.9966	0.0136	Continuous Purtiging at Pro-Pates Furtiging Rate
1,122,078.00	150,000,00	0.00040	26.6219	0.0593	270.00	37,000 00	314	0.0034	5.1160	0.0139	Continuos Pumping at Pro-Rides Pumping Rate
1,122,076,00	150,000 00	0.00040	26.6219	0.0593	200 00	37,000,00	3 14	0.0000	5.2210	0.0142	Continuous Pumping at Pre-Rates Pumping Rate
1,122 078.00	150,000,00	0.00040	36.6219	0.0599	330.00	37,000 00	3.14	0.0028	5.3160	0.0145	Continuous Pumping at Pre-Rated Pumping Rate
1,122 B78 00	150,000,00	0.00040	26.6219	0.0593	368:00	37,000,00	314	0.0025	5 4009	0.0147	Continuous Pumping at Pro-Rated Fumping Rate

Sround water drawnown calculated for Swan Lake Valley to Poe Valley sub-area