WATER RESOURCES DEPARTMENT MEMO

TO:	Application G- 17939
FROM:	Michael Thoma - Groundwater Section
SUBJECT:	Scenic Waterway Interference Evaluation
<u> </u>	
NO	The source of appropriation is within or above a Scenic Waterway
<u> </u>	Use the Scenic Waterway condition (condition 7J)
NO	

<u>X</u> Per ORS 390.835, the Groundwater Section is able to calculate groundwater interference with surface water that contributes to a Scenic Waterway. The calculated interference distribution is provided below.

Per ORS 390.835, the Groundwater Section is unable to calculate groundwater interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface flows necessary to maintain the free-flowing character of a scenic waterway.

DISTRIBUTION OF INTERFERENCE

Calculate interference as the percentage of annual consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.839, do not fill in the table but check the "unable" option above, thus informing the Water Rights Section that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in the <u>Rogue River</u> Scenic Waterway by the following amounts, expressed as a proportion of the annual consumptive use pumped from the well.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0.094	0.087	0.085	0.083	0.083	0.082	0.082	0.081	0.081	0.081	0.081	0.081
0.034	0.087	0.005	0.085	0.085	0.082	0.082	0.081	0.081	0.001	0.081	ľ

Region	28	Steady	state st	ream de	pletion	as a fra	ction of	pumpin	g norm	alized to	о сгор ч	vater us	e cons
Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Resid
Qw	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.00
Jenkins SD													
yr1	0.039	0.060	0.065	0.068	0.070	0.071	0.072	0.073	0.073	0.074	0.074	0.075	0.187
yrmax-1	0.077	0.078	0.079	0.079	0.079	0.079	0.079	0.079	0.080	0.080	0.080	0.080	0.051
yrmax	0.077	0.078	0.079	0.079	0.079	0.079	0.079	0.079	0.080	0.080	0.080	0.080	0.051
yrmax-yr1	0.038	0.019	0.014	0.011	0.010	0.008	0.007	0.007	0.006	0.006	0.005	0.005	0.136
J SD SS	0.091	0.085	0.084	0.083	0.083	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.000
Hunt SD 19	99												
yr 1	0.028	0.050	0.057	0.061	0.063	0.065	0.067	0.068	0.069	0.069	0.070	0.071	0.264
yr max-1	0.074	0.076	0.076	0.077	0.077	0.077	0.077	0.077	0.077	0.078	0.078	0.078	0.077
yr max	0.074	0.076	0.076	0.077	0.077	0.077	0.077	0.077	0.077	0.078	0.078	0.078	0.077
yrmax-yr1	0.046	0.026	0.019	0.016	0.014	0.012	0.011	0.010	0.009	0.008	0.008	0.007	0.186
H99 SD SS	0.094	0.087	0.085	0.083	0.083	0.082	0.082	0.081	0.081	0.081	0.081	0.081	0.000

Parameters:		Values	Units	
Maximum number of years pumped	yrmax	15	years	
Days pumped each month	tpoff	30.4375	days/month	
Perpendicular from well to stream	8	740	ft	
Well depth	d	90	ft	
Aquifer hydraulic conductivity	К	50	ft/day	
Aquifer saturated thickness	b	140	ft	
Aquifer transmissivity	T_ft	7,000	ft*ft/day	= K*b
Aquifer transmissivity	T_gal	52,360	gpd/ft	= K*b
Aquifer storativity or specific yield	S	0.15		
Streambed conductivity (Hunt 1999)	Ks	1	ft/day	
Streambed thickness, Hunt 1999	bs	5	ft	
Stream width (Hunt 1999)	WS	200	ft	
Streambed conductance (lambda)	sbc	40.0000	fi/day	= Ks*ws/bs
Stream depletion factor	sdf	11.7343	days	= (a^2*S)/(T)
Streambed factor	sbf	4.2286		= sbc*a/T

PUBL	IC INT	ERES	T REVIE	W FOR G	ROUND	WATER	APPLI	CATIONS					
TO:		Wate	r Rights S	ection				Dat	e10/	/20/20	14		
FROM	:	Grou	ndwater S	ection		Micha	el Thom	a					
SUBJE	CT:	Appl	ication G-	17939		Revi Suj	ewer's Name persedes	review of			Date of Re	view(s)	
PUBLI OAR 69 welfare, to detern the pres	C INTI 90-310-1. safety au mine whe umption NERAL	ERES ⁷ 30 (1) 7 and heal ether th criteria	T PRESU The Depart th as descru e presumpt This revie DRMATIC	MPTION; ment shall p bed in ORS ion is establic w is based ON: At	GROUNI resume that 537.525. D ished. OAR upon avail oplicant's N	DWATE a propose epartment 690-310- able infor Jame: Nic	<u>R</u> ed ground staff revi 140 allow mation a holas Sm	lwater use will ew groundwat is the proposed nd agency po l nith – Green I	<i>ensure th</i> er applica use be m icies in p Leaf Ind.	e prese tions u odified lace at	ervation of nder OA l or condi the time County:	of the pub R 690-31 itioned to e of evalu Josephi	olic 0-140 meet nation.
A 1	Applica	nt(c) ce	$ab(a) = 0.0^{4}$		n 1	well((c) in the	Poque			j·		Basin
AI.	Арриса	ini(s) se	ek(s) <u>0.0.</u>		n <u> </u>	went	asin (Kogue Duad Map: C	rants Pas	s			_ basin,
A2. A3.	Propose Well an	ed use_ d aquif	Nur fer data (att	sery ach and nu	mber logs f	Seas	onality: g wells; r	January-D nark propose	ecember I wells as	such	under log	gid):	
Well	Logic	i	Applicant's Proposed Aquifer* Proposed Location Location, metes and bounds, e.g. Well # Proposed Aquifer* Pate(cfs) (T/P, S, OQ, Q) 2250' N, 1200' E ft NW cor S 36									nds, e.g.	
1	JOSE 17	714	1	AI	lluvium	0.0	05	36S/06W-14	SESE	16	646' S, 766'	W fr E con	S 14
3						<u> </u>							
5													
* Alluvii	ım, CRB,	Bedroc	k										
Well	Well Elev ft msl	First Water ft bls	r SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Interval (ft)	s Intervals (ft)	Perfora Or Scr (ft	tions eens	Well Yield (gpm)	Draw Down (ft)	Test Type
1	900	45	10	05/31/1995	100	0-30	+2-98		60-7 90-9	70 96	25		A
				A									
Use data A4.	from appl Comme likely pe	lication ents: <u>V</u> enetrate	for proposed Vell log is v es Quaterna	wells. ery general ry alluvial d	and lists "g eposits com	ravel, grar	nite, bwn gravel, sa	clay" from 12- nd, and some c	100 ft. Ba	used on ed grar	nearby lead	ogs the w	<u>'ell</u>
A5. 🗌	Provisi manage (Not all Comme	ions of ment o basin 1 ents:	the <u>Rogue</u> f groundwa rules contai	River (OAR ter hydraulic n such provi	690-515) cally connec sions.)	cted to sur	Basin face wate	rules relative r 🔲 are , <i>or</i> [2	to the dev	elopmo a, activa	ent, class ated by th	ification is applica	and/or ation.
A6. 🗍	Well(s) Name o Comme	# f adminents:	, nistrative ar	ea: ,		,	,	tap(s) an aquit	er limited	l by an	administ	rative res	triction.

•`

(S. Atternation

Page

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. Based upon available data, I have determined that groundwater* for the proposed use:
 - a. is over appropriated, is not over appropriated, or annot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. **will not** or **will** likely to be available within the capacity of the groundwater resource; or
 - d. **Will, if properly conditioned**, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) <u>7E, 7P</u>
 - ii. The permit should be conditioned as indicated in item 2 below.
 - iii. The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the groundwater reservoir between approximately ______ ft. and ______ ft. below land surface;
 - d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks: <u>The POA (JOSE 17714) is completed within alluvium deposits along the Rogue</u> <u>River. These medium- to coarse-grained sand, gravel, clay deposits are as much as 150 ft thick in the area of the POA, may</u> <u>be partially confined locally, and are strongly connected with the Rogue River (see Section C). Water level measurements in</u> <u>nearby wells in the same alluvial material as the POA show relatively stable water levels – likely related to the hydraulic</u> <u>connection to the Rogue River. Well yields are generally < 50 gpm in these sediments.</u>

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium		\boxtimes

Basis for aquifer confinement evaluation: Although the well log for JOSE 17714 shows SWL 35 ft higher than the water bearing zone, other well logs for the area indicate shallower water-bearing zones. This, along with the nature of the alluvium (medium- to coarse-grained sediments with no clear confining layer) and fact that the water level in JOSE 17714 as well as other nearby wells is at the approx. elevation of the Rogue River, implies that the aquifer is more unconfined overall.

C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Rogue River	890	890	740		

Basis for aquifer hydraulic connection evaluation: The aquifer material is medium- to coarse-grained river deposits and SWL in the POA and nearby wells are approx. equal to the river elevation.

Water Availability Basin the well(s) are located within: <u>Rogue R > Pacific Ocean- AB Applegate R.</u>

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1	\boxtimes					1140		52	\boxtimes
	2									

Page

4

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

e araan	011. 4114	 -pp-j as		•••					
	SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: <u>The stream depletion model of Hunt (1999) was used to estimate interference. Hydraulic parameters for alluvial</u> aquifer material used in the model were taken from an aquifer test report for Redwood Sanitary Sewer Services District (Almy, 1979), which produced reasonable values. This site is 3 mi west of the POA with wells completed in similar alluvial material (same geologic unit) as the POA.

C4a. **690-09-040 (5):** Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
Distrik	-4-1 117-11	_				2							
Well	sw#	S Ian	Feb	Mar	Apr	May	Iun	Iul	Aug	Sen	Oct	Nov	Dec
wen	300	Jan Ø	0			iviay or	5un 07	Jui Ø	Aug		000	110V	Dec or
Well C	as CFS		-70		70	70	-70						70
Interfere	ence CES												
mericit		67.	07-	07.	07	07.	07	07.	07.	07.	07.	07	07.
Well C	as CES	70	-/0	-70		10	-/0	-70	-/0	-70		-/0	
Interfere	ence CES												
		0%	0%	0%	0%	0%	0%	07,0	0%	0%	0%	0%	0%
Well C	as CES	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>//</i>
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well C) as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q) as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS												
				istriklandes (m.							1.1734/3		1
$(\mathbf{A}) = \mathbf{T}0$	tal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = ((A) > (C)	1	<u>y k</u>	alla china ana	4	and the second sec		1 252	1		st discourse		1
(E) = (A	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

App	lication	G-17939	
-----	----------	---------	--

•

•

Basis	for	impact	eva	luation:
		A THE PROPERTY		

_	
-	
-	
). (590-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Wa Rights Section.
	If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater u under this permit can be regulated if it is found to substantially interfere with surface water: I = I = I = 0 The permit should contain condition #(s)
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
SW ann bas wit	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the review ed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be adrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas wit	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the review ed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be adrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas wit	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the review ed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be ndrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas with	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the review ed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be adrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas wit	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the review ed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be ndrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas with	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the review ed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be ndrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas with	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the reviewed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be adrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas with	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the reviewed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be adrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas with Cou	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the reviewed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be udrawn from the Rogue River due to the hydraulic connection of the POA with the river.
SW ann bas with Ref Cou Rar Mir	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the reviewed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be idrawn from the Rogue River due to the hydraulic connection of the POA with the river. advantation Image: State of the State
SW ann bas with with Cou Rar Mir Hun	/ GW Remarks and Conditions: The application includes a copy of a contract with the Bureau of Reclamation for 5 af ually of water from Lost Creek Reservoir on the Rogue River to be used for irrigation. It is the understanding of the review ed on communication with the local watermaster Kathy Smith, that this use is for mitigation of surface water that will be idrawn from the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the POA with the river. advantation of the Rogue River due to the hydraulic connection of the Rogue River due to the hydraulic connection of the Rogue River due to thydraulic connection of the Rogue River due to thydrat

Page

6

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #: 1	.ogid:
D2.	THE WELL does not appear to meet cu a. review of the well log; b. field inspection by	rrent well construction standards based upon: ; ;
D3.	THE WELL construction deficiency or	other comment is described as follows:

D4.
D4.
Construction and Compliance Section for a review of existing well construction.

Water Availability Table

		DETAILED REPORT	ON THE WATER AVAIL	ABILITY CALCULATIC	N	
Watershed II Time: 11:57	D #: 31530801 AM	. ROGUE R	> PACIFIC OCEAN - AN Basin: ROGUN	B APPLEGATE R E	Excee D	<u>dance</u> Level: 80 Wate: 10/21/2014
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is	Monthly values of the annual amount at	are in cfg. t 50% exceedance i	in ac-ft.	
Jan	2,590.00	1,090.00	1.500.00	0.00	0.00	1,500.00
FEB	3,220.00	2,010.00	1,210.00	0.00	0.00	1,210.00
MAR	3,220.00	1,780.00	1,440.00	0.00	0.00	1,440.00
APR	3,150.00	1,030.00	2,120.00	0.00	0.00	2,120.00
MAY	2,920.00	376.00	2,540.00	0.00	0.00	2,540.00
JUN	1,810.00	424.00	1,390.00	0.00	0.00	1,390.00
JUL	1,350.00	461.00	889.00	0.00	0.00	889.00
AUG	1,170.00	415.00	755.00	0.00	0.00	755.00
882	-1,110.00	S. C. P. M. MANDELLE	791.00	9.00	0.00	.785.00
OCT	1,170.00	226.00	944.00	0.00	0.00	944.00
NOV	1,460.00	316.00	1,140.00	0.00	0.00	1,140.00
DEC	2,080.00	534.00	1,550.00	0.00	0.00	1,550.00
ANN	2,140,000	539,000	1,600,000	0	0	1,600,000

WATER RESOURCES DEPARTMENT MEMO

October 21, 2014

TO:	Application G- 17939
FROM:	Michael Thoma - Groundwater Section
SUBJECT:	Scenic Waterway Interference Evaluation
X YES	
NO	The source of appropriation is within or above a Scenic Waterway
X YES	Use the Scenic Waterway condition (condition 7J)
NO	

X Per ORS 390.835, the Groundwater Section is able to calculate groundwater interference with surface water that contributes to a Scenic Waterway. The calculated interference distribution is provided below.

Per ORS 390.835, the Groundwater Section is unable to calculate groundwater interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface flows necessary to maintain the free-flowing character of a scenic waterway.

DISTRIBUTION OF INTERFERENCE

Calculate interference as the percentage of annual consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.839, do not fill in the table but check the "unable" option above, thus informing the Water Rights Section that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in the <u>Rogue River</u> Scenic Waterway by the following amounts, expressed as a proportion of the annual consumptive use pumped from the well.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0.094	0.087	0.085	0.083	0.083	0.082	0.082	0.081	0.081	0.081	0.081	0.081
							-			-	

Application G-17939

Page

Stream Depletion Model Results

Application G-17939

			T	ransier	nt Strea	m Dep G179	letion (39 Gree	Jenkin en Leaf Ir	is, 1970 nd	; Hunt,	1999)		
	1.0 7			1	T								
	00	S. S. All		-		_	S. S.		_		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	0.9									***			_
	0.8	11			00000								
			-		-			1			-		
arg	0.7 -							1.3					
sch	0.6	1	1		the states	200		1 miles	Sec. 1		-	-	-
B	0.0									2. 2.0	1-10		
we	0.5 -	11			- in the								
- of		1/	1		The half			-		11-	1313 1-		
Str	0.4 -	1			-	-		120		1	123		
rac	0.2	+			-	Marine Street					-		
E	0.5	1					-1-1						
	0.2 -	1									1000		-
			1	-0				1997	1 3 3		-	-	
	.0.1 -								-		1		
	00	1	1.	in the second	a miles	in the	-2-3-1		- 21			1. 13	
	0.0 4	0 30	60	90	120	150	180	210	240	270	300	330	360
	Г				Tir	ne since	start of p	umping (c	days)				-
		-	lenkins s	2 -	Hunt	ne since ts2	Jer	umping(a	days) residual		- Hunt s2	residual	
Outpu	It for H	Hunt Strea	lenkins s am Depk	etion, Sc	Hunt	(s2):	Jer Time pu	mping(c nkins s2 mp on =	days) residual 365 days	5	- Hunt s2	residual	260
Outpu	It for H	Hunt Streat	Jenkins s am Depk 60	2 - etion, Sc 90		(s2): (s2): 150	Jer Time pu 180	umping(nkins s2 n mp on = 210	days) residual 365 days 240	s 270 0.051	- Hunt s2 300	330	360
Outpu Days Qw, ct	It for H	Hunt Street 30 0.051	lenkins s am Depk 60 0.051	2 - etion, Sc 90 0.051	Hunt enerio 2 120 0.051	(s2): (s2): 150 0.051	Time pu 180 0.051	umping(nkins s2 m mp on = 210 0.051	365 days 240 0.051	s 270 0.051	Hunt s2 300 0.051	2 residual 330 0.051	360 0.051
Outpu Days Qw, cl Jenk S	fs SD %	Hunt Streat 30 0.051 0.658	Jenkins s am Depk 60 0.051 0.755	etion, Sc 90 0.051 0.798	Hunt enerio 2 120 0.051 0.825	(s2): (s2): (52): (50) (0.051) (0.843) (0.042)		mping(mkins s2 m mp on = 210 0.051 0.867	365 days 240 0.051 0.876	3 270 0.051 0.883 0.045	- Hunt s2 300 0.051 0.889	330 0.051 0.894	360 0.051 0.898
Outpu Days Qw, cl Jenk S Jen S	fs SD % D cfs	Hunt Strea 30 0.051 0.658 0.034	Jenkins s am Depk 60 0.051 0.755 0.039	etion, Sc 90 0.051 0.798 0.041	Hunt enerio 2 120 0.051 0.825 0.042	(s2): (s2): (52): (50) (0.051) (0.843) (0.043)		umping(nkins s2 r mp on = 210 0.051 0.867 0.044 80.6%	365 days 240 0.051 0.876 0.045	s 270 0.051 0.883 0.045 82.0%	- Hunt s2 300 0.051 0.889 0.046	330 0.051 0.894 0.046	360 0.051 0.898 0.046
Outpu Days Qw, cl Jenk S Jen S Hunt S	fs SD % D cfs SD %	Hunt Stree 30 0.051 0.658 0.034 52.4%	lenkins s am Depk 60 0.051 0.755 0.039 64.9%	etion, Sc 90 0.051 0.798 0.041 70.9%	Hunt enerio 2 120 0.051 0.825 0.042 74.6%	(s2): (s2): (52):	Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 r mp on = 210 0.051 0.867 0.044 80.6% 0.0413	365 days 240 0.051 0.876 0.045 81.8%	270 0.051 0.883 0.045 82.9%	- Hunt s2 300 0.051 0.889 0.046 83.7%	330 0.051 0.894 0.046 84.5%	360 0.051 0.898 0.046 85.1%
Outpu Days Qw, cl Jenk S Jen S Hunt S	fs SD % D cfs SD % SD cfs	Junt Strest 30 0.051 0.658 0.034 52.4% 0.0269	am Depk 60 0.051 0.755 0.039 64.9% 0.0333	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Hunt enerio 2 120 0.051 0.825 0.042 74.6% 0.0382	(s2): (s2): (52):	Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 n mp on = 210 0.051 0.867 0.044 80.6% 0.0413	365 days 240 0.051 0.876 0.045 81.8% 0.0419	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436
Outpu Days Qw, cl Jenk S Jen S Hunt S Hunt S	fs SD % D cfs SD % SD cfs	lunt Strea 30 0.051 0.658 0.034 52.4% 0.0269	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333	2 etion, Sc 90 0.051 0.798 0.041 70.9% 0.0363	Hunt enerio 2 120 0.051 0.825 0.042 74.6% 0.0382	(s2): (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 n mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sc	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436
Outpu Days Qw, cf Jen S Jen S Hunt S Hunt S Paran Net st	fs SD % D cfs SD % SD cfs neters	Hunt Strea 30 0.051 0.658 0.034 52.4% 0.0269 s:	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333	2 - etion, Sc 90 0.051 0.798 0.041 70.9% 0.0363	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382	(s2): (s2): 150 0.051 0.843 0.043 77.2% 0.0396	Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 n mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sc	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm
Outpu Days Qw, cl Jenk S Jen S Hunt S Hunt S Param Net st Dista	fs SD % D cfs SD cfs SD cfs neters teady p nce to	Hunt Stream	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333	2 - etion, Sc 90 0.051 0.798 0.041 70.9% 0.0363	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 Qw a	(s2): (s2): 150 0.051 0.843 0.043 77.2% 0.0396	Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 n mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sca	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740	270 0.051 0.883 0.045 82.9% 0.0425	Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm
Outpu Days Qw, cl Jenk S Jen S Hunt S Hunt S Paran Net st Distar Aquife	t for H fs SD % D cfs SD cfs SD cfs meters teady p nce to ar hydr	lunt Stream 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping restream aulic condition	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333 rate	2 - 2	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 Qw a K	(s2): (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 n mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sc	days) residual 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residua 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day
Outpu Days Qw, cl Jenk S Jen S Hunt S Hunt S Paran Net st Distar Aquife Aquife	t for H fs SD % D cfs SD % SD cfs SD cfs meters teady p nce to er hydr		Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333 ate	2 - etion, Sc 90 0.051 0.798 0.041 70.9% 0.0363	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 Qw a K b	(s2): (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 n mp on = 210 0.051 0.044 80.6% 0.0413 Sc	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day
Outpu Days Qw, cl Jenk S Jen S Hunt S Hunt S Hunt S Distar Aquife Aquife	fs SD % D cfs SD % SD cfs SD cfs SD cfs SD cfs schedulg ince to er hydrer thicker	Junt Stream 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping r stream aulic cond cness smissivity	Jenkins s am Depke 60 0.051 0.755 0.039 64.9% 0.0333 rate	2 - etion, Sc 90 0.051 0.798 0.041 70.9% 0.0363	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 0.0382 Qw a K b T	resince (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sca	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140 7000	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day ft
Outpu Days Qw, cf Jenk S Jen S Hunt S Hunt S Paran Net st Distar Aquife Aquife Aquife	t for I fs SD % D cfs SD % SD cfs SD cfs SD cfs SD cfs SD cfs ceady p nce to ar hydr er thick er trans	lunt Strea 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping r stream aulic cond cness smissivity age coeffi	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333 ate ductivity	2 - etion, Sc 90 0.051 0.798 0.041 70.9% 0.0363	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 0.0382 Qw a K b T S	resince (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (nkins s2 n mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sc	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140 7000 0.15	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day ft
Outpu Days Qw, cl Jen S Jen S Hunt S Hunt S Param Net st Distan Aquife Aquife Stream	It for I fs SD % D cfs SD % SD cfs SD cfs SD cfs SD cfs SD cfs ce to er hydr er thick er transer storm	unt Stream 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping restream aulic conclusion cness smissivity age coeffit	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333 ate ductivity	2 - etion, Sc 90 0.051 0.798 0.041 70.9% 0.0363	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 0.0382 Qw a K b T S S ws	resince (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sc	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140 7000 0.15 200	3 270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day ft ft/day
Outpu Days Qw, cl Jenk S Jen S Hunt S Hunt S Paran Net st Distar Aquife Aquife Stream Stream	t for H fs SD % D cfs SD cfs SD cfs SD cfs SD cfs scale and the standard for the standard f	lunt Strea 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping of stream aulic cond cness smissivity age coeffith hydraulic	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333 rate ductivity cient	2 -	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 0.0382 Qw a K b T S S ws Ks	(s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (mkins s2 n mp on = 210 0.051 0.867 0.044 80.6% 0.0413 Sc	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140 7000 0.15 200	270 0.051 0.883 0.045 82.9% 0.0425	Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day ft ft/day ft
Outpu Days Qw, cl Jenk S Jen S Hunt S Hunt S Hunt S Distar Aquife Aquife Stream Stream	t for I fs SD % D cfs SD % SD cfs SD cfs SD cfs SD cfs steady p nce to er hydr er thick er trans er stor m widt mbed	Hunt Stream 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping r stream raulic condor kness smissivity age coeffit th hydraulic thickness	Jenkins s am Depk 60 0.051 0.755 0.039 64.9% 0.0333 ate ductivity cient	2 -	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 0.0382 Qw a K b T S ws Ks bs	resince (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (c nkins s2 r mp on = 210 0.051 0.044 80.6% 0.0413 Sc	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140 7000 0.15 200 1 5	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day ft ft/day ft
Output Days Qw, cl Jenk S Jen S Hunt S Hunt S Hunt S Distar Aquife Aquife Strear Strear Strear Strear	t for I fs SD % D cfs SD % SD cfs SD cfs SD cfs SD cfs SD cfs SD cfs cert frank for thick for th	lunt Strea 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping of stream raulic conducted smissivity age coeffit th hydraulic thickness conducta	Jenkins s am Depke 60 0.051 0.755 0.039 64.9% 0.0333 rate ductivity cient conduction	2 -	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.051 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	resince (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (0 nkins s2 n 210 0.051 0.051 0.044 80.6% 0.0413 Sca	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140 50 140 7000 0.15 200 1 1 5 40	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day ft ft/day ft ft/day ft
Outpu Days Qw, cf Jenk S Jen S Hunt S Hunt S Hunt S Distan Aquife Aquife Stream Stream Stream Stream	t for I fs SD % D cfs SD % SD cfs SD cfs SD cfs SD cfs SD cfs SD cfs steady p nce to ar hydr er thick er trans er stor m widd mbed mbed m dep	lunt Strea 30 0.051 0.658 0.034 52.4% 0.0269 s: pumping r stream aulic cond cness smissivity age coeffit th hydraulic thickness conducta letion fac	Jenkins s am Depke 60 0.051 0.755 0.039 64.9% 0.0333 rate ductivity cient conduction conduction conduction conduction conduction conduction	2 -	Tir enerio 2 120 0.051 0.825 0.042 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.0382 74.6% 0.051 0.825 0.042 74.6% 0.051 0.825 0.042 74.6% 0.051 0.825 0.042 74.6% 0.0382 5 0.042 74.6% 0.051 0.825 0.042 74.6% 0.053 74.6% 0.053 74.6% 0.053 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 74.6% 0.055 75 74.6% 0.055 75 75 75 75 75 75 75 75 75 75 75 75 7	resince (s2): 150 0.051 0.843 0.043 77.2% 0.0396	• Jer Time pu 180 0.051 0.857 0.044 79.1% 0.0405	umping (mkins s2 n mp on = 210 0.051 0.044 80.6% 0.0413 Sco 	days) residual 365 days 240 0.051 0.876 0.045 81.8% 0.0419 enario 2 23 740 50 140 7000 0.15 200 1 1 5 40 11.73	270 0.051 0.883 0.045 82.9% 0.0425	- Hunt s2 300 0.051 0.889 0.046 83.7% 0.0429	2 residual 330 0.051 0.894 0.046 84.5% 0.0433	360 0.051 0.898 0.046 85.1% 0.0436 Units gpm ft ft/day ft ft/day ft ft/day ft ft/day days

6

Page