WATER RESOURCES DEPARTMENT MEMO

1 December 2014

TO:		Application G- <u>17931</u>
FRO	M:	Gerald H. Grondin - Groundwater Section
SUBJ	ECT:	Scenic Waterway Interference Evaluation
	YES NO	The source of appropriation is within or above a Scenic Waterway
	YES NO	Use the Scenic Waterway condition (condition 7J)

- Per ORS 390.835, the Groundwater Section is able to calculate groundwater interference with surface water that contributes to a Scenic Waterway. The calculated interference distribution is provided below.
- Per ORS 390.835, the Groundwater Section is unable to calculate groundwater interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface flows necessary to maintain the free-flowing character of a scenic waterway.

DISTRIBUTION OF INTERFERENCE

Calculate interference as the monthly fraction of the annual consumptive use and fill in the table below. If interference cannot be calculated, per criteria in 390.839, do not fill in the table but check the "unable" option above, thus informing the Water Rights Section that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in the ______ Scenic Waterway by the following amounts, expressed as a proportion of the annual consumptive use pumped from the well.

Monthly Fraction of Annual Consumptive Use

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section		Date 1 Dece	ember 2014	
FROM:	Groundwater Section	Gerald H. Grondin Reviewer's Name			
SUBJECT:	Application G- <u>17931</u>	Supersedes review of	f	Date of Review(s)	
OAR 690-310-1 welfare, safety a to determine wh	EREST PRESUMPTION; GROUND 30 (1) The Department shall presume that and health as described in ORS 537.525. De ether the presumption is established. OAR criteria. This review is based upon available	t a proposed groundwater to partment staff review groun 690-310-140 allows the pro	d water application posed use be mod	ons under OAR 690-31 lified or conditioned to	0-140 meet
A. <u>GENERAL</u>	INFORMATION: Applicant's Na	me: James W. Votto		County: Lake	
	ant(s) seek(s) (825 gpm) 1.84 cfs from				Basin,
Tho	nas Creek watershed in the Goose Lake	subbasin Ouad Man	 Lakeview NW 		

A2. Proposed use <u>Irrigation (54 acres primary, 93 acres supplemental)</u> Seasonality: <u>1 March to 31 October (245 days)</u>

A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid):

Well	Logid	Applicant's Well #	Proposed Aquifer*	Proposed Rate(cfs)	Location (T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	LAKE 52538	1	Basin-Fill Sediments	1.84	39S/19E-sec 14 ABA	132'S, 1850'W fr NE cor S 14
2						

* Alluvium, CRB, Bedrock

Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type
1	4775	58	5.85	7/22/2014	387	0-56	+2-56	56-387	247-387	1500	?	A

Use data from application for proposed wells.

A4. Comments:

The proposed maximum rate of 1.84 cfs (825 gpm) is consistent with the maximum rate often allowed for 147 acres (1/80 cfs per acre). The proposed maximum annual volume is 441 acre-feet. That equals 3.0 acre-feet of water per acre, which is often the maximum acre-feet of water per acre allowed.

The water well report (well-log) for well LAKE 52538 indicates the productive water bearing zone(s) tapped by the well is solely within the predominantly basin-fill sedimentary unit that overlies the predominantly volcanic-basalt rock and sediments unit. The well's liner is perforated from 247 to 387 feet depth adjacent to layers of sands and gravels and some layers of clay and fractured claystone.

Geologic maps (Morgan 1988, Walker 1963, and others) indicate basin-fill sedimentary deposits at the proposed POA well. The well is located between Cottonwood Creek and Thomas Creek. Morgan (1988) shows the well location adjacent to a divide in the surficial geology with fluvial terrace and lacustrine deposits (Qlo) to the west and alluvial deposits (Qal) to the east. Walker (1963) mapped the surface geology at the well site as sedimentary deposits (QTs) that includes lacustrine, fluviatile, and Aeolian sedimentary rocks, interstratified tuff, ashy diatomite, and unconsolidated clay, sand, silt, and gravel, mostly in pluvial basins that correlates to water laid volcanic deposits of Wells and Peck (1961). Walker (1963) mapped nearby surface geology as alluvium (Oal) described as unconsolidated fluviatile gravel, sand, and silt. In places, it can include talus, fanglomerate, lakebed deposits, and wind-blown sand. Both Morgan (1988) and Walker (1963) show ash-flow tuffs, tuffaceous sedimentary rocks, tuff breccias, andesite and basalt flows (Tv) in the uplands that surround the Goose lake Valley. These underlie the basin-fill sedimentary deposits in the valley. 1

Data indicate groundwater at the well is below the elevation of Cottonwood Creek at the closest reach to the west and above Cottonwood Creek at a lower reach to the south. The data also indicates groundwater at the well is above the elevation of Thomas Creek.

A5. A Provisions of the <u>Goose & Summer Lakes</u> Basin rules relative to the development, classification and/or management of ground water hydraulically connected to surface water X are, or I are not, activated by this application. (Not all basin rules contain such provisions.) Comments:

OAR 690-513-0030 (Goose Lake Subbasin) applies.

OAR 690-513-0030 (2)(d) says "Groundwater from any well within 1,000 feet of Thomas Creek, or a tributary, and taking water from an unconfined aquifer is classified for domestic and stockwater uses only. This paragraph only applies to wells within the following areas:...(D) Sections 1-3 and 10-15; Township 39S; Range 19E;"

The well location is within the area noted. It is in T39S/R19E-sec 14.

Groundwater in the Goose Lake area is identified as unconfined.

The proposed POA well is less than 100 feet from an intermittent stream drainage that discharges to a ditch that may discharge to Thomas Creek. Other surface water is more than 1,000 feet from the proposed POA well. The Department needs to determine whether the intermittent stream drainage is identified as a tributary to Thomas Creek or not. It is uncertain to this reviewer.

If the intermittent stream is not identified as a tributary to Thomas Creek, agricultural use is allowed for the proposed well location.

A6. Well(s) # <u>N.A.</u> _, ____, tap(s) an aquifer limited by an administrative restriction. Name of administrative area: Comments:

Currently, no administrative area.

Application: G-17931

ì

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. Based upon available data, I have determined that ground water* for the proposed use:
 - a. is over appropriated, is not over appropriated, or is cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;
 - c. will not or will likely to be available within the capacity of the ground water resource; or
 - d. \boxtimes will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource:
 - i. The permit should contain condition #(s) 7B, 7N, 7P, 7T, and special conditions
 ii. The permit should be conditioned as indicated in item 2 below.
 - iii. X The permit should contain special condition(s) as indicated in item 3 below;

B2. a. Condition to allow ground water production from no deeper than ft. below land surface;

b. Condition to allow ground water production from no shallower than ______ ft. below land surface;

- c. Condition to allow ground water production only from the ______ ground water reservoir between approximately______ ft. and ______ ft. below land surface;
- d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Ground water availability remarks:

If a permit is issued, recommend conditions 7B, 7N, 7P, 7T, and the following

The "large" water use condition: (require a totalizing flow meter at each well. Each flow meter shall be located within 50 feet of the wellhead and adjacent to each flow meter shall be a clearly visible monument with a sign noting the flow meter. Lastly, require for every flow meter the reading, recording (monthly at minimum), and annual reporting of the flow meter data, all flow meters).

Reports for the Goose and Summer Lakes Basin indicate ground water occurs in alluvium, basin fill sediments, and different basalt units. Geologic maps (Morgan 1988, Walker 1963, and others) indicate basin-fill sedimentary deposits at the proposed POA well. The well is located between Cottonwood Creek and Thomas Creek. Morgan (1988) shows the well location adjacent to a divide in the surficial geology with fluvial terrace and lacustrine deposits (Qlo) to the west and alluvial deposits (Qal) to the east. Walker (1963) mapped the surface geology at the well site as sedimentary deposits (QTs) that includes lacustrine, fluviatile, and Aeolian sedimentary rocks, interstratified tuff, ashy diatomite, and unconsolidated clay, sand, silt, and gravel, mostly in pluvial basins that correlates to water laid volcanic deposits of Wells and Peck (1961). Walker (1963) mapped nearby surface geology as alluvium (Qal) described as unconsolidated fluviatile gravel, sand, and silt. In places, it can include talus, fanglomerate, lakebed deposits, and wind-blown sand. Both Morgan (1988) and Walker (1963) show ash-flow tuffs, tuffaceous sedimentary rocks, tuff breccias, andesite and basalt flows (Tv) in the uplands that surround the Goose lake Valley. These underlie the basinfill sedimentary deposits in the valley.

Data indicate groundwater at the well is below the elevation of Cottonwood Creek at the closest reach to the west and above Cottonwood Creek at a lower reach to the south. The data also indicates groundwater at the well is above the elevation of Thomas Creek.

Morgan (1988) notes ground water flow is generally from upland recharge areas to lowland discharge areas, primarily Goose Lake. However, local subsystems discharge to lakes, reservoirs, meadows, and streams. Large quantities of ground water move through complexly interbedded, discontinuous, unconsolidated sand, gravel, silt, and clay deposits. Morgan characterizes the upper portion of ground water as unconfined with confined-like conditions increasing with depth. This appears related to anisotropic hydraulic conductivities with horizontal hydraulic conductivity much greater than vertical hydraulic conductivity. For one site noted, the estimated ratios ranged from 2:1 to 179:1. There is no indication of shallower ground water being separated from deeper ground water by a confining layer.

The nearest state observation well found was state observation 380 (well LAKE 2320). The well is 110 feet deep, and it is completed in basin-fill. It is located about 3.4 miles south of the proposed well. The ground water level data is from 1962 to 2014. The annual trend appears climate controlled with no apparent decline for that period. Seasonal fluctuations vary from year to year, from less than 5 feet to about 10 feet.

The next nearest state observation well found was state observation well 379 (well LAKE 1979). The well is 530 feet deep, and it is completed in the basin-fill. It is located about 4.6 miles north of the proposed well site. The groundwater level data is from 1976 to 2014. The annual trend appears climate controlled with no apparent decline for that period. Seasonal fluctuations vary from year to year, from less than 5 feet to more than 10 feet.

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Basin-Fill Sediments		\square

Basis for aquifer confinement evaluation:

The system is identified as generally unconfined with discontinuous low permeability layers causing local (discontinuous, limited) confinement.

The water well report (well-log) for well LAKE 52538 indicates the productive water bearing zone(s) tapped by the well is solely within the predominantly basin-fill sedimentary unit that overlies the predominantly volcanic-basalt rock and sediments unit. The well's liner is perforated from 247 to 387 feet depth adjacent to layers of sands and gravels and some layers of clay and fractured claystone.

Reports for the Goose and Summer Lakes Basin indicate ground water occurs in alluvium, basin fill sediments, and different basalt units. Geologic maps (Morgan 1988, Walker 1963, and others) indicate basin-fill sedimentary deposits at the proposed POA well. The well is located between Cottonwood Creek and Thomas Creek. Morgan (1988) shows the well location adjacent to a divide in the surficial geology with fluvial terrace and lacustrine deposits (Olo) to the west and alluvial deposits (Oal) to the east. Walker (1963) mapped the surface geology at the well site as sedimentary deposits (QTs) that includes lacustrine, fluviatile, and Aeolian sedimentary rocks, interstratified tuff, ashy diatomite, and unconsolidated clay, sand, silt, and gravel, mostly in pluvial basins that correlates to water laid volcanic deposits of Wells and Peck (1961). Walker (1963) mapped nearby surface geology as alluvium (Oal) described as unconsolidated fluviatile gravel, sand, and silt. In places, it can include talus, fanglomerate, lakebed deposits, and wind-blown sand. Both Morgan (1988) and Walker (1963) show ash-flow tuffs, tuffaceous sedimentary rocks, tuff breccias, andesite and basalt flows (Tv) in the uplands that surround the Goose lake Valley. These underlie the basin-fill sedimentary deposits in the valley.

Morgan (1988) notes ground water flow is generally from upland recharge areas to lowland discharge areas, primarily Goose Lake. However, local subsystems discharge to lakes, reservoirs, meadows, and streams. Large quantities of ground water move through complexly interbedded, discontinuous, unconsolidated sand, gravel, silt, and clay deposits. Morgan characterizes the upper portion of ground water as unconfined with confined-like conditions increasing with depth. This appears related to anisotropic hydraulic conductivities with horizontal hydraulic conductivity much greater than vertical hydraulic conductivity. For one site noted, the estimated ratios ranged from 2:1 to 179:1. There is no indication of shallower ground water being separated from deeper ground water by a confining layer. C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	sw #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Spring (certificate 66628)	4769	4790	1,565		
1	2	Spring (certificate 53537)	4769	4750	10,700		
1	3	Thomas Creek	4769	4735	12,800		
1	4	Cottonwood Creek	4769	4840	9,860		

Basis for aquifer hydraulic connection evaluation: _

There are two springs identified. The first spring is located about 1565 feet (0.30 mile) west of the proposed POD well site. The associated water right is certificate 66628 (file S-56450, priority date = 18 August 1977, rate = 0.57 cfs, POU = 22.7 primary acres). The source is identified as "spring/seepage." Subsequent to that right, a groundwater right was issued (see certificate 66627, file G-9848) to the spring owner allowing a well to irrigate 3 primary acres and 22.7 supplemental acres. The well is less than 300 feet from the spring. The proposed POD well for this application (G-17931) is likely down the hydrogeologic gradient from the spring.

The second spring is located about 10,700 feet (2.03 mile) south at the SE corner of section 23. The spring is identified on the USGS map. OWRD water right data shows an adjoining water right in that area, certificate 53537 (file S-58711, priority date 24 May 1979, rate 0.37 cfs, POU = 14.8 primary acres). The source is identified as "un-named drain." It is uncertain if the drain is associated with the spring. The proposed POD well for this application (G-17931) is likely up the hydrogeologic gradient from the spring.

The proposed POD well for this application (G-17931) is up the hydrogeologic gradient from Thomas Creek.

The proposed POD well for this application (G-17931) is down the hydrogeologic gradient from the nearest reach of Cottonwood Creek to the west and up the hydrogeologic gradient from the lower reach of Cottonwood Creek to the south. Cottonwood Creek is tributary to Thomas Creek.

Water Availability Basin the well(s) are located within: <u>THOMAS CR > GOOSE L - AT MOUTH</u>

C3a. 690-09-040 (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			N.A.	N.A.		N.A.		N.A.	

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
	┼┝╡							

Comments:

The proposed POA well is less than one-mile from spring (certificate 66628) and more than one-mile from the other surface water identified in section C2.

No instream water right or natural flow values were found associated with spring (certificate 66628).

Groundwater interference with spring (certificate 66628) discharge was not calculated. Instead, the groundwater level drawdown at the spring due to pumping the proposed POA well was calculated using the Theis equation.

The groundwater level drawdown at the spring due to pumping the proposed POA well was 17 feet at the end of 30 days and 27 feet at the end of 245 days of pumping. The interference with the spring would likely seasonally dry-up the spring. Flow from the spring may be problematic already given the spring owner obtained a groundwater right (see certificate 66627, file G-9848) allowing a well to irrigate 3 primary acres and 22.7 supplemental acres. That well is less than 300 feet from the spring.

The calculation groundwater level drawdown used a pro-rated rate (total annual volume requested divided by the total pumping period) of 0.91 cfs (407 gpm), a transmissivity of 1,300 ft2/day derived from specific capacity data for well LAKE 4012 located in the same section as the proposed POA well, and an intermediate storage coefficient of 0.001. The transmissivity used is consistent with the range Morgan (1988) noted for the basin-fill within the Goose Lake valley.

Application: G-17931

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well	istributed SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2	%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
	ence CFS												
1 1 1 2 1 2 1	9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1986 ya 19	n Winser	18. j.K.	ay she			1999 - 1999 1999 - 1999			1187		8.
Distrib	uted Well	S											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q) as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS											-	
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
ali e se	M 160-0	n an an an		Street, Street						a an			
(A) = To	tal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = ((A) > (C)	✓ 1	✓	 Image: A start of the start of	\checkmark		\checkmark	✓	And Street in	1	I	1	✓
		%	%	%	%	%	%	%	%	%	%	%	%
$(\mathbf{E}) = (\mathbf{A})$	/ B) x 100	70	70	70	70	70		70		-70	70	70	70

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation: _____

The proposed POA well is more than one-mile from spring (certificate 53537).

No instream water right or natural flow values were found associated with spring (certificate 53537). The spring is identified on the USGS map. OWRD water right data shows an adjoining water right in that area, certificate 53537 (file S-58711, priority date 24 May 1979, rate 0.37 cfs, POU = 14.8 primary acres). The source is identified as "un-named drain." It is uncertain if the drain is associated with the spring.

Groundwater interference with spring (certificate 53537) discharge was not calculated. Instead, the groundwater level drawdown at the spring due to pumping the proposed POA well was calculated using the Theis equation.

The groundwater level drawdown at the spring due to pumping the proposed POA well was 1.7 feet at the end of 30 days and 9.2 feet at the end of 245 days of pumping. The interference with the spring would likely seasonally dry-up the spring by the end of the 245 day irrigation season.

The calculation groundwater level drawdown used a pro-rated rate (total annual volume requested divided by the total pumping period) of 0.91 cfs (407 gpm), a transmissivity of 1,300 ft2/day derived from specific capacity data for well LAKE 4012 located in the same section as the proposed POA well, and an intermediate storage coefficient of 0.001. The transmissivity used is consistent with the range Morgan (1988) noted for the basin-fill within the Goose Lake valley.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	stributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	3	15.8%	14.4 %	1.3 %	4.3 %	7.3 %	9.9 %	12.3 %	14.4 %	16.3 %	18.1 %	18.8 %	17.4 %
Well Q	as CFS	0.00	0.00	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.00	0.00
Interfere	ence CFS	0.143	0.131	0.012	0.039	0.066	0.090	0.111	0.130	0.148	0.164	0.171	0.157
Distrib	uted Wel	ls	n an maana	9 - 1993 a.	Sec. 1							4	
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	9
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9/
Well Q	as CFS												
Interfere	ence CFS												L
(A) = To	tal Interf.	0.143	0.131	0.012	0.039	0.066	0.090	0.111	0.130	0.148	0.164	0.171	0.157
(B) = 80	% Nat. Q	16.70	38.70	76.60	151.00	111.00	41.70	13.10	8.24	8.98	10.40	14.50	19.10
(C) = 1 9	% Nat. Q	0.1670	0.3870	0.7660	1.5100	1.1100	0.4170	0.1310	0.0824	0.0898	0.1040	0.1450	0.1910
(D) = (A) > (C)	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes	No
(E) = (A /		0.856	0.339	0.016	0.026	0.059	0.216	0.847	1.578	1.648	1.577	1.179	0.822

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation: _

The proposed POA well is more than one-mile from Thomas Creek.

Hunt (1999) was used to calculate the interference with Thomas Creek due to pumping the proposed POA well. The calculations indicate the interference with the creek will exceed one-percent of the natural flow (80% exceedance) during four months when the creek flow is lowest.

The calculation groundwater level drawdown used a pro-rated rate (total annual volume requested divided by the total pumping period) of 0.91 cfs (407 gpm), a transmissivity of 1,300 ft2/day derived from specific capacity data for well LAKE 4012 located in the same section as the proposed POA well, an intermediate storage coefficient of 0.001, a stream width of 25 feet, and a streambed thickness of 10 feet with a vertical hydraulic conductivity of 0.026 ft/day (the horizontal hydraulic conductivity of the basin-fill divided by 100). The transmissivity used is consistent with the range Morgan (1988) noted for the basin-fill within the Goose Lake valley.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	stributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	4	14.3%	12.9 %	2.2 %	5.5 %	8.3 %	10.7 %	12.9 %	14.8 %	16.5 %	18.1 %	17.9 %	15.9 %
Well Q	as CFS	0.00	0.00	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.00	0.00
Interfere	ence CFS	0.130	0.117	0.020	0.049	0.075	0.097	0.117	0.134	0.150	0.164	0.163	0.145
Distrib	uted Wel	s	<u>V41 - 8</u>		일 75 14일 11일 - 1 - 11일 - 11 - 11일 - 11		11 a. a.						
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	9/
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
11 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	a la sur a sur	will del will					0.007		19 Jack 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.1.00	1) () () () () () () () () () () () () ()
()	tal Interf.	0.130	0.117	0.020	0.049	0.075	0.097	0.117	0.134	0.150	0.164	0.163	0.145
(B) = 80	% Nat. Q	6.63	9.62	17.10	38.80	40.30	15.10	4.78	2.99	2.83	3.22	4.31	5.60
(C) = 1 °	% Nat. Q	0.0662	0.0962	0.1710	0.3880	0.4030	0.1510	0.0478	0.0299	0.0283	0.0322	0.0431	0.0560
stration of the second			the and a second	a kirin analara araa	, Noter i		h har	1997	1999 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -				Wilang Dan Mgan
(D) = (.	A) > (C)	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
(E) = (A /	B) x 100	1.961	1.216	0.117	0.126	0.186	0.642	2.448	4.482	5.300	5.093	3.782	2.589

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation: _

The proposed POA well is more than one-mile from Cottonwood Creek.

Hunt (1999) was used to calculate the interference with Cottonwood Creek due to pumping the proposed POA well. The calculations indicate the interference with the creek will exceed one-percent of the natural flow (80% exceedance) during eight months when the creek flow is lowest.

The calculation groundwater level drawdown used a pro-rated rate (total annual volume requested divided by the total pumping period) of 0.91 cfs (407 gpm), a transmissivity of 1,300 ft2/day derived from specific capacity data for well LAKE 4012 located in the same section as the proposed POA well, an intermediate storage coefficient of 0.001, a stream width of 20 feet, and a streambed thickness of 10 feet with a vertical hydraulic conductivity of 0.026 ft/day (the horizontal hydraulic conductivity of the basin-fill divided by 100). The transmissivity used is consistent with the range Morgan (1988) noted for the basin-fill within the Goose Lake valley.

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or ground water use under this permit can be regulated if it is found to substantially interfere with surface water:

- i. The permit should contain condition #(s)
- ii. The permit should contain special condition(s) as indicated in "Remarks" below;

C6. SW / GW Remarks and Conditions_

OAR 690-513-0030 (Goose Lake Subbasin) applies.

OAR 690-513-0030 (2)(d) says "Groundwater from any well within 1,000 feet of Thomas Creek, or a tributary, and taking water from an unconfined aquifer is classified for domestic and stockwater uses only. This paragraph only applies to wells within the following areas:...(D) Sections 1-3 and 10-15; Township 39S; Range 19E;"

The well location is within the area noted. It is in T39S/R19E-sec 14.

Groundwater in the Goose Lake area is identified as unconfined.

The proposed POA well is less than 100 feet from an intermittent stream drainage that discharges to a ditch that may discharge to Thomas Creek. Other surface water is more than 1,000 feet from the proposed POA well. The Department needs to determine whether the intermittent stream drainage is identified as a tributary to Thomas Creek or not. It is uncertain to this reviewer.

If the intermittent stream is not identified as a tributary to Thomas Creek, agricultural use is allowed for the proposed well location.

Calculations indicate the interference with Thomas Creek will exceed one-percent of the natural flow (80% exceedance) during four months when the creek flow is lowest.

Calculations indicate the interference with Cottonwood Creek will exceed one-percent of the natural flow (80% exceedance) during eight months when the creek flow is lowest.

If a permit is issued, recommend conditions 7B, 7N, 7P, 7T, and the following

The "large" water use condition: (require a totalizing flow meter at each well. Each flow meter shall be located within 50 feet of the wellhead and adjacent to each flow meter shall be a clearly visible monument with a sign noting the flow meter. Lastly, require for every flow meter the reading, recording (monthly at minimum), and annual reporting of the flow meter data, all flow meters).

The groundwater system is identified as generally unconfined with discontinuous low permeability layers causing local (discontinuous, limited) confinement.

The water well report (well-log) for well LAKE 52538 indicates the productive water bearing zone(s) tapped by the well is solely within the predominantly basin-fill sedimentary unit that overlies the predominantly volcanic-basalt rock and sediments unit. The well's liner is perforated from 247 to 387 feet depth adjacent to layers of sands and gravels and some layers of clay and fractured claystone.

Reports for the Goose and Summer Lakes Basin indicate ground water occurs in alluvium, basin fill sediments, and different basalt units. Geologic maps (Morgan 1988, Walker 1963, and others) indicate basin-fill sedimentary deposits at the proposed POA well. The well is located between Cottonwood Creek and Thomas Creek. Morgan (1988) shows the well location adjacent to a divide in the surficial geology with fluvial terrace and lacustrine deposits (Qlo) to the west and alluvial deposits (Qal) to the east. Walker (1963) mapped the surface geology at the well site as sedimentary deposits (QTs) that includes lacustrine, fluviatile, and Aeolian sedimentary rocks, interstratified tuff, ashy diatomite, and unconsolidated clay, sand, silt, and gravel, mostly in pluvial basins that correlates to water laid volcanic deposits of Wells and Peck (1961). Walker (1963) mapped nearby surface geology as alluvium (Qal) described as unconsolidated fluviatile gravel, sand, and silt. In places, it can include talus, fanglomerate, lakebed deposits, and wind-blown sand. Both Morgan (1988) and Walker (1963) show ash-flow tuffs, tuffaceous sedimentary rocks, tuff breccias, andesite and basalt flows (Tv) in the uplands that surround the Goose lake Valley. These underlie the basin-fill sedimentary deposits in the valley.

Data indicate groundwater at the well is below the elevation of Cottonwood Creek at the closest reach to the west and above Cottonwood Creek at a lower reach to the south. The data also indicates groundwater at the well is above the elevation of Thomas Creek.

Morgan (1988) notes ground water flow is generally from upland recharge areas to lowland discharge areas, primarily Goose Lake. However, local subsystems discharge to lakes, reservoirs, meadows, and streams. Large quantities of ground water move through complexly interbedded, discontinuous, unconsolidated sand, gravel, silt, and clay deposits. Morgan characterizes the upper portion of ground water as unconfined with confined-like conditions increasing with depth. This appears related to anisotropic hydraulic conductivities with horizontal hydraulic conductivity much greater than vertical hydraulic conductivity. For one site noted, the estimated ratios ranged from 2:1 to 179:1. There is no indication of shallower ground water being separated from deeper ground water by a confining layer. References Used:

Gonthier, J.B. 1985, A description of aquifer units in eastern Oregon: USGS Water Resources Investigations Report 84-4095, 39 p., 4 plates.

Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102.

Miller, D.W., 1984, Appraisal of ground-water conditions in the Fort Rock Basin, Lake County, Oregon: Oregon Water Resources Department, Open File Report, 157 p.

Miller, D.W., 1986, Appraisal of ground-water conditions in the Fort Rock Basin, Lake County, Oregon: Oregon Water Resources Department, Ground Water Report No. 31, 196 p and plates.

Morgan, D.S., 1988, Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California: USGS Water Resources Investigations Report 87-4058, 92 p.

Oregon Water Resources Department, 1989, Goose and Summer Lakes Basin report: OWRD Basin Report, 112 p.

Peterson, N.V. and McIntyre, J.R., 1970, The reconnaissance geology and mineral resources of eastern Klamath County and western Lake County, Oregon: DOGAMI Bulletin 66, 70 p.

Peterson, N.V., and Brown, D.E., 1980, Preliminary geology and geothermal resource potential of the Lakeview area, Oregon: DOGAMI Open-File Report O-80-09, 57 p., 1:62,500 maps.

Phillips, K.N. and VanDenburgh, A.S., 1971, Hydrology and geochemistry of Abert, Summer, and Goose Lakes, and other closed-basin lakes in south-central Oregon: USGS Professional Paper 502-B, 86p.

Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. American Geophysical Union Transactions, 16 annual meeting, vol. 16, pg. 519-524.

Walker, G.W., 1963, Reconnaissance geologic map of the eastern half of the Klamath Falls (AMS) quadrangle, Lake and Klamath Counties, Oregon: USGS Mineral Investigations Field Studies Map MF-260.

Walker, G.W. and Reppening, C.A., 1965, Reconnaissance geologic map of the Adel quadrangle, Lake, Harney, and Malheur Counties, Oregon: USGS Miscellaneous Geologic Investigations Map I-446.

Waring, G.A., 1908, Geology and water resources of a portion of south-central Oregon: USGS Water Supply Paper 220, 85 p.

Wells, F.G., and Peck, D.L., 1961, Geologic map of Oregon west of the 121st meridian: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-325.

Goose and Summer Lakes Basin Program rules (OAR 690-513).

State observation well 380 (well LAKE 2320) and state observation well 379 (well LAKE 1979).

Water well reports for area wells, particularly well LAKE 4012 and the proposwed POA well LAKE 52538.

Lakeview NW USGS quadrangle map (1:24,000 scale)

Application: G-17931

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:1	Logid:	LAKE 52538
D2.	THE WELL does not appear to meet of	current we	ell construction standards based upon:

- a. **____** review of the well log;
- field inspection by ______ b.
- report of CWRE c.
- d. d other: (specify)

D3. THE WELL construction deficiency or other comment is described as follows: ____

D4. 🔲 Route to the Well Construction and Compliance Section for a review of existing well construction.

Well enforcement staff was consulted. The staff indicated the well meets well construction standards based on what is found on the water well report submitted for well LAKE 52538.

Water Availability Tables

See attachments

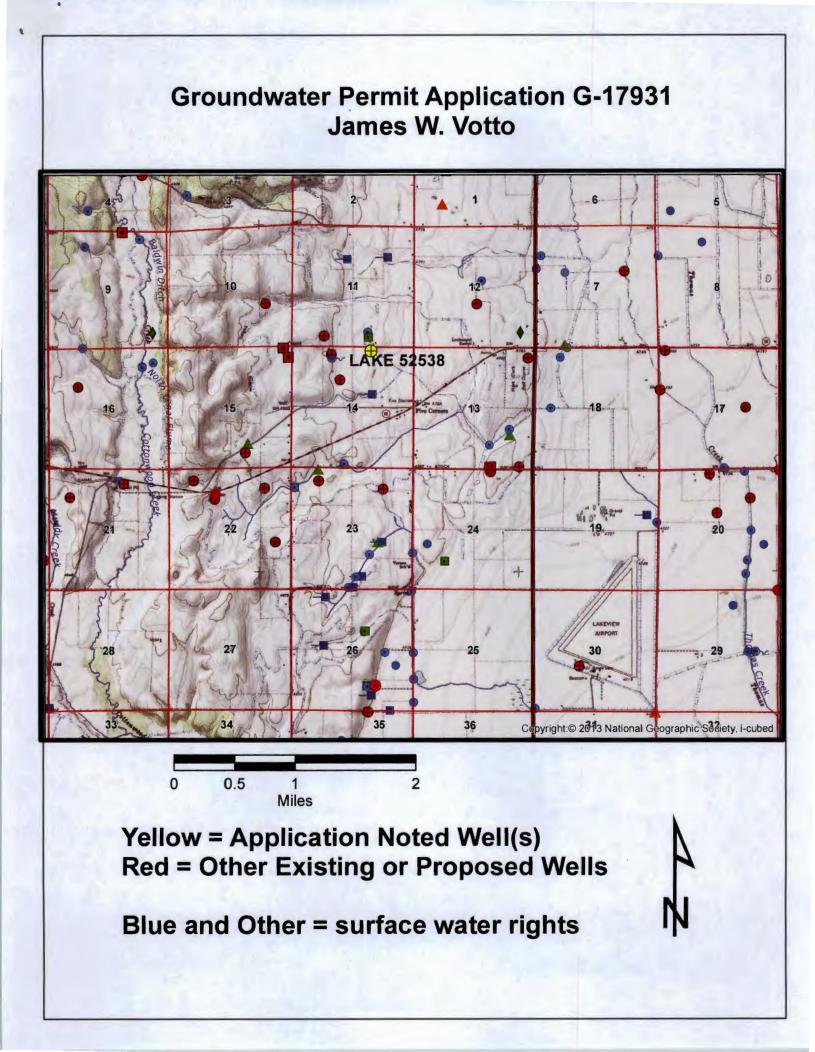
STATE OF OREGON	LAKE	52538	WELL I.D. LABEL# I		Page 1 of 2
WATER SUPPLY WELL REPORT			START CARD #	1023697	
(as required by ORS 537.765 & OAR 690-205-0210)	8/11/	/2014	ORIGINAL LOG #		
(1) LAND OWNER Owner Well I.D.					
First Name JAMES Last Name VOTTO		(9) LOCATION	N OF WELL (legal d	lescription)	
Company		County LAKE		S Range 19.00	E E/W WM
Address 93905 PIKE LN. City LAKEVIEW State OR Zip 976	30	Sec <u>14</u> NW	1/4 of the NE	1/4 Tax Lot 100)
		Tax Map Number		Lot	
(2) TYPE OF WORK New Well Deepening Alteration (complete 2a & 10) Abando	Conversion	Lat°	'" or		DMS or DD
(2a) PRE-ALTERATION		Long	" or		_ DMS or DD
Casing: Casing	d Thrd	(Street a 93905 PIKE LN. LA		arest address	
		193905 PIKE LN. LA	AVENIEM		
Material From To Amt sacks/lbs Seal:					
(3) DRILL METHOD		(10) STATIC W	ATER LEVEL		
Rotary Air Rotary Mud Cable Auger Ca	ble Mud	Visiting Wall /	Date Date	SWL(psi) +	SWL(ft)
Reverse Rotary Other		Existing Well / Completed Well		⊨	5.9
(4) PROPOSED USE Domestic XIrrigation	ommunity	e comprete a ren	Flowing Artesian?	Dry Hole?	5.9
Industrial/Commercial Livestock Dewatering	Jininanity	WATER BEARING		ter was first found _	14.00
Thermal Injection Other			-	Flow SWL(psi)	
	lard (Attach copy)	7/23/2014	58 372 1	500	5.85
Depth of Completed Well <u>387.00</u> ft. BORE HOLE SEAL	coals=/				-
Dia From To Material From	sacks/ To Amt lbs				
24 0 56 Cement 0	56 46 S				
20 56 387	·				
		(11) WELL LO	G		
How was seal placed: Method A B XC			Gibtina Elevano	n From	
How was seal placed: Method A B C		Fine brown sand	terial	0	
Backfill placed from ft. to ft. Material		Pea gravel		14	16
Filter pack from ft. to ft. Material PEA GR	AVBize pea gravel	Fine brown sand		16	21
Explosives used: Yes Type Amount	peagraver	Pea gravel		21	24
	TONITE	fine brown sand with	h gravel	24	50
(5a) ABANDONMENT USING UNHYDRATED BEN Proposed Amount Actual Amount	NIONITE	Grey clay Fractured clay stone	/sand/gravel/shells	50	58
		Gravel with sand	Sulla grave a silens	74	82
(6) CASING/LINER Casing Liner Dia + From To Gauge S	l Plstc Wld Thrd	fractured sandstone		82	91
$\bigcirc \bigcirc \bigcirc 20 \times 2 56 250 $		gravel and coarse sa		91	130
		grey clay w/ fracture		130	144
		sandy grey clay	with gravel	144	148 156
		Fractured grey clay	stone w/ gravel	156	169
		sandy grey clay		169	189
Shoe Inside Outside Other Location of s	hoe(s)	coarse sand and gray	/el	189	202
Temp casing Yes Dia From From	То	sandy grey clay		202	213
(7) PERFORATIONS/SCREENS		fractured sandstone Fractured grey clay		213	218
Perforations Method Saw cut					
Screens Type Material	# of Tale/	Date Started 7/22/	2014 Com	plete <u>8/6/2014</u>	
Perf/ Casing/ Screen Scrn/slot Slot Screen Liner Dia From To width length		(unbonded) Water	Well Constructor Certifi	cation	
Perf Liner 12 247 387 .125 3	5200	· /	ork I performed on the co		ng, alteration, or
			is well is in complianc		
		the best of my know	rds. Materials used and in	formation reported a	above are true to
├ ─}			•	ate puttocat	
		License Number 19	140 D	ate <u>8/11/2014</u>	
(8) WELL TESTS: Minimum testing time is 1 hour	louine Artes	Signed BENJAM	IIN FRY (E-filed)		
	Flowing Artesian			ion	
Yield gal/min Drawdown Drill stem/Pump depth I 1000 160	Duration (hr)		ell Constructor Certificat ity for the construction, d		or abandonm
1500 200	1	work performed on t	this well during the construction, du	copening, alteration,	above. All work
			his time is in compliance		
Temperature 56 °F Lab analysis Yes By			ds. This report is true to th		
Water quality concerns? Yes (describe below) TDS amou	int	License Number 13	55 Da	ate 8/11/2014	
	iii ii				
From To Description	Amount Units				
From To Description	Amount Units		L FRY (E-filed)		

٠

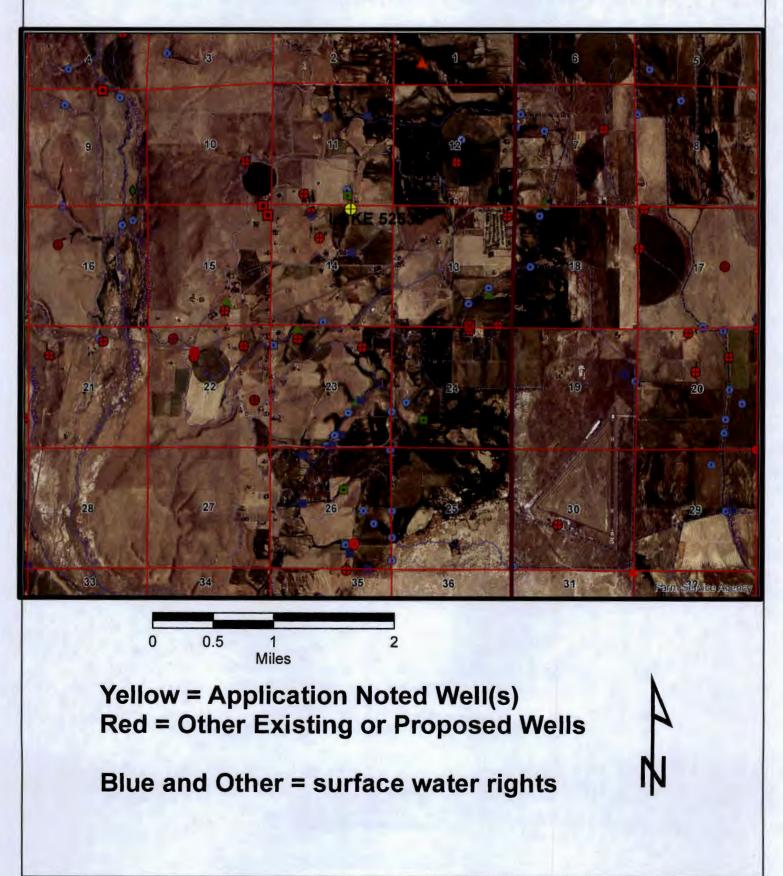
THIS REPORT MUST BE SUBMITTED TO THE WATER RESOURCES DEPARTMENT WITHIN 30 DAYS OF COMPLETION OF WORK Form Version:

WATER SUPPLY WELL REPORT continuation nage

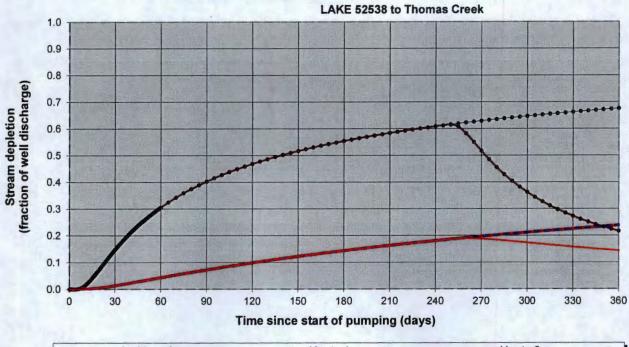
٠


.

LAKE 52538

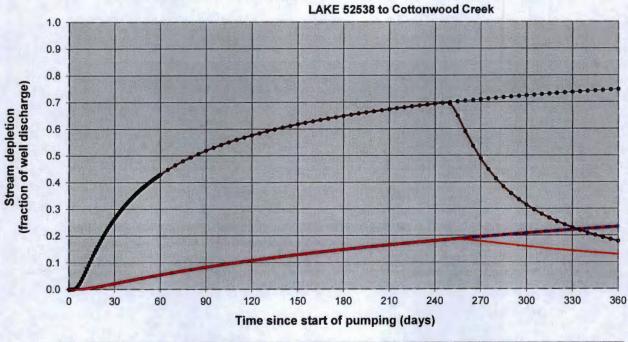

WELL I.D. LABEL# L 114391 START CARD # 1023697

Page 2 of 2


continuation page 8	/11/2014 ORIGINAL LOG #	3097
(2a) PRE-ALTERATION	Water Quality Concerns	
Dia + From To Gauge Stl Plstc Wld Thrd	From To Description	Amount Units
Material From To Amt sacks/lbs		
(5) BORE HOLE CONSTRUCTION	(10) STATIC WATER LEVEL	
BORE HOLE SEAL sacks		SWL(psi) + SWL(ft)
Dia From To Material From To Amt lbs		
FILTER PACK From To Material Size	(11) WELL LOG	
	Material	From To
	Gravel with sand	234 242
	wood	242 243
(6) CASING/LINER	sand grey clay with wood	243 248
(0) CASING/LINER	sandy grey clay with gravel and wood gravel, sand, and clay layers	248 262 262 364
Casing Liner Dia + From To Gauge Stl Plstc Wld Thrd	fractured clay stone	364 368
	gravel with sand	368 372
	grey clay	372 387
(7) PERFORATIONS/SCREENS		
Perf/ Casing/ Screen Scrn/slot Slot # of Tele Screen Liner Dia From To width length slots pipe s		
Screen Liner Dia From To width length slots pipe s		
	Comments/Remarks	
(8) WELL TESTS: Minimum testing time is 1 hour		
Yield gal/min Drawdown Drill stem/Pump depth Duration (hr)		

Groundwater Permit Application G-17931 James W. Votto

Theis Equation:	s = [Q/(4*T*pi)][W(u = (r*r*S)/(4*T*t)]][W(u = (-ln u)-(0.57)][W(u) = (-ln u)-(0.57)][W(u		!)-(u*u/2*2!)+(u*u	J*u/3*3!)-(U*u*u*u	ı/4*4!)+						
	s = drawdown (L) T = transmissivity (S = storage coeffici pi = 3.141592654		iless)	t	r = radial dis = time (T) u = dimensio W(u) = well	onless					
Transmissivity	Transmissivity	Storage	Pumping Rate	Pumping Rate	Time	Distance	pi	U	W(u)	Drawdown	Comments
T	Т	Coefficient	Q	Q	t	r				S	
(gpd/ft)	(ft2/day)	S	(gal/min)	(ft3/sec)	(days)	(feet)	19-12			(feet)	
								Note : W(u) calculation v	alid when u	<7.1
Note	yellow grid areas	are where val	ues are calculat	ed				7.0000	1.1545E-04		W(u) calculation test
Proposed Well (L	AKE 52538) to Spri	ng (certificate	66628): Trans	missivity from w	ell LAKE 4	012 specific c	apacity dat				
9,724.68	1,300.00	0.00100	825.00	1.84	30.00	1,565.00	3.14	0.0157	3,5925	34,9244	Continuous Pumping at Full Rate
9,724.68	1,300.00	0.00100	825.00	1.84	245.00	1,565.00	3.14	0.0019	5.6789	55.2067	Continuous Pumping at Full Rate
9,724.68	1,300.00	0.00100	407.31	0.91	30.00	1,565.00	3.14	0.0157	3,5925	17.2425	Pro-Rated Pumping Rate
9,724.68	1,300.00	0.00100	407.31	0.91	245.00	1,565.00	3.14	0.0019	5.6789	27.2560	Pro-Rated Pumping Rate
Proposed Well (L	AKE 52538) to Spri	ng (certificate	53537): Trans	missivity from w	ell LAKE 4	012 specific c	apacity dat				
9,724.68	1,300.00	0.00100	825.00	1.84	30.00	10,700.00	3.14	0.7339	0.3507	3.4090	Continuous Pumping at Full Rate
9,724.68	1,300.00	0.00100	825.00	1.84	245.00	10,700.00	3.14	0.0899	1.9201	18.6662	Continuous Pumping at Full Rate
9.724.68	1.300.00	0.00100	407.31	0.91	30.00	10,700.00	3.14	0.7339	0.3507	1.6831	Pro-Rated Pumping Rate
9,724.68	1,300.00	0.00100	407.31	0.91	245.00	10,700.00	3.14	0.0899	1.9201	9.2157	Pro-Rated Pumping Rate



Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

Jenkins s2	Hunt s1	Hunt s2			
Jenkins s2 residual	Hunt s3	Hunt s2 residual			

Output for H	unt Stream	n Depleti	on, Scen	erio 2 (sz	2):	Time pun	np on = 2	45 days				
Days	30	60	90	120	150	180	210	240	270	300	330	360
Qw, cfs	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908
Jenk SD %	0.147	0.305	0.403	0.469	0.517	0.554	0.584	0.608	0.517	0.362	0.273	0.217
Jen SD cfs	0.134	0.277	0.365	0.425	0.469	0.503	0.530	0.552	0.469	0.329	0.248	0.196
Hunt SD %	0.013	0.043	0.073	0.099	0.123	0.144	0.163	0.181	0.188	0.174	0.158	0.144
Hunt SD cfs	0.012	0.039	0.066	0.090	0.111	0.130	0.148	0.164	0.171	0.157	0.143	0.131

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	0.9075	0.9075	0.9075	cfs
Distance to stream	a	12800	12800	12800	ft
Aquifer hydraulic conductivity	K	2.6	2.6	2.6	ft/day
Aquifer thickness	b	500	500	500	ft
Aquifer transmissivity	Т	1300	1300	1300	ft*ft/day
Aquifer storage coefficient	S	0.001	0.001	0.001	11-1-1-
Stream width	WS	25	25	25	ft
Streambed hydraulic conductivity	Ks	0.026	0.026	0.026	ft/day
Streambed thickness	bs	10	10	10	ft
Streambed conductance	sbc	0.065	0.065	0.065	ft/day
Stream depletion factor (Jenkins)	sdf	126.0307692	126.0307692	126.0307692	days
Streambed factor (Hunt)	sbf	0.64	0.64	0.64	

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999)

Jenkins s2	Hunt s1	Hunt s2
Jenkins s2 residual	Hunt s3	Hunt s2 residual

Output for H	unt Stream	n Depleti	ion, Scen	erio 2 (s	2):	Time pun	np on = 2	45 days				
Days	30	60	90	120	150	180	210	240	270	300	330	360
Qw, cfs	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908
Jenk SD %	0.264	0.430	0.519	0.577	0.618	0.649	0.673	0.693	0.488	0.314	0.229	0.179
Jen SD cfs	0.240	0.390	0.471	0.523	0.560	0.589	0.611	0.629	0.443	0.285	0.208	0.162
Hunt SD %	0.022	0.055	0.083	0.107	0.129	0.148	0.165	0.181	0.179	0.159	0.143	0.129
Hunt SD cfs	0.020	0.049	0.075	0.097	0.117	0.134	0.150	0.164	0.163	0.145	0.130	0.117

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate	Qw	0.9075	0.9075	0.9075	cfs
Distance to stream	a	9860	9860	9860	ft
Aquifer hydraulic conductivity	K	2.6	2.6	2.6	ft/day
Aquifer thickness	b	500	500	500	ft
Aquifer transmissivity	Т	1300	1300	1300	ft*ft/day
Aquifer storage coefficient	S	0.001	0.001	0.001	
Stream width	WS	20	20	20	ft
Streambed hydraulic conductivity	Ks	0.026	0.026	0.026	ft/day
Streambed thickness	bs	10	10	10	ft
Streambed conductance	sbc	0.052	0.052	0.052	ft/day
Stream depletion factor (Jenkins)	sdf	74.78430769	74.78430769	74.78430769	days
Streambed factor (Hunt)	sbf	0.3944	0.3944	0.3944	

Water Availability Analysis

Exceedance Level: 80% V

Time: 2:07 PM

Water Availability Analysis

COTTONWOOD CR > THOMAS CR - AT MOUTH GOOSE & SUMMER LAKE BASIN

Water Availability as of 11/26/2014

Watershed ID #: 31300103 (Map) Date: 11/26/2014

Download Data

Water Availability

Select any Watershed for Details

Nesting Watershed		Stream Name		Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec										Sto	
Order	1D #														
1	31300102	THOMAS CR> GOOSE L- AT MOUTH	Yes	Yes	Yes	Yes	No	No	No	No	No	No	Yes	Yes	Yes
2	31300103	COTTONWOOD CR> THOMAS CR- AT MOUTH	No	No	No	No	No	No	No	No	No	No	Yes	No	Yes

Limiting Watersheds

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month	Limiting Watershed ID #	Stream Name	Water Available?	Net Water Available
JAN	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	No	-7.41
FEB	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	No	-12.80
MAR	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	No	-14.20
APR	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	No	-24.60
MAY	31300102	THOMAS CR > GOOSE L - AT MOUTH	No	-81.20
JUN	31300102	THOMAS CR > GOOSE L - AT MOUTH	No	-102.00
JUL	31300102	THOMAS CR > GOOSE L - AT MOUTH	No	-31.50
AUG	31300102	THOMAS CR > GOOSE L - AT MOUTH	No	-16.50
SEP	31300102	THOMAS CR > GOOSE L - AT MOUTH	No	-12.80
OCT	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	No	-3.37
NOV	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	Yes	0.19
DEC	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	No	-5.96
ANN	31300103	COTTONWOOD CR > THOMAS CR - AT MOUTH	Yes	1,140.00

Detailed Reports for Watershed ID #31300102

THOMAS CR > GOOSE L - AT MOUTH GOOSE & SUMMER LAKE BASIN Water Availability as of 11/26/2014

Watershed ID #: 31300102 (Map) Date: 11/26/2014 Exceedance Level: 80% V Time: 2:07 PM

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month Natural Stream		Consumptive Uses and Expec	Instream Flow	Net Water		
	Flow	Storages	Flow	Flow	Requirement	Available
JAN	16.70	16.70	0.00	0.00	0.00	0.00
FEB	38.70	26.90	11.80	0.00	0.00	11.80

http://apps.wrd.state.or.us/apps/wars/wars_display_wa_tables/display_wa_complete_repo... 11/26/2014

4

MAR	76.60	47.50	29.10	0.00	0.00	29.10
APR	151.00	108.00	42.80	0.00	0.00	42.80
MAY	111.00	192.00	-81.20	0.00	0.00	-81.20
JUN	41.70	143.00	-102.00	0.00	0.00	-102.00
JUL	13.10	44.60	-31.50	0.00	0.00	-31.50
AUG	8.24	24.70	-16.50	0.00	0.00	-16.50
SEP	8.98	21.80	-12.80	0.00	0.00	-12.80
OCT	10.40	13.60	-3.22	0.00	0.00	-3.22
NOV	14.50	5.88	8.62	0.00	0.00	8.62
DEC	19.10	13.90	5.24	0.00	0.00	5.24
ANN	62,400.00	39,800.00	28,800.00	0.00	0.00	28,800.00

Detailed Report of Consumptive Uses and Storage

Consumptive Uses and Storages in Cubic Feet per Second

consumptive social and storages in outside por second										
Month	Storage	Irrigation	Municipal	Industrial	Commercial	Domestic	Agricultural	Other	Total	
JAN	16.30	0.00	0.21	0.03	0.00	0.02	0.10	0.00	16.70	
FEB	26.50	0.00	0.21	0.03	0.00	0.02	0.10	0.03	26.90	
MAR	34.40	12.70	0.21	0.03	0.00	0.02	0.10	0.03	47.50	
APR	47.00	60.80	0.21	0.03	0.00	0.02	0.10	0.00	108.00	
MAY	26.50	165.00	0.21	0.03	0.00	0.02	0.10	0.00	192.00	
JUN	5.99	137.00	0.43	0.03	0.00	0.02	0.10	0.00	143.00	
JUL	1.70	42.30	0.43	0.03	0.00	0.02	0.10	0.00	44.60	
AUG	1.03	23.10	0.43	0.03	0.00	0.02	0.10	0.00	24.70	
SEP	1.15	20.10	0.43	0.03	0.00	0.02	0.10	0.00	21.80	
OCT	1.47	11.80	0.21	0.03	0.00	0.02	0.10	0.00	13.60	
NOV	5.52	0.00	0.21	0.03	0.00	0.02	0.10	0.00	5.88	
DEC	13.50	0.00	0.21	0.03	0.00	0.02	0.10	0.00	13.90	

Detailed Report of Reservations for Storage and Consumptive Uses

Reserved Streamflow in Cubic Feet per Second

No reservations were found for this watershed.

Detailed Report of Instream Flow Requirements

Instream Flow Requirements in Cubic Feet per Second

No instream flow requirements were found for this watershed.

Detailed Reports for Watershed ID #31300103

COTTONWOOD CR > THOMAS CR - AT MOUTH GOOSE & SUMMER LAKE BASIN Water Availability as of 11/26/2014

Watershed ID #: 31300103 (Map) Date: 11/26/2014 Exceedance Level: 80% V Time: 2:07 PM

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month Natural Stream		Consumptive Uses and Expe	Instream Flow	Net Water		
	Flow	Storages	Flow	Flow	Requirement	Available
JAN	6.63	14.00	-7.41	0.00	0.00	-7.41
FEB	9.62	22.50	-12.80	0.00	0.00	-12.80
MAR	17.10	31.30	-14.20	0.00	0.00	-14.20
APR	38.80	63.40	-24.60	0.00	0.00	-24.60

4

MAY	40.30	103.00	-62.70	0.00	0.00	-62.70
JUN	15.10	75.00	-59.90	0.00	0.00	-59.90
JUL	4.78	21.60	-16.90	0.00	0.00	-16.90
AUG	2.99	11.30	-8.32	0.00	0.00	-8.32
SEP	2.83	10.20	-7.35	0.00	0.00	-7.35
OCT	3.22	6.59	-3.37	0.00	0.00	-3.37
NOV	4.31	4.12	0.19	0.00	0.00	0.19
DEC	5.60	11.60	-5.96	0.00	0.00	-5.96
ANN	17,500.00	22,600.00	1,140.00	0.00	0.00	1,140.00

Detailed Report of Consumptive Uses and Storage

Consumptive Uses and Storages in Cubic Feet per Second									
Month	Storage	Irrigation	Municipal	Industrial	Commercial	Domestic	Agricultural	Other	Total
JAN	14.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	14.00
FEB	22.40	0.00	0.00	0.00	0.00	0.01	0.00	0.03	22.50
MAR	24.40	6.82	0.00	0.00	0.00	0.01	0.00	0.03	31.30
APR	31.40	32.00	0.00	0.00	0.00	0.01	0.00	0.00	63.40
MAY	15.10	87.90	0.00	0.00	0.00	0.01	0.00	0.00	103.00
JUN	3.32	71.70	0.00	0.00	0.00	0.01	0.00	0.00	75.00
JUL	0.99	20.60	0.00	0.00	0.00	0.01	0.00	0.00	21.60
AUG	0.50	10.80	0.00	0.00	0.00	0.01	0.00	0.00	11.30
SEP	0.49	9.68	0.00	0.00	0.00	0.01	0.00	0.00	10.20
OCT	0.58	6.00	0.00	0.00	0.00	0.01	0.00	0.00	6.59
NOV	4.11	0.00	0.00	0.00	0.00	0.01	0.00	0.00	4.12
DEC	11.60	0.00	0.00	0.00	0.00	0.01	0.00	0.00	11.60

Detailed Report of Reservations for Storage and Consumptive Uses

Reserved Streamflow in Cubic Feet per Second

No reservations were found for this watershed.

Detailed Report of Instream Flow Requirements

Instream Flow Requirements in Cubic Feet per Second

No instream flow requirements were found for this watershed.