WATER RESOURCES DEPARTMENT MEMO

March 17 .2015

то:	Application G- 18-003	
FROM:	Jen Woody	Groundwater Section

SUBJECT: Scenic Waterway Interference Evaluation

The source of appropriation is within or above a Scenic Waterway

Use the Scenic Waterway condition (condition 7J)

- Per ORS 390.835, the Groundwater Section is able to calculate groundwater interference with surface water that contributes to a Scenic Waterway. The calculated interference distribution is provided below.
- Per ORS 390.835, the Groundwater Section is unable to calculate groundwater interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface flows necessary to maintain the free-flowing character of a scenic waterway.

DISTRIBUTION OF INTERFERENCE

Calculate interference as the monthly fraction of the annual consumptive use and fill in the table below. If interference cannot be calculated, per criteria in 390.839, do not fill in the table but check the "unable" option above, thus informing the Water Rights Section that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in the ______ Scenic Waterway by the following amounts, expressed as a proportion of the annual consumptive use pumped from the well.

Monthly Fraction of Annual Consumptive Use

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBL	IC INT	ERES	ST REVIE	EW FOR G	ROUND	WATER	APPL	CATIONS					
TO:		Wate	er Rights S	Section				Date	e <u> </u>	7/201	5		
FROM	[:	Grou	undwater S	Section		Jen W	oody						
SUBJE	ECT:	App	lication G-	18003		Revie Suj	ewer's Nam persedes	review of	<u>n/a</u>				
						-					Date of Re-	view(s)	
PUBL OAR 6 welfare to deter the pres	IC INTI 90-310-1 <i>s safety as</i> mine who sumption	ERES 30 (1) <i>nd hea</i> ether the criteri	T PRESU The Depart alth as described the presump a. This rev	MPTION; tment shall p ribed in ORS tion is establi iew is based	GROUNI resume that 537.525. Do shed. OAR upon availa	DWATE a propose epartment 690-310- able infor	R ed ground staff rev 140 allow mation a	dwater use will a iew groundwate vs the proposed and agency poli	ensure the r applications be maintained by the second seco	e prese tions u odified l ace at	nder OAI nder OAI or condi the time	f the pub R 690-31 tioned to of evalu	olic 0-140 meet iation.
A. <u>GE</u>	NERAL	INF	ORMATI	<u>ON</u> : A _l	oplicant's N	ame:	Woodbu	<u>ırn Organic Fa</u>	rm <u>s LLC</u>	<u> </u>	County:	Marion	
A1.	Applica	nt(s) s	eek(s) <u>0.4</u>	9_cfs fror	n <u>2</u>	well(s) in the	Willamette					_Basin,
	1	Molall	a –Pudding	River		subba	asin	Quad Map: <u>W</u>	oodburn				
A2. A3.	Propose Well an	ed use_ d aqui	Irr fer data (at	igation and te tach and nu	mperature o nber logs f	control or existin	g wells;	Seasonality mark proposed	wells as	M such t	arch 1 – (under log	October (gid):	31
Well	Logic	i	Applican Well #	t's Propos	ed Aquifer*	Prop	osed	Location (T/R-S OO	1 - (1)	Location, metes and bounds, e.g.			nds, e.g.
1	MARI 1	762		Sand	ind Gravel 0.49		49	T5S/R1W-16 NW SW		1360' N, 20'E fr SW cor S 16			t S 16
2		015								DI	.C 54		
4													
* Alluvi	um, CRB,	Bedro	ck										
Well	Well Elev	Firs Wate	t er SWL ft bls	SWL Date	Well Depth	Seal Interval	Casing Interva	g Liner ls Intervals	Perfora Or Scr	tions eens	Well Yield	Draw Down	Test Type
1	165	108	30	03/20/1973	220	0-20	0-215	(11)	108-130 173,1 197,217	,153- 81- 2-219	900	68	Pump
2	175	70	60	10/17/1970	280	0-20	0-240		135-160	, 190- 3	700	45	Pump
Use data	a from app	licatior	for propose	d wells.									
A4.	Comm	ents: _											
A5. 🛛	Provis manage (Not all Comme	ions of ement of basin ents: <u>1</u>	f the Willan of groundw rules conta 'he aquifer	mette ater hyðraulio in such provi is confined, s	cally connec sions.) o 690-502-(ted to sur	Basi face wate not appl	n rules relative t er 🔲 are , <i>or</i> 🔀 y.	o the dev	elopm , activa	ent, class ated by th	ification is applic	and/or ation.
A6.	Well(s) Name o	#	inistrative a	,,,,,,,,	;	,	,	tap(s) an aquif	er limited	l by an	administ	ative res	striction.

Comments: _____

Page

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. Based upon available data, I have determined that groundwater* for the proposed use:
 - a. **is** over appropriated, **is not** over appropriated, *or* **is cannot be determined to be** over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. **will not** or **will** likely to be available within the capacity of the groundwater resource; or
 - d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) <u>7C, 7P</u>
 - ii. D The permit should be conditioned as indicated in item 2 below.
 - iii.
 The permit should contain special condition(s) as indicated in item 3 below;

B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;

- b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
- c. Condition to allow groundwater production only from the _______ alluvial _______ ft. below groundwater reservoir between approximately_______ ft. and ______ ft. and _______ ft. below land surface;
- d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks:

The wells on this application will likely produce water from the Willamette aquifer (Woodward and Gannett, 1998). About 60 feet of saturated sand and gravel are confined beneath about 100 feet of Willamette Silt in the vicinity of the subject wells. The Willamette Aquifer is underlain by approximately 1000 feet of the Willamette Confining unit.

Groundwater level data are sparse in the immediate vicinity of this application. MARI 1758, located about 2 miles to the east, is reasonably stable and located also in the Willamette Aquifer. Another group of wells in Sections 21, 22 and 28 show similar water level stability (see attached hydrograph). This suggests that the resource is generally stable at the current level of use.

Version: 08/01/2014

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Sand and Gravel of the Willamette Aquifer	\square	
2	Sand and Gravel of the Willamette Aquifer	\square	

Basis for aquifer confinement evaluation: <u>Well logs and Gannett and Caldwell (1998) report 40 to 60 feet of saturated</u> Willamette Aquifer (sand and gravel of alluvial origin), overlain by 80 to 100 feet of low permeability Willamette Silt. Aquifer test data from the Willamette aquifer suggests storage values consistent with confined aquifers.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H C YES	ydraulically Connected? NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Pudding River	135	110	1720	\square		
2	1	Pudding River	115	110	3500	\square		

Basis for aquifer hydraulic connection evaluation: <u>Groundwater is coincident with the Pudding River at the given distances,</u> <u>indicating hydraulic connection. There are approximately 100 feet of clay overlying the Willamette Aquifer. This prevents an efficient hydraulic connection to the Pudding River and the unnamed tributary.</u>

Water Availability Basin the well(s) are located within: __Watershed 1D #: 151. PUDDING R > MOLALLA R - AB MILL CR_____

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			IS73532B	36	\boxtimes	67.3		<<25%	\boxtimes
2	1			IS73532B	36	\boxtimes	67.3		<<25%	\boxtimes

C3b. **690-09-040** (**4**): Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: _____ The proposed rate (0.49 cfs) triggers PSI because it is greater than 1% of the instream water right on the Pudding River._____

Because the Willamette Silt acts as a resistor to streambed flux, calculated stream depletion using the Hunt 2003 model indicates interference with the Pudding River at 30 days is much less than 25% at both wells.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	stributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
Distrib	uted Well	s											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS		_										
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
(A) = To	tal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = (A) > (C)												
$(\mathbf{E}) = (\mathbf{A})$	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

Date: 3/17/2015 Page 5 (A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage. **Basis for impact evaluation:** C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water **Rights Section.** C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s)_ ii. The permit should contain special condition(s) as indicated in "Remarks" below; C6. SW / GW Remarks and Conditions **References Used:** Conlon, T.D., Wozniak, K.C., Woodcock, D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Ground-water hydrology of the Willamette Basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2005-5168. Gannett, M.W. and Caldwell, R., 1998, Geologic framework of the Willamette Lowland aquifer system, Oregon and Washington: U.S. Geological Survey Professional Paper 1424-A, 32 p. Woodward, D.G., Gannett, M.W., and Vaccaro, J.J., 1998, Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington: U.S. Geological Survey Professional Paper 1424-B, 82 p. US Geological Survey Topographic Quadrangle Maps. OWRD water level database, includes reported water levels, accessed 3/17/2015.

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.	THE WELL d a. review b. field in c. report d. other:	loes not appear to meet current well construction standards based upon: v of the well log; nspection by	; ;
D3.	THE WELL c	onstruction deficiency or other comment is described as follows:	
D4. [Route to the	Well Construction and Compliance Section for a review of existing well construction.	

G-18003 Woodburn Organic Farms LLC T5S/R1W- Section 16 & 17

Date: 3/17/2015

Page

8

Water Availability Tables

Water Availability Analysis Detailed Reports

PUDDING R > MOLALLA R - AB MILL CR WILLAMETTE BASIN

Water Availability as of 3/17/2015

Watershed ID #: 151 (Map)

Exceedance Level:80%

Date: 3/17/2015

Time: 11:22 AM

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	1,040.00	125.00	915.00	0.00	36.00	879.00
FEB	1,180.00	115.00	1,070.00	0.00	36.00	1,030.00
MAR	1,010.00	79.90	930.00	0.00	36.00	894.00
APR	787.00	55.70	731.00	0.00	36.00	695.00
MAY	425.00	52.70	372.00	0.00	36.00	336.00
JUN	224.00	72.90	151.00	0.00	36.00	115.00
JUL	109.00	113.00	-4.01	0.00	36.00	-40.00
AUG	71.00	93.30	-22.30	0.00	36.00	-58.30
SEP	67.30	54.50	12.80	0.00	36.00	-23.20
OCT	91.60	14.00	77.60	0.00	36.00	41.60
NOV	363.00	48.60	314.00	0.00	36.00	278.00
DEC	957.00	119.00	838.00	0.00	36.00	802.00
ANN	706,000.00	56,900.00	649,000.00	0.00	26,100.00	625,000.00

Transient	Stream	Depletion	(Jenkins,	1970; Hunt,	1999, 2003)
	ADI 176	2 MADI 181	3 and Pud	ding Piver	

Output for S	utput for Stream Depletion, Scenerio 2 (s2):						Time pump on (pumping duration) = 180 days					
Days	30	60	90	120	150	180	210	240	270	300	330	360
J SD	92.8%	94.9%	95.8%	96.4%	96.8%	97.0%	4.5%	2.6%	1.8%	1.3%	1.1%	0.9%
H SD 1999	0.9%	1.3%	1.6%	1.9%	2.1%	2.3%	1.6%	1.4%	1.2%	1.1%	1.0%	1.0%
H SD 2003	0.31%	0.31%	0.31%	0.32%	0.32%	0.32%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%
Qw, cfs	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490
H SD 99, cfs	0.004	0.006	0.008	0.009	0.010	0.011	0.008	0.007	0.006	0.006	0.005	0.005
H SD 03, cfs	0.002	0.002	0.002	0.002	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate of well	Qw	220.00	220.00	220.00	gpm
Time pump on (pumping duration)	tpon	180	180	180	days
Perpendicular from well to stream	a	3650	1720	1320	fi
Well depth	d	220	220	220	fi
Aquifer hydraulic conductivity	K	10	50	100	ft/day
Aquifer saturated thickness	b	60	60	60	ft
Aquifer transmissivity	Т	600	3000	6000	ft*ft/day
Aquifer storativity or specific yield	S	0.0003	0.0005	0.003	
Aquitard vertical hydraulic conductivity	Kva	0.01	0.008	0.0004	ft/day
Aquitard saturated thickness	ba	100	100	100	ft
Aquitard thickness below stream	babs	40	40	40	f
Aquitard porosity	n	0.2	0.2	0.2	
Stream width	WS	20	20	20	fi
Streambed conductance (lambda)	sbc	0.005000	0.004000	0.000200	ft/day
Stream depletion factor	sdf	6.661250	0.493067	0.871200	days
Streambed factor	sbf	0.030417	0.002293	0.000044	
input #1 for Hunt's Q_4 function	ť	0.150122	2.028123	1.147842	
input #2 for Hunt's Q_4 function	K'	2.220417	0.078891	0.001162	
input #3 for Hunt's Q_4 function	epsilon'	0.001500	0.002500	0.015000	
input #4 for Hunt's Q_4 function	lamda'	0.030417	0.002293	0.000044	