Dec

Nov

WATER RESOURCES DEPARTMENT MEMO

TO:	Application G- 17916	_
FROM:	LRONDIN/BOSCHMANN	Groundwater Section
SUBJECT:	Scenic Waterway Interference	Evaluation
YES NO	The source of appropriation	on is within or above a Scenic Waterway
YES NO	Use the Scenic Waterway	condition (condition 7J)
with s	•	tion is able to calculate groundwater interference Scenic Waterway. The calculated interference
interfe Depar use wi	erence with surface water that cont tment is unable to find that there is	ion is unable to calculate groundwater ributes to a scenic waterway; therefore, the s a preponderance of evidence that the proposed lows necessary to maintain the free-flowing
Calculate inter If interference "unable" optic	cannot be calculated, per criteria in .	annual consumptive use and fill in the table below. 390.839, do not fill in the table but check the 1ghts Section that the Department is unable to make a
	the following amounts, expressed	as a proportion of the annual consumptive use
Monthly Fract	ion of Annual Consumptive Use	

Jun

Mar

Jan

Feb

Apr

May

Jul

Sep

Aug

Oct

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights S	ection				Date	e 3/24/20)15		
FROM	1:	Groun	ndwater S	ection				(Darrick E.	Boschmann)			
SUBJI	ECT:	Appli	cation G-	17916			ewer's Name persedes re	eview of	N.A.			
50031	LCI.	rippii	cution G	17710		, Ju	persedes re		¥ 112 X0	Date of Re	view(s)	
OAR 6 welfare to deter	90-310-1 e, safety a rmine wh sumption	30 (1) 7 nd healt ether the criteria.	The Depart th as descr e presumpt	ibed in ORS ion is establ ew is based	resume that 537.525. D ished. OAR upon avail	t a proposo department 690-310- able infor	ed groundwat t staff review 140 allows rmation and	v ground wate the proposed d agency poli	ensure the pro er application use be modificies in place	s under OA ed or cond at the time	R 690-3 itioned to e of eval	10-140 meet uation.
A1.							_	Malheur La				Basin,
2			Silver Cree						akerman Lak	s / Moon I	Reservoit	
		LOWELD	mver erec	K			domo Qu	ad Map.	arcillali Lar		COSCI VOII	
A2.	Propose	ed use: 1	rrigation (900 acres pr	imary)	Seas	sonality: M	arch 1 to Octo	ober 31			
A3.	Well ar	nd aquif	er data (att	ach and nu	mber logs i				wells as suc			
Well	Logi	d	Applicant Well #	's Propos	sed Aquifer*		oosed (cfs)	Location (T/R-S OO		cation, met		
1	Propos	ed			t/tuffaceous		68*	(T/R-S QQ-Q) 24/27-15 SW		2250' N, 1200' E fr NW cor S 3 none provided		
2	Propos	Proposed 19		Basal	t/tuffaceous	4.68*		24/27-10 SE		none provided		
3	Propos	ed	20	Basal	t/tuffaceous	4.6	58*	24/27-3-S	w	none	provided	
4				Si	ediment							
5	CDD.	D. J 1										
Alluv	ium, CRB,	Bedroci										
Well	Well Elev	First Water	SWL ft bls	SWL Date	Well Depth	Seal Interval	Casing Intervals	Liner Intervals	Perforations Or Screens	Yield	Draw Down	Test Type
1	ft msl	ft bls	?	?	(ft) 500	(ft) 0-60	(ft) 0-100±	(ft) None	(ft) None	(gpm)	(ft)	?
2	?	?	?	?	500	0-60	0-100±	None	None	?	?	?
3	?	?	?	?	500	0-60	0-100±	None	None	?	?	?
Use dat	a from app	lication	for proposed	l wells.					1			1
A4.	Comm											
	- mi			VI C		011 0	1. 37. 11	1	1		1 4 - 6	41 4
									m about 2.5-4 erlying QTb (
									(1980). Uni			
	(1980)	is descr	ibed as a s	eries of thin	flows gene				edimentary ro			
	the stud	ly area.	north and	west of Dog	Mountain.							
	The wa	ter well	report for	HARN 753	located in 2	4/27-10 in	ndicates grav	vel and clay t	o 85 feet (Qa), underlai	by deco	mposed
	rock/ha	rd rock	lava with a	minor clay	interbed (C	Tb) from	85-150 feet	, underlain by	sandstone, g	ravel, and	clay (QT	st) to
	408 fee	t (TD).										
									sand, and cla			
	by hard	l black a	nd red roc	k (QTb) from	m 33-70 fee	t, underlai	in by sand, s	andstone, cla	y, and gravel	(QTst) to 4	00 feet (TD).
	It is lil	cely tha	t the prope	nsed well w	ill nenetrate	e through	the uncons	olidated basis	n fill sedimer	nt (Oal) in	to the un	derlying
				mentary roc			are uncons	oridated oddi	. IIII Jedililei	i i Swij ili	are di	

Application G-17913 Date: 3/24/2015

*Note: The application lists a maximum requested rate of "900 AF", which is not an applicable value. Additionally, the well specific rate listed on the application is 2100 gpm (4.68 cfs) per well; which totals 14.04 cfs. This is more than the 1/80 cfs/acre that is typically allowed (900/80 = 11.25 cfs). It is unclear what maximum rate is intended, or if the well specific rate listed was the intent of the applicant. For the purposes of this review the well specific rates are not considered, and the total maximum rate used is 11.25 cfs which is the typical rate allowed for 900 acres. Basin rules relative to the development, classification and/or A5. Provisions of the Malheur Lake management of ground water hydraulically connected to surface water are, or are not, activated by this application. (Not all basin rules contain such provisions.) Comments: OAR 690-512-0040 The rule states: "(1) Except as provided in section (3) of this rule, the Department shall not accept an application for permit, or issue a permit, for any use of surface water, or of groundwater the use of which has the potential to substantially interfere with surface water, in the Malheur Lake Basin unless the applicant shows, by a preponderance of evidence, that unappropriated water is available to supply the proposed use at the times and in the amounts requested. The evidence provided shall be prepared by a qualified hydrologist or other water resources specialist and shall include: (a) Streamflow measurements of gage records from the source or, for use of groundwater, the stream in hydraulic connection with the source; or (b) An estimate of water availability from the source or, for use of groundwater, the stream in hydraulic connection with the source which includes correlations with streamflow measurements or gage records on other, similar streams and considers current demands for water affecting the streamflows." This review does not find a potential for substantial interference with surface water. , ____, tap(s) an aquifer limited by an administrative restriction. Name of administrative area: Comments: Currently no administrative area.

Page

2

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

B1.	Bas	ed upon available data, I have determined that ground water* for the proposed use:
	a.	is over appropriated, ☐ is not over appropriated, or ☐ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;
	b.	will not <i>or</i> □ will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;
	c.	\boxtimes will not or \square will likely to be available within the capacity of the ground water resource; or
	d.	will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i. The permit should contain condition #(s); ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below;
B2.	a.	Condition to allow ground water production from no deeper than ft. below land surface;
	b.	Condition to allow ground water production from no shallower than ft. below land surface;
	c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section.
		Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

Version: 07/25/2013

B3. Ground water availability remarks:

Groundwater is determined to be over-appropriated in the greater Harney Valley area. The proposed well(s) is within the greater Harney Valley area where an observed groundwater level decline is occurring in most areas (see attached map). The decline is evidence that demand for groundwater is exceeding the average annual recharge. A preliminary analysis by the Department indicates the volume of groundwater permitted for annual use exceeds the average annual volume of recharge to groundwater. The Department estimates 30 to 40 percent of the total permitted acreage have yet to be developed. Their development will likely worsen the groundwater level decline.

The few areas where a groundwater level decline is not being observed are most often located near surface water. Data and published reports indicate groundwater and surface water are hydraulically connected in the greater Harney Valley area. Consequently, surface water is locally supporting the groundwater levels and wells in those areas. The surface water is not available for additional surface water uses or for interference from new groundwater permits.

If a permit is issued, the following conditions are recommended:

Special Permit Condition:

The permittee shall construct one (1) minimum six-inch diameter observation well to penetrate the same aquifer as the production wells. The well shall meet the Department's minimum well construction standards and shall be cased and sealed to the same depth as the production wells. The well shall be constructed at a location approved by the Department for the purpose of instrumentation with continuous water-level monitoring equipment. The landowner or permittee shall provide access to Department staff to install and maintain the monitoring equipment. The well shall not be used for any other purpose while the Department is monitoring water levels. The well shall be completed prior to water use under the terms of any permit issued.

7B: Interference Condition

7F: Proposed Well location Condition

7N: Annual Measurement and Decline Condition

7P: Well Tag Condition

7T: Dedicated Measuring Tube Condition for all POA wells

Flow meter condition: Use the water rights "large" permit condition requiring a totalizing flow meter and reporting

7K: The proposed wells shall be continuously cased and continuously sealed a minimum of five (5) feet into the basalt/tuffaceous sediment unit beneath the predominantly basin fill unit. The wells may not be completed in such a manner that they allow ground water to be developed from the overlying basin fill. If during well construction, it becomes apparent that the wells can be constructed to eliminate interference with nearby shallow wells or hydraulically connected streams in a manner other than specified in this permit, the permittee can contact the Department Hydrogeologist for this permit or the Ground Water/Hydrology Section Manager to request approval of such construction. The request shall be in writing, and shall include a rough well log and a proposed construction design for approval by the Department. The request can be approved only if it is received and reviewed prior to placement of any permanent casing and sealing material. If the well is constructed first and then the request made, requested modification will not be approved. The new well depth and construction specifications will be incorporated into any certificate issued for this permit.

Date: 3/24/2015

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confi	finement:
---	-----------

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
All	basalt/tuffaceous sediments		\boxtimes
Basis for	aquifer confinement evaluation:		
1	and well to an amount atotic ventor levels that are a survey at above a	1	

Some local well logs report static water levels that are somewhat above the depth that groundwater was first encountered. However, well HARN 761 reports a constant static water level from 10 feet to 400 feet (TD). The regional aquifer is likely unconfined to poorly confined.

C2. **690-09-040 (2) (3):** Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PS1.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Silver Creek	4143±	4160	17160±		
2	1	Silver Creek	4143±	4160	19800±	X	
3	1	Silver Creek	4143±	4160	25600±		

Basis for aqui	ifer hydraulic	connection evalua	ation:						
This evaluatio	n considers per	ennial reaches of s	surface water	er only (see	memo by I	van Gall,	1/15/20	08).	
HARN 50785		ed above is derive The location for							
		rest to the proposes to the southeast.	ed wells is i	intermittent.	The neares	st perennia	al reach	of Silver (Creek is the reac
	e closest perenr	groundwater eleva							
body ut	ano to eathorn								

Water Availability Basin the well(s) are located within: SILVER CR > HARNEY L - AB UNN STR

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw> 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:	
C3a./C3b. No analysis here. A connected surface water.	All wells are located at a distance greater than 1 mile from perennial reaches of hydraulically

Date: 3/24/2015

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well	istributed SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1	0.23 %	0.31 %	0 %	0 %	0 %	0 %	0 %	0.01 %	0.03 %	0.06 %	0.11 %	0.16 %
Well Q	as CFS	0	0	5.56	5.56	5.56	5.56	5.56	5.56	5.56	5.56	0	0
Interfere	ence CFS	0.013	0.017	0	0	0	0	0	0.001	0.002	0.004	0.006	0.009
Dietrib	uted Well	le.											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	9/
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9,
Well Q	as CFS		-										
Interfere	ence CFS											,	
		%	%	%	%	%	%	%	%	%	%	%	9/
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9,
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	9
Well Q	as CFS												
Interfere	ence CFS												
(A) = To	tal Interf.	0.013	0.017	0	0	0	0	. 0	0.001	0.002	0.004	0.006	0.009
` '	% Nat. Q	5.66	13.4	40.9	115.0	44.7	20.9	5.33	2.26	2.22	2.91	4.24	5.11
	% Nat. Q	0.056	0.134	0.409	1.15	0.447	0.209	0.0533	0.022	0.022	0.029	0.042	0.051
(D) = ((A) > (C)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
(F) = (A	/B) x 100	0.23%	013 %	0 %	0 %	0 %	0 %	0 %	0.44%	0.09%	0.09%	0.14%	018 %

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage. Basis for impact evaluation:

C4a. Hunt (2003) was used to calculate the interference between Well 1 and SW #1. The values used for the calculation are conservative and appropriate until better values become available. The calculations used a transmissivity of ~18,000 ft2/day, which is the value derived from a pump test on HARN 753 located in 24/27-3-SE. Additionally, the calculation used an assumed intermediate storage coefficient (0.001). The pumping rate used represents the maximum allowable duty prorated over the irrigation season (5.56 cfs). See reports attached.

lb.	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
5.	under this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s)
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
5. SV	V / GW Remarks and Conditions
	. 690-09-040 (1)
It i	s determined that all wells will produce water from an unconfined aquifer.
C2	. 690-09-040 (2) (3)
<u>It i</u>	s determined that all wells are hydraulically connected with Silver Creek.
	a. 690-09-040 (4)
	analysis here. All wells are located at a distance greater than 1 mile from perennial reaches of hydraulically connected surface ter.
	b. 690-09-040 (4) analysis. This application does not request a distributed pumping rate.
	s determined that interference for all wells will be less than 1% of the 80% flow in all months evaluated.
If	a permit is issued, the following conditions are recommended:
	ecial Permit Condition: e permittee shall construct one (1) minimum six-inch diameter observation well to penetrate the same aquifer as the production
we	lls. The well shall meet the Department's minimum well construction standards and shall be cased and sealed to the same
	of the production wells. The well shall be constructed at a location approved by the Department for the purpose of trumentation with continuous water-level monitoring equipment. The landowner or permittee shall provide access to
	partment staff to install and maintain the monitoring equipment. The well shall not be used for any other purpose while the
	partment is monitoring water levels. The well shall be completed prior to water use under the terms of any permit issued.
7B	: Interference Condition
7 F	: Proposed Well location Condition
7N	: Annual Measurement and Decline Condition
7P	: Well Tag Condition
7T	: Dedicated Measuring Tube Condition for all POA wells
Flo	ow meter condition: Use the water rights "large" permit condition requiring a totalizing flow meter and reporting

7K: The proposed wells shall be continuously cased and continuously sealed a minimum of five (5) feet into the basalt/tuffaceous sediment unit beneath the predominantly basin fill unit. The wells may not be completed in such a manner that they allow ground water to be developed from the overlying basin fill. If during well construction, it becomes apparent that the wells can be constructed to eliminate interference with nearby shallow wells or hydraulically connected streams in a manner other than specified in this permit, the permittee can contact the Department Hydrogeologist for this permit or the Ground Water/Hydrology Section Manager to request approval of such construction. The request shall be in writing, and shall include a rough well log and a proposed construction design for approval by the Department. The request can be approved only if it is received and reviewed prior to placement of any permanent casing and sealing material. If the well is constructed first and then the request made, requested modification will not be approved. The new well depth and construction specifications will be incorporated into any certificate issued for this permit.

Application G-17913

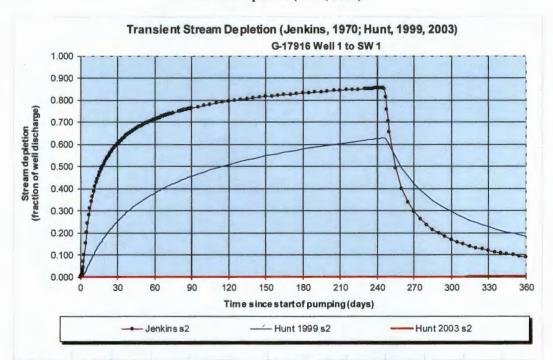
Date: 3/24/2015

Page

9

References Used:
Piper, A.M., Robison, T.W., and Park C.F. 1939. Geology and Ground Water Resources of the Harney Basin, Oregon. USGS Water Supply Paper 841.
Leonard, A.R. 1970. Ground-Water Resources in Harney Valley, Harney County, Oregon. Ground Water Report 16, Oregon Water Resources Department, Salem, Oregon.
Greene, R.C., Walker, G.W., and Corcoran, R.E. 1972. Geologic Map of the Burns Quadrangle, Oregon. USGS Miscellaneous Geologic Investigations Map I-680.
OWRD water well reports, water level data, and/or hydrographs
Hubbard, Larry. L. 1975. Hydrology of Malheur Lake, Harney County, Southeastern Oregon. USGS Water Resources Investigation 75-21.
Memo by Ivan Gall, 1/15, 2008
Hunt, Bruce. "Unsteady stream depletion when pumping from semiconfined aquifer." Journal of Hydrologic Engineering 8.1 (2003): 12-19.
Oregon Administrative Rules

D. WELL CONSTRUCTION, OAR 690-200

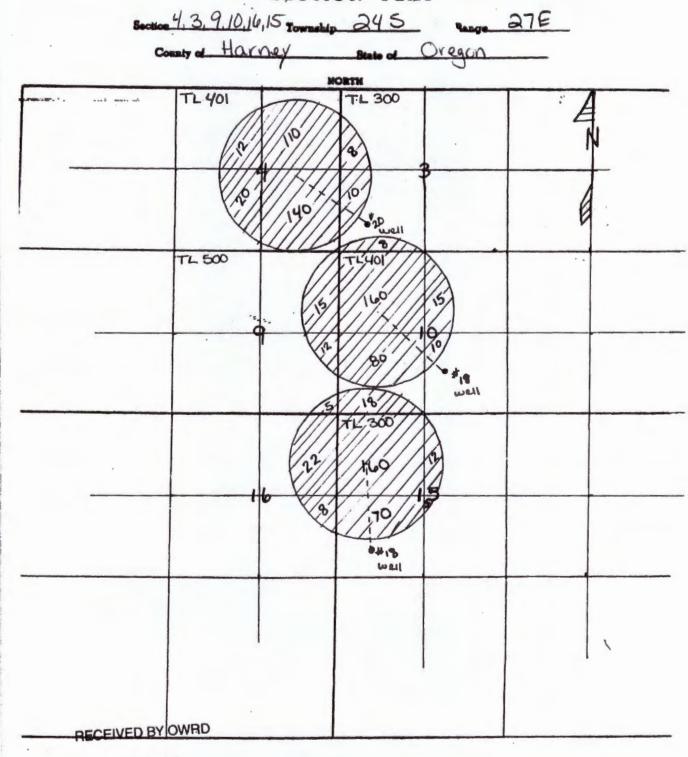

D1.	Well #:	Logid:							
D2.	a. review of the b. field inspectic. report of CW other: (specif	c. report of CWRE d. other: (specify)							
D3.	THE WELL constru	ction deficiency or other comment is described as follows:	:						
D4. [onstruction and Compliance Section for a review of existing							

Water Availability Tables

		Water A	Availability Analysis Detailed Reports			
			CR > HARNEY L - AB UNN STR MALHEUR LAKE BASIN			
Welershed ID #: 312004 Date: 3/20/2015	000 (Mana)	W	ter Availability as of 3/20/2015		Ехсы	sdance Level 80% - Time, 1:05 Pb
Water	Availability Calculation	Design the of Stage	Instrum	on Floor Bengdiselments	The same of the sa	
		Water	Availability Calculation			
		Monthly 5	Availability Calculation Imaged on Cubic Feet per Second ume at 50% Exceedence in Acre-Feet			
9-mil	National Street Comp	Monthly 5 Annual Vol	Bragmillow in Cubic Feet per Second ume at 50% Exceedence in Acre-Feet	Secretaria Constituto	toppeda i w tori,	No. No. Accessor
SA ments	5.66	Monthly 5 Annuel Voli	tregrellow in Cubic Feel per Second ume at 50% Exceedence in Acre-Feel 2 70	0.00	8 00	27
FEB	5 66 13.40	Monthly 5 Annual Vol	Interestion in Cubic Feet per Second une et 50% Exceedence in Acre-Feet	0.00 0.00	8 00 6 00	2 7 5.0
PEB MAR	5 66 13.40 -86 90	Morninty S Annual Volt 2 34 7 60 34 29	Remember in Cubic Feet per Second ume at 50% Exceedence in Acro-Feet 2 70 5 90 6 72	0 00 0 00 0 00	8 00 6 00 6 00	2.7 5.0 8.7
PEB MAR APR	5 66 13.40 40 90 116 00	Monthly 5 Annual Vol. 2 94 7 60 34 26 69 00	dragmilities in Cubic Feet per Second ame at 50%, Exceedance in Acro-Feet 2 70 5 90 6 72 28 90	9.00 9.00 9.00 9.00	8 00 6 00 6 00 8 00	2 7 5.0 6.7 26.0
MAR APR MAY	5 68 13.40 40 90 115 00 64 70	Montinity S Annual Volt 7 40 34 20 69 00 151,00	idensembles in Cubic Feet per Second ume at 50% Exceedence in Acro-Feet 2 70 5 89 6 72 28 00 48 10	0.00 0.00 10.00 9.00 8.00	8 00 0 00 0 00 8 00 8 00	27 5.0 6.7 20.0
MAR APR MAY JUN	5 66 13.40 48 50 115 00 64 78 20 90	Monthly S Annual Vol 2 96 7 46 9 50 15 1.89	Innumitors in Cubic Feet per Second ume at 50% Exceedence in Acro-Feet 2 70 5 90 6 72 26 0 48 10	0.00 0.00 0.00 0.00 0.00 0.00	8 00 6 00 6 00 8 00	2 7 5 8 6 7 26 0 -06 1
PEB MAR APR MAY ABI	5 66 13.40 46 50 115 00 64 70 20 10	Monthly 5 Annual Volt 7 55 7 60 34 20 69 00 151,00 109 00 35 10	idensembles in Cubic Feet per Second ume at 50% Exceedence in Acro-Feet 2 70 5 89 6 72 28 00 48 10	0.00 0.00 10.00 9.00 8.00	8 00 0 00 0 00 8 00 8 00 8 00	2.7 5.0 8.7 28.0 -08.1 -08.1
PEB MAR APR MAY AUN J.L. AUG	5 66 13 00 46 50 15 00 64 70 20 10 5 23 2 28	Monthly S Annual Vol 2 96 7 46 95 00 15 189 100 00 35 10	invertions in Cubic Feet per Second uma et 50% Exceedence in Acre-Feet 270 672 680 672 680 681 690 690 690 690 690 690 690 690 690 690	0.00 0.00 9.00 0.00 0.00 0.00 0.00 0.00	8 00 0 00 0 00 0 00 0 00 6 00 8 00 8 00	2.7 5.0 8.7
FEB MAR APR MAY JUN JUL AUG SEP	5 64 13 40 40 50 15 00 44 70 20 10 5 23 2 24 3 22	Monthly 5 Annual Volt 7 55 7 60 34 20 69 00 151,00 109 00 35 10	Intermition in Cubic Feet per Second ume at 50% Exceedence in Acre-Feet 2 70 5 90 6 72 26 00 -86 10 30 90	0.00 0.00 8.00 9.00 8.00 0.00 0.00	8 06 0 00 0 00 8 00 8 00 8 00 8 00 8 00	27 5.0 6.7 26.0 -06.1 -09.9
PEB MAR APR MAY AUN JUL AUG	5 66 13 00 46 50 15 00 64 70 20 10 5 23 2 28	Monthly S Annual Volt 7 65 7 65 9 90 151,00 109 90 14 60 7 75	Immentions in Cubic Feet per Second ume et 50% Exceedence in Acre-Feet 2 70 5 60 6 72 26 00 48 10 30 60 12 40 48 10 48	0.00 0.00 8.00 8.00 8.00 0.00 0.00 0.00	8 00 9 00 9 00 8 00 8 00 8 00 8 00 8 00	2 / 5 / 8 / 7 / 5 / 8 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7
FEB MAR APR MAY JUN JUL ALIG SEP OCT	5 64 13 49 48 59 15 00 44 79 20 90 5 33 2 26 2 27	Monthly 5 Annual Vol 2 96 7 46 95 00 15 180 15 90 25 19 4 66 7 75 4 27	invention in Cubic Feet per Second ums at 50% Exceedence in Acre-Feet 270 672 580 672 580 6819 590 672 580 6819 590 672 580 6819 590 590 590 590 590 590 590 590 590 59	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 90 0 00 8 90 8 90 8 90 8 90 8 90 8 90	2.7 5.8 6.7 7000 -06.1 -06.1 -08.2 -0.5 -1.3

Date: 3/24/2015

Stream Depletion (Hunt, 2003)



Output for St	Time pump on (pumping duration) = 245 days											
Days	30	60	90	120	150	180	210	240	270	300	330	360
JSD	60.2%	71.2%	76.3%	79.4%	81.5%	83.1%	84.4%	85.4%	29.5%	16.9%	11.8%	9.0%
H SD 1999	25.3%	38.0%	45.6%	50.8%	54.7%	57.8%	60.3%	62.5%	42.0%	29.5%	22.7%	18.4%
H SD 2003	0.00%	0.00%	-0.01%	0.00%	0.00%	0.01%	0.03%	0.06%	0.11%	0.16%	0.23%	0.31%
Qw, cfs	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560
H SD 99, cfs	1.409	2.112	2.533	2.825	3.043	3.215	3.355	3.473	2.336	1.638	1.262	1.021
HSD 03, cfs	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.009	0.013	0.017

Parameters:		Scenario 1	Scenario 2	Scenario 3	Units	
Net steady pumping rate of well	Qw	5.56	5.56	5.56	cfs	
Time pump on (pumping duration)	tpon	245	245	245	days	
Perpendicular from well to stream	а	17160	17160	17160	f	
Well depth	d	500	500	500	f	
Aquifer hydraulic conductivity	K	60	60	60	ft/day	
Aquifer saturated thickness	b	300	300	300	fi	
Aquifer transmissivity	Т	18000	18000	18000	ft*ft/day	
Aquifer storativity or specific yield	S	0.001	0.001	0.001		
Aquitard vertical hydraulic conductivity	Kva	2.3	2.3	2.3	ft/day	
Aquitard saturated thickness	ba	50	50	50	f	
Aquitard thickness below stream	babs	50	50	50	f	
Aquitard porosity	n	0.2	0.2	0.2		
Stream width	ws	25	25	25	f	
Streambed conductance (lambda)	sbc	1.150000	1.150000	1.150000	ft/day	
Stream depletion factor	sdf	16.359200	16.359200	16.359200	days	
Streambed factor	sbf	1.096333	1.096333	1.096333		
input #1 for Hunt's Q_4 function	ť	0.061128	0.061128	0.061128		
input #2 for Hunt's Q_4 function	K'	752.523200	752.523200	752.523200		
input #3 for Hunt's Q_4 function	epsilon'	0.005000	0.005000	0.005000		
input #4 for Hunt's Q_4 function	lamda'	1.096333	1.096333	1.096333		

12

SECTION PLAT

SEP 0 2 2014 G-17916

SALEM, OR