WATER RESOURCES DEPARTMENT MEMO

March 23, 20 15

то:	Application G- 17978
FROM:	Jen Woody - Groundwater Section
SUBJECT:	Scenic Waterway Interference Evaluation
YES	
<u> </u>	The source of appropriation is within or above a Scenic Waterway

Use the Scenic Waterway condition (condition 7J)

Per ORS 390.835, the Groundwater Section is able to calculate groundwater interference with surface water that contributes to a Scenic Waterway. The calculated interference distribution is provided below.

Per ORS 390.835, the Groundwater Section is unable to calculate groundwater interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface flows necessary to maintain the free-flowing character of a scenic waterway.

DISTRIBUTION OF INTERFERENCE

Calculate interference as the monthly fraction of the annual consumptive use and fill in the table below. If interference cannot be calculated, per criteria in 390.839, do not fill in the table but check the "unable" option above, thus informing the Water Rights Section that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in the ______ Scenic Waterway by the following amounts, expressed as a proportion of the annual consumptive use pumped from the well.

Monthly Fraction of Annual Consumptive Use

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section	Date	e <u> </u>)15	
FROM:	Groundwater Section	Jen Woody			
SUBJECT:	Application G- <u>17978</u>	Reviewer's Name Supersedes review of	n/a		
				Date of Review(s)	

PUBLIC INTEREST PRESUMPTION; GROUNDWATER

OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation.

A. <u>GENERAL INFORMATION</u>: Applicant's Name: Island Lakes Condominiums _____ County: <u>Lane</u>

A1. Applicant(s) seek(s) 0.08 cfs from 1 well(s) in the Willamette Basin,

Main Stem Willamette River _____subbasin Quad Map: Eugene East

A2. Proposed use Irrigation Seasonality: May-September

A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid):

Well	Logid	Applicant's Well #	Proposed Aquifer*	Proposed Rate(cfs)	Location (T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	NLOG 999999	L116121	Alluvium	0.08	T17S/R4W-S13 SE SE	1185'N, 475'W fr SE cor S13
2						
3						
4						
5						

* Alluvium, CRB, Bedrock

Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type
1	395				80							
												1

Use data from application for proposed wells.

A4. **Comments:** L116121 is not in OWRD's well log database, so well construction cannot be confirmed. For the purposes of this review, a minimum casing and seal of 18' below land surface is assumed. It is not clear whether the well has been drilled or is proposed, but the presence of a tag number suggests the well exists.

Comments: <u>690-502-0050 (1)(d)</u> applies to the pertinent river reach. <u>690-502-0240</u> classifies groundwater in unconfined alluvium within ¹/₄ mile of surface waters. The applicant's well is greater than ¹/₄ mile from surface water, so the Basin Rule classifications are not activated.

A6. 🗌 Well(s) # _____

, ____, tap(s) an aquifer limited by an administrative restriction.

Name of administrative area: ______ Comments:

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. Based upon available data, I have determined that groundwater* for the proposed use:
 - a. is over appropriated, is not over appropriated, or annot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. will not or will likely to be available within the capacity of the groundwater resource; or
 - d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. \square The permit should contain condition #(s) <u>7C</u>
 - ii. The permit should be conditioned as indicated in item 2 below.
 - iii. The permit should contain special condition(s) as indicated in item 3 below;

B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;

- b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
- c. Condition to allow groundwater production only from the _________ft. and _________ft. below ft. below land surface;
- d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks:

The applicant's well accesses the Willamette Aquifer of Gannett and Caldwell (1998), which consists of up to 120 feet of alluvial fan deposits overlain by recent alluvial sand and gravels in this area. The Willamette Aquifer overlies 20 to 60 feet of the Willamette Confining Unit of Gannett and Caldwell (1998), which is generally fine-grained clay with minor interbeds of sand and gravel (Conlon et al, 2005). There are no nearby wells with water level data on file with the department, but given the proximity to the river and the permeability of the geologic materials, the groundwater level is expected to be largely controlled by surface water.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

-			
Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium		\boxtimes

Basis for aquifer confinement evaluation: <u>The well is located on Goodpasture Island, between the Willamette River and a slough.</u> Nearby well logs report sand and gravel at the surface without a significant surficial confining layer (see LANE 11227).

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H YES	Iydrau Conne NO	lically cted? ASSUMED	Potentia Subst. Int Assum YES	l for terfer. ed? NO
1	1	Willamette River	380	380- 390	2170					
1	2	Slough tributary to Willamette	380	380- 390	1500					\boxtimes

Basis for aquifer hydraulic connection evaluation: <u>Groundwater is roughly coincident with the river and the slough, based</u> on other nearby well logs and water table elevation contours reported by Gannett and Caldwell (1998). The proximity to the river and the water level in other nearby well logs indicate hydraulic connection.

Water Availability Basin the well(s) are located within:___Watershed ID #: 185, WILLAMETTE R > COLUMBIA R - AB MCKENZIE R WILLAMETTE BASIN

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			MF185A	2000		789		<25%	
1	2								<25%	

Page 3

Version: 08/01/2014

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

e ranadanoi		 FF-7							
	SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: <u>A range of aquifer parameters for the Willamette aquifer were used to estimate stream depletion</u>. As shown in Figure 2, stream depletion is less than 25% at 30 days using the Hunt (1999) model.

C4a. **690-09-040 (5):** Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	stributed	Wells									_		
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS]			
Dictail	uted Well												
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	5 (1 %		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%	%	%	%	%	%	%	%	%	%
Well O	as CFS												
Interfere	ence CFS										-		
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
$(\mathbf{A}) = \mathbf{T}0$	tal Interf.											[
(R) = 10	% Nat O						{	(
(D) = 00	Wet O												
(C) = 1	70 Nat. Q												
(D) = ($\mathbf{A}) > (\mathbf{C})$												
$(\mathbf{E}) = (\mathbf{A})$	/ B) x 100	%	\$%0	7/0	%	%	%	%	%	%	%	%	%

(D) = (A) > (C)												
$(E) = (A / B) \times 100$	%	%	%	%	%	%	%	%	%	%	%	%
(A) = total interferen CFS; (D) = highlig Basis for in	ce as CFS; nt the check npact eva	(B) = WA kmark for e luation:	B calculat each month	ed natural where (A)	flow at 809 is greater	% exceed. a than (C); (as CFS; (C E) = total i) = 1% of c nterference	alculated r e divided b	natural flov y 80% flov	v at 80% ex- v as percent	ceed. as age.
C4b. 690-09-04 Rights	10 (5) (b) Section.	The pot	ential to i	impair or	detrime	ntally affe	ect the pu	blic inter	est is to h	oe determ	ined by th	e Water
C5. If proper under this i. [ii. [ly condit permit ca The pe The pe	ioned , the an be regu rmit shoul rmit shoul	surface w lated if it d contain d contain	vater sourd is found t condition special co	ce(s) can b o substant a #(s) ondition(s	be adequa ially inter) as indica	tely protect fere with ated in "Re	cted from surface w emarks" b	interferen ater: elow;	ace, and/or	r groundwa	ater use
C6. SW / GW Re	marks an	d Conditi	ons									
References U Conlon, T.D., Ground-water	sed: Wozniak hydrolog	, K.C., Wo y of the W	oodcock, l Villamette	D., Herrer Basin, Or	a, N.B., F regon: U.S	isher, B.J S. Geologi	., Morgan	D.S., Lee y Scientif	e, K.K., a ic Investig	nd Hinkle gations Re	, S.R., 200 port 2005-	<u>5.</u> -5168.
<u>Gannett, M.W</u> U.S. Geologic	and Calc	dwell, R., Professio	<u>1998, Geo</u> nal Paper	ologic fr <u>a</u> 1424-A,	<u>mework o</u> 32 p.	f the Will	amette Lo	wland aqı	uifer syste	em, Orego	n and Was	hington:
Hunt, Bruce. 2 Engineering. 1	2003. Uns 5. 12-19.	teady Stre	am Deple	tion when	n pumping	from a s	emi-confi	ned aquif	er. Journa	al of Hydr	ologic	
<u>Woodward, D</u> Oregon and W	. <u>G., Gann</u> /ashingtoi	<u>ett, M.W.</u> n: U.S. Ge	, and Vac eological	<u>caro, J.J.,</u> Survey Pr	<u>1998, Hy</u> oofessiona	drogeolog I Paper 14	ic framew 24-B, 82	ork of the p.	e Willa <u>me</u>	tte Lowlar	n <u>d aquifer</u>	system,
US Geologica	l Survey 7	Fopograph	nic Quadra	angle Ma	os.							

OWRD water level database, includes reported water levels, accessed 3/23/2015.

D. <u>WI</u>	ELL CONSTRUCTION, OAR 690-200
D1.	Well #: 1 Logid: no log found
D2.	THE WELL does not appear to meet current well construction standards based upon: a. review of the well log; b. field inspection by; c. report of CWRE; d. other: (specify);
D3.	THE WELL construction deficiency or other comment is described as follows: There is no log associated with the tag #L 116121 in the well log database. There is no record associated with the tag number either. Therefore, well construction cannot be confirmed to meet current standards.

Date: 03/23/2015

Page

7

Figure 1. Water Availability Tables

Water Availability Analysis Detailed Reports

WILLAMETTE R > COLUMBIA R - AB MCKENZIE R WILLAMETTE BASIN

Water Availability as of 3/23/2015

Watershed ID #: 185 (Map)

Exceedance Level: 80%

Date: 3/23/2015

Time: 10:46 AM

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	3,490.00	784.00	2,710.00	0.00	2,500.00	206.00
FEB	4,210.00	2,770.00	1,440.00	0.00	2,500.00	-1,060.00
MAR	4,360.00	2,880.00	1,480.00	0.00	2,500.00	-1,020.00
APR	4,340.00	2,820.00	1,520.00	0.00	2,500.00	-983.00
MAY	3,720.00	1,750.00	1,970.00	0.00	2,500.00	-532.00
JUN	1,910.00	336.00	1,570.00	0.00	2,000.00	-426.00
JUL	1,040.00	109.00	931.00	0.00	2,000.00	-1,070.00
AUG	788.00	102.00	686.00	0.00	2,000.00	-1,310.00
SEP	789.00	88.00	701.00	0.00	2,000.00	-1,300.00
OCT	938.00	57.10	881.00	0.00	2,000.00	-1,120.00
NOV	1,510.00	143.00	1,370.00	0.00	2,500.00	-1,130.00
DEC	3,310.00	59.00	3,250.00	0.00	2,500.00	751.00
ANN	3,000,000.00	710,000.00	2,290,000.00	0.00	1,660,000.00	861,000.00

Figure 2. Stream depletion calculations

Output for Stream Depletion, Scenerio 2 (s2):							Time pump on (pumping duration) = 150 days						
Days	30	60	90	120	150	180	210	240	270	300	330	360	
J SD	46.9%	60.9%	67.6%	71.8%	74.6%	29.8%	17.6%	12.2%	9.2%	7.3%	6.0%	5.0%	
H SD 1999	24.4%	38.8%	47.1%	52.8%	56.9%	35.7%	23.9%	17.7%	13.9%	11.3%	9.4%	8.0%	
H SD 2003	12.30%	24.44%	32.72%	38.75%	43.40%	34.82%	25.76%	20.09%	16.29%	13.60%	11.63%	10.10%	
Qw, cfs	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	
H SD 99, cfs	0.020	0.031	0.038	0.042	0.046	0.029	0.019	0.014	0.011	0.009	0.008	0.006	
H SD 03, cfs	0.010	0.020	0.026	0.031	0.035	0.028	0.021	0.016	0.013	0.011	0.009	0.008	
Desemblance				-	Scenario 1		Scenario 2		Scenario 3		Units		
Netsteadyn	umping	rate of w	ell	Qw	36.00		36.00		36.00		apm		
Time pump	on (pum)	ping dura	ation)	tpon	150		150		150		davs		
Perpendicular from well to stream					-	2170	2170		2170		ft		
Well depth				d	80		80		80		ft		
Aquifer hydraulic conductivity K					500		500		500		ft/day		
Aquifer satur	rated thic	kness		b	60		60		60		ft		
Aquifer trans	r transmissivity T			30000		30000		30000		ft*ft/day			
Aquifer stora	tivity or s	pecific y	eld	S		0.2 0.2			0.2				
Aquitard vert	ical hydr	aulic con	ductivity	Kva		0.5	0.5			0.5		ft/day	
Aquitard sate	ard saturated thickness ba			ba	3		. 3		3		ft		
Aquitard thic	kness b	elow stre	am	babs	3		3		3		ft		
Aquitard por	osity			n	(0.2		0.2				
Stream width	h			WS	200		200		200		ft		
Streambed conductance (lambda) sl				sbc	33.333333		33.333333		33.333333		ft/day		
Stream depletion factor sdf				sdf	31.392667		31.392667		31.392667		days		
Streambed factor sb			sbf	2.411111		2.411111		2.411111					
input #1 for Hunt's Q_4 function			ť	0.031855		0.031855		0.031855		5			
input #2 for Hunt's Q_4 function			K'	26.160556		26.160556		26.160556		\$			
input #3 for Hunt's Q_4 function e			epsilon'	1.000000		1.000000		1.000000					
input #4 for Hunt's Q_4 function				lamda'	2.41111		2.411111		2.411111				

Transient Stream Depletion (Hunt, 1999)

Transient Stream Depletion (Hunt, 1999)

Output for Stream Depletion, Scenerio 2 (s2):						Time pump on (pumping duration) = 150 days							
Days	30	60	90	120	150	180	210	240	270	300	330	360	
JSD	61.7%	72.4%	77.3%	80.3%	82.3%	22.1%	12.6%	8.7%	6.5%	5.1%	4.2%	3.5%	
H SD 1999	15.5%	24.7%	30.9%	35.5%	39.2%	26.7%	20.0%	16.1%	13.4%	11.5%	10.0%	8.9%	
H SD 2003	8.57%	15.59%	20.72%	24.76%	28.09%	22.34%	17.77%	14.80%	12.69%	11.10%	9.86%	8.86%	
Qw, cfs	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	
H SD 99, cfs	0.012	0.020	0.025	0.028	0.031	0.021	0.016	0.013	0.011	0.009	0.008	0.007	
H SD 03, cfs	0.007	0.013	0.017	0.020	0.023	0.018	0.014	0.012	0.010	0.009	0.008	0.007	
Perometero:					Scenario 1		Scenario 2		Scenario 3		Unite		
Net steady p	umping	rate of w	ell	Qw		36.00		36.00		36.00		apm	
Time pump	on (pumi	oing dura	ation)	toon	150		150		150		davs		
Perpendicular from well to stream					1500		1500		1500		ft		
Well depth				d	80		80		80		ft		
Aquifer hydra	aulic con	ductivity		к	500		500		500		ft/day		
Aquifer satur	rated thic	kness		b	60		60		60		ft		
Aquifer trans	missivity	1		Т	30000		30000		30000		ft*ft/day		
Aquifer stora	tivity or s	pecific yi	eld	S		0.2		0.2		0.2			
Aquitard vert	ical hydra	aulic con	ductivity	Kva		0.5	0.5		0.5		ft/day		
Aquitard sate	urated thi	ickness		ba	3		3		3		ft		
Aquitard thic	kness be	elow stre	am	babs		3	3		3		ft		
Aquitard por	osity			n	0.2		0.2		0.2				
Stream width					E		60		60		ft		
Streambed conductance (lambda) sbc					10.000000		10.000000		10.000000		ft/day		
Stream depletion factor sdf					15.000000		15.000000		15.000000		days		
Streambed factor sbf				0	.500000	0	.500000	0	.500000				
input #1 for Hunt's Q_4 function t'			ť	0	.066667	0	.066667	0	.066667				
input #2 for Hunt's Q_4 function				K'	12.500000		12.500000		12.500000				
input #3 for Hunt's Q_4 function epsi				epsilon'	1	.000000	1	.000000	1	.000000			
input #4 for Hunt's Q_4 function				lamda'	0.50000		0.500000		0.500000				

Figure 3. Well location Map

G-17978 Island Lakes Condominiums T17S/R4W-Section 13

Version: 08/01/2014

10