PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	O: Water Rights Section					Date 5/14/2015								
FROM	1:	Grou	ındwater S	ection		Gerald	l H. Gron	ıdin	(Darrick E.	Boschma	nn)			
OI ID II						Revi	ewer's Nan	ne				-	162	
SUBJI	ECT:	App	lication G-	1/916		Su	persedes	s rev	view of	3/2	<u>4/201</u>	Date of Re	view(s)	
			Annaber									Dute of Ne	· ic ii (3)	
OAR 6 welfare to deter	590-310-1 e, <i>safety a</i> rmine who	30 (1) <i>nd hea</i> ether th	The Depart Ith as descr ne presumpt	ibed in ORS ion is establ	resume that 537.525. D ished. OAR	a propose epartment 690-310-	ed ground staff rev 140 allov	iew ws th	ter use will e ground wate ne proposed agency poli	er applica use be me	itions i odified	ınder OA I or condi	R 690-3 tioned to	10-140 meet
A. <u>GE</u>	NERAL	INF	ORMATIC	<u>ON</u> : A	pplicant's N	lame:	Phillip a	and_	Lorissa Sin	ghose	(County:	<u>Harney</u>	
A1.	Applica	nt(s) s	eek(s) <u>11.</u>	25* cfs fro	m <u>3</u>	well((s) in the		Malheur La	ike				_ Basin,
		Lower	Silver Cree	k		subb	asins	Qua	ad Map: <u>O</u>	akerman	Lakes	/ Moon R	eservoir	
A2. A3.				900 acres pr ach and nu					rch 1 to Octo		such 1	under log	gid):	
Well	Logic	i	Applicant	's Propos	sed Aquifer*		osed		Location			tion, mete		
1	Propos		Well #		t/tuffaceous	Rate 4.6			(T/R-S QQ-Q) 24/27-15 SW		2250	' N, 1200' none	E fr NW of provided	or S 36
2	Propos	ed	19		ediment t/tuffaceous	4.6	4.68*		24/27-10 SE		none provided			
3	Propos	Proposed 20		Basal	sediment Basalt/tuffaceous		4.68*		24/27-3-SW			none	provided	
4				S	ediment									
5 * Alluvi	ium, CRB,	Redro	ak									-		
Anuv	ium, CRD,	Dearor	- K											
Well	Well Elev	First Wate	I SWI	SWL	Well	Seal Casing		-			Well	Draw	Test	
Well	ft msl	ft bl	l H blc	Date	Depth (ft)	Interval (ft)	Interva (ft)	iis	Intervals (ft)	Or Scr (ft)		Yield (gpm)	Down (ft)	Туре
1	?	?	?	?	500	0-60	0-100±	\rightarrow	None N		e	?	?	?
3	?	?	?	?	500	0-60 0-60	0-100± 0-100±		None None	None None		?	?	?
	<u> </u>		•		300	0-00	0-1002	_	HOILE	14011			-1	
<u> </u>														
Use data	a from app	lication	for proposed	l wells.			1					J.		
A4.	Comme	ents: _												
	The pro	nosed	wells are in	Harney Co	unty within	Silver Cre	ek Valle	v ar	nd range from	n about 2	5-4 m	niles sonti	neast of t	he town
									and silt) ove					
	(1972),	which	is equivale	ent to QTb	(Upper Plic	cene basa	lt) of Br	owr	and others	(1980).	Unit (Tb of B	rown an	d others
						rally overl	lying QT	st (t	uffaceous se	<u>dimentar</u>	y rock	s) in the i	northwes	t part of
	the stud	y area	, north and v	west of Dog	Mountain.									
	The war	ter wel	l report for	HARN 753	located in 2	4/27-10 ir	ndicates g	grave	el and clay to	85 feet	(Oal).	underlain	by deco	mposed
									underlain by					
	408 fee	t (TD).	•									25		
	The war	ter we	Il report for	HARN 761	located in 3	04/27-15 N	VE-NW i	ndic	cates gravel,	sand and	l clay	to 33 feet	(Oal) 11	nderlain
									ndstone, cla					
	Te de 121-	olar 41-	nt the	and wall	ill nonetuct:	thucust	the		lidated basis	. £11 ~~-1		(Oal) :=:	o the	douledes
				mentary roc			ше ипсо	шѕо	lidated basir	i iiii sed	ment	(Qai) into	une un	ueriying

Date: 5/14/2015

2

	*Note: The application lists a maximum requested rate of "900 AF", which is not an applicable value. Additionally, the well specific rate listed on the application is 2100 gpm (4.68 cfs) per well; which totals 14.04 cfs. This is more than the 1/80 cfs/acre that is typically allowed (900/80 = 11.25 cfs). It is unclear what maximum rate is intended, or if the well specific rate listed was the intent of the applicant. For the purposes of this review the well specific rates are not considered, and the total maximum rate used is 11.25 cfs which is the typical rate allowed for 900 acres.
A5. 🛚	Provisions of the Malheur Lake Basin rules relative to the development, classification and/or management of ground water hydraulically connected to surface water are, or are not, activated by this application. (Not all basin rules contain such provisions.) Comments:
	OAR 690-512-0040 The rule states: "(1) Except as provided in section (3) of this rule, the Department shall not accept an application for permit or issue a permit, for any use of surface water, or of groundwater the use of which has the potential to substantially interfere with surface water, in the Malheur Lake Basin unless the applicant shows, by a preponderance of evidence, that unappropriated water is available to supply the proposed use at the times and in the amounts requested. The evidence provided shall be prepared by a qualified hydrologist or other water resources specialist and shall include:
	(a) Streamflow measurements of gage records from the source or, for use of groundwater, the stream in hydraulic connection with the source; or
	(b) An estimate of water availability from the source or, for use of groundwater, the stream in hydraulic connection with the source which includes correlations with streamflow measurements or gage records on other, similar streams and considers current demands for water affecting the streamflows."
	This review does not find a potential for substantial interference with surface water.
A6. 🗌	Well(s) #,,, tap(s) an aquifer limited by an administrative restriction. Name of administrative area: Comments:
	Currently no administrative area.

Date: 5/14/2015

3

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

B1.	Bas	ed upon available data, I have determined that ground water* for the proposed use:
	a.	is over appropriated, ☐ is not over appropriated, or ☐ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the ground water portion of the over-appropriation determination as prescribed in OAR 690-310-130;
	b.	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the ground water portion of the injury determination as prescribed in OAR 690-310-130;
	c.	will not or will likely to be available within the capacity of the ground water resource; or
	d.	will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i.
B2.	a.	Condition to allow ground water production from no deeper than ft. below land surface;
	b.	Condition to allow ground water production from no shallower than ft. below land surface;
	c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section.
		Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/senior water rights, not within the capacity of the resource, etc):

B3. Ground water availability remarks:

The proposed well(s) for this application is within the greater Harney Valley area where observed groundwater level declines are occurring in most areas (see attached map). The decline indicates that demand for groundwater is exceeding the average annual recharge. An analysis by the Department confirms the volume of groundwater permitted for annual use exceeds the average annual volume of recharge to groundwater. The Department also estimates that approximately 30 percent of the total acreage permitted for groundwater use has yet to be developed. Groundwater development for these acres under already-existing permits will further increase the groundwater level decline rate. Based on the location of the proposed POA(s), the Department finds that the proposed groundwater use will occur from the same groundwater source exhibiting groundwater level declines. Groundwater is therefore determined to be over-appropriated [see OAR 690-400-0010(11)(a)(B)] and the proposed use for this application is not within the capacity of the resource.

If a permit is issued, the following conditions are recommended:

Special Permit Condition:

The permittee shall construct one (1) minimum six-inch diameter observation well to penetrate the same aquifer as the production wells. The well shall meet the Department's minimum well construction standards and shall be cased and sealed to the same depth as the production wells. The well shall be constructed at a location approved by the Department for the purpose of instrumentation with continuous water-level monitoring equipment. The landowner or permittee shall provide access to Department staff to install and maintain the monitoring equipment. The well shall not be used for any other purpose while the Department is monitoring water levels. The well shall be completed prior to water use under the terms of any permit issued.

7B: Interference Condition

7F: Proposed Well location Condition

7N: Annual Measurement and Decline Condition

7P: Well Tag Condition

7T: Dedicated Measuring Tube Condition for all POA wells

Flow meter condition: Use the water rights "large" permit condition requiring a totalizing flow meter and reporting

7K: The proposed wells shall be continuously cased and continuously sealed a minimum of five (5) feet into the basalt/tuffaceous sediment unit beneath the predominantly basin fill unit. The wells may not be completed in such a manner that they allow ground water to be developed from the overlying basin fill. If during well construction, it becomes apparent that the wells can be constructed to eliminate interference with nearby shallow wells or hydraulically connected streams in a manner other than specified in this permit, the permittee can contact the Department Hydrogeologist for this permit or the Ground Water/Hydrology Section Manager to request approval of such construction. The request shall be in writing, and shall include a rough well log and a proposed construction design for approval by the Department. The request can be approved only if it is received and reviewed prior to placement of any permanent casing and sealing material. If the well is constructed first and then the request made, requested modification will not be approved. The new well depth and construction specifications will be incorporated into any certificate issued for this permit.

Version: 07/26/2013

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
All	basalt/tuffaceous sediments		

Basis for aquifer confinement evaluation: ___

Some local well logs report static water levels that are somewhat above the depth that groundwater was first encountered. However, well HARN 761 reports a constant static water level from 10 feet to 400 feet (TD). The regional aquifer is likely unconfined to poorly confined.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Silver Creek	4143±	4160	17160±		
2	1	Silver Creek	4143±	4160	19800±		
3	1	Silver Creek	4143±	4160	25600±		

Е	Basis	fo	r aquifer	hvdraul	ic	connection	evaluation:	

This evaluation considers perennial reaches of surface water only (see memo by Ivan Gall, 1/15/2008).

The groundwater elevation cited above is derived from the static water level reported on the water well report for deepening log HARN 50785 dated 4/1/2002. The location for HARN 50785 is a GPS location reported by the eastern region well inspector and falls in 24/27-15 SE-SW.

The reach of Silver Creek nearest to the proposed wells is intermittent. The nearest perennial reach of Silver Creek is the reach near Moon Reservoir ~3 miles to the southeast.

Within the uncertainty of the groundwater elevation estimate, the groundwater elevation is roughly coincident with the elevation of the closest perennial reach of Silver Creek, suggesting that groundwater likely provides baseflow to this surface water body at this location.

Water Availability Basin the well(s) are located within: <u>SILVER CR > HARNEY L - AB UNN STR</u>

Page

C3a. 690-09-040 (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?	
					#II						

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
					27			

Comments:			:3	
C3a./C3b. No analy connected surface w	e located at a	distance greater than	1 mile from perennial reacl	nes of hydraulically

Date: 5/14/2015

7

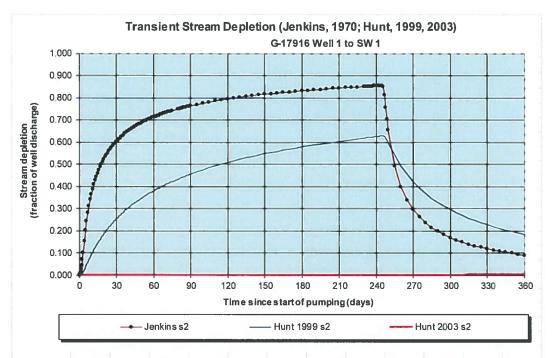
C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D Well	istributed SW#	Wells Jan	Ech	Mon	A m.n	Mari	Tues	1,,1	A	Sam	Oat	Nov	Dag
	1	0.23 %	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1		0.31 %	0 %	0 %	0 %	0 %	0 %	0.01 %	0.03 %	0.06 %	0.11%	0.16
	Q as CFS	0	0	5.56	5.56	5.56	5.56	5.56	5.56	5.56	5.56	0	0
Interfer	ence CFS	0.013	0.017	0	0	0	0	0	0.001	0.002	0.004	0.006	0.009
Distrib	uted Wel	ls											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	(
Well (as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	,
Well (Q as CFS												
Interfer	ence CFS										-		
		%	%	%	%	%	%	%	%	%	%	%	
Well (Q as CFS	19											
Interfer	ence CFS		. 11										
		%	%	%	%	%	%	%	%	%	%	%	9
Well (Q as CFS											77	
Interfer	ence CFS		-					3.1					
		%	%	%	%	%	%	%	%	%	%	%	
Well (Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	c
Well (Q as CFS												
Interfer	ence CFS												
(A) = T	otal Interf.	0.013	0.017	0	0	0	0	0	0.001	0.002	0.004	0.006	0.009
	% Nat. O							_				-	
(B) = 80	70 Nat. Q	5.66	13.4	40.9	115.0	44.7	20.9	5.33	2.26	2.22	2.91	4.24	5.11
(C) = 1	% Nat. Q	0.056	0.134	0.409	1.15	0.447	0.209	0.0533	0.022 6	0.022	0.029 1	0.042 4	0.051
(D) =	(A) > (C)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	/ B) x 100	0.23%	013 %	0 %	0 %	0 %	0 %	0 %	0.44%	0.09%	0.09%	0.14%	0189
	al interferen	1						L					

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage. Basis for impact evaluation:

C4a. Hunt (2003) was used to calculate the interference between Well 1 and SW #1. The values used for the calculation are
conservative and appropriate until better values become available. The calculations used a transmissivity of ~18,000 ft2/day,
which is the value derived from a pump test on HARN 753 located in 24/27-3-SE. Additionally, the calculation used an
assumed intermediate storage coefficient (0.001). The pumping rate used represents the maximum allowable duty prorated over
the irrigation season (5.56 cfs). See reports attached.
Interference is determined to be less than 1% of the 80% flow in all months evaluated.

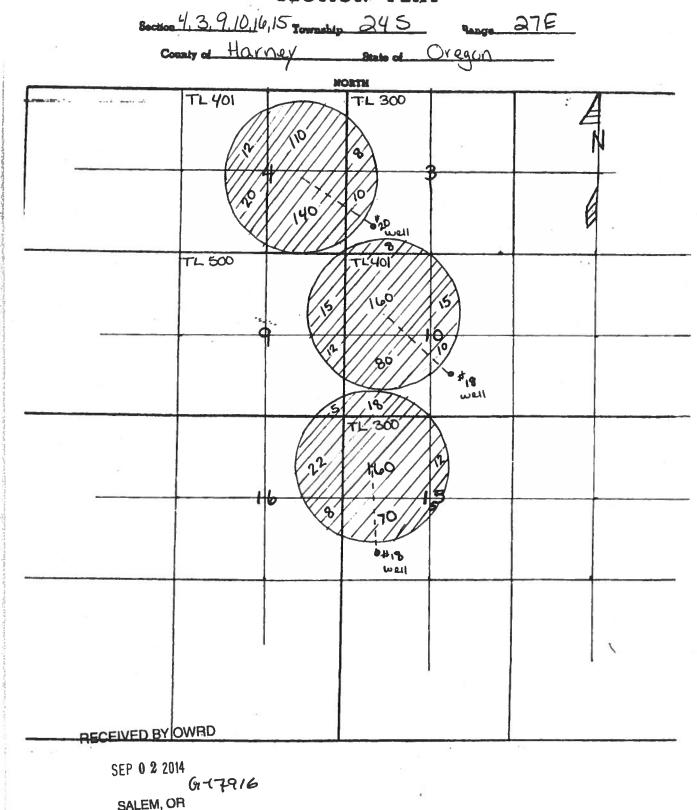
C4b	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
C5.	☐ If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or ground water use under this permit can be regulated if it is found to substantially interfere with surface water: i. ☐ The permit should contain condition #(s)
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
C6.	SW / GW Remarks and Conditions
	C1. 690-09-040 (1)
	It is determined that all wells will produce water from an unconfined aquifer.
	C2. 690-09-040 (2) (3)
	It is determined that all wells are hydraulically connected with Silver Creek.
	C3a. 690-09-040 (4)
	No analysis here. All wells are located at a distance greater than 1 mile from perennial reaches of hydraulically connected surface water.
	C3b. 690-09-040 (4)
	No analysis. This application does not request a distributed pumping rate.
	C4a. 690-09-040 (5)
	It is determined that interference for all wells will be less than 1% of the 80% flow in all months evaluated.
	If a permit is issued, the following conditions are recommended:
	Special Permit Condition: The permittee shall construct one (1) minimum six-inch diameter observation well to penetrate the same aquifer as the production wells. The well shall meet the Department's minimum well construction standards and shall be cased and sealed to the same depth as the production wells. The well shall be constructed at a location approved by the Department for the purpose of instrumentation with continuous water-level monitoring equipment. The landowner or permittee shall provide access to Department staff to install and maintain the monitoring equipment. The well shall not be used for any other purpose while the Department is monitoring water levels. The well shall be completed prior to water use under the terms of any permit issued.
	7B: Interference Condition
	7F: Proposed Well location Condition
	7N: Annual Measurement and Decline Condition
	7P: Well Tag Condition
	7T: Dedicated Measuring Tube Condition for all POA wells
	Flow meter condition: Use the water rights "large" permit condition requiring a totalizing flow meter and reporting
	7K: The proposed wells shall be continuously cased and continuously sealed a minimum of five (5) feet into the basalt/tuffaceous sediment unit beneath the predominantly basin fill unit. The wells may not be completed in such a manner that they allow ground water to be developed from the overlying basin fill. If during well construction, it becomes apparent that the wells can be constructed to eliminate interference with nearby shallow wells or hydraulically connected streams in a manner other than specified in this permit, the permittee can contact the Department Hydrogeologist for this permit or the Ground Water/Hydrology Section Manager to request approval of such construction. The request shall be in writing, and shall include a rough well log and a proposed construction design for approval by the Department. The request can be approved only if it is received and reviewed prior to placement of any permanent casing and sealing material. If the well is constructed first and then the request made, requested modification will not be approved. The new well depth and construction specifications will be incorporated into any


D. WELL CONSTRUCTION, OAR 690-200

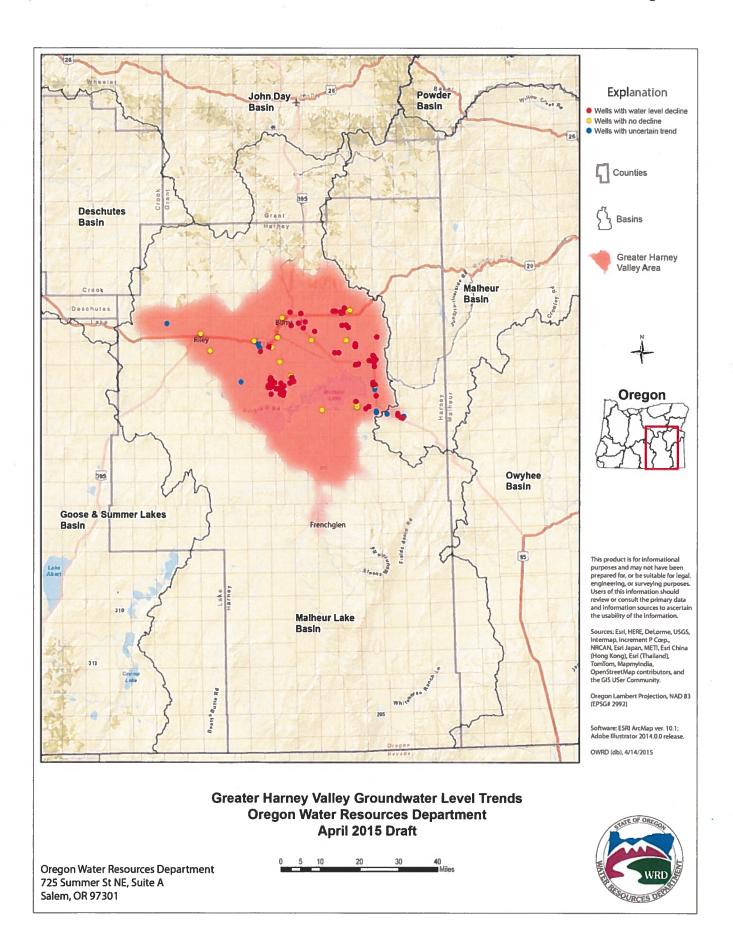
D1.	Well #:	Logid:	
D2.	a. review of the field instance. report of	s not appear to meet current well construction st f the well log; pection by	•
D3.		struction deficiency or other comment is describe	ed as follows:
D4. [Route to the We	ell Construction and Compliance Section for a rev	riew of existing well construction.

Water Availability Tables

		Water	Availability Anal Detailed Reports	lysis		
		SIL	VER CR > HARNEY L - AB UNN ST MALHEUR LAKE BASIN	R		
			Water Availability as of 3/20/2015			
Watershed ID # 31200 Date 3/20/2015	0408 (Map)	/	, , , , , , , , , , , , , , , , , , , ,		E	xceedance Level 80% - Time 1 05 PM
Wat	or Availability Calculation	Communitive Uses and Storages	1 10	Instrum Flow Requirements	Recorvations	
	W	Sener Dighos		Water	rehad Characteristics	
		Wate	er Availability Calculati	lon		
		Month	er Availability Calculati by Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre	cond		
No contin	Keharal Stream Figur	Month Annual Committee thes and Manager	nly Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre	cond 9-Feet Neserved Steeam Flow	lastroam i low Respektement	Ret Water & natioble
JAN	5 66	Month Annual Consumptive Cors and Sociation 2 96	by Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre Expensed Statement Flore 2.70	cond 5-Feet Neserved Stream Flow 9-00	0.00	2 79
JAH FEB	5 66 13 40	Month Annual Common Cost (14 Notice) 7 36 7 60	by Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre Expensed Stream 2 int 2 70 5 80	cond 3- Feet Neserved Stream Flow 9 00 9 00	9 00 9 00	2 79 5 82
JAN FEB MAR	5 66 12 40 40 90	Month Annual Commencine thes and Sameon 2 96 7 60 3 20	by Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre Extensive Stream From 2 70 5 80 6 72	Cond Foot Neserved Stream Flore 9 00 8 00 8 00	6 00 9 00 9 00	3 79 5 83 6 72
JAN FEB MAR APR	5 66 12 40 48 90 115 00	Acontact Constitution of Cons	ally Streamflow in Cubic Feet per Sec. Volume at 50% Exceedance in Acre Expenses 30 seems these 2 70 5 80 6 77 26 00	cond > Foot Heserved Stream Flow 00 00 00 00	6 00 5 00 9 00 9 00	2 77 5 80 6 72 26 90
JAN FEB MAR APR MAY	5 66 12 40 48 90 115 00 44 70	Monthly Annual Community Units (An 2 55 7 55 7 55 7 55 7 55 7 55 7 55 7 5	by Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre Expenses Statema 1 ford 2 70 5 80 6 77 24 00 .65 10	cond > Feet Hersensed Sate am \$ Kool 9 00 8 00 8 00 9 0	0 00 9 00 9 00 9 00 0 00	2 71 5 81 6 72 26 00 -96 10
JAN FEB MAR APR MAY JJ61	\$ 66 13 40 48 90 115 00 44 70 20 90	Month Annual 2 96 1 60 3 4 20 93 00 14 1 00 197 00	ally Streamflow in Cutaic Feet per Sec Volume at 50% Exceedance in Acre Expensed Stream 9 for 5 8 72 2 70 9 8 10 8 17 2 9 00 8 10	Cond - Foot Hersenved Stream House - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	6 00 5 00 9 00 9 00 9 00 9 00 8 00	2 71 5 81 6 72 26 00 -96 10 -88 11
JAN FEB MAR APR MAY Juli Juli	\$ 66 13 40 49 90 115 00 44 70 20 90 5 33	Monthly Annual 2 56 7 50 99 00 141 00 199 00 3 16 10 3 16 10 3 16 10 3 16 10 10 10 10 10 10 10 10 10 10 10 10 10	by Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre Expensed followers 1 ton 2 70 5 80 6 72 74 00 -95 13 81 10 33 80	Cond	6 66 9 00 9 00 9 00 0 00 6 00 6 00	2 71 5 02 6 72 22 00 10
JAN FEB MAR APR MAY JAH JAL AJIG	\$ 66 11.40 48.90 115.00 44.70 29.90 5.33 2.26	Month Annual 7 96 16 34 29 99 00 141 00 199 00 36 10 14 55	aly Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre 1. see-see Sit ream 8 lim 2 70 5 80 6 72 24 00 94 13 88 10 38 00 17 46	SPORT STORMS FOR BOTH STORMS F	6 00 5 00 9 00 9 00 9 00 9 00 6 00 0 00	2 79 5 82 6 72 26 96 10 -96 10 -30 80 12 43
JAN FEB MAR APR MAY JUL AUG SEP	\$ 66 11.40 48 90 115 00 44 79 29 90 5 33 2 26 2 22	Month Annual 2 56 7 55 100 100 100 100 100 100 100 100 100	aly Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		6 00 9 00 9 00 9 00 9 00 6 00 6 00 1 80 6 00	2 79 5 83 6 72 26 90 96 10 68 13 -30 80 12 24
JAN FEB MAR APR MAY JUL AUG SEP OCT	5 66 3.1 40 48 50 115 00 64 70 20 50 5 3.3 2 26 2 22 2 21	Month Annual 7 96 1 16 1 16 1 16 1 16 1 16 1 16 1 16	by Streamflow in Cubic Feet per Sec Volume at 50% Expedience in Acre 2 79 6 72 5 80 6 72 5 80 6 72 5 80 6 72 5 80 6 72 5 80 6 72 7 80 6 72 7 80 6 72 7 80 6 72 7 80 6 72 7 80 7 80 7 80 7 80 7 80 8 7 9 8 8 7 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SPORT STORMS FOR STORM	6 00 9 00 9 00 9 00 9 00 6 00 6 00 2 80 6 00	3 77 5 st 67 72 26 oc -96 14 -30 st -12 44 -5 57
JAN FEB MAR APR MAY JUL AUG SEP	\$ 66 11.40 48 90 115 00 44 79 29 90 5 33 2 26 2 22	Month Annual 2 56 7 55 100 100 100 100 100 100 100 100 100	aly Streamflow in Cubic Feet per Sec Volume at 50% Exceedance in Acre \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		6 00 9 00 9 00 9 00 9 00 6 00 6 00 1 80 6 00	2 77 5 65 6 72 26 00 96 14 68 15 -30 86 -2.2 45


Stream Depletion (Hunt, 2003)

Output for Stream Depletion, Scenerio 2 (s2):							Time pump on (pumping duration) = 245 days					
Days	30	60	90	120	150	180	210	240	270	300	330	360
JSD	60.2%	71.2%	76.3%	79.4%	81.5%	83,1%	84.4%	85.4%	29.5%	16.9%	11.8%	9.0%
H SD 1999	25.3%	38.0%	45.6%	50.8%	54.7%	57.8%	60.3%	62.5%	42.0%	29.5%	22.7%	18.4%
H SD 2003	0.00%	0.00%	-0.01%	0.00%	0.00%	0.01%	0.03%	0.06%	0.11%	0.16%	0.23%	0.31%
Qw, cfs	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5.560	5,560	5.560
H SD 99, cfs	1.409	2.112	2.533	2.825	3.043	3.215	3.355	3.473	2.336	1.638	1.262	1.021
H SD 03, cfs	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.009	0.013	0.017


Parameters:		Scenario 1	Scenario 2	Scenario 3	Units
Net steady pumping rate of well	Qw	5.56	5.56	5.56	cfs
Time pump on (pumping duration)	tpon	245	245	245	days
Perpendicular from well to stream	а	17160	17160	17160	ft
Well depth	d	500	500	500	ft
Aquifer hydraulic conductivity	K	60	60	60	ft/day
Aquifer saturated thickness	b	300	300	300	ft
Aquifer transmissivity	Т	18000	18000	18000	ft*ft/day
Aquifer storativity or specific yield	S	0.001	0.001	0.001	
Aquitard vertical hydraulic conductivity	Kva	2.3	2.3	2.3	ft/day
Aquitard saturated thickness	ba	50	50	50	ft
Aquitard thickness below stream	babs	50	50	50	fi
Aquitard porosity	n	0.2	0.2	0.2	
Stream width	ws	25	25	25	fl
Streambed conductance (lambda)	sbc	1.150000	1.150000	1.150000	ft/day
Stream depletion factor	sdf	16.359200	16.359200	16.359200	days
Streambed factor	sbf	1.096333	1.096333	1.096333	
input #1 for Hunt's Q_4 function	ť	0.061128	0.061128	0.061128	
input #2 for Hunt's Q_4 function	K'	752.523200	752.523200	752.523200	
input #3 for Hunt's Q_4 function	epsilon'	0.005000	0.005000	0.005000	,
input #4 for Hunt's Q_4 function	lamda'	1.096333	1.096333	1.096333	

SECTION PLAT

SALEM, OR

Date: 5/14/2015

