WATER RESOURCES DEPARTMENT MEMO

May 27 ,20 15

TO:	Application G- 17999
FROM:	Phillip Marcy - Groundwater Section
SUBJECT:	Scenic Waterway Interference Evaluation
YES NO	The source of appropriation is within or above a Scenic Waterway
YES XNO	Use the Scenic Waterway condition (condition 7J)

Per ORS 390.835, the Groundwater Section is able to calculate groundwater interference with surface water that contributes to a Scenic Waterway. The calculated interference distribution is provided below.

Per ORS 390.835, the Groundwater Section is unable to calculate groundwater interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface flows necessary to maintain the free-flowing character of a scenic waterway.

DISTRIBUTION OF INTERFERENCE

Calculate interference as the monthly fraction of the annual consumptive use and fill in the table below. If interference cannot be calculated, per criteria in 390.839, do not fill in the table but check the "unable" option above, thus informing the Water Rights Section that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in the ______ Scenic Waterway by the following amounts, expressed as a proportion of the annual consumptive use pumped from the well.

Monthly Fraction of Annual Consumptive Use

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section	Date 05/27/2015
FROM:	Groundwater Section	Phillip I. Marcy / Ivan K. Gall
		Reviewer's Name
SUBJECT:	Application G- 17999	Supersedes review of

PUBLIC INTEREST PRESUMPTION; GROUNDWATER

OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation.

A. GENERAL INFORMATION:	Applicant's Name: Rudolf and Roberta Trenkel, Cathlene Winwood
	County: Malheur

A1.	Applicant(s) seek(s)	0.56	_cfs from	_1	well(s) in the	Malheur	 	Basin,
					subbasin			

- Proposed use _____ Irrigation (69.1 acres) Seasonality: March 1st to October 31st (245 days) A2.
- Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid): A3.

Well	Logid	Applicant's Well #	Proposed Aquifer*	Proposed Rate(cfs)	Location (T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	MALH 52491	1	Sand and Gravel	0.56	18S/46E-7 NW-SW	20'S, 717'E fr W ¼ cor S 7
2						
3						
4						
5						

* Alluvium, CRB, Bedrock

Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type
1	2296	70	63	04/28/2003	95	0-18	+1-80	NA	71-80	295	84	Pump
L												
L												
<u> </u>			<u> </u>									
<u> </u>			I	1		I	L.	[I	1	

Use data from application for proposed wells.

Comments: The stated yield of the proposed POA (MALH 52491) appears to be sufficient to meet the applicant's desired A4. rate.

A5. Provisions of the <u>Malheur (690-510)</u> Basin rules relative to the development, classification and/or management of groundwater hydraulically connected to surface water **are**, or **are not**, activated by this application. (Not all basin rules contain such provisions.) Comments: _____

A6. Well(s) # _____, ____, ____, ____, ____, tap(s) an aquifer limited by an administrative restriction. Name of administrative area: ______

Comments:

Date of Review(s)

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. Based upon available data, I have determined that groundwater* for the proposed use:
 - a. is over appropriated, is not over appropriated, or annot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. **will not** or **will** likely to be available within the capacity of the groundwater resource; or
 - d. **will, if properly conditioned**, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) _____
 - ii. The permit should be conditioned as indicated in item 2 below.
 - iii. 🛛 The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the groundwater reservoir between approximately______ft. and ______ft. below land surface;
 - d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. Groundwater availability remarks: Based on the descriptions of lithology on the well log, the water -bearing zone in the applicant's well (MALH 52491) occurs within sand and gravels overlying the Glenns Ferry Formation (Tig of Brooks and others, 1976). The production zone of sands and gravels is relatively thin (14 feet), but likely to be highly transmissive. Aquifer tests by Gannett (1990) estimate a range of hydraulic conductivities in the area between 400 ft/day and 670 ft/day. The resulting transmissivity for the sand and gravel aquifer at this location ranges from 5600 to 9380 ft²/day. Observation well data show groundwater levels in the area have been stable for decades (Figure 2) in the shallow alluvial aquifer system. Due to the thin nature of this aquifer, it is recommended that a modified measurement condition be emplaced to protect nearby senior groundwater right holders from possible interference (see below).

If a permit is issued, the following conditions should apply: 7T – measuring tube condition; Modified Condition 7N (annual measurement condition) - The water user shall discontinue the use of, or reduce the rate or volume of withdrawal from, the well(s) if any of the following events occur:

- A. <u>Annual water-level measurements reveal an average water-level decline of two or more feet per year for three</u> consecutive years; or
- B. Annual water-level measurements reveal a water level decline of 6 or more feet in fewer than five consecutive years; or
- C. Annual water-level measurements reveal a water-level decline of 10 or more feet; or
- D. Hydraulic interference leads to a decline of 10 or more feet in any neighboring well with senior priority.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Sand and gravel above Glenns Ferry Formation		\boxtimes

Basis for aquifer confinement evaluation: <u>The shallow sand and gravel aquifer is described as leaky confined by Gannett</u> (1990) due to the permeability of the overlying silt layer. This principle is most easily displayed by lowering of head elevations within the overlying silt during pumping of wells constructed into the underlying sand and gravel aquifer.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Malheur River	2233	2204	5160		

Basis for aquifer hydraulic connection evaluation: In the conceptual model of Gannett (1990), the Malheur River does not incise into the alluvial sand and gravel aquifer in the area of the proposed POA. As mentioned previously, however, the overlying silt has significant permeability, with a hydraulic conductivity likely one to two orders of magnitude smaller than that of the sands and gravels. This provides an inefficient connection to the Malheur River, likely made less efficient by additional deposits of fine fluvial material.

Water Availability Basin the well(s) are located within: <u>Malheur River > Snake River - At Mouth (31011701)</u>

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked ⊠ box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			NA	NA		83.80		0.00	

Page

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
			•					

Comments: The Hunt (2003) model was used to calculate the expected impact of pumping at the proposed POA to the Malheur River over time, considering the lower permeability silt between the river and the producing aquifer. Model parameter values for hydraulic conductivity and storativity of the sand and gravel aquifer, and hydraulic conductivity of the confining silt fall within ranges determined by Gannett (1990). Results of the model predict that pumping at the proposed POA will intercept less than 0.18 cfs from the Malheur River after 245 days of pumping at the maximum requested rate, and the effects after 30 days will be negligible.

C4a. **690-09-040 (5):** Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells	F 1	M	4	M	Trans	T1	A	C	0-4	NI	Dee
well	SW#	Jan	Feb	Mar	Apr	Мау	Jun	Jui	Aug	Sep	Uct	INOV	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well C	as CFS											l	
Interfer	ence CFS												
Distrib	uted Well	s					-						
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfer	ence CFS											11	
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q) as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well C) as CFS												
Interfer	ence CFS											1	
		%	%	%	%	%	%	%	%	%	%	%	%
Well C) as CFS												
Interfer	ence CFS			-									
		90	%	%	%	%	%	%	%	%	%	%	%
Well () as CFS												
Interfer	ence CFS												-
		%	%	%	%	%	%	%	%	%	%	%	%
Well () as CES												
Interfer	ence CFS												
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	tal Interf.									•			
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = ((A) > (C)	1.	~	1	. V.	1	1	~	4	1	~	1	~
(E) = (A	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

 C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Wate Rights Section. C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s) ii. The permit should contain special condition(s) as indicated in "Remarks" below; C6. SW / GW Remarks and Conditions: The connection of the proposed POA to the Malheur River is inefficient, and given the distance and the rate proposed, does not have the potential to cause significant injury to surface waters. Leakage from local canals and ditch systems are major sources of recharge to the shallow sand and gravel aquifer system (Gannett, 1990), and the effects of reducing the flow through these systems on recharge is yet to be determined. For this reason, consistent annual measurements should be performed, according to the special condition described above (see B3). 	(A) = tr CFS;	otal interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage. Basis for impact evaluation: This table does not apply.
 C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. The permit should contain condition #(s)	C4b.	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
C6. SW / GW Remarks and Conditions: The connection of the proposed POA to the Malheur River is inefficient, and given the distance and the rate proposed, does not have the potential to cause significant injury to surface waters. Leakage from local canals and ditch systems are major sources of recharge to the shallow sand and gravel aquifer system (Gannett, 1990), and the effects of reducing the flow through these systems on recharge is yet to be determined. For this reason, consistent annual measurements should be performed, according to the special condition described above (see B3).	C5. [If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i The permit should contain condition #(s); ii The permit should contain special condition(s) as indicated in "Remarks" below;
	C6. S di ar re sh	W / GW Remarks and Conditions: The connection of the proposed POA to the Malheur River is inefficient, and given the stance and the rate proposed, does not have the potential to cause significant injury to surface waters. Leakage from local canals id ditch systems are major sources of recharge to the shallow sand and gravel aquifer system (Gannett, 1990), and the effects of ducing the flow through these systems on recharge is yet to be determined. For this reason, consistent annual measurements would be performed, according to the special condition described above (see B3).

References Used:

Gannett, M. W. 1990. Hydrogeology of the Ontario Area Malheur County, Oregon. Oregon Water Resources Dept. Ground Water Report No. 34. 39p.

Ferns. M.L., H.C. Brooks, J.G. Evans, M.L. Cummings. 1993. Geologic map of the Vale 30x60 minute quadrangle, Malheur County, Oregon and Owyhee County, Idaho. Oregon Dept. of Geology and Mineral Industries Geological Map Series 77.

Brooks, H.C., McIntyre, J.R., Walker, G.W., 1976. Geology of the Oregon Part of the Baker 1° by 2° Quadrangle. Oregon Dept. of Geology and Mineral Industries Geological Map Series 7.

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #: Logid:	
D2.	THE WELL does not appear to meet current well of a. review of the well log; b. field inspection by c. report of CWRE d. other: (specify)	construction standards based upon:
D3.	THE WELL construction deficiency or other com	nent is described as follows:

D4. D4. Route to the Well Construction and Compliance Section for a review of existing well construction.

Water Avai	lability Tables					
		DETAILED REPORT	ON THE WATER AVAILA	BILITY CALCULATIC	N	
Watershed I Time: 2:11	D #: 31011701 PM	MALI	HEUR R > SNAKE R - A Basin: MALHEU	NT MOUTH IR	Excee	dance Level: 80 ate: 05/21/2015
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is t	Monthly values a the annual amount at	re in cfs. 50% exceedance i	in ac-ft.	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	$ \begin{array}{r} 154.00\\267.00\\467.00\\780.00\\524.00\\324.00\\150.00\\99.90\\83.80\\106.00\\135.00\\132.00\end{array} $	427.00 626.00 911.00 1,060.00 957.00 857.00 686.00 540.00 376.00 209.00 223.00 297.00	-273.00 -359.00 -444.00 -278.00 -533.00 -536.00 -440.00 -292.00 -103.00 -87.90 -165.00	$\begin{array}{c} 0.00\\ 0.00\\ 329.00\\ 470.00\\ 0$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-273.00 -359.00 -773.00 -748.00 -433.00 -536.00 -536.00 -292.00 -103.00 -87.90 -165.00
ANN	338,000	432,000	29,500	48,200	0	0

Figure 1: Map showing location of the proposed POA, in relation to the Malheur River and state observation wells MALH 1222 and MALH 1062.

Water-Level Trends in Nearby Wells

Figure 2: Water levels in nearby observation wells have remained stable for decades.

			Tran	sient S	tream (Depletio	on (Jen) G-17999	to Malh	70; Hun eur Rive	t, 1999 r	, 2003)		
	1.000	T	1	1					T	1			
	0.900			-			*****						
	0.800		-		-			-					
a l		1						-					
c 2	0.700	1											
atio atio	0.600	1											
el el	0 500	1			-								
En	0.300	R											
S Le	0.400	-	-										
to to	0.300									1			
E	0.200									1			_
	0.400							-		V			
	0.100				-	-					and a state of the	Lasa as	
	0.000		20 (80 4	20 12	20 15	10 10	0 21/	240	270	200	220	280
		0	30 (20 12		NU 10	V 211	240	210	300	330	300
	_					ime sinc	e start of	pumping	(days)				
			Je	nkins s2			-Hunt 19	99 s2		—Н	Int 2003	s2	
	4					_							
Outo	ut for	Stream	Depleti	ion. Sc	enerio 2	2 (s2):	Time p		(pumpi	ng dura	tion) =	245 day	IS
Days		30	60	90	120	150	180	210	240	270	300	330	360
JSD	-	82.8%	87.8%	90.0%	91.3%	92.3%	92.9%	93.4%	93.9%	13.1%	7.3%	5.1%	3.8%
HSD	1999	*****	*****	#####	*****	*****	*****	*****	*****	*****	****	*****	*****
HSD2	2003	-0.04%	0.80%	2.85%	5.64%	8.68%	11.69%	14.56%	17.24%	19.81%	21.47%	21.73%	21.00%
Qw, cl	is	0.560	0.560	0.560	0.560	0.560	0.560	0.560	0.560	0.560	0.560	0.560	0.560
HSDS	39, ofs	#####	#####	#####	****	#####	****	****	#####	****	****	#####	****
HSD	03, cfs	0.000	0.004	0.016	0.032	0.049	0.065	0.082	0.097	0.111	0.120	0.122	0.118
-				-						_			
Para	meter	5:		Parameters:				0		-			I Institute
Tiest	eadyp	Net steady pumping rate of well			0	Sce	nario 1	Sce	nario 2	Sce	nario 3		Units
Derpe	Time pump on (pumping duration)				Qw	Sce	enario 1 0.56	Sce	nario 2 0.56	Sce	0.56		ofic
Walld	o qmuo	n (pumpi	ng durati ng durati	n)	Qw tpon	Sce	nario 1 0.56 245	Sce	nario 2 0.56 245	Sce	0.56 245		ofinds cfs days
Aquife	ndicul. enth	n (pumpi ar from w	ng durati ell to strea	ll on) am	Qw tpon a	Sce	0.56 245 5160	Sce	nario 2 0.56 245 5160 95	Sce	nario 3 0.56 245 5160 95		ofics days ft
Aquifer saturated thickness			ng durati ell to strea ductivity	ll on) am	Qw tpon a d K	Sce	enario 1 0.56 245 5160 95 670	Sce	nario 2 0.56 245 5160 95 670	Sce	nario 3 0.56 245 5160 95 670		cfs days ft ft/day
I MOUILE	epth epth er hydra	n (pumpi ar from we aulic con ated thic	ng durati ell to strea ductivity kness	 on) am	Qw tpon a d K b	Sce	enario 1 0.56 245 5160 95 670 14	Sce	nario 2 0.56 245 5160 95 670 14	Sce	nario 3 0.56 245 5160 95 670 14		cfs days ft ft ft/day ft
Aquife	epth epth er hydra er satur er trans	n (pumpi ar from w aulic con ated thic missivity	ductivity	ll on) am	Qw tpon a d K b T	Sce	enario 1 0.56 245 5160 95 670 14 9380	Sce	nario 2 0.56 245 5160 95 670 14 9380	Sce	nario 3 0.56 245 5160 95 670 14 9380		ofices days ft ft/day ft ft*ft/day
Aquife Aquife	endicul epth er hydra er satur er trans er stora	n (pumpi ar from w aulic con ated thic missivity tivity or sj	ate or we ng durati ell to strea ductivity kness pecific yi	eld	Qw ipon a d K b T S	Sce	enario 1 0.56 245 5160 95 670 14 9380 0.001	Sce	nario 2 0.56 245 5160 95 670 14 9380 0.001	Sce	nario 3 0.56 245 5160 95 670 14 9380 0.001		cfs days ft ft ft/day ft ft*ft/day
Aquife Aquife Aquita	epth epth er hydra er satur er trans er stora ard vert	n (pumpi ar from we aulic con ated thic missivity tivity or sj ical hydra	ductivity kness ductic yie kness	ll on) am eld ductivity	Qw pon a d K b T S kva	Sce	enario 1 0.56 245 5160 95 670 14 9380 0.001 10	Sce	nario 2 0.56 245 5160 95 670 14 9380 0.001 10	Sce	nario 3 0.56 245 5160 95 670 14 9380 0.001 10		ft/day ft*ft/day ft/day
Aquife Aquife Aquita Aquita	epth epth er hydra er satur er trans er stora ard vert ard satu	n (pumpi ar from w aulic con ated thic missivity tivity or s ical hydra arated thi	ductivity kness becific yie aulic con ckness	ll on) am eld ductivity	Qw pon a d K b T S va ba		nario 1 0.56 245 5160 95 670 14 9380 0.001 10 50	Sce	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50	Sce	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50		ft'ft/day ft'ft/day ft'ft/day
Aquife Aquife Aquita Aquita Aquita	epth epth er hydra er satur er trans er stora ard vert ard satu	n (pumpi aulic con ated thic missivity tivity or sy ical hydra arated thi kness be	ductivity ductivity kness pecific yie aulic con ckness low strea	 on) am eld ductivity m	Qw ipon a d K b T S kva babs	Sce	enario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 3	Sce	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50 3	Sce	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 3		ft/day ft/day ft/day ft/day ft/day ft/day
Aquife Aquife Aquita Aquita Aquita Aquita	epth epth er hydra er satur er trans er stora ard vert ard satu ard thic ard por	n (pumpi ar from wo aulic con ated thic missivity tivity or s ical hydra arated thi kness be osity	ductivity ductivity kness beoific yid aulic con okness low strea	 on) am eld ductivity m	Qw tpon a d K b T S Kva babs n	Sce	enario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3	Sce	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3	Sce	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3		tt/day ft/ft/day ft/day ft/day ft/day
Aquife Aquife Aquita Aquita Aquita Aquita Strear	epth er hydra er satur er satur er stora ard vert ard satu ard thic ard pore m width	n (pumpi ar from w aulic con ated thic missivity tivity or s ical hydra arated thi kness be osity	ductivity ductivity kness pecific yie aulic con ckness low strea	I on) am eld ductivity m	Qw tpon a d K b T S Kva babs n babs r ws		enario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3 0.3	Sce	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3 0.3	Sce	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3 0.3		tt/day ft/day ft/ft/day ft/day ft/day ft/day ft/day
Aquife Aquife Aquita Aquita Aquita Aquita Strear Strear	epth er hydra er satur er satur er stora ard vert ard satu ard born m width mbed o	n (pumpi ar from w aulic con ated thic missivity tivity or s ical hydr. urated thi kness be osity onducta	ductivity ductivity kness pecific yie aulic con ckness dow strea	l on) am eld ductivity m bda)	Qw tpon a d K b T S Kva babs n sbc s t	233.	enario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	233	nario 2 0.56 245 5160 95 670 14 3380 0.001 0.001 0.001 0.001 0.001 0.00 3 0.3 70 .333333	2333	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 70 333333		ft/day ft/day ft/day ft/day ft/day ft/day
Aquite Aquife Aquita Aquita Aquita Aquita Strear Strear	epth er hydra er hydra er satur er stora ard vert ard satu ard batu ard port m width mbed o m depla	n (pumpi ar from we aulic con ated thic missivity tivity or sy ical hydre arated thi kness be posity conducta etion fact	ductivity ductivity kness pecific yie aulic con ckness low strea nce (lam	l on) am eld ductivity m bda)	Qw tpon a d K b S Kva babs n sbc sbc sdf	2333	mario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 3 0.3 3 0.3 3 0.3 3 3 0.3 3 2 50 2 50 2 50 2 50 2 50 50 50 50 50 50 50 50 50 50 50 50 50	233 233	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50 3 3 0.3 70 .333333 .838550	233 223	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 70 333333 838550		ft/day ft/day ft/ft/ft/day ft/day ft/day ft/day days
Aquite Aquife Aquita Aquita Aquita Aquita Aquita Strear Strear Strear	epth epth er hydra er satur er trans er stora ard vert ard satu ard satu ard por m width mbed o m depla	n (pumpi autic con ated thic missivity tivity or sj ical hydri arated thi kness be posity conducta stion fact actor	ductivity ductivity kness ductivity kness ductivity kness ductivity aulic con ckness dow strea nce (lam or	l on) am eld ductivity m bda)	Qw tpon a d K b S Kva babs n sbb sbb sbb sbb	233. 2233. 28.	nario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 3 0.3 3 0.3 838550 .358209	Sce 233 23128	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 83850 358209 352292	233. 2233. 28. 0	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 838550 358209		tt/day ft/day ft/ft/day ft/day ft/day ft/day ft/day days
Aquite Aquife Aquita Aquita Aquita Aquita Strear Strear Strear Strear	epth epth er hydra er satur er trans er stora ard vert ard satu ard satu ard pore m width mbed for m depk mbed for #1 for H	n (pumpi ar from we aulic con ated thic missivity tivity or sp ical hydr. arated thi kness be psity conducta etion fact actor unt's Q_0	ductivity ductivity kness becific yie aulic con okness low strea nce (lam or 4 function 4 function	ll on) am eld ductivity m bda)	Qw tpon a d K b S Kva babs n ws sbc sdf sbf ' '	233 22 128 0 563	rnario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 0.3 838550 .358209 .358209 .352293 7 70021	233 2128 0	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 0.3 833333 838550 358209 352293 770021	Sce 233 2 128 0 0	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 70 333333 838550 358209 352233 770021		tt/day ft/day ft/ft/day ft/day ft/day ft/day ft/day days
Aquite Aquife Aquita Aquita Aquita Aquita Strear Strear Strear Strear Strear input input	epth epth er hydra er satur er trans er stora ard vert ard satu ard thic ard pore m width mbed fa mbed fa #1 for H #2 for h #3 for h	n (pumpi ar from we aulic con missivity tivity or s ical hydre trated thi kness be psity conducta exton fact actor unt's Q lunt's Q	ductivity ductivity kness becific yie aulic con ckness low strea nce (lam or 4 functior 4 functior 4 functior	ll on) am eld ductivity ductivity bda) n n	Qw tpon a d K b F S Kva babs n ws sbc sdf sbf c K epsilon	233 2 128 0 567	mario 1 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 83855 .358209 .358209 .352293 7.710021 .003333	Sce 233 2 128 0 56	nario 2 0.56 245 5160 95 670 14 9380 0.001 10 50 33 0.3 0.3 0.3 838550 358209 352293 7.710021 003333	Sce 233 2 128 0 561 0	nario 3 0.56 245 5160 95 670 14 9380 0.001 10 50 333333 838550 358209 358209 352233 7.710021 003333		ft/day ft/day ft/day ft/day ft/day ft/day ft/day days

Figure 3: Hunt (2003) model predicting no impact to the Malheur River from pumping at the proposed POA location for the first 30 days. At 240 days, nearly 20 percent of the volume pumped will be intercepted from the Malheur River, according to the model.

.

	- -	~	MALH	52491				
STATE OF C	NEGON LY WELL REPO	RT			WELL LD. #1 START CARD	434	46	T
Instructions for (1) LAND OW Name / Adv Address / O // City / D'// (2) TYPE OF V Datase Well	NER Bar NER Bar Dan Bar Dan Bar MORK Deepening Altern	Well Nur Well Nur State State State	niber Zip 97914 oon [] Abaadonment	(9) LOCATION O County HOLA Township Section Tax LotO Street Address of	F WELL by legal Last Latitude N or Dang LotBlo Well for searest addrest	description: # 4/6 SE it Ray	Bar W W Dar W W Ma ubdivision	VM.
(3) DRILL ME 27 Rotary Air C Other (4) PROPOSE Domestic C	THOD: Rotary Mud CA D USE: Community C Indu	able DAuger ustriat Dirrigatio		(10) STATIC WAT	ER LEVEL: below land surface. lb. per RING ZONES:	square inch	Date 4-	28-
Themal	LE CONSTRUCT	rios	00	Dupth at which water	was first found	10		
Special Construct Explosives used HOLE	The sector Type	SEAL	mount	Fread 70	79	Estimated 2-5	D.	63
Distator Press	75 Banyou	2 5 18	Secture Provide D					
B 75	95 Anave		Tyds	(12) WELL LOG	1 ound Elevation			
Other	Bento	6 Mar	in Rea they	PMa	terial	Frem	To	SW
Gravel placed fr	om 16 1. 10 7	SA Sized	I prevel 3/8 plane	Brown	Clay	0	58	
(6) CASINGA	LINER: IT From To G	auge Steel Plast	c Webded, Threaded	Sand		58	45	
Casing 8	1 80 1			Sand 9	Gravel	45	79	6
Liner:				Biousi	Clarge	79	81	E
Drive Shoe used	1 Daside Doutsin f shoe(s)	de 🗆 None		Blue	clay	8/	95	+-
(7) PERSOR	ATIONS/SCREE!	Tarch	aterial		ECEIVE	D		-
Strem To	filot star Number	Teley Discusier size	ipe Casing Line		OCT 2 9 200			+
21 80	19165350	8 p		WATE	R RESOURCES	CPT		
					a the design of the second			+
(6) WELL TH	STS: Minimum	testing time is 1	Plowing	Date started 4-	24-03 C	ompleted	41-28	1-0
Pump Yield galfmin	Dravdova	Drill stem at	Artesian There	f certify that the s ment of this well is in standards. Materials of	vork 1 performed on 11 compliance with Ore ned and information r	to construction, al gon water supply eported above and	teration, or de wolf construc- true to the be	Nindon- Non III of my
10	9111		110	- knowledge and belief		WWC N	windows	_
Temperature of	witter (00"	Depth Artesian Flor		Signed Dute Dute (bonded) Water Well Constructor Certification:				
Was a water sha	ilysis done? 🛛 🖓 ontain, water nor suite	ies By whom	e? 🖸 Too little	performed on this we	i during the construct time is to compliance	ion dates reported a with Oregon wat	above. All w	ort

OBSGINAL Pile Original and Duplicate with the STATE STATE STATE OF SALEA, OREGON	CREATION WELL State Well No. 18/46-230 (1) IL REPORT MR. CA State Well No. 46-230 (1) OREGON 1236 State Permit No. 4-789
(1) OWNER: Name Kauf TeRAMURA Address ONFARIO ORCI	(11) WELL TESTS: Drawdown is amount water level is lowered below static level Ho How AV Was a pump test made? Wes No If yes, by whom? DRILLING Co Yield: 580 gal./min. with 4/ R. drawdown after 4 hrs.
(2) LOCATION OF WELL: County MALHEUR Owner's number, if any- is is Section T. H. W.M. Bearing and distance from section or subdivision corner	Baller last gal./min. with ft. drawdown after bra. Arteslan flow g.p.m. Date Temperature of water Was a chemical analysis made? Yes No (12) WELL LOG: Diameter of well // inches Depth drilled 9.40 ft. Depth of completed well 9.40 ft. Formation: Describe by color, character, size of material and structure, and structures of oguilers and the kind and wature of the material in each structure penetroided, with a least one waity for each ange of formation. MAXIMITAL FROM TO
) TYPE OF WORK (check): New Well (Despening Despening Abandon Difference in Ram 11. Abandon Difference in Ram 11.	TOPSOIL HARDPANCLAY 2' 10' SANDYCLAY 20 38
(4) PROPOSED USE (check): mestic Industrial Municipal Cable Jetted Jetted Dag Bored	SANG & GRAVEL " 32 50 SANG & GRAVEL " 32 50 SANG ROCK " 50 70 BLACK SANG " 70 71
(6) CASING INSTALLED: Threaded □ Wedded E "Diam. from I to f. Gage 1.280 "Diam. from ft to ft. Gage	BLUE SHALE 100 160 SAND STRIP 160 161 HARD BLUE SHALE 161 220 SANDY SHALE 220 HARD BLUE SHALE 225 340
SIZE of perforations 3/0" in by #" in	
SCREENS: Well screen installed Yes Yes Type Model No. No. Diam. Bot size Bet from St. to St. to Diam. Shot size St from St. to St. to	Work started 4 - 7.3 1858 Completed 5-1 1858
CONSTRUCTION: Was well gravel peoked? I Yes DANO Size of gravel: Gravel placed from ft to ft. Was a surface seal provided? I Yes D'No To what depth? ft. Material used in easl- Did any strate contain unusable water? I Yes D'No Type of water? Depth of strate Diethod of sealing strate off	(13) PUMP: Manufacturers Name A. GUZZ' Type: Alege Well Wirden Q.P. // Well Driller's Statement: This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
(10) WATER LEVELS: Etatic lavel 2.1 St. below land surface Date 5-1-58 Ariestan pressure Ibs. per square luch Date Log Accepted by: [Signed] PULLIMUL Ste May 12, 158	NAME ACCAL PLAN PARAMENTS CONSTRUCTION (Type or print) Address SO HILL CREST PR, Driller's well number [Signed] MAN HARTO ORC [Well Driller's Well number [Signed] MAN HALLBUDAY (Well Driller) License No. 16 Data 5-12 19.58
ALE ADDATED AND A ADDATED AND A ADDATED ADDATE	HUMMA IF MINIMARY)

Application G-17999

NEGENVED MALL	AZARON WELL (Mala)	1.1. 15 4
First Copy with the STATE ENGINEER SALEM, ORECON	ILL REPORT State Well No.	46-112
(1) OWNER: Name C. Ien Hutchinson Address ONTARIC ORC.	(11) WELL TESTS: Drawdown is amount is lowered below static is Was a pump test made? If Yes Dio If yes, by whom Yield: 500 pal./min. with 85 ft. drawdow	vater lovel is vel at
(2) LOCATION OF WELL: County Owner's number, if any- 34 5. W.35 Section 19 T. 18 R. 46 W.M.	" " " Baller test gal./min. with ft. drawdow Artesian flow G.p.m. Date	n efter bra
Bearing and distance from section or subdivision corner	(12) WELL LOG: Diameter of well Depth drilled 435 ft Depth of completed w Formation: Describe by color, character, size of materia	16" inches. ell 435 ft. et and structure, and
	stratum penetrated, with at least one entry for each c MATERIAL	PROM TO
(3) TYPE OF WORK (check): New Well Despening Despening Abendon Abendon Despening Abe	HARD PAN SAND	C 3 3 15 15 17
PROPOSED USE (check): (5) TYPE OF WELL: Domestic Industrial Municipal Irrigation Test Well Other	BLUE CLAY BLUE SAND STRIP BLUE HARD CLAY	38 120 120 121 121 160
(6) CASING INSTALLED: Threaded D Welded D ''	Recluced to 12 at 138 SANDSTRIP	160 162
(7) PERFORATIONS: Perforated? Yes Do Type of perforater used	BLUE CLAY SANG CLAY MIKEd HARd CLAY	10 225
Size of percentions (). In. by // In	Reduced 68 at 315 HARD CLAY SAND STRIP	315 325
(8) SCREENS: Well screen installed Ves No	PeackAled SAM Rock	400 401
Manufacturer's Name Model No Nodel No Slot size Set from fl. to _	BLAC CLAY	-34 161
(9) CONSTRUCTION: Was well gravel packed? Yes No fite of gravel:	(13) PUMP: Menufacturer's Name Reerless	
Was a surface seal provided? (Yes D Ho To what depth?	Type: Well Driller's Sistement: This well was drilled under my jurisdiction	and this report is
Type of water? Dopth of strata Method of sealing strata off (10) WATER LEVELS:	NAME AMAL Hollow	Province print)
Static level // ft. below land surface Date 5 20 6/ Artestan pressure like per square inch Date	Driller's well number (Simed) May, Hallow	aul
(Signed) Date 10	License No Date	8 1061