го:		Applicati	on G	800	3						
FROM		Jen	Woo	dy		Groun	dwater S	Section			
SUBJE		Scenic W	aterway	Interfe	rence E	valuatio	n				
X	YES NO	Ti	ne source	e of appr	opriatio	n is with	in or abo	ove a Sce	enic Wat	erway	
X	YES	U	se the Sc	enic Wa	iterway (condition	(condit	ion 7J)			
	with s distrib	RS 390.83 surface wat pution is processed to the control of the co	er that coorded b	ontribute below. oundwat	es to a Society	cenic Wa	aterway.	The cal	culated i	interfere ater	nce
	Depar use wi	rence with tment is ur Il measura eter of a sco	able to f bly redu	find that ce the su	there is	a prepon	derance	of evide	nce that	the prop	osed
Calcula If interf "unable	ite inter Terence e" optic	ON OF INference as a cannot be con above, the of Evidence	the month alculated us inform	aly fraction I, per crit aing the V	eria in 39	90.839, de	o not fill i	in the tab	le but ch	eck the	
Waterv	vay by	nis permit in the follow the well.	s calcula ring amo	ited to re unts, exp	educe mo pressed a	onthly flo as a prop	ows in th ortion of	the ann	ual cons		cenic use
Monthl Jan	y Fract	ion of Annu Mar	Apr	May	Jse Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1 -00							_			

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS TO: Water Rights Section Date 8/13/2015 FROM: Groundwater Section ___ Jen Woody Reviewer's Name Application G- 18003 SUBJECT: Supersedes review of 3/17/2015 Date of Review(s) PUBLIC INTEREST PRESUMPTION: GROUNDWATER OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation. A. GENERAL INFORMATION: Applicant's Name: Woodburn Organic Farms LLC County: Marion A1. Applicant(s) seek(s) <u>0.49</u> cfs from <u>2</u> well(s) in the <u>Willamette</u> Basin, subbasin Molalla –Pudding River Quad Map: Woodburn A2. Irrigation and temperature control Seasonality: March 1 – October 31 A3. Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid): Applicant's Proposed Location Location, metes and bounds, e.g. Well Logid Proposed Aquifer* Well# Rate(cfs) (T/R-S QQ-Q) 2250' N, 1200' E fr NW cor S 36 **MARI 1762** Sand and Gravel T5S/R1W-16 NW SW 1 0.49 1360' N, 20'E fr SW cor S 16 2 MARI 1813 Sand and Gravel 0.49 T5S/R1W-17 SW NE 120'N, 1120'E fr NW cor Fitzgerald DLC 54 3 4 5 * Alluvium, CRB, Bedrock Well First Well Seal Casing Liner Perforations Well Draw SWL **SWL** Test Well Elev Water Depth Interval Intervals Intervals Or Screens Yield Down ft bls Date Type ft msl ft bls (ft) (ft) (ft) (ft) (ft) (gpm) (ft) 30 03/20/1973 1 165 108 220 0-20 0-215 108-130,153-900 68 Pump 173,181-197,217-219 70 175 60 10/17/1970 280 0-20 0-240 135-160, 190-700 45 Pump 223 Use data from application for proposed wells. A4. Comments: A5. Provisions of the Willamette Basin rules relative to the development, classification and/or management of groundwater hydraulically connected to surface water are, or are not, activated by this application. (Not all basin rules contain such provisions.)

____, ______, _____, _____, ____, tap(s) an aquifer limited by an administrative restriction.

Comments: The aquifer is confined, so 690-502-0240 does not apply.

A6. Well(s) #_

Name of administrative area:

Comments:

Version: 08/15/2003

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

а		
	1.	is over appropriated, ☐ is not over appropriated, or ☒ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
b).	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
C	÷.	will not or will likely to be available within the capacity of the groundwater resource; or
d	i.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. The permit should contain condition #(s) 7C, 7P ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below;
а	۱.	Condition to allow groundwater production from no deeper than ft. below land surface;
b).	Condition to allow groundwater production from no shallower than ft. below land surface;
C		Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
		 Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):
<u>I</u>	The Abou	undwater availability remarks:
1 2 2 2 2 2 2 2 2 2	The About wells Group ast,	wells on this application will likely produce water from the Willamette aquifer (Woodward and Gannett, 1998). It 60 feet of saturated sand and gravel are confined beneath about 100 feet of Willamette Silt in the vicinity of the subject. The Willamette Aquifer is underlain by approximately 1000 feet of the Willamette Confining unit. Individual to the immediate vicinity of this application. MARI 1758, located about 2 miles to the is reasonably stable and located also in the Willamette Aquifer. Another group of wells in Sections 21, 22 and 28 show ar water level stability (see attached hydrograph). This suggests that the resource is generally stable at the current level
1 2 2 2 2 2 2 2 2	The About the Ab	wells on this application will likely produce water from the Willamette aquifer (Woodward and Gannett, 1998). It 60 feet of saturated sand and gravel are confined beneath about 100 feet of Willamette Silt in the vicinity of the subjects. The Willamette Aquifer is underlain by approximately 1000 feet of the Willamette Confining unit. Individual resonably stable and located also in the Willamette Aquifer. Another group of wells in Sections 21, 22 and 28 show ar water level stability (see attached hydrograph). This suggests that the resource is generally stable at the current level
1 <u>A</u> <u>Y</u> <u>Y</u> <u>Q</u> <u>e</u> <u>s</u>	The About the Ab	wells on this application will likely produce water from the Willamette aquifer (Woodward and Gannett, 1998). It 60 feet of saturated sand and gravel are confined beneath about 100 feet of Willamette Silt in the vicinity of the subject. The Willamette Aquifer is underlain by approximately 1000 feet of the Willamette Confining unit. Individual are sparse in the immediate vicinity of this application. MARI 1758, located about 2 miles to the is reasonably stable and located also in the Willamette Aquifer. Another group of wells in Sections 21, 22 and 28 show ar water level stability (see attached hydrograph). This suggests that the resource is generally stable at the current level
1 2 2 2 2 2 2 2 2 2	The About the Ab	wells on this application will likely produce water from the Willamette aquifer (Woodward and Gannett, 1998). It 60 feet of saturated sand and gravel are confined beneath about 100 feet of Willamette Silt in the vicinity of the subject. The Willamette Aquifer is underlain by approximately 1000 feet of the Willamette Confining unit. Individual to the immediate vicinity of this application. MARI 1758, located about 2 miles to the is reasonably stable and located also in the Willamette Aquifer. Another group of wells in Sections 21, 22 and 28 show ar water level stability (see attached hydrograph). This suggests that the resource is generally stable at the current level
1 2 2 2 2 2 2 2 2	The About the Ab	wells on this application will likely produce water from the Willamette aquifer (Woodward and Gannett, 1998). It 60 feet of saturated sand and gravel are confined beneath about 100 feet of Willamette Silt in the vicinity of the subject. The Willamette Aquifer is underlain by approximately 1000 feet of the Willamette Confining unit. Individual to the immediate vicinity of this application. MARI 1758, located about 2 miles to the is reasonably stable and located also in the Willamette Aquifer. Another group of wells in Sections 21, 22 and 28 show ar water level stability (see attached hydrograph). This suggests that the resource is generally stable at the current level
1 2 2 2 2 2 2 2 2 2	The About the Ab	wells on this application will likely produce water from the Willamette aquifer (Woodward and Gannett, 1998). at 60 feet of saturated sand and gravel are confined beneath about 100 feet of Willamette Silt in the vicinity of the subjects. The Willamette Aquifer is underlain by approximately 1000 feet of the Willamette Confining unit. Individual to the immediate vicinity of this application. MARI 1758, located about 2 miles to the is reasonably stable and located also in the Willamette Aquifer. Another group of wells in Sections 21, 22 and 28 show ar water level stability (see attached hydrograph). This suggests that the resource is generally stable at the current level

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Sand and Gravel of the Willamette Aquifer	\boxtimes	
2	Sand and Gravel of the Willamette Aquifer	\boxtimes	
-1		1	

Basis for aquifer confinement evaluation: Well logs and Gannett and Caldwell (1998) report 40 to 60 feet of saturated Willamette Aquifer (sand and gravel of alluvial origin), overlain by 80 to 100 feet of low permeability Willamette Silt. Aquifer test data from the Willamette aquifer suggests storage values consistent with confined aquifers.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
_1	1	Pudding River	135	110	1720		
2	1	Pudding River	115	110	3500		
		- 1		- 1	The Section		

Basis for aquifer hydraulic connection evaluation: Groundwater is coincident with the Pudding River at the given distances, indicating hydraulic connection. There are approximately 100 feet of clay overlying the Willamette Aquifer. This prevents an efficient hydraulic connection to the Pudding River and the unnamed tributary.

Water Availability Basin the well(s) are located within:_	Watershed ID #: 151.	PUDDING R >	MOLALLA R	- AB MILL
CR_				

C3a. 690-09-040 (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			IS73532B	36		67.3		<<25%	\boxtimes
2	1			IS73532B	36		67.3		<<25%	
	-4									

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: The proposed rate (0.49 cfs) triggers PSI because it is greater than 1% of the instream water right on the Pudding River.

These two wells have other groundwater rights associated with them, and a transfer in process (T11984) that adds both wells to both groundwater rights. Under the current water rights (before transfer) MARI 1762 is authorized for 0.76 cfs by Certificate 47188. MARI 1813 is authorized for 1.67 cfs by Certificate 50613. When the additional rate proposed by this application is added, both well rates are above PSI triggers (0.36 cfs). This indicates that no new appropriation is available without triggering PSI by exceeding 1% of the instream water right on the Pudding River with the total authorized rate at each well.

Because the Willamette Silt acts as a resistor to streambed flux, calculated stream depletion using the Hunt 2003 model indicates interference with the Pudding River at 30 days is much less than 25% at both wells.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well	stributed SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well ()	as CFS	70	70	70	70	70	70	70	70	76	70	76	7/6
	nce CFS	472.15.15	7,107	11.11/25		ritte tree a	1600	pretters/n==					71
THICTICIC	iice Cr5		10 20 0 10 10										
Distribu	ıted Well:	S											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2100	METATE	%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS	Trape of the last	REAL PROPERTY.	XV/ HITE	LOCAL III	46/10/11/2	11 11 11		N. C. L.	1777.4	19 195 1-1911	0.41	
Interfere	nce CFS	1.0 03.107		N INTERNA	Market Park	CL 2001 1995			11 (311) 154	N. 1511		90 107 1	
- DE-	Disput Survey	%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	nce CFS			ng 4	tou.		100 M	11 11 11	n in the				
	91 1 1	%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS	15201	1 1/10%	4 , 1	Dy 3:	- crisiste	1100	19		Na H	Tarin -	19	
Interfere	nce CFS								Maria de la constante de la co				
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS		1 - 4.4		C25.	142	- 110					1	
Interfere	nce CFS		1- 100		4	3000			1 1	al bee			
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS				11 11 11 11	-22-6 -				= 1- 1-			
Interfere	nce CFS		A section							- Landson			
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS							1				1,120	
Interfere													

(A) = Total Interf.

Date: 8/13/2015

= 80 % Nat. Q											1	
= 1 % Nat. Q												
) = (A) > (C)	V	√	1	4	1	V	1	V	1	V	1	√
= (A / B) x 100	%	%	%	%	%	%	%	%	%	%	%	
total interferen (D) = highligh Basis for im	nt the check	mark for e	ach month	where (A)	is greater	than (C); (E) = total in	nterference	divided by	y 80% flov	v as percent	tage.
690-09-04 Rights 5	0 (5) (b) Section.	The pote	ential to i	mpair or	detrime	ntally affe	ect the pu	blic intere	est is to b	e determ	ined by th	ne Wa
										ce, and/or	groundw	ater u
under this i ii	permit car The permanal The permanal	n be regul mit should mit should	lated if it i d contain d contain	is found to condition	substant #(s)		fere with s	surface wa	ter:	ce, and/or	r groundw	ater u
under this i ii	permit car The permanal The permanal	n be regul mit should mit should	lated if it i d contain d contain	is found to condition	substant #(s)	ially inter	fere with s	surface wa	ter:	ce, and/or	groundw	ater u
under this i ii	permit car The permanal The permanal	n be regul mit should mit should	lated if it i d contain d contain	is found to condition	substant #(s)	ially inter	fere with s	surface wa	ter:	ce, and/or	groundw	ater u
under this i. ii. ii.	permit car The permanal The permanal	n be regul mit should mit should	lated if it i d contain d contain	is found to condition	substant #(s)	ially inter	fere with s	surface wa	ter:	ce, and/or	r groundw	ater u
under this i. ii. SW / GW Ren References Us Conlon, T.D.,	permit car] The perm] The perm marks and sed:	n be regul mit should mit should I Condition	odcock, E	is found to condition special co	a, N.B., F	isher, B.J.	fere with stated in "Re	marks" be	elow;	nd Hinkle	, S.R., 200	05,
under this i.	permit car The perm The perm The perm marks and wed: Wozniak, hydrology and Caldy	K.C., Wo	odcock, Eillamette	D., Herrera Basin, Or	a, N.B., Fegon: U.S	isher, B.J.	, Morgan, cal Survey	D.S., Lee	K.K., and Investig	nd Hinkle, ations Re	, S.R., 200 port 2005	05. -5168 shingto
under this i ii SW / GW Ren References Us Conlon, T.D., Y Ground-water I Gannett, M.W.	permit car] The perm] The perm marks and sed: Wozniak, hydrology and Caldy al Survey F	K.C., Wo of the Wwell, R., 1	odcock, I illamette and Vacce and Vacce	D., Herrera Basin, Ordalogic fran 1424-A, 3	a, N.B., Fegon: U.S	isher, B.J. S. Geologi	, Morgan, cal Survey	D.S., Lee Scientific	K.K., and Investig	nd Hinkle ations Re m, Orego	S.R., 200 port 2005 n and Was	05. -5168 shingto

6

OWRD water level database, includes reported water levels, accessed 3/17/2015.

Version: 08/01/2014

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.		not appear to meet current well construction standards based upon:	
	a. review of t		
	b. field inspe	ection by	
	c. report of C	CWRE	
	d. other: (spe	ecify)	The Third
D3.	THE WELL const	ruction deficiency or other comment is described as follows:	
D4 [7 D 4 4 4 W W		
D4. [Route to the Well	Construction and Compliance Section for a review of existing well construction.	

G-18003 Woodburn Organic Farms LLC T5S/R1W- Section 16 & 17

Water Availability Tables

Water Availability Analysis

Detailed Reports

PUDDING R > MOLALLA R - AB MILL CR WILLAMETTE BASIN

Water Availability as of 3/17/2015

Watershed ID #: 151 (Map)

Exceedance Level:80%

Date: 3/17/2015 Time: 11:22 AM

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	1,040.00	125.00	915.00	0.00	36.00	879.00
FEB	1,180.00	115.00	1,070.00	0.00	36.00	1,030.00
MAR	1,010.00	79.90	930.00	0.00	36.00	894.00
APR	787.00	55.70	731.00	0.00	36.00	695.00
MAY	425.00	52.70	372.00	0.00	36.00	336.00
JUN	224.00	72.90	151.00	0.00	36.00	115.00
JUL	109.00	113.00	-4.01	0.00	36.00	-40.00
AUG	71.00	93.30	-22.30	0.00	36.00	-58.30
SEP	67.30	54.50	12.80	0.00	36.00	-23.20
OCT	91.60	14.00	77.60	0.00	36.00	41.60
NOV	363.00	48.60	314.00	0.00	36.00	278.00
DEC	957.00	119.00	838.00	0.00	36.00	802.00
ANN	706,000.00	56,900.00	649,000.00	0.00	26,100.00	625,000.00

Version: 08/01/2014

Application G-18003

Date: 8/13/2015

Transient Stream Depletion (Jenkins, 1970; Hunt, 1999, 2003)

Output for S	Output for Stream Depletion, Scenerio 2 (s2): Time pump on (pumping duration) = 180 days												
Days	30	60	90	120	150	180	210	240	270	300	330	360	
JSD	92.8%	94.9%	95.8%	96.4%	96.8%	97.0%	4.5%	2.6%	1.8%	1.3%	1.1%	0.9%	
H SD 1999	0.9%	1.3%	1.6%	1.9%	2.1%	2.3%	1.6%	1.4%	1.2%	1.1%	1.0%	1.0%	
H SD 2003	0.31%	0.31%	0.31%	0.32%	0.32%	0.32%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	
Qw, cfs	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490	
H SD 99, cfs	0.004	0.006	0.008	0.009	0.010	0.011	0.008	0.007	0.006	0.006	0.005	0.005	
H SD 03, cfs	0.002	0.002	0.002	0.002	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	

	Scenario 1	Scenario 2	Scenario 3	Units
Qw	220.00	220.00	220.00	gpm
tpon	180	180	180	
а	3650	1720	1320	
d	220	220	220	ft
K	10	50	100	ft/day
b	60	60	60	ft
Т	600	3000	6000	ft*ft/day
S	0.0003	0.0005	0.003	
Kva	0.01	0.008	0.0004	ft/day
ba	100	100	100	ft
babs	40	40	40	ft
n	0.2	0.2	0.2	
ws	20	20	20	ft
sbc	0.005000	0.004000	0.000200	ft/day
sdf	6.661250	0.493067	0.871200	days
sbf	0.030417	0.002293	0.000044	
t'	0.150122	2.028123	1.147842	
· K'	2.220417	0.078891	0.001162	
epsilon'	0.001500	0.002500	0.015000	
lamda'	0.030417	0.002293	0.000044	
	tpon a d K b T S Kva ba babs n ws sbc sdf sbf t' epsilon'	Qw 220.00 tpon 180 a 3650 d 220 K 10 b 60 T 600 S 0.0003 Kva 0.01 ba 100 babs 40 n 0.2 ws 20 sbc 0.005000 sdf 6.661250 sbf 0.030417 t' 0.150122 K' 2.220417 epsilon' 0.001500	Ow 220.00 220.00 tpon 180 180 a 3650 1720 d 220 220 K 10 50 b 60 60 T 600 3000 S 0.0003 0.0005 Kva 0.01 0.008 ba 100 100 babs 40 40 n 0.2 0.2 ws 20 20 sbc 0.005000 0.004000 sdf 6.661250 0.493067 sbf 0.030417 0.002293 t' 0.150122 2.028123 K' 2.220417 0.078891 epsilon' 0.001500 0.002500	Ow 220.00 220.00 220.00 tpon 180 180 180 a 3650 1720 1320 d 220 220 220 K 10 50 100 b 60 60 60 T 600 3000 6000 S 0.0003 0.0005 0.003 Kva 0.01 0.008 0.0004 ba 100 100 100 babs 40 40 40 n 0.2 0.2 0.2 ws 20 20 20 sbc 0.005000 0.004000 0.000200 sdf 6.661250 0.493067 0.871200 sbf 0.030417 0.002293 0.000044 t' 0.150122 2.028123 1.147842 K' 2.220417 0.078891 0.0011602 epsilon' 0.001500 0.002500 0.015000