PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights S	ection				Date	e <u>l</u>	Novemb	er 18.	, 2015	
FROM	:	Groun	dwater Se	ection			ael J. Thoi	ma					
SUBJE	ECT:	Applic	cation G-	18141			ewer's Name persedes re	eview of		Date	of Rev	view(s)	
DUDU		EDEGE	DDEGL	ADTION	anoin.		.			Date	e or Kev	/iew(s)	
OAR 69 welfare, to deter	90-310-1 , <i>safety a</i> mine wh	30 (1) The nd health ether the	he Departi h as descri presumpti	ment shall p bed in ORS ion is establ	537.525. Dished. OAR	<i>a propose</i> epartment 690-310-	ed groundw staff reviev 140 allows	ater use will on which we groundwate the proposed agency political agency political was also will be a second and	r applicat use be mo	ions unde odified or	r OAÌ condi	R 690-31 tioned to	0-140 meet
A. <u>GE</u>	<u>NERAL</u>	INFO	RMATI(<u>)N</u> : A	pplicant's N	lame:	Lee Holdi	ngs LLC		Cou	nty: _	<u>Linn</u>	
A1.	Applica	ant(s) see	ek(s) <u>2.6</u>	7 cfs from	m <u>2</u>	well((s) in the	Willamet	te				_Basin,
		<u>Calapoo</u>	ia			subb	asin						
A2.	Propose	ed use	Irr	igation (41	10 ac. prin	nary) S	Seasonality:	April 1 – (October 3	31 (213 d	l)		
A3.	Well ar	nd aquife	r data (att	ach and nu	mber logs f	or existin	g wells; ma	ark proposed	l wells as	such und	er log	gid):	
Well	Logi	d	Applicant' Well #	s Propos	sed Aquifer*	Prop Rate		Location (T/R-S QQ		Location, 2250' N.		s and bou E fr NW (
1 2	PROI PROI		1 2		Alluvium Alluvium		1.34 1.34		SESE SESE	1200'N, 60'W of SE cor S35 0'N, 60'W of SE cor S35			
3 4	TRO			73	ina viami	1	5-7	115/03 11 33 1	JEDE .	0 11,	, 00 11	of BL cor c	, , , , , , , , , , , , , , , , , , ,
5													
* Alluvi	um, CRB,	Bedrock											
Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforat Or Scre (ft)	ens Y	Vell ield gpm)	Draw Down (ft)	Test Type
1 2	285 285		5-20 ^a 5-20 ^a		300 300	. ,	. ,		` ′				
	203		3 20		300								
Use data	from app	lication fo	or proposed	wells.									
A4.			oth wells a lon et al., (-	•	ed WT elevat	-				<u>ll</u>
A5. 🛛	manage (Not all Comme	ement of I basin ru ents: <u>The</u>	groundwa les contain proposed	ter hydrauli n such provi l wells are n	cally connectisions.) ot within ½	cted to sur mile of ar	face water ny perennial	ules relative t are, or	are not,	activated so pertine	by th	is applica sin rules	ation.
A6. 🗌	Well(s) Name of) # of admini	, strative ar	, ea:,	,,	,	, ta	up(s) an aquif	er limited	by an adn	ministr	rative res	

Version: 04/20/2015

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

1.	Bas	sed upon available data, I have determined that groundwater* for the proposed use:
	a.	is over appropriated, ⊠ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
	b.	will not <i>or</i> will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
	c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
	d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i.
	a.	Condition to allow groundwater production from no deeper than ft. below land surface;
	b.	Condition to allow groundwater production from no shallower than ft. below land surface;
	c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.
		Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):
	the	bundwater availability remarks: The proposed wells are in an area underlain by thick alluvial fan deposits referred to as Lebanon Fan by Woodward et al., (1998). These deposits are composed of coarse to fine sediments that reach > 140 ft
		k and are considered to be very productive aquifer system within the Willamette Valley. The aquifer is generally onfined to semi-confined in the deeper zones and SWLs (both observed and reported on driller's logs) are typically within
	<u>a 20</u>) ft of land surface and fluctuate seasonally (see Figure 3). Within 2 miles of the proposed POAs there is very little
		mitted groundwater use (see Figure 2) and few, yet large, taxlots imply there are not many domestic wells in the area. The
		kness of these deposits, the overall high transmissivity of them, and sparse development in the area suggest little concern regative impacts of the proposed use.
	011	logative impacts of the proposed use.
	_	

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvial of Lebanon Fan		\boxtimes
2	Alluvial of Lebanon Fan		\boxtimes

Basis for aquifer confinement evaluation: Many of the shallow wells (< 100 ft) in the area show evidence of unconfined conditions as do some deeper wells (although few wells > 150 ft are in the area). Without specific well construction information provided by the applicant (e.g., casing and seal depth) the department assumes minimum 18 ft case and seal and open interval within the upper zones of the aquifer.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulicall Connected? YES NO ASSU	Potentia Subst. Int Assum YES	erfer.
1	1	Calapooia R.	260-280	200-260	31,000			\boxtimes
2	1	Calapooia R.	260-280	200-260	31,000			\boxtimes

Basis for aquifer hydraulic connection evaluation: The proposed POAs lie approximately equidistant from the Calapooia and S Fk Santiam rivers. According to published groundwater elevation maps by Conlon et al. (2005) groundwater flows from the S Fk Santiam River near Lebanon northwest to the Calapooia and Willamette Rivers. Appropriation of water from the applicant's proposed POAs would be intersecting water that would eventually flow into the Calapooia River. Smaller creeks in the immediate area are not perennial.

Water Availability Basin the well(s) are located within: Calapooia R. > Willamette R – AB Mouth (ID# 76)

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

C3b. **690-09-040 (4):** Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: The applicant's proposed POAs are not within 1 mi of perennial surface water.

Application G-18141 Date: 11/18/2015

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (as CFS												
Interfer	ence CFS												
Distrib	uted Well	s											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1	%	%	%	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %
Well Q	as CFS	0	0	0	1.34	1.34	1.34	1.34	1.34	1.34	1.34	0	0
Interfer	ence CFS				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2	1	%	%	%	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %
Well Q	as CFS				1.34	1.34	1.34	1.34	1.34	1.34	1.34	0	0
Interfer	ence CFS				<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	otal Interf.				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
(B) = 80	% Nat. Q	592	650	575	423	234	111	49	26	22.7	29.6	133	499
(C) = 1	% Nat. Q	5.92	6.50	5.75	4.23	2.34	1.11	0.49	0.26	0.23	0.30	1.33	4.99
(D) = ($(\mathbf{A}) > (\mathbf{C})$	\checkmark	√										
$(\mathbf{E}) = (\mathbf{A}$	/B) x 100	%	%	%	<<1%	<<1%	<<1%	<<1%	<<1%	<<1%	<<1%	<<1%	<<1%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation: Impacts to the Calapooia River where evaluated using the Hunt (1999) analytical model for stream depletion by pumping. Ultimately, the high transmissivity and thickness of the aquifer and large distance between the proposed POAs and the river greatly reduces the potential for significant impacts.

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

C5.	☐ If properly conditioned , the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. ☐ The permit should contain condition #(s)
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
C6.	SW / GW Remarks and Conditions: Impacts of pumping from the applicant's proposed POAs will be spread out over a large area and will have minimal impact to perennial surface water reaches.
	References Used:
	Herrera, N. B., Burns, E. R., and T. D. Conlon. 2014. Simulation of Groundwater Flow and the Interaction of Groundwater and
	Surface Water in the Willamette Basin and Central Willamette Subbasin, Oregon. USGS Scientific Investigations Report 2014-
	5136
	Gannet, M. W. and R. R. Caldwell. 1998. Geologic Framework of the Willamette Lowland Aquifer System, Oregon and
	Washington. USGS Professional Paper 1424-A.

Hunt, B. 1999. Unsteady Stream Depletion from Ground Water Pumping. Journal of Hydrologic Engineering, Vol 8(1). 12-19

Page

Woodward, D. G., M. W. Gannett, and J. J. Vaccaro. 1998. *Hydrogeologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington*. USGS Professional Paper 1424-B.

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.	a. review of tb. field inspecc. report of C	not appear to meet current well construction standards based upon: he well log; ction by WRE cify)	;
D3.	THE WELL constr	ruction deficiency or other comment is described as follows:	
D4.	Route to the Well	Construction and Compliance Section for a review of existing well cons	struction.

Figure 1: Water Availability Tables

		CALAPOOIA	A R > WILLAMETT WILLAMETTE B	TE R - AB MOUTH ASIN		
		Wate	r Availability as of	11/18/2015		
Watersl	hed ID #: 76 (Map)				Exceedance	e Level: 80% 🔻
Date: 1	1/18/2015					Time: 11:04 AM
Water	Availability Calculation	on Consumptive Uses a	and Storages Ins	tream Flow Requireme	ents Reser	vations
	W	shed Characteristics				
		Monthly St	reamflow in Cubic	Calculation Feet per Second dance in Acre-Feet		
Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	592.00	2.84	589.00	0.00	20.00	569.00
FEB	650.00	2.78	647.00	0.00	20.00	627.00
MAR	575.00	2.11	573.00	0.00	20.00	553.00
APR	423.00	1.81	421.00	0.00	20.00	401.00
MAY	234.00	6.82	227.00	0.00	20.00	207.00
JUN	111.00	12.50	98.50	0.00	20.00	78.50
JUL	49.00	19.30	29.70	0.00	20.00	9.69
AUG	26.00	13.80	12.20	0.00	20.00	-7.82
SEP	22.70	7.25	15.40	0.00	20.00	-4.55
OCT	29.60	1.38	28.20	0.00	20.00	8.22
NOV	133.00	1.87	131.00	0.00	20.00	111.00
DEC	499.00	2.80	496.00	0.00	20.00	476.00
ANN	404,000.00	4,560.00	399,000.00	0.00	14,500.00	385,000.00

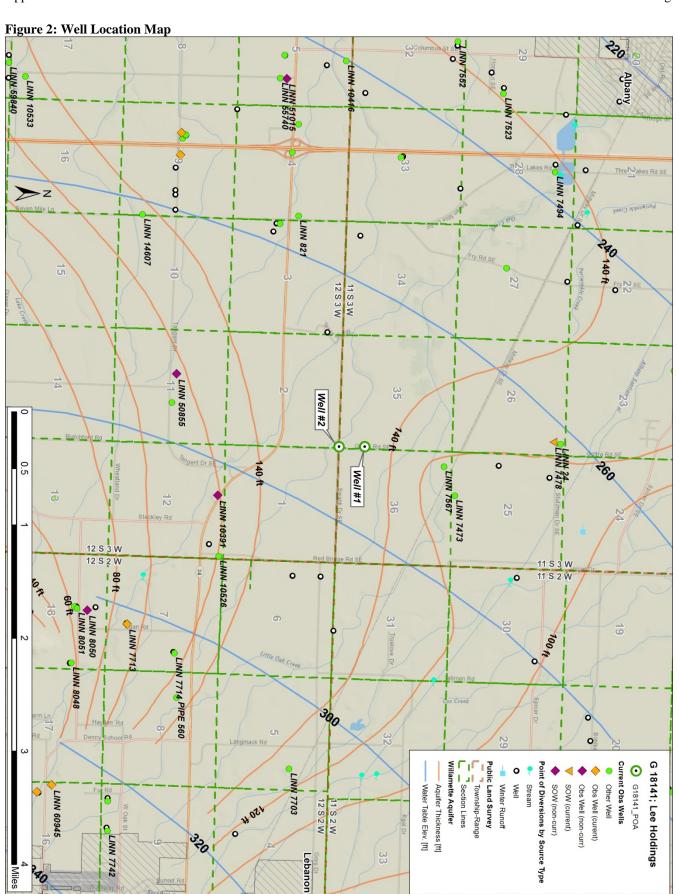
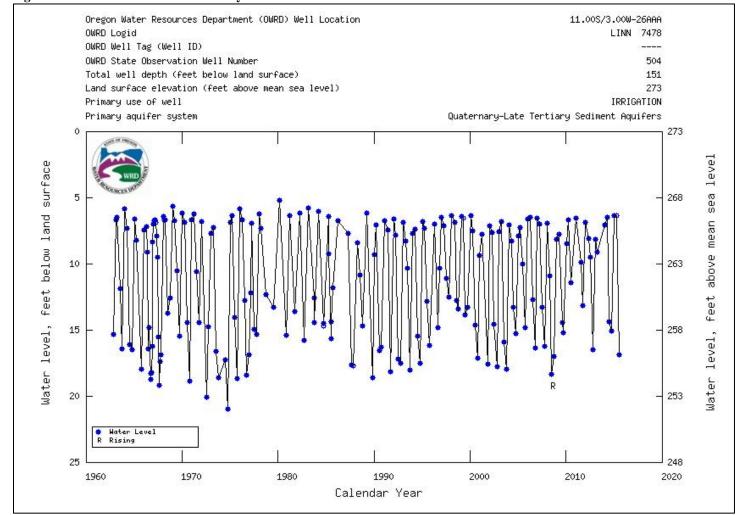



Figure 3: Water-Level Trends in Nearby Observation Well

Results of Hunt-1999 Stream Depletion Model

Output for Hunt	Stream	Depletio	n, Scene	rio 2 (s2):	Time pu	mp on =	214 days	6			
Days	30	60	90	120	150	180	210	240	270	300	330	360
Qw, cfs	1.337	1.337	1.337	1.337	1.337	1.337	1.337	1.337	1.337	1.337	1.337	1.337
Jenk SD s2 %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
Jen SD s2 cfs	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hunt SD s2 %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hunt SD s2 cfs	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Parameters:					Scenario 1		Scenario 2		Scenario 3		Units	
Net steady pum	ping rate	:		Qw		600		600		gpm		
Distance to stre	am			а	32000 32000			32000		ft		
Aquifer hydrauli	c conduc	tivity		K		10 70		200		ft/day		
Aquifer thicknes	S			b	140		140		140		1	
Aquifer transmis	ssivity			Т		1400	9800		28000		ft*ft/day	
Aquifer storage	coefficier	nt		S		0.1	0.1		0.1			
Stream width				ws		100		100		100		ft
Streambed hydr	aulic cor	nductivity		Ks		0.01		0.01		0.01		ft/day
Streambed thick	bs		5		5		5		ft			
Streambed conductance s						0.2	0.2		0.2		ft/day	
Stream depletion	n factor (Jenkins)		sdf	7:	3142.86	10448.98		3657.14		days	
Streambed factor	or (Hunt)			sbf		4.57		0.65			,	

Version: 04/20/2015

8