PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Wate	er Rights S	ection				Da	te	Decer	nber 2,	2015	
FROM	1 :	Grou	ındwater S	ection			ra C Bou						
SUBJ	ECT:	Appl	lication G-	18139			ewer's Name persedes	review of <u>n</u>	<u>a</u>		Date of Re	view(s)	
OAR of welfard to dete	690-310-1 e, safety a rmine wh	30 (1) nd hea ether th	The Depart lth as descr ne presumpt	ibed in ORS ion is establ	resume that 537.525. D ished. OAR	t a proposi epartment . 690-310-	ed ground staff revi 140 allow	lwater use will ew groundwat s the proposed nd agency po	er applica I use be m	tions u odified	nder OAl	R 690-31 tioned to	0-140 meet
A. <u>GE</u>	ENERAL	INF(ORMATIO	<u>ON</u> : A ₁	pplicant's N	lame:	James N	1. Warn		(County: _	Clacka	mas
A1.	Applica	ant(s) s	eek(s) 0.6	cfs from	m <u>1</u>	well	(s) in the	Willame	tte				_Basin,
		Molall	a-Pudding			subb	asin						
A2.	Propose	ed use	domestic d	& irrigation	n 6.219 ac	re Seas	sonality:	Apr-Oct for	r irrigati	on, ye	ar roun	d for do	m.
A3.	Well ar	nd aqui	fer data (att	ach and nu	mber logs f	or existin	ıg wells; r	nark propose	d wells as	s such	under log	gid):	
Well	Logi	d	Applicant Well #	's Propos	ed Aquifer*	Prop Rate		Locatio (T/R-S QC			tion, mete		
1	CLAC 18	8025	1	A	lluvium	0.67 (30		T4S/R1E-15 N	2250' N, 1200' E fr NW cor S 3 1413'N, 27'W fr SW cor S 15				
3													
5													
	ium, CRB,	Bedroc	ck	<u> </u>		1							
Well	Well Elev ft msl	First Wate ft bls	ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Interval	s Intervals (ft)	Perfora Or Sci	reens	Well Yield (gpm)	Draw Down (ft)	Test Type
1	170	37	44	7/16/1992	300	0-20	+1-230	225-285	125-	185	~300		air
Use dat A4.	Comm	ents: <u>V</u>		en used since				crops sold at as been contin				ned the p	roperty
A5.	manage (Not all Comme	ement of basin ents: <u>W</u>	rules contai ell 1 (CLA)	iter hydraulion n such provi	cally connections.) sions.) located with	cted to sur nin ¼-mile	face wate from a su	rules relative r	⊠ are no	t, activa	ated by th	is applic	ation.
A6. [Name of	of admi	nistrative a	rea:				tap(s) an aqui				rative res	striction.

Version: 04/20/2015

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

Ba	sed upon available data, I have determined that groundwater* for the proposed use:
a.	is over appropriated, is not over appropriated, or is cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
b.	\square will not or \square will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. The permit should contain condition #(s) 7C ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below;
a.	Condition to allow groundwater production from no deeper than ft. below land surface;
b.	Condition to allow groundwater production from no shallower than ft. below land surface;
c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
d.	 Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/
	senior water rights, not within the capacity of the resource, etc):
50 tab Wo	oundwater availability remarks: The area around the applicant's well (CLAC 18025) is underlain by approximately 40 feet of Willamette Silt which is underlain by a series of sand and gravel beds interbedded with silts and clays. The water le occurs near land surface in the Willamette Silt, which acts as a regional confining unit (Gannet and Caldwell, 1998, and podward et al., 1998). The Willamette Silt forms a broad terrace. Local streams cut progressively through the terrace until by flow into the Willamette River at an elevation of approximately 55 feet above mean sea level.
Ob	servations from nearby wells (CLAC 12292, CLAC 18443, CLAC 54999, CLAC 55589 and CLAC 56080) indicate
	atively stable long-term trends for alluvial wells in the immediate vicinity of CLAC 18025 (see attached hydrograph).
_	

2

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium	\boxtimes	

Basis for aquifer confinement evaluation: Sand and gravel layers are overlain by 30-60 feet of clay and silt in this area. The static water level reported on the well log for CLAC 18025 is above the water-bearing zone, indicating a confined system.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Conne	llically cted? ASSUMED	Potential for Subst. Interfer. Assumed? YES NO	
1	1	Dove Creek	~160	130- 190	120				\boxtimes

Basis for aquifer hydraulic connection evaluation: General knowledge indicates that groundwater in the alluvial aquifer
flows towards, and discharges into, perennial streams.

Water Availability Basin the well(s) are located within: 69796: Molalla R > Willamette R- at Mouth

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1	\boxtimes		IS69796	100.00		134.00		<25%	\boxtimes

Application G-18139 Date: December 2, 2015

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: Interference at 30 days was estimated using the Hunt 2003 model. The presence of low permeability Willamette Silt between the aquifer and the streambed results in an inefficient connection between the aquifer and the stream, therefore the interference at 30 days is much less than 25%. However, stream depletion will increase over time until all of the pumped water is reduced stream flow.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

	istributed												
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
Distrib	uted Well	l											
Well	SW#	s Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well O	as CFS	70	70	70	70	70	70	70	70	70	70	,,	,,
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well O	as CFS			,,	, ,		, ,	,,	,,		, ,	,,	
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well O	as CFS												
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
(4) =	. 17 . 6												
	otal Interf.												
	% Nat. Q												
(C) = 1	% Nat. Q												
(D) = ((A) > (C)	√	√	√	√	√	√	√	√	√	√	√	√
	/B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

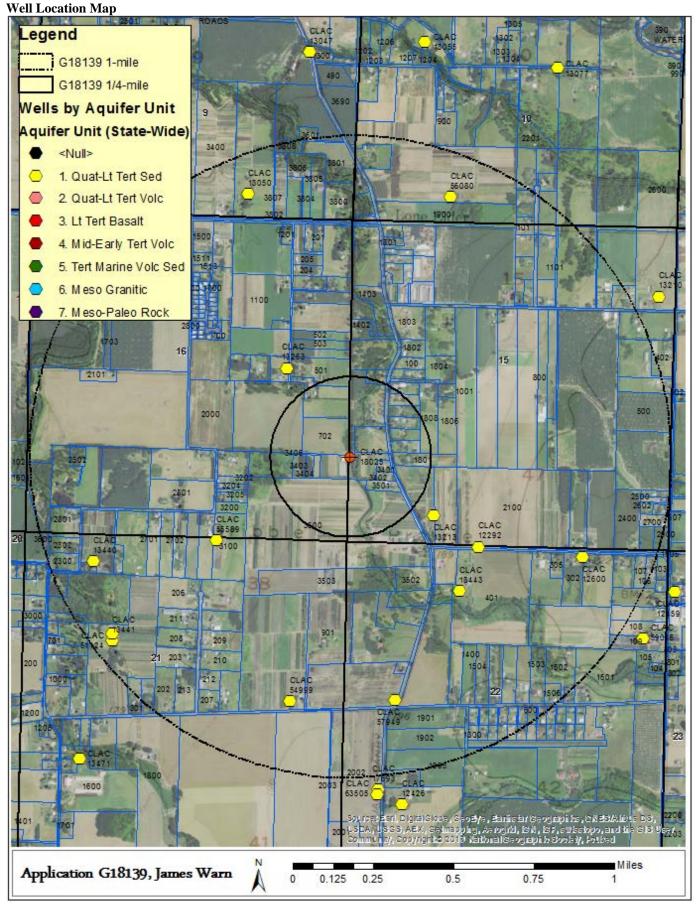
-	
-	
-	
-	
=	
-	
=	
-	
-	
	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
	If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i
	 i. The permit should contain condition #(s) ii. The permit should contain special condition(s) as indicated in "Remarks" below;
	ii. The permit should contain special condition(s) as indicated in Remarks below,
	ii. The permit should contain special condition(s) as indicated in Remarks below,
SV	V / GW Remarks and Conditions:
SV	
Re	W / GW Remarks and Conditions: ferences Used:
Re	ferences Used: nnett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon
Re	W / GW Remarks and Conditions: ferences Used:
Re Ga and	ferences Used: nnett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregonal Washington: U. S. Geological Survey Professional Paper 1424-A.
Re Ga and	ferences Used: nnett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon
Re Ga and Hu Jai	ferences Used: nnett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon Washington: U. S. Geological Survey Professional Paper 1424-A. nt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, mary/February, 2003.
Re Ga and Hu Jan	ferences Used:
Re Ga and Hu Jan	ferences Used: nnett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregond Washington: U. S. Geological Survey Professional Paper 1424-A. nt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, mary/February, 2003.
Re Ga ano Hu Jan	ferences Used: nnett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregonal Washington: U. S. Geological Survey Professional Paper 1424-A. nt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, nuary/February, 2003. oodward, Dennis BG., Gannett, Marshall W., and Vaccaro, John J., 1998 Hydrogeologic Framework of the Willamette wland Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-B.
Re Ga and Hu Jan Wo Lo	ferences Used: nnett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregonal Washington: U. S. Geological Survey Professional Paper 1424-A. nt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, nuary/February, 2003. oodward, Dennis BG., Gannett, Marshall W., and Vaccaro, John J., 1998 Hydrogeologic Framework of the Willamette wland Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-B.
Ree Gaand	ferences Used: Innett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregoral Washington: U. S. Geological Survey Professional Paper 1424-A. Int, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, anary/February, 2003. Interpretation of the Willamette Williamette System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-B. Int, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, anary/February, 2003. Interpretation of the Williamette Williamette Williamette Williamette Williamette Williamette System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-B. Interpretation of the Williamette Williamet

Date: December 2, 2015

5

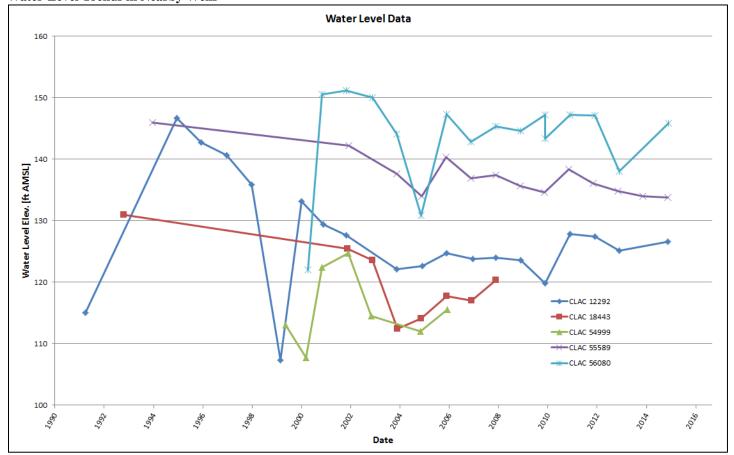
Page

Application G-18139


D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.	a. reviewb. field inc. report	loes not appear to meet current well construction standards based upon: v of the well log; nspection by of CWRE (specify)	;
D3.	THE WELL co	construction deficiency or other comment is described as follows:	
D4.	Route to the W	Well Construction and Compliance Section for a review of existing well construction.	

Water Availability Tables


		DETAILED REPORT	ON THE WATER AVAILA	BILITY CALCULATION	DN			
Watershed ID #: Time: 4:05 PM	69796	MOLALL	A R > WILLAMETTE R - Basin: WILLAMET		Exceedance Level: Date: 11/30/20			
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available		
		Storage is	Monthly values a the annual amount at	re in cfs. : 50% exceedance i	n ac-ft.			
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN	1,870.00 2,010.00 1,830.00 1,530.00 927.00 431.00 204.00 139.00 134.00 188.00 637.00 1,700.00 1,320,000	155.00 145.00 116.00 89.30 99.10 119.00 183.00 154.00 83.30 41.70 79.80 150.00	1,720.00 1,870.00 1,710.00 1,440.00 828.00 312.00 21.10 -15.20 50.70 146.00 557.00 1,550.00 1,240,000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	500.00 500.00 500.00 500.00 500.00 500.00 200.00 100.00 150.00 450.00 500.00 295,000	1,220.00 1,370.00 1,210.00 941.00 328.00 -188.00 -179.00 -115.00 -99.30 -304.00 57.20 1,050.00		

DETAILED REPORT OF INSTREAM REQUIREMENTS													
MOLALLA R > WILLAMETTE R - AT MOUTH vatershed ID #: 69796 Basin: WILLAMETT rime: 4:05 PM Date: 11/30/201													
Status	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	
					Monthly	values	are in (cfs.					
CERTIFICATE	500.0	500.0	500.0	500.0	500.0	500.0	200.0	100.0	150.0	450.0	500.00	500.0	
	500.0	500.0	500.0	500.0	500.0	500.0	200.0	100.0	150.0	450.0	500.0	500.0	
	Status	Status JAN	#: 69796 Status JAN FEB CERTIFICATE 500.0 500.0	#: 69796 Status JAN FEB MAR CERTIFICATE 500.0 500.0 500.0	#: 69796 Status JAN FEB MAR APR CERTIFICATE 500.0 500.0 500.0 500.0	MOLALLA R > WILLAMETTE R #: 69796 Status JAN FEB MAR APR MAY Monthly CERTIFICATE 500.0 500.0 500.0 500.0	#: 69796 Status JAN FEB MAR APR MAY JUN Monthly values CERTIFICATE 500.0 500.0 500.0 500.0 500.0	MOLALLA R > WILLAMETTE R - AT MOUTH #: 69796 Status JAN FEB MAR APR MAY JUN JUL Monthly values are in a CERTIFICATE 500.0 500.0 500.0 500.0 500.0 200.0	#: 69796 MOLALLA R > WILLAMETTE R - AT MOUTH Status JAN FEB MAR APR MAY JUN JUL AUG	MOLALLA R > WILLAMETTE R - AT MOUTH #: 69796 Status JAN FEB MAR APR MAY JUN JUL AUG SEP Monthly values are in cfs. CERTIFICATE 500.0 500.0 500.0 500.0 500.0 200.0 100.0 150.0	MOLALLA R > WILLAMETTE R - AT MOUTH #: 69796 Status JAN FEB MAR APR MAY JUN JUL AUG SEP OCT Monthly values are in cfs. CERTIFICATE 500.0 500.0 500.0 500.0 500.0 200.0 100.0 150.0 450.0	MOLALLA R > WILLAMETTE R - AT MOUTH #: 69796 Status JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV Monthly values are in cfs. CERTIFICATE 500.0 500.0 500.0 500.0 500.0 200.0 100.0 150.0 450.0 500.00	

Application G-18139 Date: December 2, 2015

Water-Level Trends in Nearby Wells

Transient Stream Depletion

		cam De _l		sient S	tream [Depletio	on (Jen	kins, 19	70; Hu	nt, 1999	, 2003)		-	
	1 000						G18139	to Dove	Creek				_	
	1.000												-	
nge)	0.900	!	1						-+				_	
	0.000	†												
	0.800													
	0.700	_	_					-	-+	-+	_	_		
5 8	0.600													
Stream depletion (fraction of well discharge)	0.000												_	
	0.500	_							-	_			_	
	0.400												_	
	0.400												-	
	0.300	+							_				_	
	0.200													
									_					
	0.100		 											
	0.000			-					_					
			30 (30 9	90 12	20 15	0 180	0 210	240	270	300	330	360	
	_	Time since start of pumping (days)												
	_	•— Jen⊦	ins s2 -	— н	int 1999	s2	Hunt 2	003 s1 -	— Ни	nt 2003 s	2	Hunt 20	03 s3 -	
	_													
Outpu	t for S	tream D	enletio	s Scen	ario 2 (e	21.	Time n	ımp on	(pumpii	an durat	tion) - 2	10 daye		
Days	11101 3	30	60	90	120	150	180	210	240	270	300	330	360	
J SD		99.1%	99.4%	99.5%	99.6%	99.6%	99.6%	99.7%	99.7%	0.6%	0.3%	0.2%	0.2%	
H SD 1	999	8.1%	11.1%	13.4%	15.2%	16.8%	18.2%	19.4%	20.5%	13.5%	11.3%	10.0%	9.0%	
H SD 2	2003	2.68%	2.73%	2.77%	2.82%	2.87%	2.92%	2.97%	3.01%	0.38%	0.38%	0.37%	0.37%	
Qw, cf	fs	0.670	0.670	0.670	0.670	0.670	0.670	0.670	0.670	0.670	0.670	0.670	0.670	
H SD 9		0.054	0.075	0.090	0.102	0.113	0.122	0.130	0.137	0.090	0.076	0.067	0.060	
H SD 0)3, cfs	0.018	0.018	0.019	0.019	0.019	0.020	0.020	0.020	0.003	0.003	0.003	0.002	
Parameters:					0	Scenario 1		Scenario 2		Scenario 3		Units		
Net steady pumping rate of well Time pump on (pumping duration)				Qw	0.67		0.67 240		0.67 240		cfs days			
Perpendicular from well to stream				tpon a	240 120		120		120		days ft			
Well depth					d	285		285		285		ft		
Aquifer hydraulic conductivity					K		50	50		50		ft/day		
Aquifer saturated thickness						40			501	40		ft		
Aquife					b				40		40		II.	
Aquife	r satur r transi	ated thick missivity	ness		b T				_		40 2000	f	t*ft/day	
Aquife Aquife	r satur r transi r storat	ated thick missivity tivity or s	ness pecific y		b T S		2000 0.001		2000 0.001		2000 0.001	1	t*ft/day	
Aquife Aquife Aquitar	r satur r transi r storat rd verti	ated thick missivity tivity or s cal hydra	ness pecific y ulic cond		b T S Kva		2000 0.001 0.01		2000 0.001 0.01		2000 0.001 0.01	f	ft/day	
Aquife Aquife Aquitar Aquitar	er satura er transi er storat rd verti rd satu	ated thick missivity tivity or s cal hydra rated thic	pecific y ulic cond	ductivity	b T S Kva ba		2000 0.001 0.01 40		2000 0.001 0.01 40		2000 0.001 0.01 40	f	ft/day	
Aquife Aquife Aquitar Aquitar Aquitar	er satura er transi er storat rd verti rd satu rd thick	ated thick missivity tivity or s cal hydra rated thick ness bel	pecific y ulic cond	ductivity	b T S Kva ba babs		40 2000 0.001 0.01 40 5		40 2000 0.001 0.01 40 5		2000 0.001 0.01 40 5	1	t*ft/day	
Aquife Aquife Aquitar Aquitar Aquitar Aquitar	er satura er transi er storat rd verti rd satu rd thick rd poro	ated thick missivity tivity or s cal hydra rated thick ness bel	pecific y ulic cond	ductivity	b T S Kva ba babs		40 2000 0.001 0.01 40 5 0.2		40 2000 0.001 0.01 40 5 0.2		2000 0.001 0.01 40 5 0.2	1	ft/day ft/day ft ft	
Aquife Aquitar Aquitar Aquitar Aquitar Aquitar Stream	er satura er transi er storat rd verti rd satu rd thick rd poro n width	ated thick missivity tivity or s cal hydra rated thick ness bell sity	pecific y nulic cond ckness ow strea	ductivity	b T S Kva ba babs n ws	0	40 2000 0.001 0.01 40 5 0.2 20	0	40 2000 0.001 0.01 40 5 0.2 20	0	2000 0.001 0.01 40 5 0.2 20	1	ft/day ft/day ft ft	
Aquife Aquitar Aquitar Aquitar Aquitar Stream Stream	er satura er transi er storal er storal erd verti rd satu rd thick rd poro n width nbed co	ated thick missivity tivity or s cal hydra rated thic ness bel sity	pecific y sulic cond ckness ow strea	ductivity	b T S Kva ba babs n ws sbc		40 2000 0.001 0.01 40 5 0.2 20		40 2000 0.001 0.01 40 5 0.2 20		2000 0.001 0.01 40 5 0.2 20	1	ft/day ft ft ft ft ft ft	
Aquife Aquitar Aquitar Aquitar Aquitar Aquitar Stream Stream	er satura er transa er storal er storal erd verti erd satu erd thick erd poro en width enbed co en deplet	ated thick missivity tivity or s cal hydra rated thic ness bel sity	pecific y sulic cond ckness ow strea	ductivity	b T S Kva ba babs n ws sbc sdf	0	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200	0	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200	0	2000 0.001 0.01 40 5 0.2 20 .040000 .007200	1	ft/day ft/day ft ft	
Aquife Aquitar Aquitar Aquitar Aquitar Stream Stream Stream Stream	er satura er transa er storal er storal er verti erd satu erd thick erd poro en width enbed co en deplet enbed fa	ated thick missivity or s cal hydra rated thic ness bel sity anductand ion facto ctor	pecific y aulic cond kness ow strea ce (lambo	ductivity im da)	b T S Kva ba babs n ws sbc	0	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200	0	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200	0	2000 0.001 0.01 40 5 0.2 20 .040000 .007200	1	ft/day ft ft ft ft ft ft	
Aquife Aquitar Aquitar Aquitar Aquitar Stream Stream Stream Input #	er satura er transi er storat rd verti rd satu rd thick rd poro n width nbed co n deplet nbed fa 1 for H	ated thick missivity tivity or s cal hydra rated thic ness bel sity	pecific y aulic cond ckness ow strea ce (lambo	ductivity im da)	b T S Kva ba babs n ws sbc sdf sbf	0 0 138	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200	0 0 138	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200	0 0 138	2000 0.001 0.01 40 5 0.2 20 .040000 .007200	1	ft/day ft ft ft ft ft ft	
Aquife Aquitar Aquitar Aquitar Aquitar Stream Stream Stream Stream input #	er satura er transa er storal er storal rd verti rd satu rd thick rd poro n width nbed co n deplet nbed fa the for H to for H	ated thick missivity or s cal hydra rated thic ness bel sity inductant ion facto ctor unt's Q_4	pecific y nulic cond ckness ow strea ce (lambor	ductivity im da)	b T S Kva ba babs n ws sbc sdf sbf t'	0 0 138 0	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200 .002400 .888889	0 0 138 0	40 2000 0.001 0.01 40 5 0.2 20 .040000 .007200 .002400 .888889	0 0 138 0	2000 0.001 0.01 40 5 0.2 20 .040000 .007200 .002400 .888889		ft/day ft ft ft ft ft ft	