PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights S	ection					Date	·	Janua	ry 29, 2	016	
FROM		Groun	dwater So	ection			ra C Bou		er					
SUBJE	CT:	Applio	cation G-	18186			ewer's Nam persedes		ew of <u>na</u>			Date of Re	view(s)	
OAR 69 welfare, to determ	90-310-1 safety and mine when	30 (1) The state of the state o	he Departi h as descri presumpti	MPTION; ment shall pa bed in ORS on is establi ew is based	resume that 537.525. D shed. OAR	a propose epartment 690-310-	ed ground staff revi 140 allow	iew g	groundwater e proposed u	r applica use be m	tions u odified	nder OAI l or condi	R 690-31 tioned to	0-140 meet
A. <u>GEN</u>	NERAL	INFO	RMATI(<u>)N</u> : A _l	oplicant's N	lame:	David S	athe	er		(County: _	Clacka	mas
A1.	Applica	nt(s) see	ek(s) 0.6	8 cfs from	n <u>2</u>	well(s) in the	1	Willamett	e				_Basin,
		Molalla-	Pudding			subba	asin (Yod	ler qu	uad)					
A2.	Propose	d use <u>N</u>	ursery U	se (irr & a	g) 27.3 ac	<u>re</u> Seas	onality:	yea	r round					
A3.	Well an	d aquife	r data (att	ach and nui	mber logs f	or existin	g wells; ı	nark	k proposed	wells as	such ı	ınder log	gid):	
Well	Logic	l	Applicant' Well #	S Propose	ed Aquifer*	Propo Rate			Location (T/R-S QQ-			tion, mete ' N, 1200'		
1 2	CLAC 57 CLAC 61		Well 3 Well 4		luvium luvium	See b			5S/1E-9 NW-1 5S/1E-9 NW-1			180' S, 50' I 90' S, 1309		
3 4														
5 * Alluviu	ım, CRB,	Bedrock												
Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date 11/9/2001	Well Depth (ft) 337	Seal Interval (ft) 0-123	Casing Interval (ft) +2-337	S	Liner Intervals (ft)	Perfora Or Scr (ft) 146-167	eens , 251-	Well Yield (gpm) 625	Draw Down (ft)	Test Type P
2	199	13	56	11/8/2005	166	0-90	+1.4-133		113.5- 134.5, 139.5-148, 153-166	263, 279 307-3 134.5-1 148-1	39.5,	25	32	P
Use data	from app	lication f	or proposed	wells.					<u> </u>					
A4.	reported listed as under (stacking	on the 1/40 cf Certification of 0.47	well logs - s/acre, for ate 90556. cfs from 0	in the case of 27.3 acres the Certificate 9 for an undis	of Well 3 (0 his comes to his review of 0556 and and of the control of the contro	CLAC 574 0 0.68 cfs of evaluates: n undistrib	41) the ration 305 gp	ate is m). <mark>'</mark> from	well 3 (CL Well 3 (CL	AC 574 AC 574 AC 574	al requ <mark>41) is a</mark> 41) to a	ested rate authorize account f	c (request d for 0.4 or water	ted rate 7 cfs
A5. 🔀	manage (Not all Comme	ment of basin ru nts: <u>Th</u>	iles contair	ter hydraulion such provi swells are	cally connections.)	eted to sur n ½ mile fr	face wate	er	al surface w	are not	, activa	ated by th	is applica	ation.
A6. 🗌	Name o	f admini	istrative ar	,,,								administ	rative res	triction.

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

a. □ is over appropriated, □ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130; b. □ will not or □ will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130; c. □ will not or □ will likely to be available within the capacity of the groundwater resource; or d. □ will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. □ The permit should contain condition #(s)	I	Base	d upon available data , I have determined that <u>groundwater</u> * for the proposed use:
is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130; c. will not or will likely to be available within the capacity of the groundwater resource; or d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. The permit should be conditioned as indicated in item 2 below. iii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below; a. Condition to allow groundwater production from no deeper than ft. below land surface; b. Condition to allow groundwater production from no shallower than ft. below land surface; c. Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface; d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury as related to water availability that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc): Groundwater availability remarks: In this location, low permeability Willamette Silts is found from land surface to a depth of 20-40 feet (Gannett and Caldwell, 1998). The water table occurs near land surface within the Willamette Silt. A thick (>1000 feet) sequence of mostly fine cone of depression from the beds of sand and gravel occurs beneath the Willamette Silt. Productive sand and gravel beds occur throughout the sequence separated by layers of lower permeability silts and clays (Conlon et al., 2005) which progressively confine deeper water-bearing zones (Woodward et al., 1998). Because the produc	а	ì.	period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation
d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:	t) .	
i. The permit should contain condition #(s) 7Ñ. 7T ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below; a. Condition to allow groundwater production from no deeper than	C	.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
iii. The permit should contain special condition(s) as indicated in item 3 below; a. Condition to allow groundwater production from no deeper than	Ċ	1.	i. The permit should contain condition #(s) 7N, 7T
b. Condition to allow groundwater production from no shallower than			
c. Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. and ft. below land surface; d. Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc): Groundwater availability remarks: In this location, low permeability Willamette Silts is found from land surface to a depth of 20-40 feet (Gannett and Caldwell, 1998). The water table occurs near land surface within the Willamette Silt. A thick (>1000 feet) sequence of mostly fine grained alluvium with thin beds of sand and gravel occurs beneath the Willamette Silt. Productive sand and gravel beds occur throughout the sequence separated by layers of lower permeability silts and clays (Conlon et al., 2005) which progressively confine deeper water-bearing zones (Woodward et al., 1998). Because the productive sand and gravel beds are confined, the cone of depression from the wells will spread over a broad area and interact with multiple streams. The interbedded, finegrained layers beneath the streams will decrease the efficiency of the groundwater/surface water connections. Observations from nearby wells indicate relatively stable long-term trends for alluvial wells locally (see composite hydrograph below). However, except for CLAC 70824, the water levels in nearby wells are measured in the spring as part of permit conditions. Water level measurements from State Observation Well 44 (CLAC 13431, located ~4 miles to the north) indicate that the seasonal fluctuation in the alluvial aquifer may be increasing, at least in that portion	a	ì.	Condition to allow groundwater production from no deeper thanft. below land surface;
d.	t) .	Condition to allow groundwater production from no shallower than ft. below land surface;
to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc): Groundwater availability remarks: In this location, low permeability Willamette Silts is found from land surface to a depth of 20-40 feet (Gannett and Caldwell, 1998). The water table occurs near land surface within the Willamette Silt. A thick (>1000 feet) sequence of mostly fine grained alluvium with thin beds of sand and gravel occurs beneath the Willamette Silt. Productive sand and gravel beds occur throughout the sequence separated by layers of lower permeability silts and clays (Conlon et al., 2005) which progressively confine deeper water-bearing zones (Woodward et al., 1998). Because the productive sand and gravel beds are confined, the cone of depression from the wells will spread over a broad area and interact with multiple streams. The interbedded, finegrained layers beneath the streams will decrease the efficiency of the groundwater/surface water connections. Observations from nearby wells indicate relatively stable long-term trends for alluvial wells locally (see composite hydrograph below). However, except for CLAC 70824, the water levels in nearby wells are measured in the spring as part of permit conditions. Water level measurements from State Observation Well 44 (CLAC 13431, located ~4 miles to the north) indicate that the seasonal fluctuation in the alluvial aquifer may be increasing, at least in that portion of the valley (see hydrograph below). In the spring of 2015, OWRD started collecting quarterly water level measurements at CLAC 70824. Over time there will be sufficient measurements to determine the seasonal pattern in the vicinity of CLAC 70824. Increased	C	: .	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
In this location, low permeability Willamette Silts is found from land surface to a depth of 20-40 feet (Gannett and Caldwell, 1998). The water table occurs near land surface within the Willamette Silt. A thick (>1000 feet) sequence of mostly fine grained alluvium with thin beds of sand and gravel occurs beneath the Willamette Silt. Productive sand and gravel beds occur throughout the sequence separated by layers of lower permeability silts and clays (Conlon et al., 2005) which progressively confine deeper water-bearing zones (Woodward et al., 1998). Because the productive sand and gravel beds are confined, the cone of depression from the wells will spread over a broad area and interact with multiple streams. The interbedded, fine-grained layers beneath the streams will decrease the efficiency of the groundwater/surface water connections. Observations from nearby wells indicate relatively stable long-term trends for alluvial wells locally (see composite hydrograph below). However, except for CLAC 70824, the water levels in nearby wells are measured in the spring as part of permit conditions. Water level measurements from State Observation Well 44 (CLAC 13431, located ~4 miles to the north) indicate that the seasonal fluctuation in the alluvial aquifer may be increasing, at least in that portion of the valley (see hydrograph below). In the spring of 2015, OWRD started collecting quarterly water level measurements at CLAC 70824. Over time there will be sufficient measurements to determine the seasonal pattern in the vicinity of CLAC 70824. Increased	ď	1.	to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/
In this location, low permeability Willamette Silts is found from land surface to a depth of 20-40 feet (Gannett and Caldwell, 1998). The water table occurs near land surface within the Willamette Silt. A thick (>1000 feet) sequence of mostly fine grained alluvium with thin beds of sand and gravel occurs beneath the Willamette Silt. Productive sand and gravel beds occur throughout the sequence separated by layers of lower permeability silts and clays (Conlon et al., 2005) which progressively confine deeper water-bearing zones (Woodward et al., 1998). Because the productive sand and gravel beds are confined, the cone of depression from the wells will spread over a broad area and interact with multiple streams. The interbedded, fine-grained layers beneath the streams will decrease the efficiency of the groundwater/surface water connections. Observations from nearby wells indicate relatively stable long-term trends for alluvial wells locally (see composite hydrograph below). However, except for CLAC 70824, the water levels in nearby wells are measured in the spring as part of permit conditions. Water level measurements from State Observation Well 44 (CLAC 13431, located ~4 miles to the north) indicate that the seasonal fluctuation in the alluvial aquifer may be increasing, at least in that portion of the valley (see hydrograph below). In the spring of 2015, OWRD started collecting quarterly water level measurements at CLAC 70824. Over time there will be sufficient measurements to determine the seasonal pattern in the vicinity of CLAC 70824. Increased			
hydrograph below). However, except for CLAC 70824, the water levels in nearby wells are measured in the spring as part of permit conditions. Water level measurements from State Observation Well 44 (CLAC 13431, located ~4 miles to the north) indicate that the seasonal fluctuation in the alluvial aquifer may be increasing, at least in that portion of the valley (see hydrograph below). In the spring of 2015, OWRD started collecting quarterly water level measurements at CLAC 70824. Over time there will be sufficient measurements to determine the seasonal pattern in the vicinity of CLAC 70824. Increased	<u>I</u> <u>1</u> <u>2</u> <u>c</u>	n th 1998 grain hrou confi	is location, low permeability Willamette Silts is found from land surface to a depth of 20-40 feet (Gannett and Caldwell,). The water table occurs near land surface within the Willamette Silt. A thick (>1000 feet) sequence of mostly fine ed alluvium with thin beds of sand and gravel occurs beneath the Willamette Silt. Productive sand and gravel beds occur ighout the sequence separated by layers of lower permeability silts and clays (Conlon et al., 2005) which progressively ne deeper water-bearing zones (Woodward et al., 1998). Because the productive sand and gravel beds are confined, the of depression from the wells will spread over a broad area and interact with multiple streams. The interbedded, fine-
permit conditions. Water level measurements from State Observation Well 44 (CLAC 13431, located ~4 miles to the north) indicate that the seasonal fluctuation in the alluvial aquifer may be increasing, at least in that portion of the valley (see hydrograph below). In the spring of 2015, OWRD started collecting quarterly water level measurements at CLAC 70824. Over time there will be sufficient measurements to determine the seasonal pattern in the vicinity of CLAC 70824. Increased			
Over time there will be sufficient measurements to determine the seasonal pattern in the vicinity of CLAC 70824. Increased	i	oerm ndic	it conditions. Water level measurements from State Observation Well 44 (CLAC 13431, located ~4 miles to the north) ate that the seasonal fluctuation in the alluvial aquifer may be increasing, at least in that portion of the valley (see
groundwater development in the area indicates a need for additional water-level monitoring (7N) if this permit is issued.	(Över	time there will be sufficient measurements to determine the seasonal pattern in the vicinity of CLAC 70824. Increased
	٤	grou	ndwater development in the area indicates a need for additional water-level monitoring (7N) if this permit is issued.
	_		

2

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium	\boxtimes	
2	Alluvium	\boxtimes	

Basis for aquifer confinement evaluation: The well logs for CLAC 57441, CLAC 61783 and nearby wells indicate that upon completion, static water levels are above the water-bearing zones to which the wells are open (shallow water-bearing zones were identified and the associated static water levels are listed on the well logs, but upon completion the static water levels were different – indicating a satisfactory seal of the shallow water-bearing zones).

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
1	1	Un-named trib. To Bear Ck	~150	147-210	1,700		
	2	Cedar Creek	~150	144-197	4,310		
	3	Rock Creek	~150	112-115	5,120		
2	1	Un-named trib. To Bear Ck	~150	147-210	1,475		
	2	Cedar Creek	~150	144-197	3,610		
	3	Rock Creek	~150	112-115	6,080		

Basis for aquifer hydraulic connection evaluation: The elevation of the water table (Conlon et al., 2005) is above the elevation of nearby streams within one mile of the applicant's well. Water table maps in the area (Conlon et al., 2005 and Woodward et al., 1998) indicate that groundwater in the area of the wells discharge to nearby streams. Although these two wells are constructed so they produce water from deeper productive layers, we consider the entire sedimentary package here to be one aquifer.

Water Availability Basin the well(s) are located within: 151: PUDDING R> MOLALLA R- AB MILL CR

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			-			67.30	\square	2.1%	\boxtimes
	2			-	-		67.30		<2.1%	\boxtimes
	3			-	-		67.30		<2.1%	\boxtimes
2	1			-	-		67.30		2.5%	\boxtimes
	2			-	-		67.30		<2.5%	\boxtimes
	3			•	-		67.30		<2.5%	\boxtimes

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

	117							
SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments:

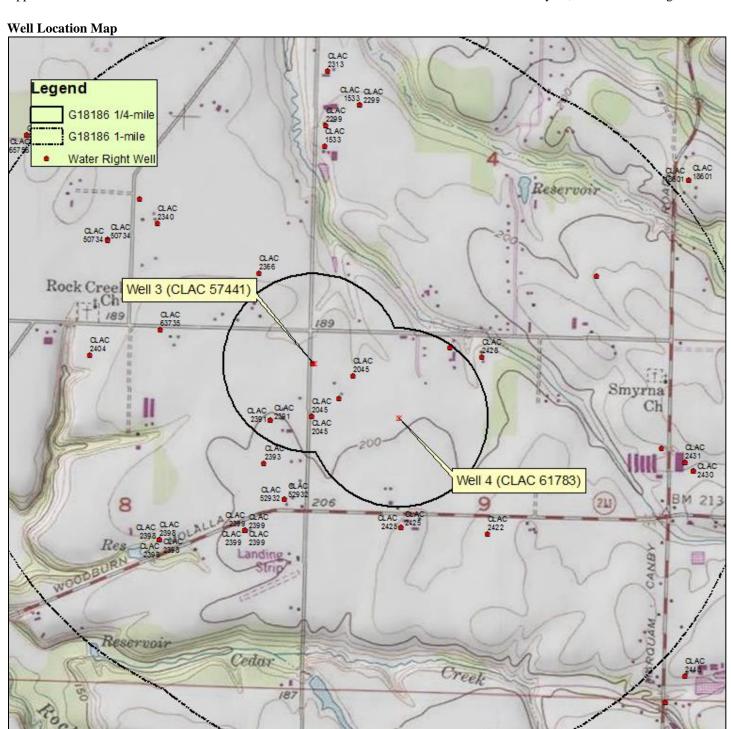
Stream depletion at 30 days was estimated using the Hunt 2003 model. The presence of low-permeability interbedded silt and clay layers beneath the streams results in an inefficient connection between the productive water bearing zones and the streams. Therefore, stream depletion at 30 days of much less than 25%. However, stream depletion will increase over time until all of the pumped water is balanced by reduced stream flow. The second unnamed tributary to Bear Creek and Cedar Creek are both similar in elevation and further from the wells, therefore transient stream depletion from the wells will be less than the impacts at the first unnamed tributary which was modeled.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
Dietrib	outed Wel	le.			-								
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
*******	5 11 11	%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS	70	70	70	70	70	70	70	70	70	70	70	70
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
	Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
(A) = T	otal Interf.												
	% Nat. Q												
$(\mathbf{C}) = 1$	% Nat. Q												

(D) = (A) > (C)	√	√	√	√	√	√	√	√	√	√	√	√
$(E) = (A / B) \times 100$	%	%	%	%	%	%	%	%	%	%	%	%
(Λ) = total interference	on or CEC.	$(\mathbf{R}) - \mathbf{W} \mathbf{A}$	R colculate	ad notural t	Town at 200	avcood a	c CES: (C	-10% of a	poloulotod r	natural flow	7 at 80% av	cood as

	(D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.
	Basis for impact evaluation:
'4b.	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Wat Rights Section.
5. 🗆	If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. ☐ The permit should contain condition #(s)
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
_ _ _	
_ _ _ _	
- - - -	
	accountries of the state of the
	eferences Used: pplication file: G-18186, and nearby G-16418, G-16640, G-16595, and G-17461.
<u>A</u>	pplication file: G-18186, and nearby G-16418, G-16640, G-16595, and G-17461. onlon, T.D., Wozniak, K.C., Woodcock., D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005.
<u>A</u> ; <u>Co</u> <u>G</u> ;	pplication file: G-18186, and nearby G-16418, G-16640, G-16595, and G-17461. conlon, T.D., Wozniak, K.C., Woodcock., D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005. round-Water Hydrology of the Willamette Basin, Oregon: U.S. Geological Survey, Scientific Investigations Report 2005-516
A: Co G: an	pplication file: G-18186, and nearby G-16418, G-16640, G-16595, and G-17461. onlon, T.D., Wozniak, K.C., Woodcock., D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005. round-Water Hydrology of the Willamette Basin, Oregon: U.S. Geological Survey, Scientific Investigations Report 2005-516 annett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon
Ai Co Gi an Hi Ja	pplication file: G-18186, and nearby G-16418, G-16640, G-16595, and G-17461. conlon, T.D., Wozniak, K.C., Woodcock., D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005. round-Water Hydrology of the Willamette Basin, Oregon: U.S. Geological Survey, Scientific Investigations Report 2005-516 annett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon Washington: U.S. Geological Survey Professional Paper 1424-A. unt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, nuary/February, 2003.
Gan Hi	pplication file: G-18186, and nearby G-16418, G-16640, G-16595, and G-17461. onlon, T.D., Wozniak, K.C., Woodcock., D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005. round-Water Hydrology of the Willamette Basin, Oregon: U.S. Geological Survey, Scientific Investigations Report 2005-516 annett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregod Washington: U. S. Geological Survey Professional Paper 1424-A. unt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering,
A Cc G G an H Ja	pplication file: G-18186, and nearby G-16418, G-16640, G-16595, and G-17461. conlon, T.D., Wozniak, K.C., Woodcock., D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005. round-Water Hydrology of the Willamette Basin, Oregon: U.S. Geological Survey, Scientific Investigations Report 2005-516 annett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon Washington: U.S. Geological Survey Professional Paper 1424-A. unt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, nuary/February, 2003. Toodward, Dennis BG., Gannett, Marshall W., and Vaccaro, John J., 1998 Hydrogeologic Framework of the Willamette


D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.	a. review ofb. field inspc. report of	not appear to meet current well construction standards based upon the well log; ection by	; ;
D3.	THE WELL cons	truction deficiency or other comment is described as follows:	
D4. [Route to the Wel	Construction and Compliance Section for a review of existing we	ll construction.

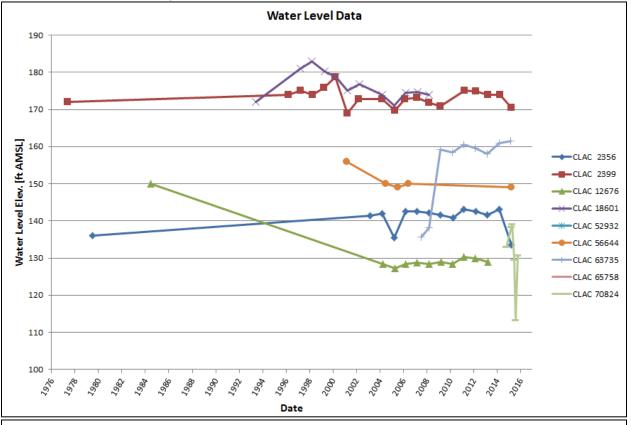
Water Availability Tables

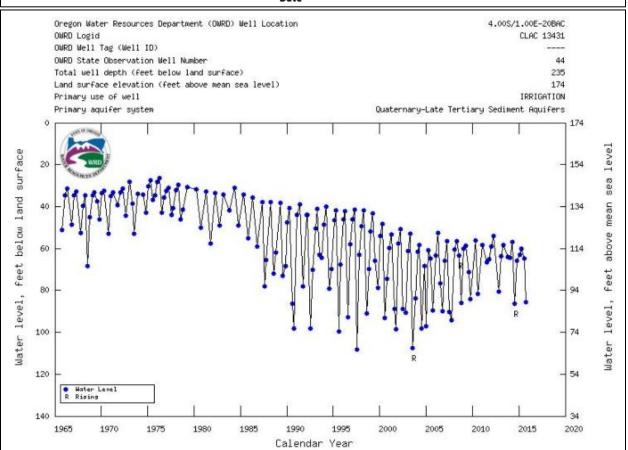
		DETAILED REPORT	ON THE WATER AVAILA	BILITY CALCULATIO	N	
Watershed ID # Time: 2:57 PM	: 151	PUDDII		Exceedance Level: 80 Date: 01/27/2016		
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is 1	Monthly values a the annual amount at	re in cfs. : 50% exceedance i	n ac-ft.	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1,040.00 1,180.00 1,010.00 787.00 425.00 224.00 109.00 71.00 67.30 91.60 363.00 957.00	125.00 115.00 79.70 55.60 52.50 72.90 113.00 93.30 54.50 14.00 48.80 119.00	915.00 1,070.00 930.00 731.00 372.00 151.00 -4.01 -22.30 12.80 77.60 314.00 838.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00	879.00 1,030.00 894.00 695.00 336.00 115.00 -40.00 -58.30 -23.20 41.60 278.00 802.00
ANN	706,000	56,900	649,000	0	26,100	625,000

Version: 04/20/2015

0.125

0.25

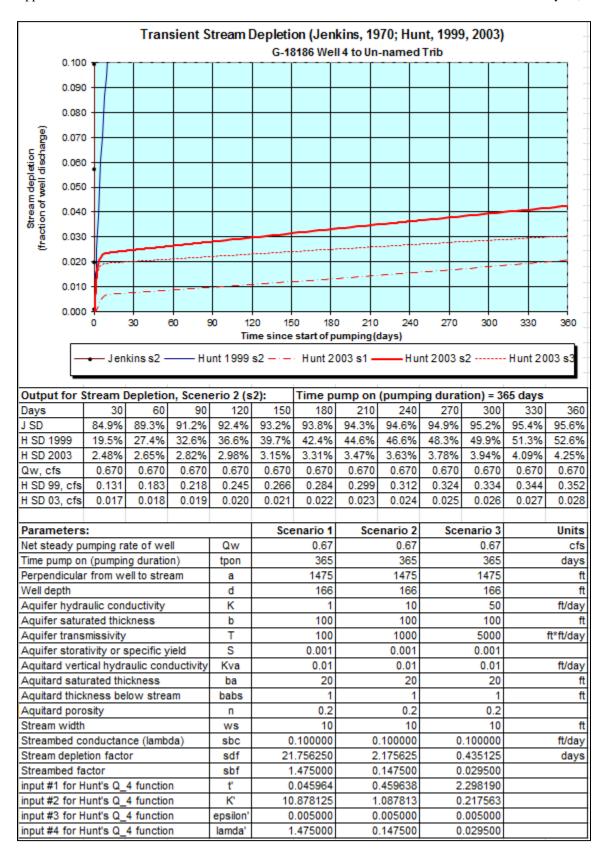

0.5


0.75

G-18186, Dave Sather

Miles

Water-Level Trends in Nearby Wells



Date: January 29, 2016

9

Stream Depletion Model Results

			Tran	sient S	tream [Depleti	on (Jen	kins, 1	970; Hu	ınt, 1999	9, 2003)	
	0.400					G-18	3186 We	II 3 to Ur	n-name	diTrib			
	0.100		T	T	Ι				T				-
	0.090	+											
													-
	0.080	+							$\overline{}$		-		
(eg	0.070												
ا ق	0.070												
±8 ±8	0.080	+1									-+		_
8 8	0.050	П											
E	0.050												
Stream depletion tion of well discha	0.040	+							-+		-+		
Stream depletion (fraction of well discharge)	0.000	1									-		
Ē.	0.030	1											
	0.020	<u> </u>											
	0.010	1					+					-	
	0.000	,											
	0.000	Ö	30	80 9	90 12	20 15	0 18	0 21	0 240	270	300	330	380
Time since start of pumping (days)													
- Jenkins s2 — Hunt 1999 s2 Hunt 2003 s1 — Hunt 2003 s2 Hunt 2003 s3												003 s3	
Tulk 1000 GZ Halk 2000 GZ Halk 2000 GZ													
	Output for Stream Depletion, Scenerio 2 (s2): Time pump on (pumping duration) = 365 days												
_	t for S									ng duration) = 3			
Days		30	60	90			180	210	_			_	360
J SD	200	82.6%	87.7%	89.9%	91.3%	92.2%	92.9%	93.4%	_	_	94.5%	_	94.9%
H SD 19	$\overline{}$	18.8%	26.7%	32.0%	35.9%	39.1%	41.8%	44.1%	_		49.4%		52.1%
H SD 20	-	2.12%	2.28%	2.44%	2.59%	2.74%	2.89%	3.04%		_	3.49%	_	3.77%
Qw, cf H SD 99	$\overline{}$	1.140 0.214	1.140 0.304	1.140 0.364	1.140 0.410	1.140 0.446	1.140 0.476	1.140 0.502	_	_	1.140 0.563		1.140 0.594
H SD 03		0.024	0.026	0.028	0.030	0.031	0.033	0.035	_	_	0.040		0.043
11 30 0.	J, CIS	0.024	0.020	0.020	0.030	0.031	0.055	0.055	0.030	0.030	0.040	0.041	0.043
Param	eters					Sce	enario 1	Sc	enario 2	Sce	enario 3		Units
			ate of we	II .	Qw	300	1.14	30	1.14	_	1.14		cfs
			g duratio		tpon		365		365	_	365	_	days
	_		ell to stre	-	а		1700		1700	_	1700	_	ft
Well de					d		337		337	·	337		ft
	•	ulic cond	ductivity		К		1		10		50		ft/day
		ated thic			b		100		100		100		ft
		missivity			Т		100		1000		5000		ft*ft/day
			specific y		S		0.001		0.001		0.001		
			aulic con	ductivity	Kva		0.01		0.01		0.01	_	ft/day
		rated thic			ba		20		20		20	_	ft
			low strea	am	babs		1		1		1		ft
	Aquitard porosity						0.2		0.2		0.2		
	Stream width				ws	_	10		10		10	_	ft
	Streambed conductance (lambda) Stream depletion factor				sbc		.100000		0.100000		.100000		ft/day
			or		sdf		3,900000		2.890000		.578000		days
Stream			A formation	-	sbf		.700000		0.170000		.034000		
			4 functio		ť K'		.034602		0.346021		.730104		
			4 functio		epsilon'	14.450000 0.005000							
	put #3 for Hunt's Q_4 function put #4 for Hunt's Q_4 function						.700000		0.170000		.034000		
INDUIT 774	_ IOI =				lamda'		., 00000	,			.007000		

