Groundwater Application Review Summary Form

Application # G- 18539
GW Reviewer Jac Kempo / Jen Woody Date Review Completed: 11/20/2017
Summary of GW Availability and Injury Review:
[] Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.
Summary of Potential for Substantial Interference Review:
There is the potential for substantial interference per Section C of the attached review form.
Summary of Well Construction Assessment:
[] The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO Nov. 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,											
TO:				- 18:			_				
FROM: GW: Jac Kemper / Jen Wa (Reviewer's Name)								_			
SUBJI	ECT: S	cenic W	Vaterwa	y Inter	ference	Evalua	ation				
	YES NO	The source of appropriation is within or above a Scenic Waterway									
	YES Use the Scenic Waterway condition (Condition 7J) NO										
	Per ORS 390.835, the Groundwater Section is able to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below.										
	Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway.										
Calculat calculat	DISTRIBUTION OF INTERFERENCE Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.										
Watery	way by		owing an	mounts			ly flows proporti				Scenic use by
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1142 6			The same of								

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights Se	ection				Date	Date _11/28/2017								
FROM	[:	Groun	ndwater Se	ction		Joe K	emper/Jen	Woody									
CLIDIE	CT	A 1*		10520			ewer's Name	avian of M									
SUBJE	ECT:	Appli	cation G-	18539		Suj	perseaes r	eview of NA	4	Date of Re	eview(s)						
										Date of Ne	(6)						
					GROUNI												
								vater use will o									
								w groundwate									
to deter	mine who	ether the	This revie	on is establ	ished. OAR	-090-310 able infor	140 allows	the proposed d agency poli	use be modificies in place	ed or cond	moned to	neet					
the pres	sumption	Ciliciia.	This revie	w is baseu	upon avan	able illioi	mation an	u agency pon	cies in place	at the time	c of cvan	iation.					
A. <u>GE</u>	NERAL	INFO	RMATIO	<u>N</u> : A	pplicant's N	lame: <u>Day</u>	yton Natui	al Meats LL	C/Reg Kedo	<u>lie</u> C	ounty: Y	amhill					
A1.	Applica	ant(s) se	ek(s) <u>0.11</u>	cfs fro	m <u>1</u>	well((s) in the _	Willamette				_ Basin,					
		Yamhill	River			subb	asin										
A2.	Propose	ed use _	Con	nmercial		Seas	sonality: _	Year-Round									
A3.	Well ar	nd aquife	er data (atta	ich and nu	mber logs f	or existin	g wells; m	ark proposed	wells as suc	h under lo	gid):						
Well	Logid Applicant's Proposed Aquifer*				Prop		Location		ocation, mete								
1	Proposed 1 Alluvium			Rate(cfs) (T/R-S QQ-Q 0.11 4S/3W-18 SW-1													
2	11000	,,,,										,					
3 4						-											
5				_						* ,							
* Alluvi	um, CRB,	Bedrock				-											
	Well	First			Well	Seal	Casing	Liner	Perforations	s Well	Draw						
Well	Elev	Water	SWL	SWL	Depth	Interval	Intervals	Intervals	Or Screens		Down	Test					
	ft msl	ft bls	ft bls	Date	(ft)	(ft)	(ft)	(ft)	(ft)	(gpm)	(ft)	Туре					
1	150	NA		NA	125	0-30	0-125	NA	90-125	40	NA	NA					
	6	1: .:															
Use data	a from app	olication 1	for proposed	wells.													
A4.	Comm	ents: A	pplication i	nap indicat	es POU and	POA are	in TRS 4S	/3W-18 SW o	f NW, but tru	e location i	s SW of	NE.					
A5.	Provis	ions of	the Willam	ette	aallu aamma	atad ta aum	Basin	rules relative t	o the develor	oment, class	sification	and/or					
			groundwat ules contair			cted to sur	race water	□ are, or ⊵	are not, act	ivated by ti	nis applic	ation.					
						ile from a	perennial	surface water	body, howey	er it will lik	elv draw	from a					
								not apply.									
۸. 🗆	XX - U(-)	. "															
A6. 📙	Name o	of admin	istrative are	,		,	, t	ap(s) an aquif	er iimited by	an adminis	trative res	striction.					

Version: 04/20/2015

Date: 11/20/2017

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

B1.	Bas	sed upon available data, I have determined that groundwater* for the proposed use:
	a.	is over appropriated, ⊠ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
	b.	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
	c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
	d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i.
B2.	a.	Condition to allow groundwater production from no deeper than ft. below land surface;
	b.	Condition to allow groundwater production from no shallower than ft. below land surface;
	c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.
		Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):
В3.	Yar sedi grav leve leak Figu	bundwater availability remarks: The proposed POA is located on a terrace approximately 75 feet above the adjacent mhill River. The terrace consists of a thick sequence of predominately fine-grained sediments. The upper 50-100 feet of iments are presumably Willamette Silt (Woodward and others, 1998). Thin (5-20 feet) beds of water producing sands and wels are observed within this sediment package at depths greater than 75 feet. According to observed SWLs (static water els) and published water table maps, the water table occurs at shallow depths within the Willamette Silt, which acts as a key confining layer for productive sands and gravel at depth (Conlon and others, 2005). Long term water level trends (see ure 2) do not show clear evidence of decline as result of over appropriation. Considering the confined conditions and low age capacity of water wearing zones, medium water use reporting and water-level measurement conditions are prudent to tect senior groundwater rights.

Application G-18539 Date: 11/20/2017 Page 3

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium	\boxtimes	

Basis for aquifer confinement evaluation: Published geologic maps indicate the Willamette Silt is approximately 80 feet thick in this area and overlie water bearing zones (Woodward et al., 1998). Adjacent well logs report water bearing zones below 70 feet BLS and static water levels at approximately 40 ft BLS (see YAMH 5357 & YAMH 5324), indicating the aquifer is more confined than unconfined.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)		lydraulically Connected? NO ASSUMED	Potentia Subst. In Assum YES	terfer. ed? NO
1	1	Yamhill River	~100	80	305	\boxtimes			\boxtimes
1	2	Unnamed Stream	~100	115	1050	\boxtimes			

Basis for aquifer hydraulic connection evaluation: Published water table maps and static water level measurements indicate groundwater flows towards and discharges into the Yamhill River (Woodward et al., 1998). The proposed seal is 0-30 feet, leaving the well open from 30 to 124 feet below land surface. Static water levels in nearby wells are coincident with the Yamhill River, indicating hydraulic connection. Given the proximity to the Yamhill River, this review estimates full impact at the Yamhill River.

Water Availability Basin the well(s) are located within: 30200801 (YAMHILL R> WILLAMETTE R- AT MOUTH)

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1	\boxtimes		IS73547A	31.7		45.2		11%	\boxtimes
1	2	\boxtimes		NA	NA				0.2%	\boxtimes
				,						

Date: 11/20/2017

C3b. **690-09-040 (4):** Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
	\dashv							
Comments:								

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
D: 4-1	uted Well							**********					
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
****	5 ** "	%	%	%	%	%	%	%	%	%	%	%	%
Well C	as CFS	70	70	70	70	70	70			70	70	70	,,,
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
	ence CFS	7											
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
	as CFS												
Interfere	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
	as CFS												14
Interfer	ence CFS												
(A) = To	tal Interf.												
	% Nat. Q												
	% Nat. Q												
(0) = 1	70 Ital. Q												
(D) = ($(\mathbf{A}) > (\mathbf{C})$	V	√	V	1	*	4	V	4	V	V	V	
$(\mathbf{E}) = (\mathbf{A})$	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

Application G-18539

Date: 11/20/2017

Page 5

(A) = total interference as CFS: (B) = WAB calculated natural flow at 80% exceed, as CFS: (C) = 1% of calculated natural flow at 80% exceed, as

).	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Wat Rights Section.
	 ☐ If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. ☐ The permit should contain condition #(s)
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
\ \(\frac{1}{2} \)	SW / GW Remarks and Conditions: Although the Yamhill River incises through most of the Willamette Silt here, adjacent well logs suggests that several layers of silt/clay lie between the streambed (70-80 ft amsl) and water bearing zones (~50 ft amsl). Thus, stream depletion was estimated using the Hunt 2003 analytical model. Using parameters that maximize potential depletic (see Figure 4), depletion of the Yamhill River was <25% after 30 days of pumping. Note that the requested rate is 0.11 cfs and requested volume is 26 AF. Pumping at the constant rate would take 119 days to reach 26 AF. If use is evenly distributed across given year, a pumping rate of 0.036 cfs would reach the requested 26 AF. Both scenarios were modeled.
-	
-	
-	References Used:
	Conlon, T.D., Wozniak, K.C., Woodcock, D., Herrera, N.B., Fisher, B.J., Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Ground-water hydrology of the Willamette Basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2005-5168.
Ī	Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, 2003.

Application G-18539

Date: 11/20/2017

Page

6

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #: NA	Logid: _	PROPOSED	
D2.	a. review of the wellb. field inspection byc. report of CWRE	l log; y	well construction standards based upon:	
	d.			
D3.	THE WELL construction	deficiency or other co	comment is described as follows:	
D4.	Route to the Well Consti	uction and Compliance	nce Section for a review of existing well construction.	

Date: 11/20/2017 Application G-18539 Page

Figure 1 - Water Availability Tables

YAMHILL R > WILLAMETTE R - AT MOUTH WILLAMETTE BASIN

Water Availability as of 11/14/2017

Watershed ID #: 30200801 (Map)

Date: 11/14/2017

Exceedance Level: 80% •

Time: 12:09 PM

Water Availability Calculation Consumptive Uses and Storages Instream Flow Requirements

Reservations

Water Rights

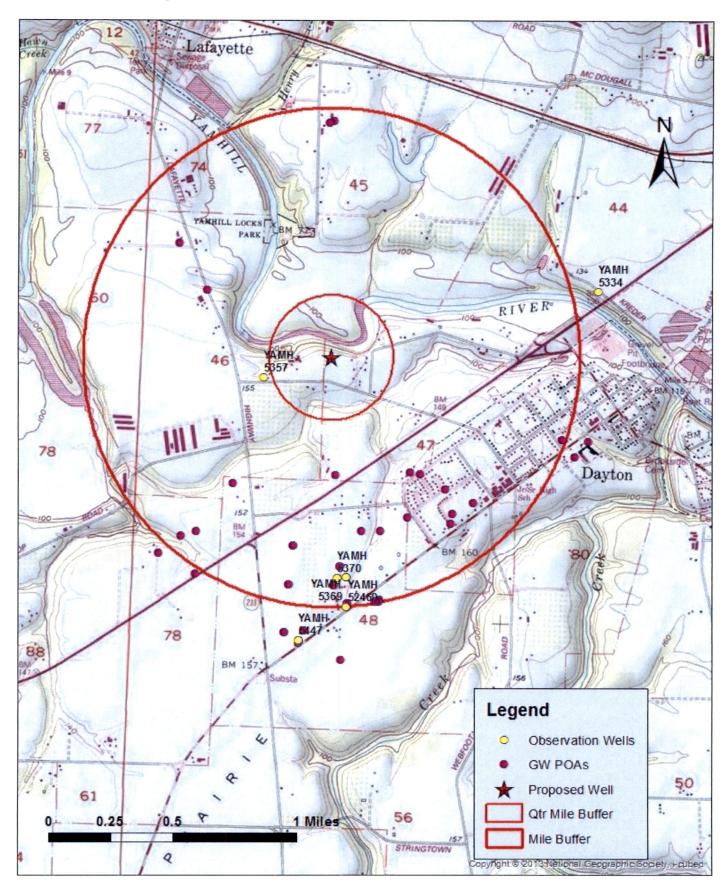
Watershed Characteristics

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	1,840.00	68.30	1,770.00	0.00	31.70	1,740.00
FEB	2,070.00	66 10	2,000.00	0.00	31.70	1,970.00
MAR	1,760.00	41.80	1,720.00	0.00	31.70	1,690.00
APR	1,060.00	49.90	1,010.00	0.00	31.70	978.00
MAY	523.00	66.50	456.00	0.00	31.70	425.00
JUN	232.00	88.60	143.00	0.00	31.70	112.00
JUL	108.00	112.00	-3.96	0.00	31.70	-35.70
AUG	66.90	99.50	-32.60	0.00	31.70	-64.30
SEP	56.50	64.40	-7.95	0.00	31.70	-39.60
OCT	72.50	17.00	55.50	0.00	31 70	23.80
NOV	462.00	38.70	423.00	0.00	31.70	392.00
DEC	1,670.00	65.10	1,600.00	0.00	31.70	1,570.00
ANN	1,180,000.00	47,000.00	1,130,000.00	0.00	23,000.00	1,110,000.00

Detailed Report of Instream Flow Requirements


Instream Flow Requirements in Cubic Feet per Second

Application #	Status	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
IS73547A	CERTIFICATE	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70
IS73548A	CERTIFICATE	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50
Maximum		31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70	31.70

Version: 04/20/2015

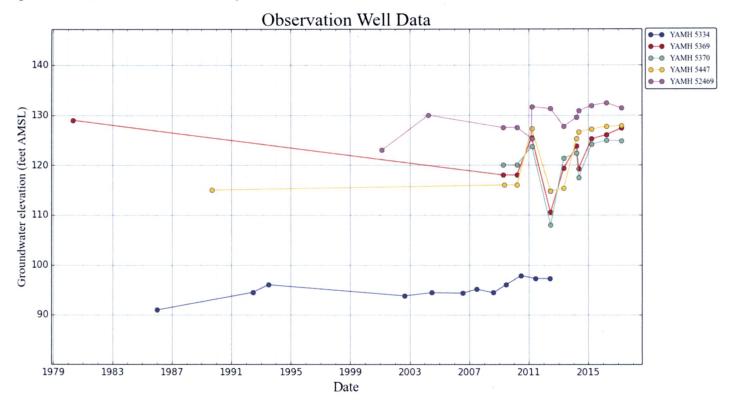
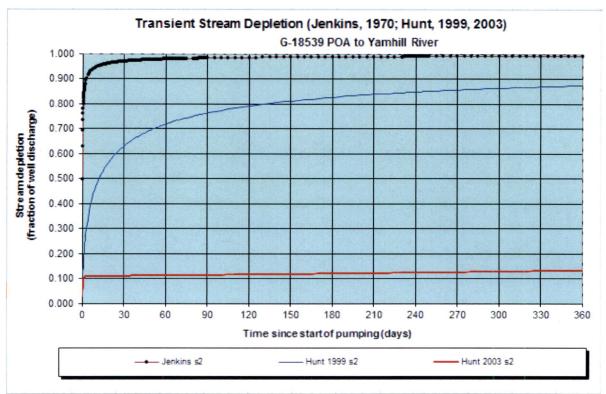

Date: 11/20/2017

Figure 2 -Well Location Map

Page

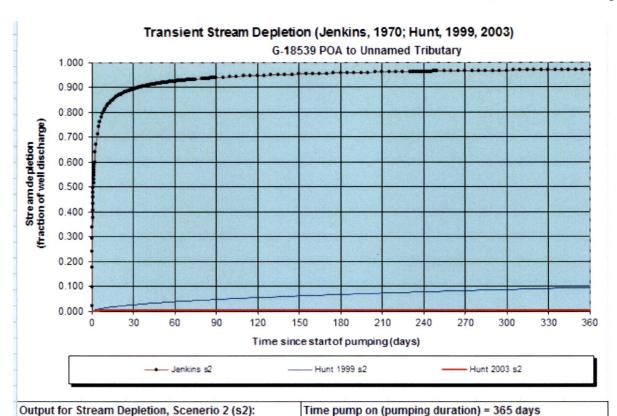

Figure 3 – Water-Level Trends in Nearby Wells

10

Date: 11/20/2017

Figure 4 – Stream Depletion Model Outputs

Output for Stream Depletion, Scenerio 2 (s2):						Time pump on (pumping duration) = 365 days							
Days	30	60	90	120	150	180	210	240	270	300	330	360	
JSD	96.9%	97.8%	98.2%	98.4%	98.6%	98.7%	98.8%	98.9%	99.0%	99.0%	99.1%	99.1%	
H SD 1999	63.0%	71.8%	76.2%	79.1%	81.1%	82.6%	83.8%	84.8%	85.6%	86.3%	86.9%	87.4%	
H SD 2003	11.11%	11.27%	11.44%	11.61%	11.79%	11.97%	12.17%	12.38%	12.60%	12.83%	13.08%	13.34%	
Qw, cfs	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	
H SD 99, cfs	0.023	0.026	0.027	0.028	0.029	0.030	0.030	0.031	0.031	0.031	0.031	0.031	
H SD 03, cfs	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	


	Scenario 1	Scenario 2	Scenario 3	Units
Qw	0.04	0.04	0.04	cfs
tpon	365	365	365	days
а	305	305	305	ft
d	125	125	125	ft
K	10	10	10	ft/day
b	5	10	20	ft
T	50	100	200	ft*ft/day
S	0.0001	0.0001	0.0001	
Kva	0.005	0.005	0.005	ft/day
ba	25	30	40	ft
babs	5	10	20	ft
n	0.2	0.2	0.2	
WS	100	100	100	ft
sbc	0.100000	0.050000	0.025000	ft/day
sdf	0.186050	0.093025	0.046513	days
sbf	0.610000	0.152500	0.038125	
ť	5.374899	10.749798	21.499597	
K'	0.372100	0.155042	0.058141	
epsilon'	0.000500	0.000500	0.000500	
lamda'	0.610000	0.152500	0.038125	
	tpon a d K b T S Kva ba babs n ws sbc sdf t K' epsilon'	Qw 0.04 tpon 365 a 305 d 125 K 10 b 5 T 50 S 0.0001 Kva 0.005 ba 25 babs 5 n 0.2 ws 100 sbc 0.100000 sdf 0.186050 sbf 0.610000 t 5.374899 K' 0.372100 epsilon' 0.000500	Qw 0.04 0.04 tpon 365 365 a 305 305 d 125 125 K 10 10 b 5 10 T 50 100 S 0.0001 0.0001 Kva 0.005 0.005 ba 25 30 babs 5 10 n 0.2 0.2 ws 100 100 sbc 0.100000 0.050000 sdf 0.186050 0.093025 sbf 0.610000 0.152500 t 5.374899 10.749798 K' 0.372100 0.155042 epsilon' 0.000500 0.000500	Qw 0.04 0.04 0.04 tpon 365 365 365 a 305 305 305 d 125 125 125 K 10 10 10 b 5 10 20 T 50 100 200 S 0.0001 0.0001 0.0001 Kva 0.005 0.005 0.005 ba 25 30 40 babs 5 10 20 m 0.2 0.2 0.2 ws 100 100 100 sbc 0.100000 0.050000 0.025000 sdf 0.186050 0.093025 0.046513 sbf 0.610000 0.152500 0.038125 t' 5.374899 10.749798 21.499597 K' 0.372100 0.155042 0.058141 epsilon' 0.000500 0.000500 0.000500

Days

30

60

Date: 11/20/2017

90

120

150

JSD	89.2%	92.4%	93.8%	94.6%	95.2%	95.6%	95.9%	96.2%	96.4%	96.6%	96.7%	96.9%
H SD 1999	2.5%	3.7%	4.7%	5.4%	6.1%	6.7%	7.2%	7.7%	8.2%	8.6%	9.0%	9.4%
H SD 2003	0.19%	0.20%	0.20%	0.20%	0.20%	0.21%	0.21%	0.21%	0.21%	0.22%	0.22%	0.22%
Qw, cfs	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110
H SD 99, cfs	0.003	0.004	0.005	0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.010	0.010
H SD 03, cfs	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Parameters	:				Sce	enario 1	Scenario 2		Scenario 3		Units	
Net steady p	umping I	rate of we	ell	Qw		0.11	0.11		0.11		cfs	
Time pump	on (pump	oing dura	tion)	tpon		365	365		365		days	
Perpendicul	ar from w	ell to stre	eam	а		1050	1050		1050		ft	
Well depth				d	125		125		125		ft	
Aquifer hydraulic conductivity			K	1		10		50		ft/day		
Aquifer saturated thickness			b		10	10		10		ft		
Aquifer transmissivity			T		10	100		500		ft*ft/day		
Aquifer storativity or specific yield		S		0.0001		0.0001		0.0001				
Aquitard vert	ical hydra	aulic con	ductivity	Kva		0.01		0.005		0.001		ft/day
Aquitard satu	urated thi	ckness		ba		55		55		55		
Aquitard thic	kness be	low stre	am	babs	50		50		50		ft	
Aquitard por	Aquitard porosity			n	0.2		0.2		0.2			
Stream widtl	Stream width			WS	10		10		10		ft	
Streambed conductance (lambda)		sbc	0.002000		0.001000		0.000200		ft/day			
Stream depletion factor		sdf	11.025000		1.102500		0.220500		days			
Streambed factor		sbf	0.210000		0.010500		0.000420		1			
input #1 for Hunt's Q_4 function		ť	0.090703		0.907029		4.535147		1			
input #2 for Hunt's Q_4 function		K'	20.045455		1.002273		0.040091					
input #3 for I	input #3 for Hunt's Q_4 function eps		epsilon'	0.000500		0.000500		0.000500)		
input #4 for I	input #4 for Hunt's Q_4 function		lamda'	0	210000	0	.010500	0.000420				

180 210

240

270

300