PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Wate	er Rights S	ection		Date <u>May 15, 2015</u>								
FROM:		Grou	ındwater S	ection			ra C. Bo		er					
SUBJE	CT:	Appl	ication LL	- 1582		Reviewer's Name Supersedes review of Date of Review(s)								
OAR 69 welfare, to determ	00-310-1 safety and mine when	30 (1) <i>nd hea</i> ether th	The Depart lth as descr ne presumpt	MPTION; ment shall p ibed in ORS ion is estable ew is based	resume that 537.525. D ished. OAR	<i>a propose</i> epartment 690-310-	ed ground staff revi 140 allow	iew gr	roundwate proposed	r applica use be m	tions u odified	nder OAI l or condi	R 690-31 tioned to	0-140 meet
A. <u>GEN</u>	NERAL	INF	<u>ORMATIO</u>	<u>ON</u> : A ₁	pplicant's N	Vame:	Josh Ne	lson			(County: _	Linn	
A1.	Applica	nt(s) s	eek(s) <u>0.1</u>	11 cfs from	n <u>1</u>	well(s) in the	V	Willamett	e				_Basin,
		J <u>pper</u>	Willamette	2		subb	asin							
A2.	Propose	d use	hazelnut e	stablishme	ent (irriga	tion 16 a	cres)	Seaso	onality: Ju	ne 1, 20)15 – <u>]</u>	<u>May 31,</u>	2020	
A3.	Well an	d aqui	fer data (att	ach and nu	mber logs f	or existin	g wells; ı	mark	proposed	wells as	such 1	ınder log	gid):	
Well	Logic	I	Applicant Well #	's Propos	ed Aquifer*		Proposed Rate(cfs)		Location (T/R-S QQ-Q)		Location, metes and boun 2250' N, 1200' E fr NW co			
1 2	LIN 9999	999	1	A	lluvium	0.1			T11S/R4W-S31		10' N, 510' W fr SE cor S			
3 4														
5	CDD	D - J	1-											
* Alluviu	ım, CRB,													
Well	Well Elev ft msl	First Wate ft bls	ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Interval (ft)		Liner Intervals (ft)	Perfora Or Scr (ft)	eens	Well Yield (gpm)	Draw Down (ft)	Test Type
1	215		18	10/24/2014	35									
Use data	from appl	ication	for proposed	l wells.										
A4.				license appl										sting
				g has been p total depth,										r Water
				rmaster, Mic e of 7.14 gp										
	Althoug	h the l	Limited Lice	ense applica	tion form li	sts the Pro	ject Sche	dule a	as being fro	om 6/1/2	015 - 3	5/31/2020), this rev	iew
	assumes	the ap	oplication of	f water for h	azelnut esta	<u>ıblishment</u>	will occi	ır dur	ring the irri	gation se	ason (March 1	Octobe	r 31).
A5. 🛛			the Willar	nette ter hydrauli	cally conne	eted to sur	Basir	rules	s relative to	the dev	elopm	ent, classi	ification	and/or
	(Not all	basin	rules contai	n such provi	sions.)							•		
				<u>t's wells wil</u> les (OAR 69									rface wat	<u>er</u>
		_												
A6. 🗌	Well(s)	#	,		,	,	,	tap(s	s) an aquife	r limited	by an	administ	rative res	triction.
	Name o	f admi	nistrative aı	ea:										

2

Version: 04/20/2015

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

Bas	ed upon available data, I have determined that groundwater* for the proposed use:
a.	is over appropriated, \Box is not over appropriated, or \boxtimes cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
b.	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. The permit should contain condition #(s) ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below;
a.	Condition to allow groundwater production from no deeper than ft. below land surface;
b.	Condition to allow groundwater production from no shallower than ft. below land surface;
c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.
	Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/senior water rights, not within the capacity of the resource, etc):
The well	undwater availability remarks: applicant's well is located within the floodplain deposits of the Willamette River. Water levels in nearby observation suggest that groundwater levels are stable in this area (BENT 2544 and BENT 2545 to the north, LINN 8508 to the LINN 10817 to the southeast, BENT 5252 to the southwest, and BENT5004 to the west – see map below).
Con	dition:
As s	suggested by the Watermaster, Michael Mattick, limit the maximum rate to 50 gpm and limit pumping to a maximum of sours per week.
	outs per week.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvial		

Basis for aquifer confinement evaluation: The well is located within the floodplain deposits of meandering and anastomosing channels of the Willamette River and its tributaries (O'Connor et al., 2001). Locally, erosion and reworking of sediment by the river has largely removed confining material which may have been deposited.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUME	YES NO
1	1	Owl Creek	197	209- 196	905		
1	2	Willamette River	197	~196	>1 mile		

Basis for aquifer hydraulic connection evaluation: Published reports describe the subsurface material of the flood plain deposits of the Willamette River as unconsolidated material consisting of highly permeable zones of "substantial groundwater flow that is likely to be well connected to the surface flow in the Willamette River and major tributaries" (O'Connor et al., 2001). The highly permeable nature of these deposits is evidenced by the results of aquifer pumping tests, conducted within 1-mile of the applicant's well, which have high tranmissivity values (1,700 – 31,000 ft²/day).

Water Availability Basin the well(s) are located within:	30200321 (WILLAMETTE R > COLUMIBA R -AB
PERIWINKLW CR AT GAGE 14174)	

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1	\boxtimes		NA	NA		NA		15-30	\boxtimes

connected evaluation								Date: M	1ay 15, 20)15	Pag	e
evaluation	and less tl	han 1 mile	e from a s	urface wa								
	and limitat	ions apply										
			Instr		Instream	Qw>	80%	_	w > 1%	Interfere	nco	otential
S	W	Qw		iter	Water	1%	Natu	al o	f 80%	@ 30 da	10	or Subst.
:	#	5 cfs	s? Rig	ght	Right Q	ISWR?	Flov	v N	latural	(%)	I I	nterfer.
			II	D	(cfs)	15 W K :	(cfs) I	Flow?	(70)	A	ssumed'
												Ħ
Comments clogging la from 1,700 (resulting i	yer beneat to 31.000	<u>h the strea</u> ft²/day. Tl	mbed. The interfer	e trasmis rence at 3	sivity valu 0 days wa	ies calcula s calculate	ted from i	nearby pu lower tra	ımping te ısmissivit	sts (see ma y value of	ap below) 2,000 ft ² /	range
690-09-04 percentage of This table en	of the prope	osed pump	ing rate.	Limit eva	aluation to	the effects	s that will	occur up	to one ye	ear after pu	imping be	
additional slope. on-Distribute Vell SW#		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1 3	27.24	24.73 %	0.16 %	2.58 %	6.85 %	11.45 %	15.80 %	19.74 %	23.27	26.42 %	29.08 %	29.2
1 3												
	0	0	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0	0
Vell Q as CFS	-	0.027	0.111 0.000	0.111 0.004	0.111	0.111 0.014	0.111 0.019	0.111	0.111 0.028	0.111 0.031	0 0.034	0.03
Vell Q as CFS terference CFS	0 0.030	0.027	0.000	0.004	0.009	0.014	0.019	0.024	0.028	0.031	0.034	0.03
Vell Q as CFS terference CFS	0.030	0.027	0.000	0.004	0.009	0.014	0.019	0.024	0.028	0.031	0.034	0.03
Vell Q as CFS erference CFS = Total Interf.	0.030	0.027	0.000	0.004	0.009	0.014	0.019	0.024	0.028	0.031	0.034	
Vell Q as CFS reference CFS = Total Interf. = 80 % Nat. Q	0.030	0.027	0.000	0.004	0.009	0.014	0.019	0.024	0.028	0.031	0.034	0.03 0.03 8150
Vell Q as CFS erference CFS = Total Interf. = 80 % Nat. Q	0.030 0.030 10100	0.027 0.027 11600	0.000 0.000 11000	0.004 0.004 9760	0.009 0.009 8430	0.014 0.014 5360	0.019 0.019 3270	0.024 0.024 2560	0.028 0.028 2540	0.031 0.031 2860	0.034 0.034 4170	0.03 0.03 8150
Vell Q as CFS erference CFS = Total Interf. = 80 % Nat. Q = 1 % Nat. Q	0.030 0.030 10100	0.027 0.027 11600	0.000 0.000 11000	0.004 0.004 9760	0.009 0.009 8430	0.014 0.014 5360	0.019 0.019 3270	0.024 0.024 2560	0.028 0.028 2540	0.031 0.031 2860	0.034 0.034 4170	0.03
Vell Q as CFS erference CFS = Total Interf. = 80 % Nat. Q = 1 % Nat. Q = 1 % Nat. Q	0 0.030 0.030 10100 101	0.027 0.027 11600	0.000 0.000 11000	0.004 0.004 9760	0.009 0.009 8430	0.014 0.014 5360	0.019 0.019 3270	0.024 0.024 2560	0.028 0.028 2540	0.031 0.031 2860	0.034 0.034 4170	0.03
Vell Q as CFS terference CFS) = Total Interf.) = 80 % Nat. Q C) = 1 % Nat. Q D) = (A) > (C) = (A / B) x 100 = total interfere ; (D) = highlig Basis for i even thoug year.	0 0.030	0.027 0.027 11600 116 .0002% (B) = WA	0.000 0.000 11000 110 0% B calculate ach month Impacts to	0.004 0.004 9760 97.6 .0000% ed natural where (A o the Wil	0.009 0.009 8430 84.3 flow at 80%) is greater lamette Ri	0.014 0.014 5360 53.6 0.002% 6 exceed. a than (C); (1 yer, which	0.019 0.019 3270 32.7 .0006% s CFS; (CE) = total in its greate	0.024 0.024 2560 25.6 .0009% 0 = 1% of enterference or than 1 m	0.028 0.028 2540 25.4 calculated e divided be mile from	0.031 0.031 2860 28.6 0.0010% natural flow by 80% flow the well, we	0.034 0.034 4170 41.7 .0008% v at 80% e v as percenwere calcu	0.00 815 81 81 .0004 xceed. utage.

Application LL-1582 Date: May 15, 2015 5 Page C6. SW / GW Remarks and Conditions: Owl Creek is labeled as a perennial stream on topographic maps and the National Hydro Dataset. Owl Creek flows into Colorado Lake, which in turns flows into the Dead River. The Dead River is labeled as an intermittent surface water body. Conversations with Karl C. Wozniak (May 15, 2015) question whether Owl Creek is truly a perennial water body or perhaps a temporary daylighting of groundwater flowing within the floodplain shortcutting between the meanders of the Willamette River. References Used: Conlon, T. D., Wozniak, K. C., Woodcock, D., Herrera, N.B., Fischer, B.J. Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Ground-Water Hydrology of the Willamette Basin, Oregon: U. S. Geological Survey Scientific Investigations Report 2005-5168. Gannett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-A.

Herra, N. B., Burns, E. R., and Conlon, T. D, 2014, Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon: U.S. Geological Survey Scientific Investigations

Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102.

O'Connor, J. E., Sarna-Wojcicki, A., Wozniak, K. C., Polette, Polette, J. D., and Fleck, R. J., 2001, Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon: U.S. Geological Survey Professional Paper 1620.

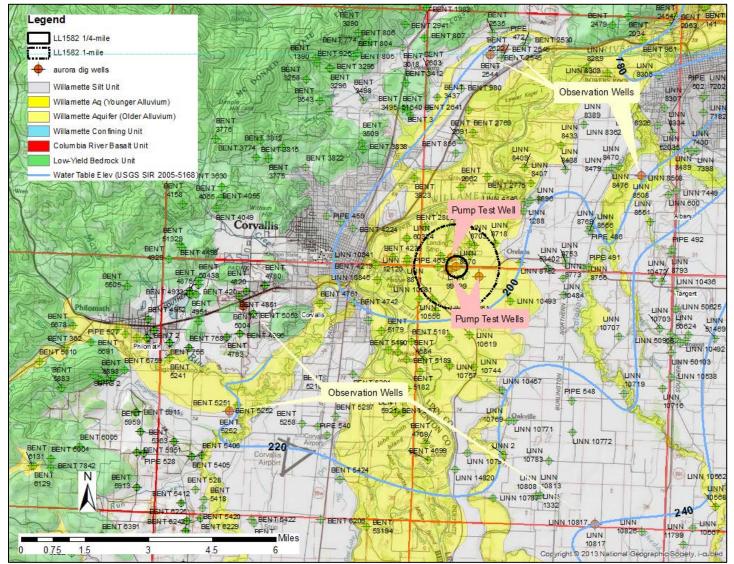
Woodward, Dennis BG., Gannett, Marshall W., and Vaccaro, John J., 1998 Hydrogeologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-B.

Nearby well logs and water level data.

Report 2014-5136, 152 p., http://dx.doi.org/10.3133/sir20155136.

D. WELL CONSTRUCTION, OAR 690-200

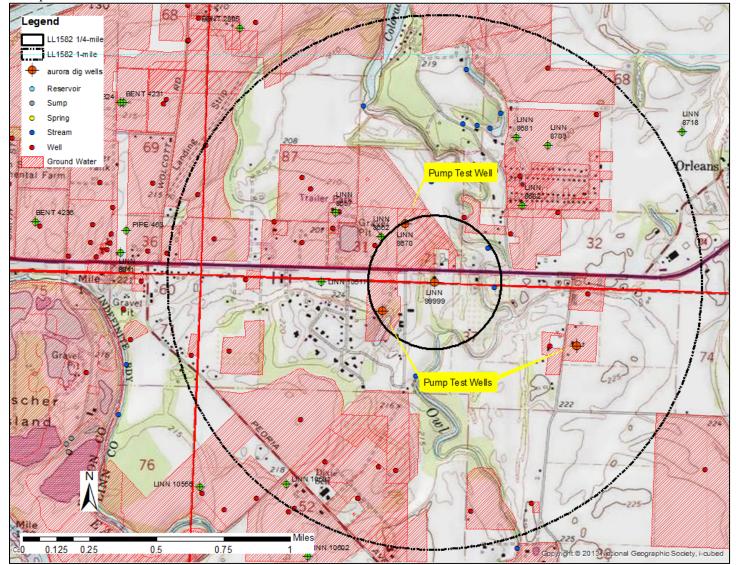
D1.	Well #:	Logid:	
D2.	THE WELL does	not appear to meet current well construction standards b	ased upon:
	a. review of t	• •	•
		ction by	:
	c. report of C	WRE	
	d. d other: (spe	cify)	
	_ \1	3 7	
D3.	THE WELL const	ruction deficiency or other comment is described as follow	ws:
		•	
D4.	Route to the Well	Construction and Compliance Section for a review of exist	sting well construction.
_	<u> </u>	•	5

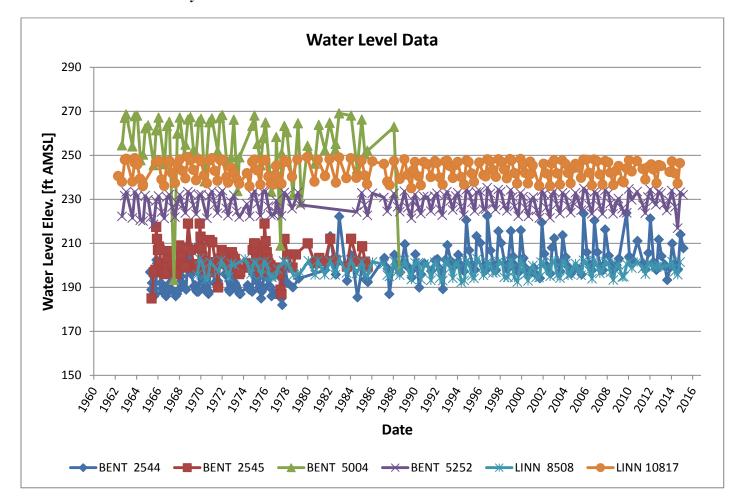

Water Availability Tables

		DETAILED REPORT	ON THE WATER AVAILA	BILITY CALCULATION	ON	
Watershed Time: 4:50	ID #: 30200321) PM	WILLAMETTE R > CO		ceedance Level: 80 Date: 05/13/2015		
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is	Monthly values a the annual amount at		in ac-ft.	
JAN FEB MAR APR	10,100.00 11,600.00 11,000.00 9,760.00	1,370.00 4,280.00 4,560.00 4,260.00	8,730.00 7,320.00 6,440.00 5,500.00	0.00 0.00 0.00 0.00	1,750.00 1,750.00 1,750.00 1,750.00	6,980.00 5,570.00 4,690.00 3,750.00
MAY JUN JUL AUG	8,430.00 5,360.00 3,270.00 2,560.00	2,540.00 855.00 662.00 601.00	5,890.00 4,500.00 2,610.00 1,960.00	0.00 0.00 0.00 0.00	1,750.00 1,750.00 1,750.00 1,750.00	4,140.00 2,750.00 858.00 209.00
SEP OCT NOV DEC ANN	2,540.00 2,860.00 4,170.00 8,150.00 7,460,000	517.00 269.00 353.00 376.00 1.230.000	2,020.00 2,590.00 3,820.00 7,770.00 6,230.000	0.00 0.00 0.00 0.00	1,750.00 1,750.00 1,750.00 1,750.00 1,270.000	273.00 841.00 2,070.00 6,020.00 4,960.000

Version: 04/20/2015

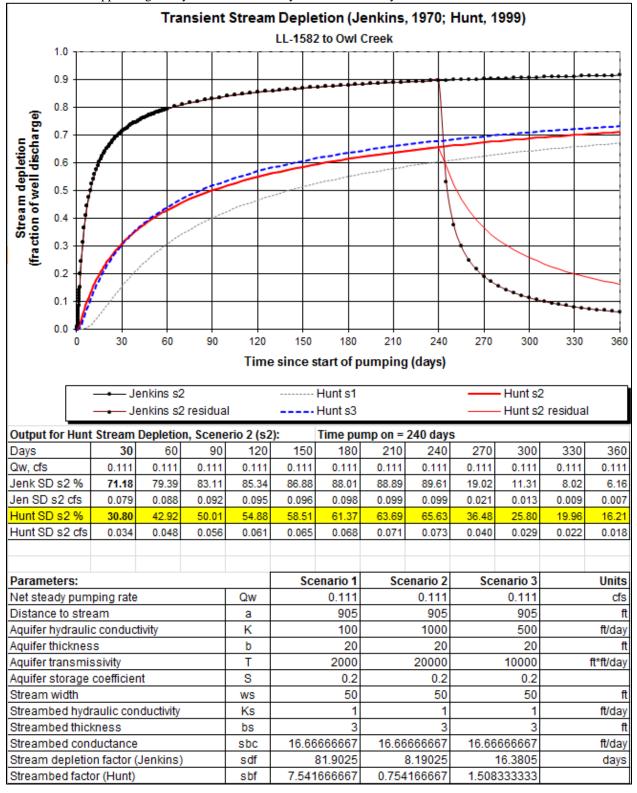
Well Location Map


Overview


Version: 04/20/2015

Well Location Map

Site Specific



Water-Level Trends in Nearby Wells

Stream Depletion Model Results

To Owl Creek - upper range of hydraulic conductivity and transmissivity values

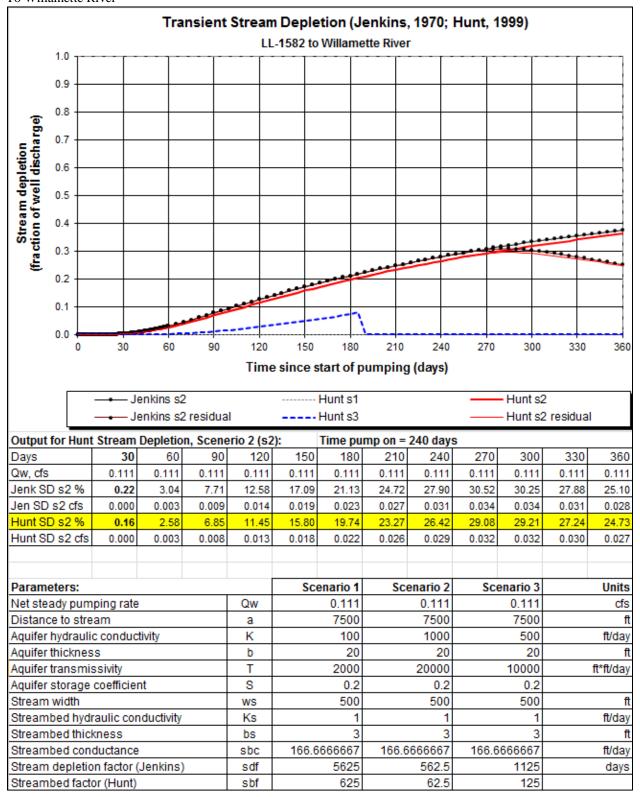
10

Application LL-1582 Date: May 15, 2015

Page

11

To Owl Creek – lower range of hydraulic conductivity and transmissivity values


			Tra	nsient	Strean	Deple			, 1970;	Hunt, 1	1999)		
	1.0					LL-1384	2 to Owi	Creek					
	0.9												
	0.8												
ge (
= =	0.7												
etic Isc	0.6					-	-			} 			
Stream depletion (fraction of well discharge)				-3	يعينينية								
ĘĘ	0.5												
e a	0.4		The state of the s								+		
휷		1											
<u>z</u>	0.3	- 1									1	•••	
	0.2	11/										***	***
		///											I
	0.1	//											
	0.0	/											
	0	30	60	90	120	150	180	210	240	270	300	330	360
					Time	e since s	tart of p	oumping	g (days)				
			enkins s2)			Hunt s1				- Hunt s2)	
			enkins s2 enkins s2				Hunt s3					2 residua	
Outrot									240 4				
Days	tor Hun	Stream 30	Depletion 60	n, Scene	120	:): 150	11me pu 180	210	240 days 240	270	300	330	360
Qw, cfs		0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111
Jenk SI		24.27	40.87	50.00	55.91	60.13	63.34	65.88	67.96	45.43	30.31	22.47	17.68
Jen SD		0.027	0.045	0.055	0.062	0.067	0.070	0.073	0.075	0.050	0.034	0.025	0.020
Hunt St	D s2 %	15.51	30.68	40.09	46.54	51.28	54.96	57.92	60.36	46.91	33.51	25.64	20.56
Hunt St	0 s2 cfs	0.017	0.034	0.045	0.052	0.057	0.061	0.064	0.067	0.052	0.037	0.028	0.023
Parame	otore					\$00	enario 1	So	enario 2	\$0	enario 3		Units
		nping rate	<u> </u>		Qw	300	0.111		0.111	30	0.111		cfs
	e to stre		•		a		905		905		905		ft
		ic conduc	tivity		K		1000		100		500		ft/day
Aquifer	thicknes	SS			b		20		20		20		ft
	transmi				Т		20000		2000		10000		ft*ft/day
		coefficie	nt		S		0.2		0.2		0.2		
Stream			- d 27 - 78		WS		50		50		50		ft
		raulic cor	nductivity		Ks		1		1		1		ft/day
	bed thic	kness ductance			bs	16.66	3 666667		3 666667	16.66666667			π ft/day
			(Jenkins)		sbc sdf		8.19025		81.9025		16.3805		days
		or (Hunt)			sbf		166667		1666667		3333333		uaya
Javaill	Journal	or (cruint)			001	0.104	.00007	7.04	.000007	1.500	,555555		

Application LL-1582

12

Date: May 15, 2015

To Willamette River

