Groundwater Application Review Summary Form

Application # G- 18 621
GW Reviewer Across Bowchier Date Review Completed: 9/20/2018
Summary of GW Availability and Injury Review:
[] Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.
Summary of Potential for Substantial Interference Review:
[] There is the potential for substantial interference per Section C of the attached review form.
Summary of Well Construction Assessment:
[] The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.
This is only a summary. Documentation is attached and should be read thoroughly to understand the

WATER RESOURCES DEPARTMENT

MEM	O						Sept	em ber	<u> 29</u> 20 18	}			
TO:		Application G-18621											
FROM	I :	(Reviewer's Name)											
SUBJI	ECT: S	cenic W	aterwa	y Inter	ference	Evalua	tion						
□ 序	YES The source of appropriation is within or above a Scenic Waterway NO									erway			
<u></u>	YES Use the Scenic Waterway condition (Condition 7J) NO												
□	Per ORS 390.835, the Groundwater Section is able to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below.												
	interference the Detthat t	RS 390 rence we partme he pro ary to r	ith surfa ent is un posed	ace wate nable to use wil	er that o o find t ll meas	contribu hat the surably	tes to a re is a reduc	scenic prepon e the s	waterwa deranc surface	ay; ther e of evi water	efore, idence		
Calcula calculat	DISTRIBUTION OF INTERFERENCE Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.												
Exercise of this permit is calculated to reduce monthly flows in Scenius Sceniu									Scenic use by				
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Γ.		r Rights Sec		•	Date 9/20/2018 Aurora Bouchier									
FROM	FROM: Groundwater Section SUBJECT: Application G- 18621						ewer's Nam								
SUBJI	ECT:	Appl	ication G- <u>1</u>	8621		Su	persedes	rev	iew of <u>na</u>						
												Date of Rev	view(s)		
OAR 6 welfare	90-310-1 c, safety a rmine wh	30 (1) and hea ether th	T PRESUM The Departm Ith as describ te presumption This revieu	ent shall p ed in ORS n is establ v is based	resume that 537.525. D ished. OAR upon avail	epartment 690-310- able infor	ed ground staff rev 140 allov mation a	iew g vs the ind a	groundwate e proposed agency poli	r applicatuse be me	tions u odified ace at	nder OAl or condi	R 690-31 tioned to	0-140 meet	
A. <u>GE</u>	<u>NERAI</u>	INFO	<u>ORMATIO</u>	<u>N</u> : A	pplicant's N	Tame:	Gerig Fa	rms	LLC		(County: _	Linn		
A1.			eek(s) <u>1.01</u>				`		Willamette			,		_ Basin,	
		POA 1	is in Upper V	Villamette ²	k	subb	asin								
A2.	Propos	ed use _	Irriga	ation (80.9	7 acres*)	Seas	onality:	_Ma	rch 1 – Oct	ober 31_					
A3.	Well ar	ıd aquit	fer data (atta	ch and nu	mber logs f	or existin	g wells;	mar	k proposed	wells as	such ı	ınder log	gid):		
Well	Logi	d	Applicant's	Propos	ed Aquifer*	Prop			Location			ion, mete			
1	propos	ed	Well #	. A	lluvium	Rate			(T/R-S QQ- 12S/3W-2 NE		2230	' N, 1200' See c	omment	cor 8 30	
3	···· ·		· .			-									
4								\						<u>-</u>	
5 * Δ11υν	ium, CRB,	Redroc	ν			1							1		
Alluvi	ium, CRD,	, Dedice													
Well	Well Elev ft msl 285	First Wate ft bls	r SWL ft ble	SWL Date	Well Depth (ft) Est 30	Interval Intervals Or S			Perfora Or Scro (ft)	eens	Well Yield (gpm)	Draw Down (ft)	Test Type		
				•	,										
		ļ										-			
Use data	a from app	lication	for proposed v	vells. /	_	-	1								
A4.	Commare loca The gro	ents:` <u>*</u> ated app oundwa	The applicat proximately 5 ter review is	on include .5 miles fr	om each oth livided into	ner, are loc 2 separate	e reviews.	iffer	ent watersh	eds and v	vill im	pact diffe	rent stre	ams.	
	map, th	e metes	igate 80.97 as and bounds ed well const	should rea	d something	g along the	e lines of	740	'S and 2860	O' W fror					
A5. 🛚	manage (Not all Comme	l basin i ents: <u>T</u>	the Willamore f groundwaterules contain the proposed value 2-0240) do no	such provi vell (POA	sions.) 1) is not wi	thin ¼ mi	le of any	pere	nnial surfac	e water f	eatures	so perti	nent basi		
A6. 🗌	(OAR 690-502-0240) do not apply.														

Version: 05/07/2018

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

B1.	Bas	sed upon available data, I have determined that groundwater* for the proposed use:										
	a.	is over appropriated, ⊠ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;										
	b.	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;										
	c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or										
	d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i.										
B2.	a.	Condition to allow groundwater production from no deeper than ft. below land surface;										
	b.	Condition to allow groundwater production from no shallower thanft. below land surface;										
	c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;										
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.										
	<u>_</u>	Describe injury —as related to water availability— that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):										
В3.	Prop 10-2 Leb thic unce a 20 mile prop large	bundwater availability remarks: cosed well 1 is located in an area that contains fine-grained sediments (Willamette Silt) from land surface to a depth of the cosed (Gannett et al., (1998)) which in general acts to confine the underlying alluvial fan deposits (referred to as the land are considered to be very productive aquifer system within the Willamette Valley. The aquifer is generally confined to semi-confined in the deeper zones and SWLs (both observed and reported on driller's logs) are typically within the following for some seasonal fluctuation of approximately 10 feet (see hydrograph below). Within 2 miles of the loosed POA 1 there is very little permitted groundwater use (see Site Specific Well Location Map below) and few, yet let tax lots imply there are not many domestic wells in the area. The thickness of these deposits, the overall high semissivity of them, and sparse development in the area suggest little concern of negative impacts of the proposed use.										

3

Date: 9/20/2018

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium of Lebanon Fan		

Basis for aquifer confinement evaluation: Almost all of the well logs in the area surrounding the location of POA 1 are greater than 30 feet deep. Many of the area well logs list a Static Water Level coincident with or a few feet above the zone at which water was first encountered, indicating unconfined to semi-confined conditions. Well logs listing deeper water bearing zones in also list Static Water Levels tens of feet above the water bearing zone, indicating greater confinement with depth. In general, in the Southern Willamette Valley the Willamette Silt does not act to confine the underlying aquifer (Conlon et al., 2005, page 13).

C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than 1/4 mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI:

٠	Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
	1	1	Calapooia R.	260-280	170-220	33,000		
L						•		
			·					

Basis for aquifer hydraulic connection evaluation: Proposed POA 1 lies approximately equidistant from the Calapooia and S Fk Santiam rivers. According to published groundwater elevation maps by Conlon et al. (2005) groundwater flows from the S Fk Santiam River near Lebanon northwest to the Calapooia and Willamette Rivers. Appropriation of water from the applicant's proposed well 1 would intersect water that would eventually flow into the Calapooia River. Smaller creeks in the immediate area are not perennial.

Water Availability Basin the well(s) are located within: Well 1: Watershed ID #76 Calapooia R > Willamette R - AB Mouth

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked \(\subseteq \text{box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
					·					
				·						

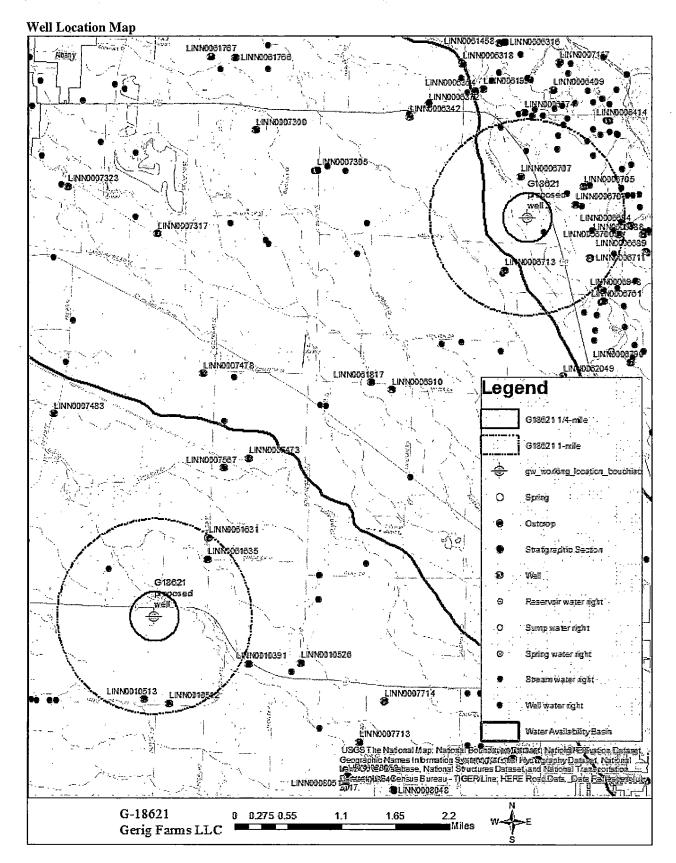
Date: 9/20/2018 Page C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same

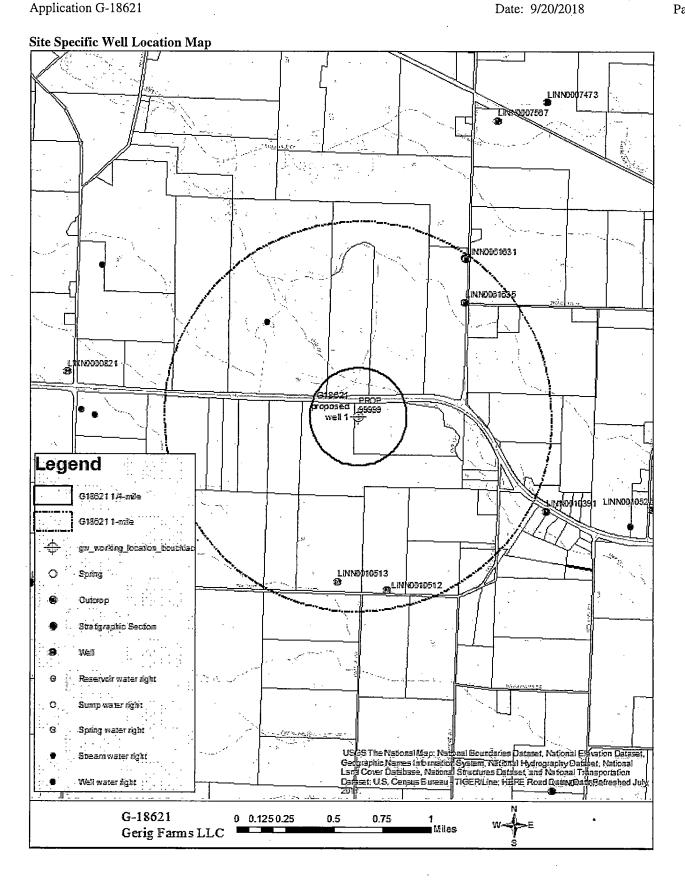
Comment Com	SW # Qw > Water Water Right Q (cfs) ISWR? Flow Natural (cfs) Flow? (cfs) INterference (cfs) ID (cfs) ISWR? (cfs) Flow? (cfs) Flow? (cfs) Interference (cfs) ID (cfs) ISWR? (cfs) Flow? (cfs) Flow? (cfs) Interference (cfs) Interference (cfs) Interference (cfs) Flow? (cfs) Interference (cfs) Interfere										or Subst. interfer. ssumed?	
Non-Distribute		-									-	
Well SW#	Jan	Feb	Mar _	Apr	May	Jun	Jul	Aug	g Sep	Oct	Nov	Dec
1 1	%		. %	%	%	%	%		% %	%	%	%
Well Q as CFS Interference CFS	0	0	1.01 0.000	1.01 0.001	1.01 0.006	1.01	1.01	1.0		1.01	0 107	0 120
interterence CF3			0.000	0.001	0.006	0.017	0.032	0.05	0.069	0.088	0.107	0.128
Distributed W Well SW#	ells Jan %	Feb %	Mar %	Apr	May %	Jun %	Jul %	Au	g Sep	Oct	Nov	Dec %
Well Q as CFS Interference CFS	-				ļ					-	ļ	
interference CFS	%	%	%	%	%	%			~ ~	. ~	~	
Well Q as CFS	70	70	70	76	70	70	<u>%</u>		% %	%	%	%
Interference CFS		 -			†	_	-					
* <u>.</u>			<u> </u>	é	 		, , , , , ,		5 165	54.5	7	
(A) = Total Interf			0.000	0.001	0.006	0.017	0.032	0.05		0.088	0.107	0.128
(B) = 80 % Nat. Q		650	575	423	234	111	49	26	22.7	29.6	133	499
(C) = 1 % Nat. Q	5.92	6.50	5.75	4.23	2.34	1.11	0.49	0.2	6 0.23	0.30	1.33	4.99
(D) = (A) > (C)		T		^`` <u>`</u>	,	· · · ·	(e)			1		- 10 × 1
$(E) = (A / B) \times 100$	%	%	0 %	<<1%	<<1%	<<1%	<<1%	<<1	% <1%	<<1%	<<1%	<<1%
stream der	ght the chec mpact evaletion by p	ckmark for e aluation:	ach month Impacts to Iltimately	where (A) o the Cal , the high) is greater i apooia Riv transmiss	than (C); (ver were existing to the interest of the interest o	E) = total i valuated u thickness	nterferonsing the of the	of calculated ence divided t ne Hunt (199 aquifer and	y 80% flov 99) analyti	v as percen cal model	tage. for

5 -

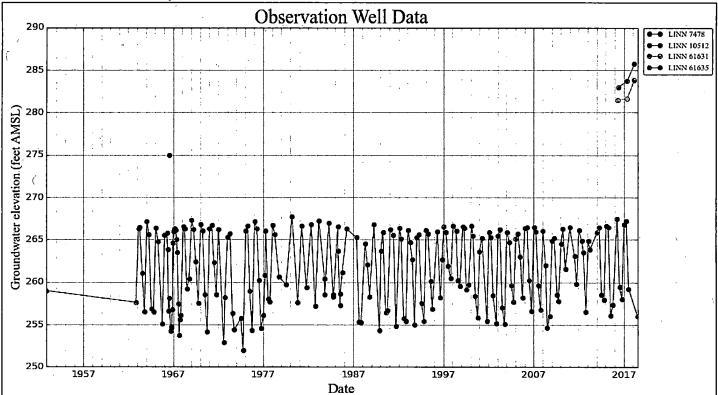
Date: 9/20/2018

C40	Rights Section.
C5.	☐ If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water: i. ☐ The permit should contain condition #(s) ; ii. ☐ The permit should contain special condition(s) as indicated in "Remarks" below;
	ii. The permit should contain special condition(s) as indicated in Kemarks below;
C6.	SW / GW Remarks and Conditions: Impacts of pumping from the applicant's proposed POA 1 will be spread out over a large area and should have minimal impact to perennial surface water reaches.
	References Used: Application files: G-18621 and nearby G-18141.
	Conlon, T. D., Wozniak, K. C., Woodcock, D., Herrera, N.B., Fischer, B.J. Morgan, D.S., Lee, K.K., and Hinkle, S.R., 2005, Ground-Water Hydrology of the Willamette Basin, Oregon: U. S. Geological Survey Scientific Investigations Report 2005-5168.
1	Gannett, Marshall W., and Caldwell, Rodney R., 1998, Geologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-A.
	Herra, N. B., Burns, E. R., and Conlon, T. D. 2014, Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon: U.S. Geological Survey Scientific Investigations Report 2014-5136, 152 p., http://dx.doi.org/10.3133/sir20155136.
	Hunt, B., 2003, Unsteady stream depletion when pumping from semiconfined aquifer: Journal of Hydrologic Engineering, January/February, 2003.
	Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102.
	Woodward, Dennis G., Gannett, Marshall W., and Vaccaro, John J., 1998 Hydrogeologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington: U. S. Geological Survey Professional Paper 1424-B.
	Nearby well logs and water level data.


D. WELL CONSTRUCTION, OAR 690-200


D1.	Well #:	Logid:	
D2.	a. Treview of	not appear to meet current well construction standards based up the well log;	
	b. [field inspe	ection by	·····
	c. Liebourou	WIND	
	d. d other: (spe	ccify)	
D3.	THE WELL cons	ruction deficiency or other comment is described as follows:	
	·		
D4. [Route to the Well	Construction and Compliance Section for a review of existing w	ell construction.

Water Availability Tables


Well 1

-		DETAILED REPORT	ON THE WATER AVAILA	ABILITY CALCULATION	ON	
Watershed ID #: Time: 3:18 PM	76		dance Level: 80 ate: 09/07/2018			
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is	Monthly values a	are in cfs. t 50% exceedance	in ac-ft.	·
JAN.	592.00	3.38	589.00	0.00	20.00	569.00
FEB	650.00	3.33	647.00	0.00	20.00	627.00
MAR	575.00	2.25	, 573.00	0.00	20.00	553.00
APR	423.00	1.96	421.00	0.00	20.00	401.00
MAY	234.00	. 18.30	216.00	0.00	20.00	196.00
JUN	111.00	12.80	98.20	0.00	20.00	78.20
JUL	49.00	19.60	29.40	0.00	20.00	9.42
AUG	26.00	14.10	11.90	0.00	20.00	-8.09
SEP	22.70	7.36	15.30	0.00	20.00	-4.66
OCT	29.60	1.92	27.70	0.00	20.00	7.68
NOV	133.00	2.39	131.00	0.00	20.00	111.00
		3.34	496.00	0.00	20.00	476.00
DEC ANN	499.00 404.000	5,510	398,000	0.00		1,0100



10

Date: 9/20/2018

Results of Hunt-1999 Stream Depletion Model

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO: FROM	:		r Rights S ndwater S	ection ection										
SUBJE	CT:	Appl	ication G-	18621			ewer's Name persedes	review of _	na	_	Date of Re	view(s)		
OAR 69 welfare, to deter	90-310-1: safety armine who umption	30 (1) (nd head ether the	The Depart Ith as descri e presumpt	ibed in ORS ion is establi ew is based	resume that 537.525. D shed. OAR upon avail	a propose epartment 690-310- able infor	ed ground staff revi- 140 allow mation a	water use wi ew groundwa s the propose nd agency porms LLC	ater applicated use be molicies in p	ne prese ations u aodifice alace at	ervation of nder OAl	of the pub R 690-31 tioned to	0-140 meet	
A1. Applicant(s) seek(s) 2.20* cfs from 1* well(s) in the Willamette POA 2 is in South Santiam* subbasin											-		_ Basin,	
A2. A3.	•	_		-	•			March 1 – C		g guah i	nndan lac	vid).		
Well 2	Well and aquifer data (attach and number logs for the Logid Applicant's Well # Proposed Aquifer* Proposed 2 Alluvium				Prop Rate 2.2	osed (cfs)	Locati (T/R-S Q 11S/2W-16	on (Q-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36 See comment					
3 4						<u> </u>			,					
5 * Alluviu	ım, CRB,	,			W/-11	G1	Caria		Perfor		T 337.11			
Well 2	Well Elev ft msl 280	First Water ft bls	r SWL	SWL Date	Well Depth (ft) Est 100	Seal Interval (ft)	Casing Intervals (ft)		Intervals Or Scr		Well Yield (gpm)	Draw Down (ft)	Test Type	
Use data	from app	lication	for proposed	l wells.							<u> </u>			
A4.	A4. Comments: *The application includes 2 proposed wells to irrigate 2 parcels of land which are NOT adjacent to one another, are located approximately 5.5 miles from each other, are located in different watersheds and will impact different streams. The groundwater review is therefore divided into 2 separate reviews. POA 2 is to irrigate 176.0 acers of land located in 11S/2W-16 and -17 (approximately XX-miles to the northeast of the land irrigated by POA 1). In order to be located in the tax lot and quarter-quarter as shown on the map, the meets and bounds should read something along the lines of 450'N and 470' E from the WEST ¼ corner of Section 16. The proposed well construction is minimal: only listing a total well depth of 100' +/1.											e land		
A5. 🛚														
A6. 🗌	Well(s)	#	nistrative ar		,,	· ,	,,	tap(s) an aqu	ifer limited	l by an	administ	rative res	triction.	

Version: 05/07/2018

Application G-18621

Date: 9/20/2018

Page

2

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

B1.	Bas	ed upon available data, I have determined that groundwater* for the proposed use:							
	a.	is over appropriated, ⊠ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;							
	b.	will not or will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;							
	c.	will not or will likely to be available within the capacity of the groundwater resource; or							
	d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. The permit should contain condition #(s) 7N (annual measurements); Large Water Use Reporting ii. The permit should be conditioned as indicated in item 2 below. The permit should contain special condition(s) as indicated in item 3 below;							
B2.	a.	Condition to allow groundwater production from no deeper than ft. below land surface;							
	b.	Condition to allow groundwater production from no shallower than ft. below land surface;							
ı	c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;							
(d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.							
		Describe injury —as related to water availability— that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):							
В3.									
	Gra	oundwater availability remarks:							
	The	area around proposed POA 2 is mapped as Pleistocene Sand and Gravels deposited after the Missoula Floods (Qg1 from							
		Connor et al., 2001), is considered part of the Upper Sedimentary Unit (Conlon et al., 2005), and consists of alluvial erial of mixed sand, clay, and gravels (Woodward and Gannett, 1998). Well yields in this material are generally low to							
		lerate (< 50 gpm) but wells yielding > 100 gpm are not uncommon. There are few observation wells in the area and those							
		w SWLs that fluctuate seasonally (likely due to changes in river stage and/or pumping) and have stable long-term trends.							
		re are numerous groundwater POAs to the east of the proposed POA toward the Santiam River but significantly fewer to							
		west. There are few groundwater rights within ½ mile of the proposed POA that could potentially be affected by the							
		licant's proposed use, but impacts will not likely be significant in this type of aquifer systems (thick, mixed material							
	sea	ments) – standard interference conditions should apply.							

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

	C1.	690-09-040	(1):	Evaluation	of aq	uifer	confineme	nt
--	-----	------------	------	-------------------	-------	-------	-----------	----

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
2	Alluvium		\boxtimes

Basis for aquifer confinement evaluation: Many of the area well logs list a Static Water Level coincident with or a few feet above the zone at which water was first encountered, indicating unconfined to semi-confined conditions. Well logs listing deeper water bearing zones in also list Static Water Levels tens of feet above the water bearing zone, indicating greater confinement with depth. In general, in the Upper Sedimentary Unit is unconfined (Conlon et al., 2005).

C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H (YES	ydraulically Connected? NO ASSUMED	Potentia Subst. Int Assum YES	terfer. ed? NO
2	1	Mill Creek	270-280	276-280	4,480				\boxtimes
2	2	South Santiam River	270-280	266	7,250				\boxtimes
~				_					
		*-							
		<u>.</u>							

Basis for aquifer hydraulic connection evaluation: Relative groundwater and surface water elevations.	
Water Availability Basin the well(s) are located within	: Well 2: Watershed ID #30200601 S Santiam R > Santiam R - AT

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% natural flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
2	1			^N A	NA		253		See	
			·						comment	
					-					
								· 🔲 📗		

C3b. 690-09-040 (4): Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Complete only if Q is distributed among wells. Otherwise same

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed
			-					

Comments: Impacts to Mill Creek were evaluated using the Hunt (1999) analytical model for stream depletion by pumping. Published aquifer parameters for the Upper Sedimentary Unit include hydraulic conductivity values (calculated from specific capacity and aquifer tests) which ranges from 0.03 to 7,000 feet per day (with an average of 200 ft/day) and specific yield values (also calculated from specific capacity and aquifer tests) which ranges from 0.003 - 0.2. Using the average hydraulic conductivity value of 200 ft/day and changing the specific yield the interference at 30-days ranges from 0.26% to 32%. A specific yield value of 0.02 ft/day results in interference at 30-days of 6.69%.

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-Di	istributed								_		-		
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2	2	%	%	%	%	%	%	%	. %	%	%	%	9/
Well Q	as CFS	0	0	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	0	0
Interfer	ence CFS	-	,	0.182	0.467	0.671	0.820	0.933	1.023	1.096	1.157	1.027	0.787
		1.35.2.5				4	7 -		·		*.		6 v '
Distrib	uted Well	ls	•										
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
_		%	%	%	%	- %	%	%	%	%	%	%	9
Well Q	as CFS						_						
Interfere	ence CFS												
`		%	%	. %	%	%	%	%	%	%	%	%	9
Well Q	as CFS												
Interfere	ence CFS						-		7				
r _p 37					, ,		. 1.	<u> </u>				,	
$(A) = T_0$	tal Interf.			0.182	0.467	0.671	0.820	0.933	1.023	1.096	1.157	1.027	0.787
(B) = 80	% Nat. Q	3090	3360	3170	2950	2050	968	450	275	253	363	1450	3040
(C) = 1	% Nat. Q	30.9	33.6	31.7	29.5	20.5	9.68	4.50	2.75	2.53	3.63	14.5	30.4
- 39. **.					- \$			P**		6	6.2 °	7	. Se 1
(D) = ((A) > (C)												
$(E) = (A \cdot$	/B) x 100	%	%	0.005	0.015	0.033	0.085	0.207	0.372	0.433	0.319	0.071	0.025
	l interferen			%	%_	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage. Basis for impact evaluation: Impacts to the South Santiam River were evaluated using the Hunt (1999) analytical model for stream depletion by pumping. As stated in section Cb, published aquifer parameters for the Upper Sedimentary Unit include hydraulic conductivity values (calculated from specific capacity and aquifer tests) which ranges from 0.03 to 7,000 feet per day (with an average of 200 ft/day) and specific yield values (also calculated from specific capacity and aquifer tests) which ranges from 0.003 - 0.2. The mid-range specific yield value of 0.02 ft/day was used to model the interference to the South Santiam River.

Application G-18621

Nearby well logs and water level data.

5

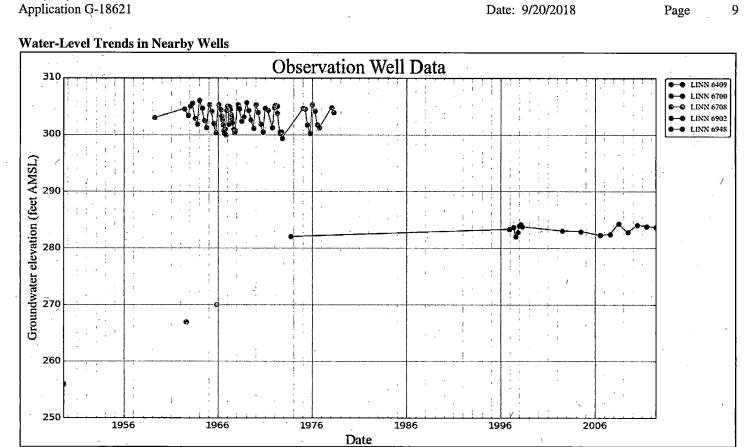
D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.	a. ☐ review b. ☐ field in c. ☐ report	oes not appear to meet current well construction standards base of the well log; spection by of CWRE specify)	·
D3.	THE WELL co	nstruction deficiency or other comment is described as follows:	
D4.	Route to the V	ell Construction and Compliance Section for a review of existing	g well construction.

Water Availability Tables Well 2

		DETAILED REPORT	ON THE WATER AVAILA	ABILITY CALCULATION	N	
Watershed Time: 3:2	d 1D #: 30200601 20 PM	S SAN		Exceedance Level: 80 Date: 09/07/2018		
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is	Monthly values a the annual amount at	are in cfs. 50% exceedance i	n ac-ft.	
JAN FEB MAR APR JUN JUL AUG SEP OCT NOV	3,090.00 3,360.00 3,170.00 2,950.00 2,050.00 968.00 450.00 275.00 253.00 1,450.00	266.00 1,530.00 1,250.00 1,050.00 710.00 182.00 203.00 189.00 158.00 137.00	2,820.00 1,830.00 1,920.00 1,900.00 1,340.00 786.00 247.00 86.40 94.60 226.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2,820.00 1,830.00 1,920.00 1,900.00 1,340.00 247.00 86.40 94.60 226.00
DEC ANN	3,040.00 2,330,000	143.00 355,000	2,900.00 1,980,000	0.00 0	0.00 0	2,900.00 1,980,000

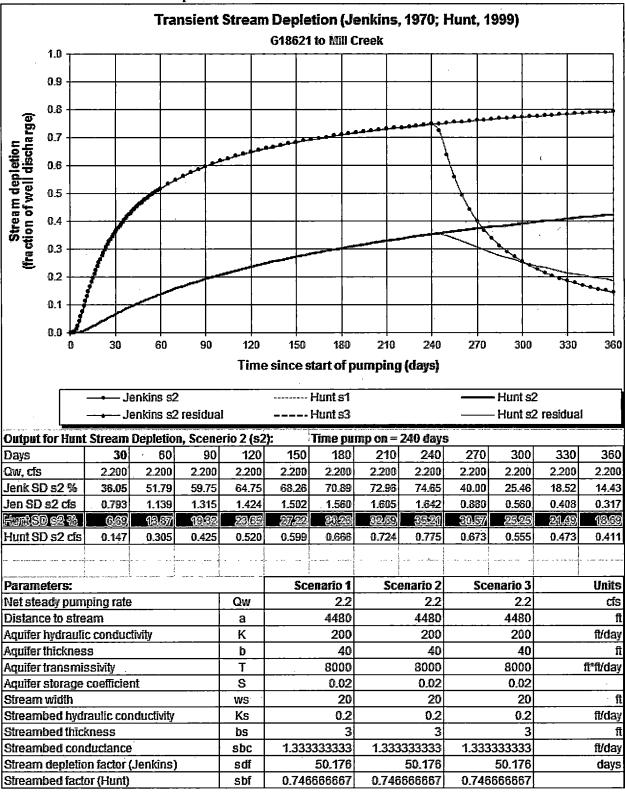
7

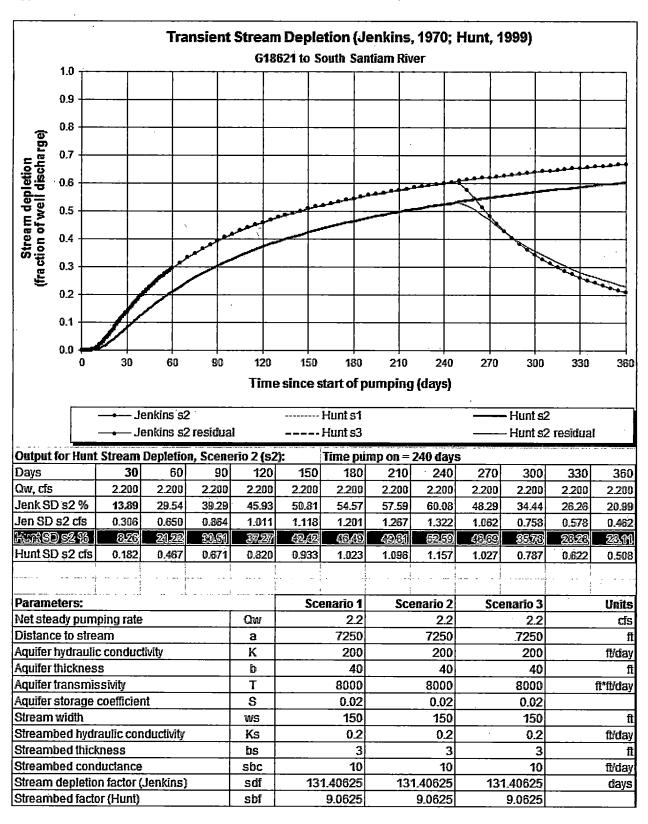

Well Location Map LINNOD61458 2 LINNOD08316 🦠 LINN0961767 EINN0007147 innodoss18 🕏 1 LINNO961766 LINNODOÒS 4.IN SM6242 LINN0007300 IMNODD7305 LINNODOS7079 LINNODDTŠZ3 G18821 NO0006713 INNODD7478 Linndigiett **D**-LIMNODOGSTO .egend LÍNNODD7483 G18621 1/4-mile LINNODO E LINNODO G18621 1-mile gw_working_location_bouchier Spring. Outcop. .INN008163 T LINK0031635 Statgraphic Section Ð w<u>e</u>ll G18621 Reservoir water right 0 Sump water right LINN0010526 (NOD10391 ๋⊛ Spring water right Stream water right LININDDD7714 LINN0010513 LINNOOTOS Well water right Ê|NN0007713 Water Availability Basin USGS The National Map: National Boundaries Related National Personal Dataset, Geographic Names Imburnation Systemotylational Phytography Dataset, National Lead Systematics Systemotylational Phytography Dataset, National Transportation Dataset, and National Transportation Later Systematics Bureau—Tiggs Personal Data Relates Systematics Bureau—Tiggs Personal Data Relates Systematics Bureau—Tiggs Personal Dataset Relates Systematics Bureau Personal Dataset Relates Bureau Personal Dataset Personal Dataset Relates Bureau Personal Dataset Personal Dataset Relates Bureau Personal G-18621 0.275 0.55 1.65 2.2 hiles Gerig Farms LLC

Application G-18621

8

Date: 9/20/2018 Site Specific Well Location Map LINNODD8233 LINNODO7117 LINN0006318 LIMNOD81994 BNI DODGOOD TIMINE POSTO 1 G1882 LINNOODS708 proposed well 2. LINNDOD6584 **#18**10006628 LINNODOSSES INNODOS689 LINNDODAT1 _egend LININDOPOTIS G1852114-mile G186211-mile gw_working_location_bouchier 0 Spring Outcrop Statgraphic Section NODD Reservoir water night LINN0082049 0 Sump water right Spring water right USGS The National Map: National Boun Geographic National Bounds of Structure Land Cover Database, National Structure Dataset; U.S. Census Bureau - TIGERY 2017. Steam water night Well water night G-18621 0 0.125 0.25 0.5 0.75 Miles


Gerig Farms LLC


10

Date: 9/20/2018

Results of Hunt-1999 Stream Depletion Model

11

