M	ЕМО						_	MAY	12	, 20	00_3		
	O_ ROM UBJECT			ion G ————————————————————————————————————	wer's Name)			ation					
	Ye No	Th	e sourc	e of app	propriati	on is wi	thin or	above a	Scenic	Water	way		
K C	Ye. No		e the So	cenic W	aterway	conditi	on (Co	ndition '	7J).				
PR	EPOND	ERAN	CE OF	EVIDE	NCE FI	NDING	e (Che	eck box	l:£				
0	Á	At evic sur	this tin dence t face wa	ne the I hat the iter flow	Departm propos	nent is used use	inable of gro mainta	to find	that the	ere is a	a prepor	e) inderance of reduce the of a scen	
FLO	OW REI	DUCTI	ON: <i>(Ta</i>	o be fille	ed out o	nlv if Pr	eponde	erance o	of Fyide	nce hov	c is not	checked)	
Exe Wat	rcise of	this per by the f	rmit is collowin	calculate	ed to rec	luce mo	nthly f	lowe in				Scenice by whice	c h
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
2000	THE REAL PROPERTY.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											

TO:		Water	Rights S	Section					MAY	12	, 2	200 3
FROM	1:	Ground	d Water	/Hydrology	Section	刀	IAV	GAL	1	,		
SUBJI	ECT:			1594		Rev	riewer's Name apersedes re	eview of_	NA			
OAR 6 welfare to deter	safety a rmine who sumption NERAL Applica	ant(s) seel	ne Depar as descripresump This rev RMATI 40 (s(s) 0,0	ribed in ORS tion is establ iew is based	presume the Society of	Departmen R 690-310- illable infor Name: well subb	sed groundwat staff review 140 allows to rmation and MARY (s) in the	w ground of the proposed agency page 18060 agenc	vill ensure the provided use be modificated use in place ANDAU BOSWELL 1 — OCTO	as under OA ied or cond at the time	of the pu AR 690-3 itioned to e of eval	10-140 meet
A3.	Well ar	nd aquifer	data (at	tach and nu	mber logs	for existin	ng wells; ma	rk propo	sed wells as suc	h under lo	gid):	
Well 1 2		ogid 55774	A	roposed quifer* ROCK	Propose Rate(cfs	(T/	Location R-S QQ-Q)	b 30	Location, metes 2250' N, 120 3'S, 1040' W	00' E fr NW	cor S 36	
3 4 5	um, CRB,	Dadmada										
Alluvi				T	T	T	1					
Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval	Casing Intervals	Liner Interval	Perforations Or Screens	Well Yield	Draw Down	Test Type
	1360	64	35'	10/18/02	300	0-20'	0-19'	0-300	1 180-2801	50+	_	AIR
			4'	MARCH 2003	DATA I	ROM AQ	LIFER TEST					
	6											
A4.		nts: Se			uifer t	lest dat	a repor	t from	n Cascade	Earth	Scien	(W)
A5. [manager (Not all	Dasin Tuic	ound wa	nter hydraulion such provis	cally conne	ected to sur	face water [are, or	e to the developi are not, acti	vated by th	is applica	and/or ation.
A6. 🗌	Well(s) Name of Commer	administ	rative ar	, _ ea:,					uifer limited by a	n administ	rative res	triction.
									MAY 1.5	2003		

B. GROUND WATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130 (b) (c)

B1.	Bas	sed upon available data, I have determined that ground water for the proposed use:
	a.	is over appropriated, is not over appropriated, or cannot be determined to be over-appropriated during any period of the proposed use;
	b.	will not or will likely be available in the amounts requested without injury to prior ground water rights;
	c.	will not or will likely to be available within the capacity of the ground water resource; or
	d.	will, if properly conditioned, avoid injury to existing ground water rights or to the ground water resource: i. The permit should contain condition #(s) 7B 7F ii. The permit should be conditioned as indicated in item 2 below. The permit should contain special condition(s) as indicated in item 3 below;
B2.	a.	Condition to allow ground water production from no deeper than ft. below land surface;
	b.	Condition to allow ground water production from no shallower thanft. below land surface;
	c.	Condition to allow ground water production only from the ground water reservoir between approximately ft. and ft. below land surface;
	d.	Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Ground Water Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):
B3.	Gro	und water availability remarks. Prequire permittee to install a properly functioning, totalizing
	(2	I see attached CES aguifer kest report dated March 5, 2003.
		pota collected indicate hydraulic connection whichboring wells but resource appears to be available to meet proposed use who the potential for substantial interference.
	-	

C. GROUND WATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. 690-09-040 (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1 Be	drock		X
-	Y .		
			- 11
sis for aquifer	confinement evaluation: Shallow water	blaring 20105/64-89	-act bas),
Static Wa	ter level change from 35 feet in	10/02 to 4 feet in	Cart bgs),
Static War	confinement evaluation: Shallow water her level change from 35 feet in st shows water level response in 1025. State obs well data shows (4)11	10/02 to 4 feet in	03/03.

C2. 690-09-040 (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than 1/4 mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED	Potential for Subst. Interfer. Assumed? YES NO
		ROGUE RIVER	13.76	1300	11,500		
4	-		100		,		
-	2	CONSIANCE CREEK	1376	1380	800		
			<u> </u>				
			-				
			-				
			-				
	Well	Well #	Well # Surface Water Name	Well # Surface Water Name Elev ft msl ROGUE RIVER 13.76 CONTANCE CREEK 1376	Well # Surface Water Name Elev ft msl ft msl ROBIE RIVER 13.76 1380	Well # Surface Water Name Elev ft msl Distance (ft) ROBNE RIVER 13.76 1300 11,500 CONSANCE CREEK 1376 1380 800	Well # Surface Water Name Elev ft msl Distance (ft) Connected? YES NO ASSUMED ROBUE RIVER 1376 1380 800 Distance (ft) Connected? 1376 1380 800 Distance (ft) Distance (ft) Connected? 1376 1380 Distance (ft) Distance (ft) Connected? 1376 1380 Distance (ft) Distance (ft) YES NO ASSUMED

Basis for aquifer hydraulic connection evaluation: Rogve is regional ground water discharge Static water level @ well ~ 55 feet higher than river stage. Payme Cliffs formation appear to be continuous up to Rogre River, (see GMS52 and GMS78) generally only running after rains.

C3a. 690-09-040 (4): Evaluation of stream impacts for each well that has been determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that surface water source, and not lower SW sources to which the stream under evaluation is tributary. If Q is not distributed by well, use full rate for each well. If modeled, include description and model parameters in Comments (C3b). Any checked \(\subseteq \) box indicates the well is assumed to have the potential to cause substantial interference with surface water.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw> 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1				1200		1130			
	2				.,,					
-	1	X		NA	NA		NIA	No	water avail m	ode
-										
-										
		<u> </u>								
-		<u> </u>	⊢⊢							
-										
		H	-H							

connect	040 (4): ed and lest on and lim	ss than	1 mile fr	om a surfa	ace wate	er source	. Compl	ete only	if Q is c	listribute	d amon	ig wells.	therwise
Cvaruati	SW #	itations	Qw > 5 cfs?	Instream Water Right ID	n In N	stream Water ight Q (cfs)	Qw > 1% ISWR	N F	30% atural Flow	Qw > 1% of 80% Natural Flow?	In	terference 30 days (%)	Pote for S Inte
		. 37											
Comme	nts:												
(00,00	240 (5)												
Limit e	040 (5): valuation SW#	Estimate to one y Jan	ed impacrear of pu	ts on surfamping.	Apr	May	s as perc	Jul	alitative	fraction*	of prop	oosed pun	Dec Dec
1	1	VL	VL	VL	VL	VL	VL	VL	VL	1	L		VL
	2	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL
7*	/L = Very 1	ow (<5	26) I = I	OW (5-25%) I = Int	termediat	(25.759/) II – II	750				
	impact ex										ralit	y . Howe	ever,
Dist	rushive v	elver	of TE	delays	lerived	from	ag. test	data	+ from	1		wello	7
indirect of	040 (5): It connection vater avail	betwee	n surface	water and	d groun	d water:	Migh High	denotes	hydraul	ic connect	tion tha	t would li	n or a ve kely redi
(a) The The The	potential t potential t potential t potential t	o reduc o reduc o reduc	e surface e surface e surface	water ava	ailabilit ailabilit ailabilit	y in y in y in		ve Ri	ver		is is is	Low Low Low	or H or H
	s: <u>(on)</u> meabil	1			anaomity ana (; dy e	arly i	n y pa	rý su	face su	is oils	Low	or H
	Simplifie	dana	ytical i	nodelin	s sus	seits	Rogul 1	Ro flo	ns wo	uld like	ly be	reduces	but

	on G- <u>15943</u> continued	_	MAY 12	200								
C4b. 690	0-09-040 (5): Evaluation of paragraphs u	inder subsection 5 continued.										
	The percentage of appropriation in the fi		e of surface water									
(0)	Basis: Con steady CV = 00	%	c of surface water									
	Basis: Constance CIK = 09 ROBUE RIVER = 5-	10% by analytical modeli	of speam depletion									
		, ,										
(d)	The timing of interference will be imi	mediate (within one year), or dela	yed;									
	Basis: As about											
(-)												
(e)	The potential for cumulative adverse impa	acts: A graphical distribution of PO are or are not availa	As and summary of permitted rightle at this time of review.	hts								
	Impacted stream	Impacted basin or sub-basin	Existing Ground Water Righ	ts (cfs								
			5	(011								
	Comments:											
	. 🙀	ind to substantially interfere with surfac	e water.	ater t								
ir	ii. The permit should contain speci iii. The permit should be conditioned. If the well is not reconstructed, it will interprete water from interference. If the ground interference with surface water, I recommende	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstruct water use under this permit is found to distribute withholding issuance of the permit un	s" below; uction, as follows, will adequately to have the potential for substantia	prot								
ir w	The permit should contain speci iii. The permit should be conditioned. The permit should be conditioned. The well is not reconstructed, it will interprete water from interference. If the ground the permit surface water, I recommend that the Department and approved by the Ground that the Department and	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstruct water use under this permit is found to divithholding issuance of the permit un round Water Section.:	s" below; action, as follows, will adequately be have the potential for substantia til evidence of well reconstruction	prote l n is fi								
ir w	ii. The permit should contain speci iii. The permit should be conditioned. If the well is not reconstructed, it will interprete water from interference. If the ground interference with surface water, I recommende	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstruct water use under this permit is found to divithholding issuance of the permit un round Water Section.:	s" below; action, as follows, will adequately be have the potential for substantia til evidence of well reconstruction	prote l n is fi								
ir w	The permit should contain speci iii. The permit should be conditioned. The permit should be conditioned. The well is not reconstructed, it will interprete water from interference. If the ground the permit surface water, I recommend that the Department and approved by the Ground that the Department and	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstruct water use under this permit is found to divithholding issuance of the permit un round Water Section.:	s" below; action, as follows, will adequately be have the potential for substantia til evidence of well reconstruction	prote l n is fi								
ir w	The permit should contain speci iii. The permit should be conditioned. The permit should be conditioned. The well is not reconstructed, it will interprete water from interference. If the ground the permit surface water, I recommend that the Department and approved by the Ground that the Department and	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstruct water use under this permit is found to divithholding issuance of the permit un round Water Section.:	s" below; action, as follows, will adequately be have the potential for substantia til evidence of well reconstruction	prot l n is fi								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prot l n is fi								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prot l n is fi								
T —	The permit should contain speci iii. The permit should be conditioned. The permit should be conditioned. The well is not reconstructed, it will interprete water from interference. If the ground the permit surface water, I recommend that the Department and approved by the Ground that the Department and	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fi								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fi								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fi								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fi								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fil								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fil								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fil								
T —	ii. The permit should contain conditions The permit should be conditions If the well is not reconstructed, it will interprete water from interference. If the groun interference with surface water, I recommend with the Department and approved by the Grown the well should be reconstructed as follows:	ial condition(s) as indicated in "Remark ed as indicated in item 6 below; rfere with surface water. Well reconstrued water use under this permit is found to distribute with the water section.: ws:	s" below; uction, as follows, will adequately to have the potential for substantia til evidence of well reconstruction	prote l n is fi								

Version: 04/01/2003

b. \[\square I \text{ don't know if it met standards at the time of construction.} \]	
D6. Route to the Enforcement Section. I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Enforcement Section and the Ground Water Section.	on
THIS SECTION TO BE COMPLETED BY ENFORCEMENT PERSONNEL	,
D7. Well construction deficiency has been corrected by the following actions:	
(Enforcement Section Signature) , 200_	
D8. Route to Water Rights Section (attach well reconstruction logs to this page).	

USGS 14339000 ROGUE R AT DODGE BR NR EAGLE POINT, OREG.

EXPLANATION

- DISCHARGE
- △ MEDIAN DAILY STREAMFLOW BASED ON 63 YEARS OF RECORD
- × MEASURED DISCHARGE

USGS 14339000 ROGUE R AT DODGE BR NR EAGLE POINT, OREG.

Cascade Earth Sciences - Medford, OR PN: 2324016/Doc: 2324016 Blandau Attachment 1.o3m

the vicinity of application G 15943 Wells in Well(s) identified in this 1/4-1/4 section from OWRD's well log database within 1 mi. radius of application well(s) Conditioned, permitted well(s) in this 1/4-1/4 section within 5 mi. radius of application well(s) Critical GW Area Application well(s) in this 1/4-1/4 section Regulated GW Area Well(s) identified in this section from OWRD's well log database within 1 mi. radius of application well(s) OWRD Observation well and well-id within 5 mi. radius of application well(s) Permitted well(s) in this 1/4-1/4 section within 1 mi. radius of application well(s) MESELY Creek **JACKSON** 31 P.C. & Creek HOOMEL LOJE Reese CIB 3 5 S **▲** 1154 West Toleral! Sams Valley 31 YOUR CONDI

```
ABANDON:
RECONDITIONED:
                 26
                 4
   REPAIRED:
  CONVERSION:
                  0
  DEEPENINGS:
                 54
NEW CONSTRUCT:
                456
COMMUNITY USE:
                  \cap
 DOMESTIC USE:
                520
INDUSTRIAL USE:
                  0
INJECTION USE:
                  0
IRRIGATION USE:
                 14
  THERMAL USE:
                  0
LIVESTOCK USE:
                  0
        *************
```

PERMITTED WELLS WITHIN 1 MILE OF APPLICATION G 15943

\$RECNO	APP	LICATION	PER	MIT	CLAIM		LOC-QQ		USE_CODE
1	G	10851	G	9964		0	35.00S	2.00W12NWNE	IR
1	G	10851	G	9964		0	35.00S	2.00W12NWNE	IR
2	G	10851	G	9964		0	35.00S	2.00W12NENE	IR
3	G	10605	G	9723		0	35.00S	2.00W11NWSW	IR
4	G	15794		0		0	35.00S	2.00W12NWSE	LV
4	G	15794		0		0		2.00W12NWSE	DO
4	G	15794		0		0	35.00S	2.00W12NWSE	DO
4	G	15794		0		0		2.00W12NWSE	
4	G	15794		0		0		2.00W12NWSE	
4	G	15794		0		0		2.00W12NWSE	
4	P	83132		0		0		2.00W12NWSE	
4	P	83132		0		0		2.00W12NWSE	
5	G	15674		0		0		2.00W12SWSE	
6	G	9247	G	8679		0		2.00W14NENW	
7	G	6068	G	5758		0		2.00W13NWNW	
7	G	6484	G	6104		0		2.00W13NWNW	
7	G	8843	G	8274		0	35.00S	2.00W13NWNW	IR
8	G	8373	G	7776		0			IR
9	G	14683	G	13576		0			IR
10		0		0	GR	1536		2.00W14NWSE	
11	G	11286	G	10413		0		2.00W14SESE	
11	G	11575	G	10688		0		2.00W14SESE	
11	G	11575	G	10688		0		2.00W14SESE	
12	G	3257	G	3056		0		2.00W13SESE	
12	G	5185	G	5056		0		2.00W13SESE	
12	G	5185	G	5056		0	35.00S	2.00W13SESE	IR
13	G	11074	G	10229		0		2.00W23NENW	
14	G	10949	G	10112		0		2.00W23NWNE	
15	G	6474	G	6098		0		2.00W24NWNE	
15	G	11699	G	10774		0		2.00W24NWNE	
16	G	9875	G	9386		0	35.00S	2.00W23SENW	IR
17	G	10710	G	9836		0		2.00W24NESW	
18	G	7397	G	6906		0	35.00S	1.00W18SWNE	IR
19	G	12728	G	11657		0	35.00S	1.00W19SWSW	IR
	* *	*****	***	*****	*****	****	******	*******	

CONDITIONED WELLS WITHIN 5 MILES OF APPLICATION G 15943

\$RECNO APPLICATION PERMIT LOC-QQ CONDITION-CODE 1 G 12728 G 11657 35.00S 1.00W19SWSW 4CG

APPLICATION G 15943 FALLS WITHIN THESE QUAD(S)

stream_depletion_2_41.xls

Input Data	ъ.

Variable	Name	Minimum	"Best"	Maximum	Unit
Well Owner or Well Number	Well		G-15943		
X Coord. for X-Section (Head Distribution)	х		0	ROGUE	[ft]
Perpendicular Distance From Well to Stream	а		11,500	RIVER	[ft]
Net Steady Pumping Rate	Q		40		[gpm]
Hydraulic Conductivity	K	5	10	16	[gpd/ft*ft]
Aquifer Thickness	b	300	300	300	[ft]
Well Depth	d		300		[ft]
Storativity	S		0.00200		
Effective porosity	n		0.00100		
Hydr. Grad. Perpend. to Stream (must be > 0)	i	0.00100	0.00100	0.00100	
Time Since Pumping Started	time		180.00		[days]

Output Data:

Output Data:						_
General Output:						
Transmissivity	Т	1,500	3,000	4,800	[gpd/ft]	= K*b
Hydraulic Conductivity	K	5	10	16	[gpd/ft*ft]	7
		1	1	2	[ft/day]	1
		2.34E-06	4.69E-06	7.50E-06	[m/s]	
Average linear velocity	ALV	0.67	1.34	2.14	[ft/day]] = K*i/n
		244.15	488.30	781.28	[ft/yr]	
Ambient Flux at River per Foot	dQ	0.0010	0.0021	0.0033	[gpm/ft]	= K*b*i

Transient Stream Depletion Output:						
k	SDTr_k	1.8319	0.9160	0.5725		= ((a^2*S)/(4Tt))*7.48
Transient Stream Depletion (Theis/Jenkins)	SDTr	6%	18%	28%	7	= erfc SQRT(a*a*S)/4Tt)
Transient Induced Infiltration (Theis/Jenkins)	IITr					/

Steady-State Stream Depletion:

					_
Beta, ß	1.06	0.53	0.33		= Q/(K*b*i*•*a)
	0.25	0.00	0.00		
Qc	38	75	120	[gpm]] = K*b*i*•*a
rvd	11500	3628	2102	[ft]	= a-(a*SQRT(1-β))
	100%	100%	100%		2
	1%	0%	0%		= (2/•)*{-SQRT(β-1)/β+AT
	Qc	Qc 38 rvd 11500 100%	0.25 0.00 Qc 38 75 rvd 11500 3628 100% 100%	0.25 0.00 0.00 Qc 38 75 120 rvd 11500 3628 2102 100% 100% 100%	0.25 0.00 0.00 Qc 38 75 120 [gpm] rvd 11500 3628 2102 [ft] 100% 100% 100%

stream_depletion_2_41.xls

•	ta	9	п	11	DI	n	ı
	ıa	\boldsymbol{r}	ш		n	ш	ı

Variable	Name	Minimum	"Best"	Maximum	Unit
Well Owner or Well Number	Well		G-15943		
X Coord. for X-Section (Head Distribution)	X		0	CONSTANCE	[ft]
Perpendicular Distance From Well to Stream	а		800	CKK	[ft]
Net Steady Pumping Rate	Q		40		[gpm]
Hydraulic Conductivity	K	5	10	16	[gpd/ft*ft]
Aquifer Thickness	b	300	300	300	[ft]
Well Depth	d		300		[ft]
Storativity	S		0.00200		
Effective porosity	n		0.00100		
Hydr. Grad. Perpend. to Stream (must be > 0)	i	0.00100	0.00100	0.00100	
Time Since Pumping Started	time		180.00		[days]

Output Data:

Output Bata.						_
General Output:						
Transmissivity	Т	1,500	3,000	4,800	[gpd/ft]	= K*b
Hydraulic Conductivity	K	5	10	16	[gpd/ft*ft]	1
		1	1	2	[ft/day]	1
		2.34E-06	4.69E-06	7.50E-06	[m/s]	
Average linear velocity	ALV	0.67	1.34	2.14	[ft/day]	= K*i/n
		244.15	488.30	781.28	[ft/yr]	
Ambient Flux at River per Foot	dQ	0.0010	0.0021	0.0033	[gpm/ft]] = K*b*i

Transient Stream Depletion Output:					
k	SDTr_k	0.0089	0.0044	0.0028	= ((a^2*S)/(4Tt))*7.48
Transient Stream Depletion (Theis/Jenkins)	SDTr	89%	92%	94%	= erfc SQRT(a*a*S)/4Tt)
Transient Induced Infiltration (Theis/Jenkins)	IITr				

Steady-State Stream Depletion:

Steady-State Stream Depletion:						_
Dimensionless Pumping Rate	Beta, ß	15.28	7.64	4.77		= Q/(K*b*i*•*a)
$(\beta >= 1 ==> velocity divide has reached stream)$						
SQRT(Beta-1)		3.78	2.58	1.94		
Critical pumping rate	Qc	3	5	8	[gpm]	= K*b*i*•*a
Dist. fr Well to Velocity Divide at Steady State	rvd	800	800	800	[ft]	= a-(a*SQRT(1-β))
Steady-State Stream Depletion (Wilson & Linderfelt)		100%	100%	100%		
Steady-State Induced Infiltration (Wilson & Linderfelt)		68%	55%	44%		= (2/•)*{-SQRT(β-1)/β+AT
	Dimensionless Pumping Rate (B >= 1 ==> velocity divide has reached stream) CRRT(Beta-1) Critical pumping rate Dist. fr Well to Velocity Divide at Steady State Steady-State Stream Depletion (Wilson & Linderfelt)	Dimensionless Pumping Rate (B >= 1 ==> velocity divide has reached stream) CRRT(Beta-1) Critical pumping rate Oist. fr Well to Velocity Divide at Steady State Steady-State Stream Depletion (Wilson & Linderfelt)	Dimensionless Pumping Rate (B >= 1 ==> velocity divide has reached stream) CRRT(Beta-1) Critical pumping rate Oist. fr Well to Velocity Divide at Steady State Steady-State Stream Depletion (Wilson & Linderfelt) 15.28 Beta, B 15.28	Dimensionless Pumping Rate Beta, ß 15.28 7.64 (ß >= 1 ==> velocity divide has reached stream) 3.78 2.58 CRRT(Beta-1) Qc 3 5 Dist. fr Well to Velocity Divide at Steady State rvd 800 800 Steady-State Stream Depletion (Wilson & Linderfelt) 100% 100%	Dimensionless Pumping Rate Beta, β 15.28 7.64 4.77 (β >= 1 ==> velocity divide has reached stream) 3.78 2.58 1.94 CRRT(Beta-1) 3.78 2.58 1.94 Critical pumping rate Qc 3 5 8 Dist. fr Well to Velocity Divide at Steady State rvd 800 800 800 Steady-State Stream Depletion (Wilson & Linderfelt) 100% 100% 100%	Dimensionless Pumping Rate Beta, ß 15.28 7.64 4.77 (ß >= 1 ==> velocity divide has reached stream) 3.78 2.58 1.94 CRRT(Beta-1) 3.78 2.58 1.94 Critical pumping rate Qc 3 5 8 [gpm] Dist. fr Well to Velocity Divide at Steady State rvd 800 800 800 [ft] Steady-State Stream Depletion (Wilson & Linderfelt) 100% 100% 100%

6-8' sasonal

State Observation Well # 1154 35S/02W-29bd VIRGINIA WHITE

NYS slavenal tomber

State Observation Well # 1155 B.A. Stevens, 35S/02W-32cbd

State Observation Well # 1157
James Irrigation District #1, 35S-02W-33

To Aut 2 seasons