TJANNSEN @SWARISE WATER, COM

ASR License No. (ASSIGNED AFTER FILING)

STATE OF OREGON WATER RESOURCES DEPARTMENT APPLICATION FOR LIMITED WATER USE LICENSE FOR

AQUIFER STORAGE AND RECOVERY (ASR)

Appli	cant(s): Sun	rise Water Autho	rity (SWA)		i.	
Contact Person: Mailing Address:		Tim Jannsen 10602 SE 129th Avenue				
		City	State	Zip	Phone #	
1.	DATE(S) OF PR	E-APPLICATION	CONFERENCE(S)):June 29,	2006	
	INFORMA	TION REGARDING	G ASR TESTING	UNDER A LIM	TTED LICENSE	
2.	SOURCE OF IN	JECTION WATER	for ASR: CRW a	nd/or NCCWC	water treatment plants	
	a tributary of <u>S</u>	ource: Clackamas R	> Willamette R			
3.	NA A VINATINA INT	VERSION RATE:	2750 cmm (9 35)	ofe)		
3.	WAXINIOW DI	ERSION RATE.	3730 gpm (023)	<u> </u>		
4.	MAXIMUM INJ	ECTION RATE AT	EACH WELL(S)	: up to 750 gpr	n (1.67 cfs)	
			· · · · · · · · · · · · · · · · · · ·			
5.	MAXIMUM STO	ORAGE VOLUME:	600 MG,			
6.	MAXIMUM STO	ORAGE DURATION	N: typically up to 2	2 months; there	may be year-to-year	
carryover of storage depending on demand for stored water						
7.	MAXIMUM WITHDRAWAL RATE AT EACH WELL(S): 1,100 gpm					
	*					
8.	LICENSE TERN	OR DURATION S	OUGHT (5 year m	naximum): <u> </u>	ears	
			·····	*		
9.	PROPOSED US	E OR DISPOSAL O	F RECOVERED V	VATER: Mur	nicipal water supply to be	
	delivered into SV	VA's distribution sys	tem		•	
10.	TE CONTINCES	ICIES PRECLUDE '	THE USE IN TTEN	M 9. SPECIEV A	N ALTERNATE	
TO.		50.4			plan for disposal of injected	
	water is dischar		A TOTALDE AND TOTAL	Contengency	Parent 101 Gropusat VI INJECTEU	

INFORMATION REGARDING THE ULTIMATE ASR PROJECT AS CURRENTLY ANTICIPATED

11.	SOURCE OF INJECTION WATER for ASR: CRW and/or NCCWC water treatment plants						
	a tributary of Source: Clackamas R > Willamette R						
12.	MAXIMUM DIVERSION RATE: 3750 gpm (8.35 cfs)						
13.	MAXIMUM INJECTION RATE AT EACH WELL(S): up to 750 gpm (1.67 cfs)						
14.	MAXIMUM STORAGE VOLUME: 600 MG						
15.	MAXIMUM STORAGE DURATION: typically up to 2 months; there may be year-to-year						
	carryover of storage depending on demand for stored water						
16.	MAXIMUM WITHDRAWAL RATE AT EACH WELL(S): 1,100 gpm						
•							
consist	The materials required by rule for an ASR limited license are extensive. The items on this sheet of those outlined in OAR 690-350-020(2) and (3)(a)(A-E). Please consult the rule and provide as ments to this form the other requirements in OAR 690-350-020(3)(a).						
Signatu	tre of Applicant A. J. P.E. Date 7/27/86						

Deep Alluvial Aquifer Aquifer Storage and Recovery (ASR) Feasibility Study

Prepared For Sunrise Water Authority

Prepared By Groundwater Solutions, Inc. 55 SW Yamhill Street, Suite 400 Portland, Oregon 97204 (503) 239-8799

SWA Deep Alluvial Aquifer ASR Feasibility Study

Table of Contents

1.	Int	roduction	1
	1.1.	Purpose and Objectives	1
	1.2.	ASR Feasibility Project Scope	1
2.	Hy	drogeologic Characterization	3
	2.1.	Physical Setting	3
	2.2.	Geologic and Hydrogeologic Units	3
	2.3.	Geologic Structures	5
	2.4.	Hydrogeologic Setting	
	2.5.	Groundwater Development	6
3.	Aq	uifer Testing	7
	3.1.	Aquifer Test Water Level Monitoring Program	
	3.2.	Step Rate Drawdown Test	
	3.3.	Constant Rate Drawdown Test	9
	3.4.	Aquifer Test Analysis	9
4.	Soi	urce Water and Groundwater Quality Compatibility	11
	4.1.	Native Groundwater Quality	
	4.2.	Recharge Source Water Quality (CRW and NCCWC)	13
	4.3.	Water Compatibility	
5.	Re	charge Water Availability	19
	5.1.	General	
	5.2.	Recharge Water	19
6.	Rec	charge Analysis	21
	6.1.	Target Injection/Pumping Rates and Storage Volume	21
	6.2.	Assessment of Target Injection and Recovery Rates	
	6.3.	Evaluation of Available Storage Volume	
	6.4.	Capture of Stored Water by Other Wells	25
	6.5.	Loss of Stored Water to Surface Streams	26
7.	Co	nclusions, Uncertainties, and Recommendations	<i>27</i>
	7.1.	Conclusions	
	7.2.	Uncertainties	
	7.3.	Recommendations	29
8.	Rei	ferences	31

Tables

- Table 1: Summary of Native Groundwater and ASR Source Water Quality Testing
- Table 2: Mineral Saturation State of Native Groundwater and Source Waters
- Table 3: Projected Future Water System Demands
- Table 4: Estimated Drawup and Drawdown during ASR Operations at SWA Well 2W

Figures

Figure 1: Site Location Map Figure 2: Regional Topography

Figure 3: Geologic Map

Figure 4: Cross Section Location map
Figure 5: Geologic Cross Section A-A'
Figure 6: Geologic Cross Section B-B'

Figure 7: Extent of Target Aquifer for ASR

Figure 8: Stiff Diagrams Figure 9: Piper Diagrams

Figure 10: Iron and Manganese in Native Groundwater

Figure 11: Water Level Predictions for ASR Well

Figure 12: Projected Water Level Drawdown at Selected Production Rates

Appendices

Appendix A: SWA Well 2W Aquifer Test Results

Appendix B: Water Well Logs

Appendix C: Laboratory Data Reports

Appendix D: Geochemical Mixing Analysis

Appendix E: ASR Assumptions and Calculations

1. Introduction

Sunrise Water Authority (SWA) plans to increase its available groundwater supply capacity to meet peak water demands in the summer by storing surplus water available in the winter from SWA's current surface water sources using aquifer storage and recovery (ASR) technology. SWA came into existence in November 2000, through the combination of the Mt. Scott Water District and the Damascus Water District, and currently serves the City of Happy Valley, City of Damascus, and urban and rural areas in north Clackamas County between Interstate 205 (I-205) to the vicinity of SE 242nd Avenue. Figure 1 is a map showing the project location and service area boundaries.

As significant growth and development pushes eastward within the SWA service area and the Metro growth boundary expands, additional water supply sources are needed. SWA estimates that during the next 20 years it will need to supply an additional 52 million gallons per day (mgd) to meet peak demands, and intends to develop an ASR system(s) to meet approximately to 10 mgd of this additional demand.

SWA currently has groundwater production wells completed in three different groundwater bearing units within its service area: an upper gravel aquifer, a deep alluvial aquifer, and a basalt aquifer. This report presents an evaluation of the feasibility of ASR operations in the deep alluvial aquifer.

1.1. Purpose and Objectives

The purpose of this report is to provide information in support of SWA's application to the Oregon Water Resources Department (OWRD) for an ASR limited license, as required in Oregon Administrative Rules (OAR) 690-350-0020(3)(a)(K). The objective of this report is to summarize the hydrogeology of the local aquifers within the SWA service area and present the results of the evaluation for developing an ASR program within the deep alluvial aquifer.

SWA plans to inject treated drinking water into the ground during times of low water demand when excess water treatment plant capacity is available (typically in the winter). This will allow SWA to store or "bank" water in the ground for future use during high water demand, thereby increasing peaking capacity of its system. ASR will contribute to the long-term sustainability of the aquifer and alleviate the potential for declining water levels in the aquifer.

Although this report specifically evaluates ASR feasibility in the deep alluvial aquifer, SWA also intends to eventually develop an ASR system in one or more other aquifers within the service boundaries.

1.2. ASR Feasibility Project Scope

ASR projects commonly are divided into three phases: Phase 1 - ASR Feasibility Study, Phase 2 - ASR Pilot Testing, and Phase 3 - Expansion and Full-Scale Operation. The ASR feasibility study described in this report is designed to provide SWA with key

information needed to identify potential fatal flaws to ASR development in the deep alluvial aquifer, factors determining ultimate system capacity and key uncertainties to address. The feasibility study also provides information required by OWRD as part of the ASR permitting process and it is intended that the report be submitted to OWRD as an attachment to the ASR limited license application. SWA intends to implement an ASR pilot testing program subsequent to receiving an ASR limited license from OWRD to test and demonstrate ASR feasibility and to provide SWA with needed operational data.

The ASR feasibility study for the deep alluvial aquifer included the following elements:

Section 2 – Hydrogeologic Characterization. Construct geologic cross sections through the project area to further define the nature, extent, and character of both deep alluvial aquifer and the surrounding hydrogeologic units, and to assess how recharge water will move within the deep alluvial aquifer.

Section 3 – Aquifer Testing. Conduct an aquifer test at SWA Well 2W in the deep alluvial aquifer to measure well performance and aquifer characteristics including specific capacity, transmissivity, storativity, and boundary conditions. The test included monitored water levels in the test well (SWA Well 2W) and several nearby wells. This information was used to estimate the target recharge rate, pumping rate, and the amount of water that can be stored.

Section 4 – Source Water and Groundwater Quality Compatibility. Conduct detailed geochemical testing and geochemical modeling to predict the likelihood for reactions to occur that might clog the well or affect the taste of the recovered water. This analysis included modeling potential geochemical reactions during mixing of the deep alluvial groundwater (receiving water) with two source water options available to SWA during the recharge period.

Section 5 – Recharge Water Availability. Assess the source(s) of water, the volume of water available, and the time water is available for recharge

Section 6 – Recharge Analysis. Using the estimated aquifer parameters, predict target injection and pumping rates, target storage volume, and water levels in the aquifer and wells during injection and pumping in the deep alluvial aquifer.

Section 7 – Conclusions, Uncertainties, and Recommendations. Discuss conclusions and uncertainties associated with the ASR feasibility study and present recommendations for addressing the uncertainties and proceeding with the project.

The findings of the ASR feasibility study are presented in the following sections beginning with the hydrogeologic characterization.

2. Hydrogeologic Characterization

The OWRD water well log database was used in conjunction with various geologic maps and publications for this area to develop a conceptual geologic and hydrogeologic model for groundwater system beneath the SWA service area. The locatable water supply wells found in the project area were used in the hydrogeologic characterization. Many other water wells are present within the study area, based on OWRD records; however, the location of these additional wells is not known beyond the township, range and section number. This section summarizes the conceptual hydrogeologic model in the project area.

2.1. Physical Setting

The SWA service area is located in the southeastern portion of the Portland Metro Area east of I-205, north of the Clackamas River, and stretching east toward Boring (Figure 1). Major features in the project area are Mt. Scott (remnant of the small volcanoes in the area) on the western edge, Pleasant Valley running north-south in the middle, and the Boring Hills rising to the east of the City of Damascus (Figure 2). The land surface elevation within the project area ranges from approximately 120 to 1,050 feet mean sea level (msl).

2.2. Geologic and Hydrogeologic Units

The project area is located in a relatively complex geologic setting on the southeastern edge of the regional structure known as the Portland Basin. Alluvial sediments, including the regionally extensive Troutdale Formation, have filled the subsiding basin. The deposition of the upper portion of the Troutdale Formation was marked by the formation of numerous faults and the occurrence of small volcanic eruptive centers and lava flows in the southeastern portion of the basin, which is occupied by the SWA service district. The general geologic units present in the SWA service area are shown on the geologic map, Figure 3, and are described from youngest to oldest below.

Alluvial Deposits – Qal

This unit consists of Quaternary period river and stream deposits of sands, gravels, and silts that are largely confined to channels and floodplains of local rivers, streams, and valley bottoms.

Catastrophic Flood Deposits - Qff, Qfc

These units consist of Pleistocene age flood deposits associated with high energy, subfluvial deposition during catastrophic floods resulting from the Missoula flood episodes. These deposits have been divided into fine-grained (geologic map symbol Qff) and course-grained deposits (geologic map symbol Qfc). The fine-grained deposits form the surface deposit layers along the south side of Mt. Scott and throughout the Pleasant Valley.

Boring Lava – QTba

The Boring Lava intrudes the existing sediments of the basin in the SWA service area. The Boring Lava represents relatively young basalts and basaltic andesite lavas that were erupted from vents in the greater Portland area and in Clark County, Washington. The Boring Lava and associated resistant knobs of basin sediments form the range of hills characteristic of the service area.

Springwater Formation - Qts

The Springwater Formation is a Cascade-derived consolidated gravel formation that is comprised of mostly volcanoclastic material. This formation was deposited in the eastern portions of the Portland region, along the slopes of the Cascades after deposition of the Troutdale Formation.

Troutdale Formation – Ts

The Troutdale Formation includes a sequence of major sedimentary deposits that have filled the Portland Basin. The Troutdale Formation has been divided into the following hydrogeologic units within the basin (Hartford and McFarland, 1989 and Leighton and Porcello, 2001):

- Troutdale Gravel Aquifer (TGA)
- Confining Unit 1 (CU1)
- Troutdale Sand Aquifer (TSA)
- Confining Unit 2 (CU2)
- Sand and Gravel Aquifer (SGA) (Sandy River Mudstone equivalent)

The primary geologic and hydrogeologic units present beneath the SWA service area near the edges of the regional basin include the TGA, CU1, and finer-grained floodplain facies of the TSA, SGA, or Sandy River Mudstone hydrogeologic units. The lower units of the Troutdale Formation are characteristic of an alluvial big river system, with thick gravel and sand deposits in and near the channels and finer-grained deposits in the associated floodplain areas. The deeper Troutdale deposits found beneath SWA's service area consist of finer-grained floodplain deposits compared to the other portions of the basin, with occasional overbank sand deposits resulting from major flood events or local tributaries to the bigger river system. In contrast, the upper Troutdale Gravel unit appears to be more regionally present within the basin.

Columbia River Basalt Group (CRBG)

The CRBG consists of a series of Miocene age basalt flows that underlie most of the Portland Basin to thicknesses approaching 1,000 feet. Individual basalt flows can vary greatly in thickness from several feet to more than 100 feet thick. Groundwater in the basalt is predominantly derived from interflow zones, which represent the contract between individual basalt flows. These interflow zones are typically rubbly and porous, and thus can transmit water easily. Groundwater also is produced from fractured zones in the more massive interior flows, if sufficient structural deformation and/or fracturing has occurred. Tuffaceous sedimentary deposits representing sediment deposition between eruptions are also found in the interflow zones.

The OWRD water well log database was used in conjunction with various geologic maps and publications to develop geologic and hydrogeologic cross sections for groundwater system beneath the SWA service area. Figure 4 presents the cross section location map showing located water wells, and Figures 5 and 6 show the cross sections depicting the geologic and hydrogeologic units within the project area. The vertical scales of the cross sections are exaggerated to better display the subsurface conditions.

2.3. Geologic Structures

The prominent geologic structures near the SWA service area include the regional structure known as the Portland Basin, numerous structural faults, and remnant volcanic eruption centers or vents. The Portland Basin is described as a basin structure that has been filled up with sedimentary material that overlies the CRBG.

The structural faults in the project area include mostly northeast and northwest-trending faults (Figure 3). These faults cut through most sedimentary deposits that filled the Portland Basin, indicating they occurred after deposition of most of the sedimentary deposits in the project area. Faults and folds can influence groundwater flow by promoting and/or impeding both lateral and vertical groundwater flow. The hydraulic character of the faults in the project area depends on the degree of offset, as well as healing by secondary minerals, such as clays.

The remnant volcanic eruption centers or vents in the project area are thought to have occurred around the same time as the faulting. Molten rock pushing up through the sedimentary deposits in the area resulted in surface lava flows extending from the vents into the valley portions of the project area. Mt. Scott is one of the larger, well preserved, eruption centers (Figure 3 and 4). The temperature of the molten rock passing through combined with the hydrothermal alterations within the sediments likely creates a halo of reduced permeability in the adjacent sedimentary deposits near the vents and intrusions. Recent alluvial deposition has since covered many of the potential surface lava flows.

2.4. Hydrogeologic Setting

The primary aquifers used for groundwater supplies present beneath the SWA service area include:

- The upper gravel aquifer (an upper Troutdale Gravel equivalent)
- deep alluvial aquifer (a TSA or Sandy River Mudstone equivalent that is a sandy deposit within the larger fine grained floodplain deposits in this area)
- CRBG

The sedimentary units present beneath the SWA area are relatively thin and the deeper deposits are not laterally continuous due to both the extensive faulting and depositional environments of these localized deposits.

The unconfined upper gravel aquifer is relatively continuous gravel deposit that represents a typical alluvial depositional system and includes interbedded layers of conglomerate, gravel, sand, and fine-grained silts. This unit is cemented in some places.

The thickness of this hydrostratographic unit in SWA's service area ranges from 120 feet to more than 200 feet. This aquifer may be partially confined in the northern sections of Pleasant Valley where the static water level is present above the top of the gravel deposit that is capped by a distinctive, laterally continuous, Boring Lava deposit. The upper gravel aquifer is generally unconfined toward the south of the SWA service area and likely is connected to local surface water streams or discharges.

The deep alluvial aquifer is a coarser sand deposit present within the fine-grained floodplain deposits present in this area of the basin. This aquifer is a confined system that is approximately 50 feet thick (Figures 5 and 6). Limited information is available for the deep alluvial aquifer because few wells have been constructed in this unit within the service area. Based on the depositional environment of the Portland Basin during the deposition of this sand unit, structural faulting and potential system alterations associated with local volcanic activities, the deep alluvial aquifer appears to be a relatively isolated aquifer of limited areal extent. Figure 7 shows the locations of water wells that may penetrate this unit and the potential lateral extent of this deep hydrostratographic unit. The sustainable yield for this unit likely is limited by aquifer recharge conditions.

The deep alluvial aquifer is the focus of this ASR feasibility study.

2.5. Groundwater Development

Most of the water wells in the project area are completed in the upper gravel aquifer. Historically, this aquifer was the first significant groundwater producing unit that provided sufficient production for past users. Limited wells have been drilled to a depth that would encounter the deep alluvial aquifer, the target aquifer for this ASR feasibility evaluation. Because of the limited number of wells completed in the deep alluvial aquifer, limited data exist for estimating the ultimate sustainable yield of this aquifer.

SWA production well 2W is one of few water wells that is completed in the deep alluvial aquifer. Based on the production performance history of SWA Well 2W, this aquifer can yield groundwater at rates up to at least 1,200 gallons per minute (gpm) for short periods of time and wells completed in the aquifer have a specific capacity of up to at least 8 gpm /ft. However, the deep alluvial aquifer appears to be of limited areal extent, evidenced by drawdown experienced in SWA Well 2W during extended pumping. Additional details regarding the hydraulic properties of the deep alluvial aquifer are provided in Section 3 of this report.

3. Aquifer Testing

Aquifer testing was performed on the deep alluvial aquifer at SWA Well 2W to measure the aquifer hydrogeologic parameters including transmissivity and storativity, as well as the specific capacity of the well. This information is used in the ASR recharge and pumping analysis (see Section 6) to predict water level draw-up (mounding) during injection, and drawdown during pumping under several ASR injection and pumping scenarios in the deep alluvial aquifer.

Aquifer testing of the deep alluvial aquifer consisted of a step rate drawdown test and a 4-day constant rate drawdown test. The step rate drawdown test consisted of four 1-hour consecutive steps and the constant rate drawdown test consisted of pumping SWA Well 2W at a rate of 800 gpm for approximately 102 hours (4.27 days). Water levels in SWA Well 2W were monitored during pumping and also for approximately 720 hours (30 days) during recovery. Water levels in two observation wells in the deep alluvial aquifer also were measured during the pumping and recovery phases of the test. In addition, water levels in the upper gravel aquifer were monitored during aquifer testing in SWA Well 5. Appendix A contains manual water level data, water level plots, and a detailed description of the methods used to calculate aquifer parameters.

Water quality conditions in the deep alluvial aquifer at SWA Well 2W were evaluated during the aquifer testing program through water sampling and analysis and collection of field parameters. A water quality compatibility evaluation related to the ASR feasibility analysis is included in Section 4.

Water level drawdown and recovery data were used to compute transmissivity and storativity values for the deep alluvial aquifer. Transmissivity is a measure of the productivity of an aquifer in terms of thickness and permeability of the aquifer matrix. The storativity is a measure of how much water can be released from, or taken into the aquifer per unit change in the hydraulic head. Specific capacity was also computed on the basis of the constant rate drawdown test data. Specific capacity is an index for how a given well performs and it is calculated by dividing the discharge rate by the resultant drawdown (or drawup during injection). The specific capacity index takes into account both the productivity of the aquifer (transmissivity) and the efficiency of the well. Specific capacity, transmissivity, and aquifer boundary conditions are used to determine what injection and pumping rates can be sustained at an ASR well because they influence the drawdown and drawup in the well for a given storage or pumping volume. A more detailed discussion of how these aquifer and well parameters were used to calculate target ASR injection rates, pumping rates, and storage volume is presented in Section 6.

3.1. Aquifer Test Water Level Monitoring Program

Based on a review of the water well records on file with OWRD, few water wells in the study area are completed in the deep alluvial aquifer, the target aquifer for this ASR feasibility evaluation. SWA has an observation piezometer (CLAC 53331) located 17 feet

from SWA Well 2W that was used as an observation well for the aquifer testing. Two additional potential observation wells completed in the deep alluvial aquifer were identified within approximately 1 mile of SWA Well 2W for the aquifer testing: Clackamas 55211 and Clackamas 4610. SWA staff members were successful in obtaining permission to allow monitoring of water levels before and during the aquifer testing in Clackamas 55211, an irrigation well at the North Clackamas High School. The other water well, Clackamas 4610, reportedly owned by Joesph Dixon, did not have a specified street address and long-time residents in the general vicinity of the reported location did not recognize the name Joesph Dixon as a resident of the area. The State Water Well Reports for these wells are provided in Appendix B.

SWA Well 2W and the 2W piezometer were instrumented with pressure transducers and data loggers to allow automated water level monitoring. SWA Well 2W is also instrumented with a flow meter that reports the well flow through SWA's telemetry system. Because of access limitations, a pressure transducer and data logger could not be installed for the aquifer testing program in Clackamas 55211 to allow automated water level monitoring. Instead, water level measurements were made twice daily using the existing air line installed at the well. The initial and final water level measurements made using the air line were verified using an electric water level meter. Water levels in an upper gravel aquifer well, SWA Well 5, also were continuously collected with SWA's SCADA system and downloaded during the background, testing, and recovery phases of the aquifer testing program to evaluate potential vertical hydraulic communication between the two aquifers.

Water levels in SWA Well 2W and the observation wells were monitored for approximately 1 week before the start of the aquifer tests (to establish baseline condition of the aquifer), during the aquifer tests, and during the recovery period following the aquifer tests.

A summary of the aquifer tests is presented below and Appendix A provides a more detailed description of the tests.

3.2. Step Rate Drawdown Test

To determine the performance of the deep alluvial aquifer, a step rate drawdown test was completed at SWA Well 2W. This type of testing provides a baseline from which to compare future changes to well performance resulting from ASR operations at this well. A step rate drawdown test is conducted by pumping a well at successively higher pumping rates over an equal interval of time. For this test, SWA Well 2W was pumped at 400, 600, 800, and 1,000 gpm for 1-hour intervals. The step test data were used to pick a pumping rate for the constant rate drawdown test and to assess head losses in the well. Based on the step test data, laminar flow losses as a percentage of total head losses are approximately 89 percent, which indicates that the well is relatively efficient. On the basis of the step test results, a constant rate of 800 gpm was chosen for the constant rate drawdown test.

3.3. Constant Rate Drawdown Test

A constant rate drawdown test was conducted for a period of 102 hours (4.27 days) at SWA Well 2W to determine the following:

- Calculate transmissivity and storativity of the deep alluvial aquifer.
- Determine the specific capacity of the well and project the specific capacity during long-term pumping.
- Identify possible boundaries to the deep alluvial aquifer that might limit the ASR storage volume.

The initial pre-test static piezometeric head in SWA Well 2W was approximately 220 feet below ground surface (bgs) (the reported static water level shortly after the well was drilled in March 1998 was also 220 feet bgs; indicating relatively stable aquifer levels). The top of the aquifer is located approximately 450 feet bgs, indicating that the aquifer is confined. The constant rate drawdown test was conducted from March 20 to 24, 2006. The well was pumped at a rate of 800 gpm and drawdown was measured in SWA Well 2W, the 2W piezometer, and Clackamas 55211. The maximum drawdown in SWA Well 2W after 102 hours (4.27 days) was approximately 140 feet. The maximum drawdown in the 2W piezometer, located approximately 17 feet away, was approximately 100 feet and the maximum drawdown in Clackamas 55211, located approximately 4,950 feet away, was 6.5 feet. Recovery data were collected from SWA Well 2W and the 2W piezometer for 720 hours (30 days) following the end of pumping. A summary of the aquifer test data interpretation is presented below.

3.4. Aquifer Test Analysis

Graphs of the aquifer test data are presented in Appendix A. A change in the water level response of the aquifer occurred approximately 130 minutes into the constant rate drawdown test (refer to Appendix A), suggesting the presence of a negative hydraulic boundary (i.e., increased rate of drawdown with time) at a distance of approximately 1,100 feet from SWA Well 2W that reduces the water yielding capacity of the aquifer. No other boundaries were encountered during the remainder of the constant rate drawdown test.

The negative aquifer boundary could be the result of a change in the hydraulic properties of the aquifer, or a change in the thickness or extent of the aquifer at some distance and direction from SWA Well 2W. It is suspected this boundary may be a result of an aquifer permeability change associated with the intrusion of the Boring Lavas that form the prominent Mt. Scott north of the SWA Well 2W.

A transmissivity of the aquifer was calculated for both early time (i.e., before the boundary was encountered) and late time (i.e., after the boundary was encountered) using the drawdown data and the recovery data from SWA Well 2W, the 2W piezometer, and the North Clackamas High School well. Calculated early time transmissivity (preboundary) ranged from 11,700 to 12,200 gallons per day per foot (gpd/ft) and late time (post-boundary) transmissivity ranged from 8,800 to 9,200 gpd/ft.

The storativity of the aquifer was calculated using early time data from the 2W piezometer. Calculated storativity using early time data is 3×10^{-4} . Additional details regarding the analysis of the aquifer test data are provided in Appendix A. This storativity value is representative of a confined aquifer system and supports the conceptual hydrogeologic model presented above.

The transmissivity and storativity estimates of the aquifer indicate that the formation will readily yield water to wells, but the drawdown (and drawup) effects will be large and transmitted over long distances (miles). The low storativity value and presence of at least one negative boundary also means that the aquifer is vulnerable to excessive overpumping, which can result in significant water level declines. These characteristics are further illustrated by the observation that the water level (or piezometeric head) in SWA Well 2W did not recover fully following the pumping phase of the constant rate drawdown test: 2 feet of residual drawdown in the aquifer level remained 1 month after the end of the constant rate drawdown test. This observation supports the conceptual model of a confined aquifer of limited extent with limited recharge (at least in the short term), and indicates that the volume of water pumped from the aquifer during the constant rate aquifer test was likely taken out of storage. It should be noted that ASR is particularly beneficial in this setting because ASR will augment the apparent low rate of natural groundwater recharge and reduce the potential impact of groundwater overpumping and aquifer water level declines.

4. Source Water and Groundwater Quality Compatibility

This section presents a discussion of water quality and compatibility between the native groundwater and recharge source waters for the project. This analysis was performed to assess the potential for adverse chemical reactions that could occur as a result of mixing source water with native groundwater in the aquifer. Adverse reactions that could occur include precipitation of minerals (e.g., iron or manganese hydroxides) that could clog the aquifer or well, and dissolution of minerals in the aquifer that could mobilize metals or affect taste and odor.

SWA intends to use water obtained from Clackamas River Water (CRW) and North Clackamas County Water Commission (NCCWC) plants for ASR injection. Both providers obtain their water from the Clackamas River. CRW water treatment uses direct sand filtration. NCCWC water treatment includes either slow sand filter treatment or membrane treatment, or a mixture of the two. Currently, only water from CRW is available in the pressure zone where SWA Well 2W is located. Therefore, CRW will be the source water used for injection at the start of ASR pilot testing. However, at some point in the future it is expected that water from the NCCWC plant may become available at the SWA Well 2W wellhead and may be used as the source water for injection. Consequently, this evaluation is based on sampling results for native groundwater from SWA Well 2W, and source water from both the CRW water treatment plant and the NCCWC plant.

Samples collected from SWA Well 2W, CRW, and NCCWC were tested for water quality parameters related to potability and geochemical compatibility. In addition, the samples were tested for regulated and unregulated drinking water parameters as outlined in the ASR rules. Analytical testing conducted on the samples included:

- Field parameters (pH, conductivity, oxidation-reduction potential, dissolved oxygen, and temperature)
- Geochemical constituents (anions and cations)
- Metals
- Radionuclides (gross alpha and gross beta)
- Microbiological (total and fecal coliforms)
- Disinfectants (chlorine)
- Disinfection by-products (haloacetic acids, trihalomethanes)
- Miscellaneous parameters (color, odor, etc.)

Results from the testing are presented in Table 1. The following sections present discussions of native groundwater quality, source water quality, and an evaluation of water quality compatibility.

4.1. Native Groundwater Quality

General Chemistry

Native groundwater is of good quality with a moderate amount of dissolved solids (155 mg/L TDS). The water is considered moderately hard (82.7 mg/L hardness), and an alkalinity of 105 mg/L. The pH is near-neutral (6.7), and the temperature is relatively cool (14.4 °C). The water has no color or odor and may be considered to be mildly corrosive (Langelier index = -1.2).

Figures 8 and 9 present Stiff and Piper diagrams that illustrate the chemical signatures and water types in terms of dominant ions for native groundwater and the source waters. These diagrams are commonly used to graphically illustrate the dominant cations and anions dissolved in the water and to aid in comparing the chemistry of water samples. The native groundwater is a magnesium-calcium-bicarbonate type water. As can be seen from the shape and size of the polygon on the Stiff diagram, the native groundwater is significantly more mineralized than the source waters and has a different chemical signature based on the relative proportions of dissolved cations and anions. This difference in chemical signatures between native and source waters can be used to track the recovery of stored water during ASR.

Total organic carbon was not detected (at a detection limit of 1.0 mg/L), indicating a very low potential for the formation of disinfection by-products from injection of chlorinated source water into the aquifer or after recovery and rechlorination.

Iron and manganese often are elevated in Portland Basin groundwater. The native groundwater iron concentration, measured at 0.077 mg/L, is below the secondary drinking water standard (SMCL) for iron of 0.3 mg/L, while the native groundwater manganese concentration, measured at of 0.212 mg/L, is above the SMCL (0.05 mg/L). Comparison of iron and manganese concentrations in filtered and unfiltered samples indicates that these parameters are both present in dissolved form. Manganese does not pose a risk to human health; the SMCL is an aesthetic standard based on taste and potential for staining laundry and fixtures. Figure 10 presents a plot of iron and manganese concentrations in samples collected from SWA Well 2W since 1998. Manganese has consistently been detected in excess of the SMCL. Iron concentrations exceeded its SMCL twice in six sampling events.

Low dissolved oxygen and oxidation/reduction potential indicate anaerobic and somewhat reducing conditions in the aquifer, probably related to the presence of a clay confining layer overlying the sandy water-producing unit in which SWA Well 2W is screened. This prevents mixing of deeper groundwater with relatively more oxygenated shallow groundwater. Reducing conditions are conducive to leaching of iron and manganese from the aquifer matrix, and explain the persistently elevated concentrations of manganese in the groundwater.

Drinking Water Regulated Constituents

Constituents that have regulatory standards (e.g., metals, nitrate, volatile organic compounds, pesticides, radiological) and are indicative of contamination were either not

detected or were detected at levels below the applicable drinking water regulatory criteria in the native groundwater. Unregulated organic parameters, and total and fecal coliform also were not detected in the native groundwater sample.

Mineral Stability

A geochemical speciation model (PHREEQC) was used to assess the equilibrium state of the native groundwater with respect to common minerals associated with clastic sedimentary aquifers. The analysis is used to evaluate whether the water is undersaturated, supersaturated, or at equilibrium with respect to particular minerals. The saturation index (SI) is a measure of the chemical driving force available for mineral precipitation or dissolution reactions. Undersaturation (SI < 0) indicates a tendency for a mineral to dissolve into the water, if present in the subsurface. Supersaturation (SI > 0) indicates a tendency for a mineral to precipitate out of the water. At equilibrium, the water would not tend to either dissolve or precipitate the mineral. An understanding of the equilibrium state of a natural water provides insight on the geochemical controls on water composition and possible changes to expect when recharge water and native groundwater are mixed. The calculated SI values for common rock-forming minerals are tabulated in Table 2.

Based on the modeling results, native groundwater is undersaturated (i.e., tendency to dissolve rather than precipitate) with respect to major carbonate minerals, such as calcite (calcium carbonate) and dolomite (calcium magnesium carbonate). The groundwater also is undersaturated with respect to common manganese-containing oxide and carbonate minerals (e.g., tendency to dissolve rather than precipitate), which explains the detection of elevated dissolved manganese in the groundwater. Iron oxide minerals—such as goethite, hematite, and magnetical are supersaturated and would tend not to dissolve. Precipitation of these phases is generally very slow and typically proceeds by formation of amorphous iron oxyhydroxides, which convert to the more stable minerals over time. Thus, supersaturation with respect to these minerals is not uncommon and does not necessarily indicate that precipitation is occurring. Amorphous iron hydroxide, being more soluble, appears to be undersaturated, which suggests that iron oxide precipitation near SWA Well 2W currently is limited by the relatively low iron concentrations.

The relatively high silica content of groundwater (54.6 mg/L) is typical of the Portland Basin and is attributed to dissolution of volcanic glass present in the volcaniclastic sediments. Silica concentrations appear to be close to equilibrium with amorphous silica, but indicate supersaturation with respect to quartz, the most common and stable form of silica in sediments. Quartz is unlikely to precipitate because of extremely slow kinetics at ambient conditions. Aluminosilicate clay minerals are also common in sedimentary aquifers and often are found to regulate silica concentrations in groundwater systems; SI's for clay minerals could not be computed because aluminum was not detected (< 0.001 mg/L). The absence of detectable aluminum implies that clay minerals are stable in the aquifer and probably exert some control on silica concentrations.

4.2. Recharge Source Water Quality (CRW and NCCWC)

ASR recharge source water samples were collected in April 2006 and are representative

of typical winter water that will be used for recharge. The CRW water sample was taken from the sample tap located within the SWA Well 2W vault. The NCCWC water sample was taken from the SWA Mather Pump station, which is a representative sampling location for NCCWC treated water.

General Chemistry

The water sample collected from CRW has excellent quality, with low total dissolved solids (TDS) of 48 mg/L, which is typical of surface water origin. The water is a calcium-magnesium bicarbonate type water (Figure 8) and is considered soft (10.5 mg/L hardness), with a near-neutral pH (6.8) and an alkalinity of 17.9 mg/L. The water has no color and a threshold odor number (TON) of 3.7, which is just in excess of the secondary standard of 3.0. The odor of the CRW is known to have minor variability. Historical odor data for CRW (most recently 2004) indicates an odor detection of 1 TON. Additional sampling of CRW water is planned before and during ASR pilot testing, which will afford the opportunity of continued evaluation of odor in the CRW water.

The water sample collected from NCCWC is also of excellent quality with a low TDS of 53 mg/L, and similar to CRW water. The water is a soft (10.6 mg/L hardness), calcium-magnesium bicarbonate type water (Figure 8) with a near-neutral pH (6.78) and an alkalinity of 21.2 mg/L. The water has no color and a threshold odor number (TON) of 2.3. Historical odor data for NCCWC (April 2006) indicates that odor may be as low as <1 TON.

The TOC concentration was below detection (< 1.0 mg/L) in CRW water and very low (1.07 mg/L) in NCCWC water. The formation potential for disinfection by-products is thus expected to be low.

Suspended Sediment

Suspended solids or turbidity present in recharge source water can be a significant concern for clogging of the ASR well, which can lead to reduction of efficiency and pumping/injection capacity. Suspended solids were not detected in either source water. Turbidity was below detection (<0.2 nephelometric turbibity unit [NTU]) in CRW source water, and measured at 0.792 NTU in NCCWC source water. Historical turbidity data for the past year indicates a range of 0.02-0.09 NTU with an average of 0.05 NTU for CRW and a range of 0.05-1 NTU with an average 0.13 NTU for NCCWC.

The turbidity of ASR source water should be less than 1.0 NTU, and preferably less than 0.5 NTU. Even good quality recharge water will gradually clog an ASR well. With proper monitoring of the source water and well performance and proper design of the system, potential impacts from clogging can be effectively managed by periodic maintenance.

Drinking Water Regulated Constituents

The water sample collected from CRW has no constituent exceeding 50 percent of established regulatory levels (DHS drinking water standards in the Safe Drinking Water Act [SDWA] rules), no disinfection by-product concentrations exceeding established

regulatory levels, and no constituent besides odor exceeding applicable secondary contaminant levels for aesthetics. Iron and manganese were not detected in the CRW source water. Unregulated organic parameters and total and fecal coliform also were not detected.

The water sample collected from NCCWC has no constituent exceeding 50 percent of established regulatory levels (DHS drinking water standards in the Safe Drinking Water Act [SDWA] rules), no disinfection by-product concentrations exceeding established regulatory levels, and no constituent exceeding applicable secondary contaminant levels for aesthetics. Iron was detected at 0.0392 mg/L in NCCWC source water, with about half in dissolved form and half in particulate form. Unregulated organic parameters and total and fecal coliform also were not detected.

Mineral Stability

The geochemical modeling results show that both CRW and NCCWC source waters are undersaturated with respect to reactive calcium magnesium silicate minerals and carbonates. The source waters would tend to dissolve minerals like olivine, pyroxene, calcite, and dolomite, if these minerals are present in the aquifer. Iron was detected only in the NCCWC source water. As is to be expected for a well-oxygenated surface water, supersaturation with respect to amorphous Fe(OH)₃ is predicted, implying precipitation of iron oxides. This is consistent with and explains the occurrence of a significant portion (about half) of the total iron content in NCCWC water in particulate form. Silica concentrations are lower than in groundwater, and close to equilibrium with chalcedony.

4.3. Water Compatibility

An analysis of water quality compatibility between potential ASR source waters (CRW and NCCWC) and native groundwater (represented by SWA Well 2W) was conducted. The purpose of this assessment was to identify chemical reactions as a result of mixing recharge water with native groundwater that could adversely affect ASR well performance, hydraulic properties of the aquifer, or recovered water quality. The exercise involved modeling the theoretical equilibrium states of a series of mixtures between source water and native groundwater using the PHREEQC geochemical model. The modeling was performed to predict possible geochemical effects, such as mineral precipitation or dissolution that might occur when the recharge waters and native groundwater are mixed. The simulation was performed over the entire range of mixing fractions between ASR source waters and native groundwater. Two mixing simulations were performed. One between CRW source water and native groundwater, and one between NCCWC source water and native groundwater. The chemical composition, pH, and redox potential for each of the end-member solutions in the mixing analysis were taken from data in Table 1.

As recharge water is introduced into the ASR well, native groundwater will be displaced. A mixing zone will be developed at the interface between recharge and native waters. The TDS immediately adjacent to the ASR well will be approximately similar to that of recharge water. Near the outer limits of the recharge water bubble, the water quality will

gradually change from that of recharge water to native groundwater. Outside the mixed zone, further away from the ASR well, the water quality will be that of native groundwater.

Geochemical Modeling Results

The results of the mixing simulations indicate that candidate recharge source waters (CRW and NCCWC) and receiving native groundwater are chemically compatible and do not present any fatal flaws for ASR. The results of the mixing models are summarized in Appendix D in terms of the predicted saturation states of various minerals as a function of the mixing fraction of recharge water in native groundwater. The simulation results for mixing of CRW source water with native groundwater are essentially identical to those for mixing of NCCWC source water. This is to be expected given the chemical similarity between the two candidate source waters.

During mixing of oxygenated recharge water with relatively reducing native groundwater in the aquifer near the ASR well, precipitation of carbonates (calcite, dolomite) or sulfates (gypsum) that could clog the well is not predicted to occur. In fact, the modeling results indicate that these minerals will remain undersaturated for all mixtures of source and native groundwater. Chalcedony and quartz are predicted to be somewhat supersaturated, but no more than is already observed in the aquifer, which implies that silica precipitation is not likely to be a significant process because of slow kinetics. The major ion chemistry of recovered water is expected to resemble that of recharge water chemistry with each subsequent ASR cycle (injection, storage, and recovery), particularly if additional recharge water is left in the aquifer from year to year. Also, given the similarity in pH between source and native waters, no change in pH is anticipated.

The introduction of dissolved oxygen and (residual chlorine) into the aquifer is predicted to promote oxidation of iron and manganese and precipitation of iron and manganese from native groundwater. This will have the beneficial effect of improving native groundwater water quality at the edges of the stored water bubble. Modeling suggests that manganese oxidation and precipitation will be initiated by as little as 0.15 percent of source water mixing into native groundwater (0.001 mixing fraction). For iron, even smaller fractions of source water (0.0001) can drive native groundwater to supersaturation with amorphous Fe(OH)₃ thus providing conditions favorable for its precipitation.

There are, however, two potential limitations inherent in the modeling that make it difficult to know with certainty what will actually happen with respect to iron and manganese concentrations during ASR operation. The first is that the model assumes that all the chemical oxidant demand comes from ions dissolved in groundwater. It is likely that the aquifer matrix will also exhibit some oxidant demand, and this would compete for the oxidizing power of the source water. The implication of this is that higher mixing fractions may be required to satisfy the aquifer matrix oxidant demand and the native groundwater oxidant demand. Given the extremely small demand for dissolved iron and manganese oxidation, this does not seem to be a serious limitation. The other limitation has to do with rates of oxidation and precipitation. Although more difficult to predict

quantitatively, it is likely that manganese precipitation will take place on a timescale of days to weeks after sufficient oxidizing conditions are established.

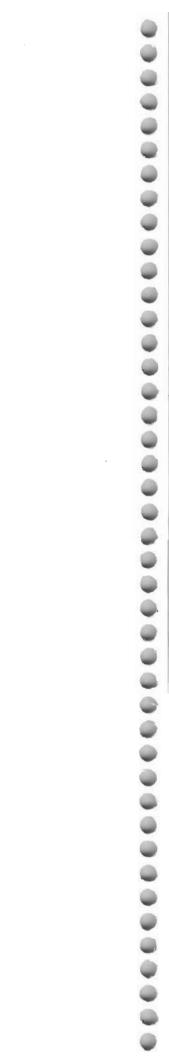
In view of the predicted potential for iron and manganese precipitation, it is of interest to estimate the possible volume of precipitates that could form to evaluate whether this could pose a concern for clogging. The highest detected iron and manganese concentrations in SWA Well 2W were used to evaluate the worst case scenario (1 mg/L and 0.2 mg/L, respectively, Figure 9). The iron and manganese oxide precipitates with the lowest density are amorphous Fe(OH)₃ (3.13 g/cm⁻³) and birnessite (3.0 g/cm⁻³); if all the iron and manganese present in 1 liter of groundwater were to be precipitated as these oxides, they would occupy a total volume of less than 0.001 cm⁻³ (i.e., 1 million times less than the pore volume occupied by the groundwater). This suggests that the levels of iron and manganese present in groundwater have a low potential for aquifer clogging, or at the very least it may only become of concern after many ASR cycles have been completed.

Disinfection By-Products

Chlorine and disinfection by-products will be introduced into the aquifer because the source waters are disinfected. Chlorine residuals of 0.511 and 0.353 mg/L were measured in CRW and NCCWC source waters, respectively. Residual chlorine concentrations are expected to decay rapidly (hours) as the injected water comes into contact with the aquifer matrix. Disinfection by-products (DBP) are produced as a result of chemical reactions between organic carbon present in the surface water or groundwater and chlorine. Disinfection byproducts include haloacetic acids (HAA) and trihalomethanes (THM). Because the TOC of the native groundwater is very low, the potential for DBP formation after the chlorinated recharge water is introduced into the aquifer also is expected to be low. It is anticipated that HAA concentrations in source water will dissipate quickly in the aquifer (within days of storage) as a result of aerobic microbial degradation. THM concentrations may increase slightly after injection as a result of the reaction between the TOC present in the recharge water and chlorine; however, THM concentrations should decrease with time (within weeks of storage) because of anaerobic microbial activity. Dilution caused by mixing between recharge water and native groundwater also is expected to reduce DBP concentrations.

5. Recharge Water Availability

5.1. General


Water availability for recharge is one of the essential components of the ASR project. In addition, the length of continuous availability of recharge water is important because minimizing the start/stop operation of injection will minimize the potential for air intrusion into the aquifer. SWA has targeted the time period from late fall through spring for ASR injection.

5.2. Recharge Water

SWA intends to use water obtained from CRW and NCCWC for ASR injection. Both providers obtain their water from the Clackamas River. CRW's water treatment plant uses a direct sand filtration treatment that includes a pretreatment system using a coagulant, prechlorination, and sedimentation basins; a rapid sand filtration primary treatment; and finally a gas chlorination and pH adjustment (using soda ash) post filtration. NCCWC's plant includes either slow sand filter treatment or a membrane treatment, or a mixture of the two. NCCWC's slow sand treatment has no pretreatment and uses a liquid chlorination system (sodium hypochlorite) and pH adjustment (using soda ash) post treatment. NCCWC's membrane treatment, has capability of pretreatment to be used only when necessary (i.e., high turbidity events), membrane filtration and a liquid chlorination system (sodium hypochlorite), and pH adjustment (using soda ash) post filtration.

Currently, only water from CRW is available in the pressure zone where SWA Well 2W is located. Therefore, CRW will be the primary source water used for injection at the start of ASR pilot testing. However, at some point in the future it is expected that water from the NCCWC water treatment plant may become available at the SWA Well 2W wellhead and could be used as the recharge source water.

During the wetter months (October 1 through May 31), SWA has access to excess water treatment plant production capacity. Based on the existing water supply available and the water demand experience by SWA (Table 3), approximately 6.83 mgd (4,750 gpm) of water are available during non-peaking periods (SWA 2004). Although future population growth and resultant water demand are expected, continued growth of the supply capacity is planned through expanding water treatment plant capacity, and water conservation and reuse measures. Accordingly, having access to excess water treatment plant production capacity during the non-peaking months is expected to continue into the future.

6. Recharge Analysis

This section presents a detailed evaluation of ASR injection and pumping at SWA Well 2W based on aquifer test results and other data gathered during the initial ASR feasibility evaluation. The general criteria used as guidelines for evaluating the hydrogeologic feasibility of ASR for SWA Well 2W include the following:

- A confined aquifer that is not significantly bounded with adequate headroom (area above the static water level) in the aquifer.
- The target aquifer can store an adequate volume of water at the well site, can sustain reasonable injection rates during the injection period, and can support reasonable and sustainable production rates during recovery.
- The water level in the recharge well does not rise above 25 feet bgs during injection and does not drop below the minimum pumping level (pump intake plus required submergence) during recovery.
- The target aquifer does not have other large producing wells that could capture significant portions of the stored water.

6.1. Target Injection/Pumping Rates and Storage Volume

Based on discussions with SWA, the following operational scenarios for the proposed ASR project in the deep alluvial aquifer were developed and are described below. These parameters were used during the ASR evaluation process. The scenarios also include target injection/recovery rates and estimated storage volumes. In general, injection will occur during late fall through spring using treated drinking water obtained from CRW and/or NCCWC.

The recharge analysis of SWA Well 2W will be evaluated on the basis of the capacity of the deep alluvial aquifer to receive water at this location. Although SWA Well 2W originally was constructed with an existing 3-inch-diameter drop pipe inside the production casing (separate from the pump column) to be used for injection, the well may be subsequently retrofitted during full build-out of the ASR system to allow for different injection rates.

Injection Criteria

The following represents general ASR evaluation criteria for injection (recharge).

- A total of 100 to 240 days of injection were assumed based on:
 - o An injection period between October 1 and May 31 of each year.
 - o A total of 20 days were assumed for shutdown due to unforeseen events.
 - Back flushing will occur for 30 minutes every 3 weeks, which results in < 1 day of lost injection time.
- An injection rate of up to 70 percent of the anticipated long-term production rate of the well.
- Recharge water turbidity is less than 0.5 NTU during injection.
- Head buildup in the well casing cannot exceed a threshold criterion of 25 feet bgs.

Pumping Criteria

The following represents general ASR evaluation criteria for pumping (recovery).

- Head buildup calculations from year-to-year assume that 100 percent of the stored water is removed each year.
- The pumping rate assumed to be constant at rates of up to 650 gpm during recovery (although the well is capable of being operated at rates up 1,200 gpm for short durations).
- The water level in the well cannot be lowered below a depth of 384 feet bgs in order to maintain the required pump submergence design criteria.

6.2. Assessment of Target Injection and Recovery Rates

ASR well injection and recovery rates are controlled by several factors including pressure available in the recharge piping, the available headroom (drawup) and drawdown in the well, aquifer transmissivity, well efficiency, and boundary conditions as they affect drawup and drawdown. Aquifer and well performance data were used to evaluate if target injection and recovery rates are feasible based on predictions of drawup and drawdown during typical ASR operations in the proposed ASR well. These drawup and drawdown predictions are based on projections of specific capacity changes and water level trends over multiple yearly cycles.

This assessment of the target injection and recovery rates in the deep alluvial aquifer evaluates a range of injection and recovery rates and varying injection periods that represents both what the aquifer conditions may allow and SWA's potential ASR operational scenarios. Predictions of the water level drawup and drawdown are presented for this range of possible operation. In addition to establishing the range of injection and recovery rates feasible within the aquifer at the pilot test location, these predictions also are used to predict when clogging at the well may require rehabilitation.

Specific capacity is the injection rate or pumping rate divided by the water level drawup or drawdown, respectively. It provides a simple and convenient index for how the well is performing and for the extent to which clogging is reducing well efficiency. For example, if the well is becoming clogged, a reduction in specific capacity will be seen over time. For the purposes of this analysis, the constant rate drawdown test data, the step rate drawdown tests data, and an assumed percentage difference between pumping specific capacity and injection specific capacity were used to estimate the specific capacity at the end of the injection period. Because SWA may operate the ASR program under a variety of injection and/or recovery scenarios, multiple scenarios are analyzed and presented. Table 4 summarizes the estimated drawup and drawdown in SWA Well 2W during the first 5 years of ASR operations. The predictions are shown graphically in Figures 11A and 11B. Scenarios A, B, and C use a stable injection and recovery rate and a variable injection period. Scenarios D, E, and F show increasing injection and recovery rates while maintaining a constant injection period. Note that these predicted water levels assume recovery phase pumping at the well is continuous pumping 24 hours a day. Appendix E presents a detailed summary of the assumptions and calculations used in the ASR evaluation.

This assessment is based on an assumed maximum water level buildup threshold of 25 feet bgs in the ASR well during injection. This threshold was used because it is assumed that injection will be driven by system pressure, and that the wellhead is not sealed to prevent water from discharging from the top of the casing. It is possible to design the wellhead for injection under pressure, but it is generally not desirable if it can be avoided because of design and construction costs. The threshold of 25 feet bgs provides a buffer between the water level in the well and the wellhead in case of unexpected fluctuations during injection.

The assessment of injection and recovery rates incorporate a number of assumptions involving short-term and long-term decreases in injection and pumping specific capacities due to head changes in the well and clogging. The key assumptions are documented in Appendix E. The most critical of these assumptions involves estimates of the injection and recovery specific capacities. The assumptions regarding differences between injection and pumping specific capacities, and reductions in specific capacity over time are based on analysis of trends observed during ASR operation of other alluvial-hosted systems (e.g., Las Vegas Valley Water District and Portland Water Bureau).

The specific capacity of an ASR well is expected to decrease with time because of clogging of the 'skin' around the borehole resulting from the introduction of suspended particulates during injection. Regular backflushing (pumping to waste) is an important operational tool for reducing the decline in specific capacity by removing particulates from the aquifer in the immediate vicinity of the well. In addition, designing an ASR cycle so that the planned recovery rate is 20 to 30 percent greater than the planned injection rate will result in some redevelopment of the well during recovery. However, declines in specific capacity can be expected even with these operational tools in place. Thus, the need to redevelop an ASR well to reverse long-term specific capacity declines should be expected as part of the operation and maintenance of an ASR system. Redevelopment entails removing the wellhead and pump assembly, and aggressively cleaning out the well by some combination of scrubbing, and zonal jetting and pumping. The interval between redevelopment episodes will depend on the initial specific capacity of the ASR well and the long-term rate of specific capacity decline resulting from residual clogging of the borehole skin.

Air entrainment is another factor that can result in loss of specific capacity of the well. At the startup of injection, as water is injected down the drop pipe, cascading water causes air to become entrained. If the entrained air is forced out into the aquifer, it can cause the formation to be air-locked and thus result in a loss of the aquifer's ability to transmit water, which is translated into a loss in specific capacity of the well. Minimizing or ideally eliminating possible air entrainment in the injection water should be a high priority in the design and operation of SWA Well 2W.

Summary

Based upon the aquifer characteristics at SWA Well 2W, our analysis indicates that ASR

operations are feasible at the targeted range of injection and recovery rates. The aquifer near SWA Well 2W appears to be capable of receiving water at a sustained rate of up to 450 gpm for the entire period of time source water is likely to be available for injection (October 1 through May 31) without exceeding the water level injection cut-off threshold until the last year of the 5-year evaluation period. Higher rates of injection may be possible, but may produce less than acceptable results with water levels exceeding injection and/or pumping cut-off thresholds within the first few years of operation.

The planned recovery rate should be approximately 650 gpm (i.e., the planned injection rate should be 70 to 80 percent of the planned recovery rate), if the well is to be pumped continuously during the recovery period. SWA Well 2W is capable of, and can be operated at rates up to 1,200 gpm during recovery; however, production at higher rates will be sustainable for shorter durations, as shown in Figure 12.

The predicted annual water level drawup and drawdown values are based on the conservative well clogging assumptions and will be updated based on the initial pilot testing data. These predicted water levels will assist SWA in optimizing ASR operating conditions, and planning of well redevelopment schedules and future expansion.

6.3. Evaluation of Available Storage Volume

Evaluation of the projected well and aquifer response during injection indicates as much as 145 million gallons (MG) can be stored in the aquifer using SWA Well 2W at an injection rate of 450 gpm sustained over the entire period that water is available for injection (October 1 through May 31). If the stored water is recovered continuously at a constant rate of 650 gpm, pumping could be sustained for 159 days without exceeding the drawdown threshold in the well. The storage analysis also indicates that this storage volume and injection/recovery rates can be achieved each year during the 5-year evaluation period, assuming the total stored volume is removed each year. If the total stored water is not removed, then it is anticipated that less water can be injected during the subsequent recharge period.

The storage volume capacity of the entire aquifer was also evaluated to develop an estimate of how much water could be feasibly stored if the system was expanded to include additional wells. The total aquifer storage volume evaluation used the aquifer testing results from SWA Well 2W and the estimated lateral extent of the aquifer. Note that the aquifer characteristics laterally may vary and as new ASR wells are added to the system, a more accurate total aquifer storage capacity will be developed. As discussed in Section 3, there were approximately 2 feet of residual drawdown in SWA Well 2W that persisted 30 days after the end of the 4-day aquifer test. Assuming the 2 feet of unrecoverable water level in the aquifer reflect the removal of 4.89 MG of water from storage (i.e., the volume of water pumped from the aquifer during the 4-day aquifer test), the deep alluvial aquifer appears to be capable of storing approximately 500 MG of water (refer to Appendix E for additional details regarding this calculation).

This total aquifer storage volume assumes that the water level in the aquifer (i.e., the post-injection equilibrated aquifer water level) could be elevated to the injection cutoff

threshold of 25 ft bgs; however, because of well inefficiencies, the water level in the injection well will reach the injection cutoff threshold substantially before the aquifer water level could reach this level. Furthermore, potential year-to-year residual clogging will reduce the specific capacity of the well, resulting in increased drawup in the well from year-to-year; hence, the water level in the well would reach the injection cutoff threshold more quickly each year with less water injected. For the purposes of this ASR feasibility study, the total aquifer storage volume of 500 MG is a reasonable total storage estimate based on the data available. Data collected during ASR pilot testing will provide additional information on and allow further evaluation of the total storage capacity of the aquifer.

The equilibrated water level in the aquifer after the first year of injection (with 145 MG in storage) is predicted to reach 162 feet bgs. Because the water level in the aquifer will be raised higher than what was recorded when the well was drilled, there is the possibility that seeps could occur along a preferential pathway (e.g., fault) that may exist between the deep alluvial aquifer and the ground surface and/or a shallower aquifer (e.g. the upper gravel aquifer). As is common in any ASR project, monitoring for the possibility of losing water through seeps will need to be done during pilot testing of the ASR system (refer to Section 7).

6.4. Capture of Stored Water by Other Wells

One water well completed in the deep alluvial aquifer that could capture stored ASR water has been identified in the general vicinity of SWA Well 2W:

• Clackamas 55211 is located approximately 4,950 feet west-southwest of SWA Well 2W and has permitted capacity of 257 gpm (Permit G-13815) for irrigation.

Clackamas 55211 was monitored during the aquifer testing of SWA Well 2W (refer to Section 3). This well is used by North Clackamas High School to irrigate the athletic fields during the summer months.

Three other wells that potentially are completed in the deep alluvial aquifer were identified in the general vicinity of SWA Well 2W:

- Clackamas 50736 (owner: Damascus Heights Community Well Association) is reportedly located approximately 9,600 feet east-northeast of SWA Well 2W. The well has a permitted capacity of 31 gpm (G-15757) for irrigation purposes. The well may also be used for domestic purposes.
- Clackamas 4610 (owner: Joesph Dixon) is reportedly located approximately 7,000 feet east of SWA Well 2W. This well is a domestic well with a reported yield of 30 gpm.
- Clackamas 4060 (owner: John Mueller) is located approximately 4,000 feet southeast of SWA Well 2W. This well is a domestic well with a reported yield of 20 gpm.

Field searches for the physical existence of the Clackamas 4610 (Joesph Dixon) well have been unsuccessful and discussions with long-time residents in the vicinity of the reported location of the well have not identified the residence of the reported well owner.

It is not known if this well still exists or if it is still in operation. Verification of the existence of Clackamas 4060 has not yet been completed.

SWA will continue efforts to locate additional water wells that are completed in the deep alluvial aquifer; however, it is realized that the likelihood of locating additional wells is low because of the overall land use transition from rural to urban during which existing wells are likely to be abandoned and construction of new water wells is unlikely.

6.5. Loss of Stored Water to Surface Streams

The deep alluvial aquifer is a rather deep aquifer (at an approximate elevation of -150 to -200 feet msl) that appears to be of limited areal extent based on the results of the aquifer testing completed at SWA Well 2W (refer to Section 3). In addition, water level monitoring in the shallower upper gravel aquifer (which is in connection with surface water) during the aquifer testing indicated there is no discernible hydraulic connection between the deep alluvial aquifer and the shallower upper gravel aquifer during the period of the test. Based on the testing data and physical conditions of the system, the deep alluvial aquifer does not appear to be directly connected to surface water streams; therefore, the potential loss of stored water to surface streams is not anticipated.

However, monitoring of water levels in the upper gravel aquifer is planned for the ASR pilot testing period to assess whether long-term injection in the deep alluvial aquifer will affect the upper gravel aquifer and hence have the potential of losing stored water to surface streams.

7. Conclusions, Uncertainties, and Recommendations

7.1. Conclusions

The analysis of the results of the aquifer tests, water quality compatibility analysis, and ASR recharge evaluation indicate that an ASR well system providing up to 0.94 mgd (650 gpm) of sustainable production capacity and up to 1.44 mgd (1200 gpm) of peaking and or emergency capacity appears to be feasible in the deep alluvial aquifer at the SWA Well 2W site. Our conclusions are based on a number of hydrogeologic factors including the following.

Aquifer Characteristics: The deep alluvial aquifer is a confined aquifer with an estimated transmissivity of 9,000 to 12,000 gpd/ft and a storativity of 3×10^{-4} . The estimated specific capacity at the end of a proposed injection period, coupled with the large available headroom in the aquifer, indicate that ASR is feasible at this site. The projected effects of aquifer boundaries observed during the aquifer test do not appear to be a significant limitation to implementing ASR in the deep alluvial aquifer.

Injection Rates, Pumping Rates, and Storage Volume: The aquifer near SWA Well 2W appears to be capable of receiving injected water and supporting recovery of stored water at adequate rates to allow storage of 145 MG. This storage volume is based on an injection rate of 450 gpm sustained over the entire period that water is available for injection (October 1 through May 31). Higher rates of injection may be possible, but water levels could exceed injection and/or pumping cut-off thresholds within the first few years of operation (as a result of assumed clogging), potentially requiring more frequent well rehabilitation activities. At the sustained recovery rate of 650 gpm, the well will provide about 159 days of peak or emergency supply. SWA Well 2W can be operated at rates up to 1,200 gpm during recovery; however, production at the higher rates likely would be sustainable for only short durations (Figure 12).

Capture of Stored Water by Other Wells: Few wells in the study area are completed in the deep alluvial aquifer; and only three wells that are completed in this aquifer were identified within 2 miles of SWA Well 2W. Two of these wells have been located by SWA and should be included in the ASR observation well network and monitored during ASR pilot testing to allow further assessment of the potential capture of stored water and head rise in the deep alluvial aquifer near these wells.

Loss of Stored Water to Surface Streams: The potential loss of stored water to surface streams appears to be unlikely because of the depth of the deep alluvial aquifer, the apparent limited recharge to the deep alluvial aquifer, and the apparent lack of hydraulic connection between the deep alluvial aquifer and the next shallowest aquifer (the upper gravel aquifer). However, to assess whether long-term injection in the deep alluvial aquifer will affect the upper gravel aquifer and hence have the potential of losing stored water to surface streams, monitoring of water levels in several wells completed in the upper gravel aquifer is planned for the ASR pilot testing period.

The overall performance and capacity of the ASR system under a long-term ASR operational scenario is subject to some uncertainties that are discussed in the following section.

7.2. Uncertainties

The results of the SWA Well 2W recharge evaluation indicate that ASR is feasible at this site; however, the recharge evaluation is based on data obtained from relatively short-term aquifer tests. Accordingly, there are still some basic uncertainties about the long-term injection and recovery capacity of the ASR system. ASR pilot testing will be required to resolve these uncertainties. The key uncertainties are listed below.

- 1. The ability of SWA Well 2W to maintain the target injection and pumping rates. This will depend on the well efficiency over time and the actual rate of clogging of the borehole skin caused by turbidity and possibly entrained air, as well as properties of the aquifer (see #2 below). High quality recharge water that is free of suspended sediment and air is a key factor for maintaining well efficiency. Recharge water with turbidity exceeding 0.5 NTU will clog the aquifer matrix and quickly reduce the specific capacity of the well. The result will be decreased injection and potentially decreased recovery rates. Several measures should be implemented to maintain the injection and pumping capacity including:
 - Before the initial ASR pilot testing operations, physically clean the well and well screen to remove any precipitate, solids, and other material that may have accumulated in SWA Well 2W, which has not been used on a regular basis.
 - Flush all the water lines in the system that provide injection source water to remove particulates before starting injection.
 - Closely monitor the quality of water being injected, and monitoring water levels in the well for changes in specific capacity.
 - Implement a regular program of backflushing the well and pumping it to remove particulates introduced into the well during injection.
 - Design the ASR cycle so that the target injection rates are 20 to 30 percent less than the target recovery rate, resulting in some redevelopment of the well during recovery.
 - Periodically pull the pump and aggressively redevelop the well.
- 2. The ASR evaluation presented in this feasibility study is based on aquifer characteristics estimated from relatively short-term aquifer tests. The aquifer characteristics at further distances from the well are uncertain and as such, the long-term ability of the deep alluvial aquifer to receive water at the target injection and pumping rates is also uncertain.
- 3. The data from the aquifer test at SWA Well 2W did not indicate a hydraulic response in the shallower upper gravel aquifer to production from the deep alluvial aquifer. In addition, incomplete recovery of the water level in the deep alluvial aquifer following

the aquifer tests at SWA Well 2W indicates limited recharge, which in turn indicates limited hydraulic connection with other aquifers. Observation of the water levels in the deep alluvial aquifer and the shallower upper gravel aquifer during ASR pilot testing will verify the degree to which the deep alluvial aquifer is hydraulically isolated. The water level monitoring during ASR pilot testing should include measuring water levels in SWA Well 2W and in a network of observation wells completed in both the deep alluvial aquifer and the shallower upper gravel aquifer.

4. The head rise in aquifer due to ASR injection is anticipated to raise water levels in the aquifer above historic levels, creating a condition with the potential to create or enhance seeps if preferential pathways are present between the deep alluvial aquifer and the ground surface. Monitoring the potential for surface discharge impacts during ASR pilot testing will be important. The monitoring program proposed should measure water levels in SWA Well 2W and in observation wells completed in both the deep alluvial aquifer and the shallower upper gravel aquifer. Identification of potential seep areas and periodic visual surveys of the potential seep areas should be considered if it is found that ASR injection in the deep alluvial aquifer is affecting the water level in the upper gravel aquifer. In addition, water levels in wells completed in the deep alluvial aquifer should be monitored during pilot testing to verify assumptions regarding aquifer characteristics and the potential for water levels in the aquifer to rise above land surface at these wells.

7.3. Recommendations

We did not identify any fatal flaws for implementing ASR in the deep alluvial aquifer on the basis of the technical analysis presented in this feasibility study, and thus recommend proceeding with Phase 2 of the project – ASR Pilot Testing. As previously mentioned, the ASR pilot testing program is a required element of the ASR permitting process and it is designed to demonstrate ASR feasibility and to provide SWA with needed operational data. The next steps of the project will include the following:

- File an ASR limited license application and ASR work plan with OWRD (August 2006)
- Assist SWA with the preparation of design drawings and specifications for the well improvements and submission of the designs to the Oregon Department of Human Services (DHS) Drinking Water Program for approval (Fall 2006)
- Complete well improvements (Fall 2006)
- Obtain ASR limited license after 30-day comment period (December 2006)
- Begin ASR pilot testing of SWA Well 2W (January 2007)
- Begin recovery of stored water (Summer 2007)

8. References

Hartford, S.V. and W.D. McFarland. 1989. Lithology, thickness, and extent of hydrogeologic units underlying the East Portland Area, Oregon. U.S. Geological Survey, Water-Resources Investigations Report 88-4110.

Leighton, J. and J. Porcello. 2001. Deep aquifer yield groundwater flow model – Report on model development, calibration, and testing: Portland, Oregon. Prepared by City of Portland Bureau of Water Works and CH2MHILL.

Sunrise Water Authority (SWA), 2004. Water System Master Plan. June 2004.

Table 1
Summary of Native Groundwater and ASR Source Water Quality Testing
ASR Feasibility Study

Analyte	Lowest	Units	Standard Type	Native Groundwater	Source Water CRW	Source Water NCCWC WTF	
1,	Regulatory Standard		F = Federal; S = State	SOC & VOC - 7/27/04 All others - 3/24/2006	SOC & VOC - 1/26/05 All others - 4/19/06	SOC & VOC - 9/6/200: All others - 4/19/08	
ganisms	_	,		-	NB	- NB	
Total Coliforms (including fecal coliform and E. Coli) N4, N5	MCLG	mg/L	0 100	ND ND	ND ND	ND ND	
Coliform Bacteria Turbidity N3	<1	per 100 m		ND	ND ND	0.792	
Turbidity	1	NTU	S - MML	ND	NU	0.792	
ection Byproducts							
Total Haloacetic acids (HAA5) N8	0.06	mg/L	F - MCL	ND	0.0337	0.0172	
dichloroacetic acid	MCLG	mg/L	1 - MOL	ND	0.0148	0.00817	
trichloroacetic acid	MCLG	mg/L		ND	0.019	0.00907	
monochloroacetic acid	None	mg/L		ND	ND	ND	
monobromoacetic acid	None	mg/L		ND	ND	ND	
dibromoacetic acid	None	mg/L		ND	ND	ND	
Total Trihalomethanes (TTHMs) N8	0.08	mg/L	F - MCL	ND	0.022	0.0117	
bromodichloromethane	MCLG	mg/L		ND	0.00156	0.00091	
bromoform	MCLG	mg/L_		ND	ND	ND_	
dibromochloromethane	MCLG	mg/L		ND	ND	ND	
chloroform	None	mg/L		ND	0.0205	0.0108	
ectants			7	ND	0.544	0.050	
Chlorine (as Cl2)	4	mg/L	F - MCL	ND	0.511	0.353	
emical							
Bicarbonate	None	mg/L		105	17.9	21.2	
Calcium	None	mg/L mg/L		15.6	4.19	4.23	
Carbonate	None	mg/L	-	ND ND	ND ND	ND	
Chloride	250	mg/L	F - SMCL, S - MML	2.03	3.33	2.63	
Cyanide (as free cyanide)	0.2	mg/L	F - MCL	ND	ND	ND	
Fluoride	2	mg/L	F - SMCL, S - MML	ND	ND	ND	
Hardness (as CaCO₃)	None	mg/L		82.7	10.5	10.6	
Magnesium	None	mg/L.		10.6	1.26	1.34	
Nitrate (measured as Nitrogen)	10	mg/L	F - MCL, S - MML	ND	0.23	0.23	
Nitrite (measured as Nitrogen)	1	mg/L	F - MCL	ND	ND	ND	
Potassium	None	mg/L		1.92	ND	ND	
Silica	None	mg/L		54.6	16.4	16.2	
Sodium	None	mg/L		10.6	4.13	4.03	
Sulfate	250	mg/L	F - SMCL, S - MML	1.25	2.21	ND	
Total Alkalinity	None	mg/L.		105	17.9	21.2	
Total Organic Carbon	None	mg/L		ND	ND	1.07	
	l				L		
Aluminum	0.05	mg/L	F - SMCL	ND	ND	ND	
Antimony	0.006	mg/L	F - MCL	ND	ND	ND	
Arsenic	0.01	mg/L	F - MCL	0.00503	ND	ND	
Barium	1	mg/L	S - MML	0.0354	0.00368	0.00237	
Beryllium	0.004	mg/L	F - MCL	ND	ND	ND	
Cadmium	0.005	mg/L	F-MCL	ND	ND	ND	
Chromium (total)	0.05	mg/L.	S - MML	ND	ND	ND	
Copper N8	11	mg/L.	F - SMCL, S - MML	ND	0.00158	ND	
Iron (Total)	None	mg/L.		0.076	ND	0.0392	
Iron (Dissolved) Lead ^{N8}	0.3	mg/L	F - SMCL, S - MML	0.0752	ND	0.0183	
	0.05	mg/L	S - MML	ND	ND	ND	
Manganese (Total)	None	mg/L.	5 010 0 100	0.212	ND	ND	
Manganese (Dissolved) Mercury (inorganic)	0.05	mg/L	F - SMCL, S - MML	0.21 ND	ND	ND	
Nickel	0.002	mg/L.	F - MCL, S - MML	ND ND	ND ND	ND	
Selenium	None 0.01	mg/L	S - MML	ND ND	ND	ND ND	
Silver	0.05	mg/L mg/L	S - MML	ND ND	ND ND	ND	
Thallium	0.002	mg/L	F - MCL	ND	ND	ND	
Zinc	5	mg/L.	F - SMCL, S - MML	ND	ND	ND	
						1,10	
laneous				4			
Color	15	CU	F - SMCL, S - MML.	ND	ND	ND	
Corrosivity	noncorrosive		F-SMCL	-1.2	-3.4	-3.3	
Foaming Agents (MBAS)	0.5	mg/L.	F - SMCL, S - MML.	ND	ND	ND	
Odor	3	TON	F - SMCL, S - MML	0.33	3.7	2.3	
Total Dissolved Solids	500	mg/L	F - SMCL, S - MML	15/5	48	53	
Total Suspended Solids	None	mg/L		ND	ND	ND	
pH	6.5-8.5	pH	F - SMCL, S - MML	6.98	6.8	6.78	
Temperature	None	°C		14.4	10.14	9.85	
Specific Conductivity	None	µs/cm		205	52	51	
Dissolved Oxygen ORP	None	mg/L		2	205	198	
VIV	None	mV		-61.9	770	798	
etic Organic Compounds (SOCs)		L	1				
Alachlor	0.002	mg/L	F - MCL	ND	ND	ND	
Atrazine	0.003	mg/L	F - MCL	ND	ND	ND	
Benzo(a)pyrene (PAHs)	0.0002	mg/L	F-MCL	ND	ND	ND	
Carbofuran	0.04	mg/L	F-MCL	ND	ND	ND	
Chlordane	0.002	mg/L	F - MCL	ND	ND	ND	
2,4-D	0.07	mg/L	F-MCL	ND	ND	ND	
Dalapon	0.2	mg/L	F - MCL.	ND	ND	ND	
1,2-Dîbromo-3-chloropropane (DBCP)	0.0002	mg/L	F - MCL	ND	ND	ND	
The state of the s			F-MCL	ND	ND	ND	
Di(2-ethylhexyl) adipate	0.4	IIIQ/I	1 - 100	I ND	LAD	1413	
Di(2-ethylhexyl) adipate Di(2-ethylhexyl) phthalate	0.006	mg/L mg/L	F-MCL				
The state of the s		mg/L mg/L		ND ND	ND ND	ND ND	

Table 1
Summary of Native Groundwater and ASR Source Water Quality Testing
ASR Feasibility Study

Analyte	Lowest	Units	Standard Type	Native Groundwater	Source Water CRW	Source Water NCCWC WTP Soc & Voc - 9/6/2005 All others - 4/19/06	
	Regulatory Standard		F = Federal; S = State	SOC & VOC - 7/27/04 All others - 3/24/2006	SOC & VOC - 1/26/05 All others - 4/19/06		
Diquat	0.02	mg/L	F - MCL	ND	ND	ND	
Endothall	0.1	mg/L	F - MCL	ND	ND	ND	
Endrin	0.0002	mg/L	S - MML	ND	ND	ND	
Ethylene dibromide (EDB)	0.00005	mg/L	F - MCL	ND	ND	ND	
Glyphosate	0.7	mg/L	F - MCL	ND	ND	ND	
Heptachlor	0.0004	mg/L	F - MCL	ND	ND	ND	
Heptachlor epoxide	0.0002	mg/L	F - MCL	ND	ND	ND	
Hexachlorobenzene	0.001	mg/L	F - MCL	ND	ND	ND	
Hexachlorocyclopentadiene	0.05	mg/L	F - MCL	ND	ND	ND	
Lindane (BHC-gamma)	0.0002	mg/L	F - MCL	ND	ND	ND	
Methoxychlor	0.04	mg/L	F - MCL	ND	ND	ND	
Oxamyl (Vydate)	0.2	mg/L	F - MCL	ND	ND	ND	
Polychlorinated biphenyls (PCBs)	0.0005	mg/L	F - MCL	ND	ND	ND	
Pentachlorophenol	0.001	mg/L	F - MCL	ND	ND	ND	
Picloram	0.5	mg/L	F - MCL	ND	ND	ND	
Simazine	0.004	mg/L	F - MCL	ND	ND	ND	
Toxaphene	0.003	mg/L	F - MCL	ND	ND	ND	
2,4,5-TP (Silvex)	0.003	mg/L	S - MML	ND	ND	ND	
Z,4,3-TF (Silvex)	0.01	IIIg/L	3 - IVIIVIL	IND	TILD .	110	
Organic Compounds (VOCs)		mg/L			NB	NS	
Benzene	0.005	mg/L	F - MCL, S - MML	ND	ND	ND	
Carbon tetrachloride	0.005	mg/L	F - MCL, S - MML	ND	ND	ND	
Chlorobenzene (monociorobenzene)	0.1	mg/L	F - MCL	ND	ND	ND	
o-Dichlorobenzene (1,2-Diclorobenezene)	0.6	mg/L	F - MCL	ND	ND	ND	
p-Dichlorobenzene (1,4-Dichlorobenzene)	0.075	mg/L	F - MCL, S - MML	ND	ND	ND	
1,2-Dichloroethane	0.005	mg/L	F - MCL, S - MML	ND	ND	ND	
1,1-Dichloroethylene	0.007	mg/L	F - MCL, S - MML	ND	ND	ND	
cis-1,2-Dichloroethylene	0.07	mg/L	F - MCL	ND	ND	ND	
trans-1,2-Dichloroethylene	0.1	mg/L	F - MCL	ND	ND	ND	
Dichloromethane	0.005	mg/L	F - MCL	ND	ND	ND	
1,2-Dichloropropane	0.005	mg/L	F - MCL	ND	ND	ND	
Epichlorohydrin N9	П	mg/L	F - MCL	NA	NA	NA	
Ethylbenzene	0.7	mg/L	F - MCL	ND	ND	ND	
Styrene	0.1	mg/L	F - MCL	ND	ND	ND	
Tetrachloroethylene	0.005	mg/L	F - MCL, S - MML	ND	ND	ND	
Toluene	1	mg/L	F - MCL	ND	ND	ND	
1,2,4-Trichlorobenzene	0.07	mg/L	F - MCL	ND	ND	ND	
1,1,1-Trichloroethane	0.2	mg/L	F - MCL, S - MML	ND	ND	ND	
1,1,2-Trichloroethane	0.005	mg/L	F - MCL	ND	ND	ND	
Trichloroethylene	0.005	mg/L	F - MCL	ND	ND	ND	
Vinyl chloride	0.002	mg/L	F - MCL, S - MML	ND	ND	ND	
Xylenes (total)	10	mg/L	F - MCL	ND	ND	ND	
uclides			i				
Gross Alpha	15	pCi/L	F - MCL, S - MML	ND	ND	ND	
Gross Beta	50	pCi/L	S - MML	3.1	ND	ND	
Radium 226 and Radium 228 (combined)	5	pCi/L	F - MCL, S - MML	1.7	ND	ND	
Uranium	0.03	mg/L	F - MCL	0.00025	ND	ND	
Radon	0.03	HIGHL	I - IVIOL	245	ND	ND	

ASR Feasibility Study

Analyte	Lowest	Units	Standard Type	Native Groundwater	Source Water CRW	Source Water NCCWC WTP
Analyte	Regulatory Standard	Julatory	F = Federal; S = State	SOC & VOC - 7/27/04 All others - 3/24/2006	SOC & VOC - 1/26/05 All others - 4/19/06	SOC & VOC - 9/6/2005 All others - 4/19/06

NOTES

MCL = Federal Maximum Contaminant Level - he highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment. NI1 technology and taking cost into consideration, MCLs are enforceable standards.

SMCL = Federal Secondary Maximum Contaminant Level - non-enforcable guidelines that regulate contaminants that may cause cosmetic or aesthetic effects in drinking water. States may chiquise to adopt the levels as enforcable standards

MCLG = Maximum Contaminant Level Goal - The level of a contaminant in drinking water below which there is no known or expected lisk to health. MCLGs allow for a margin of safety and are nonenforceable public health goals.

MRDL = Maximum Residual Disinfectant Level - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG = Maximum Residual Disinfectant Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

TT = Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

MML = Maximum Measureable Level - Oregon State Department of Environmental Quality established contaminant level for groundwater

N₂ Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million.

MFL = million fibers per liter

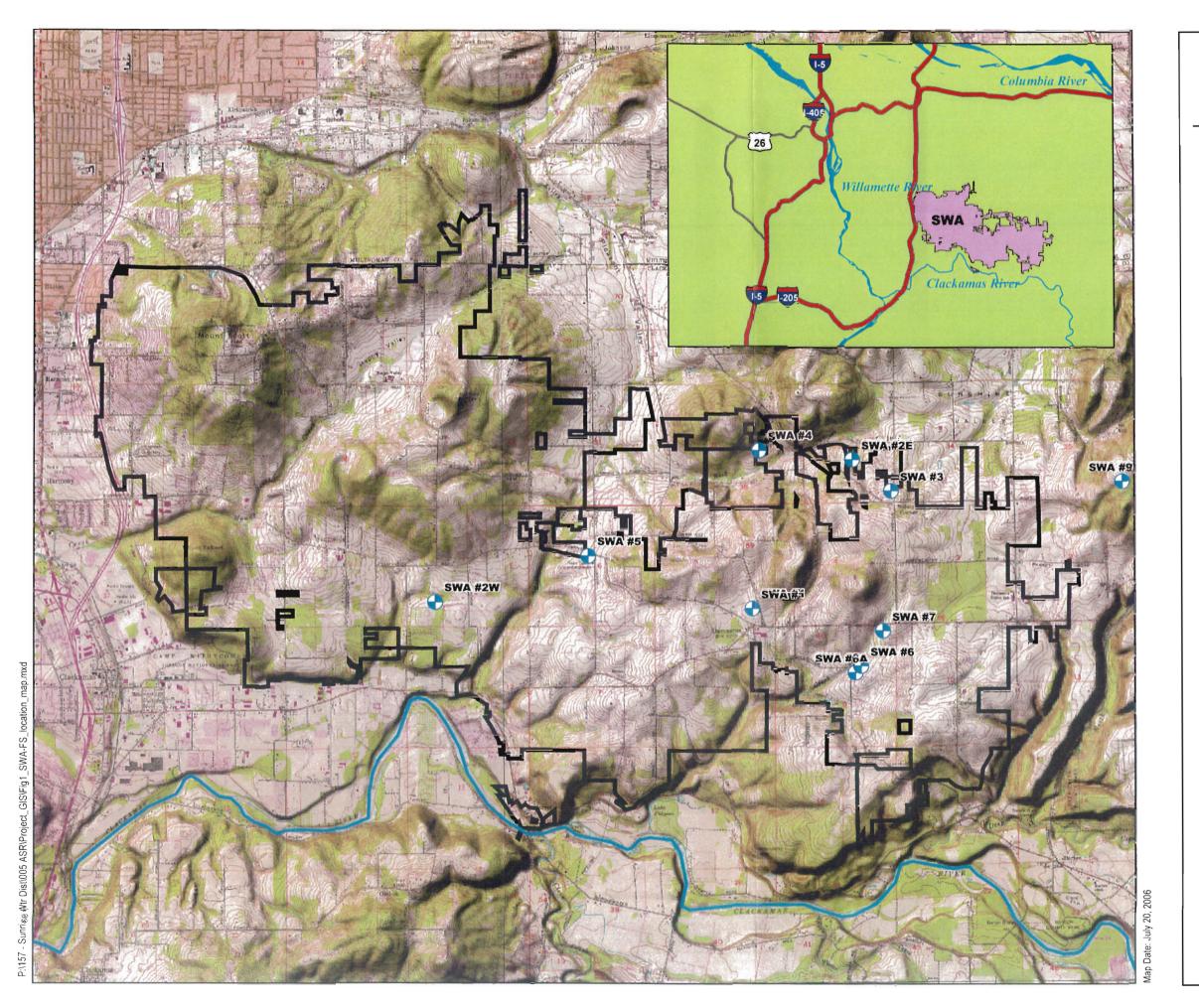
CU = color number

TON = threshold odor number

pCi/L = picocuries per litter

mrem/y1 = millinems per year

N3 EPA's surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels.


- Cryptospondium: (as of1/1/1/02 for systems serving) > 10,000 and 1//14/05 for systems serving < 10,000) 99% removal.
- Giardia lamblia: 99.9% removal/inactivation
- Viruses: 99.99% removal/inactivation
- Legionella: No limit, but EPA believes that if Giardiand viruses are removed/inactivated, Legionellavill also be controlled.
- Turbidity. At no time can turbidity (cloudiness of water) go above 5 nephelolometric turbidity units (NTU); systems that filter must ensure that the turbidity go no higher than 1 NTU (0.5 NTU) for conventional or direct filtration) in at least 95% of the daily samples in any month. As of January 1, 2002, turbidity may never exceed 1 NTU, and must not exceed 0.3 NTU in 95% of daily - HPC: No more than 500 bacterial colonies per milliliter.
- Long Term 1 Enhanced Surface Water Treatment (Effective Date: January 14, 2005); Surface water systems of (GWUDI) systems serving fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g. turbidity standards, individual filter monitoring, Cryptospondium remov at requirements, updated watershed control requirements for unfiltered systems).
- Filter Backwash Recycling; The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through an processes of the system's existing conventional or direct filtration system or at an alternate location approved by the state.
- N4 More than 5.0% samples total coliform-positive in a month. (For water systems that collect fewer than 40 youline samples per month, no more than one sample can be total coliform-positive per month.) Every sample that has total coliform must be analyzed for either fecal coliforms or E. coli if two consecutive TC-positive samples, and one is also positive for E.coli fecal coliforms, system has an acute MCL violation.
- **N5** Fecal coliform and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Disease-causing microthes (pathogens) in these wastes can cause diambea, cramps, nausea, headaches, or other symptoms. These pathogens may pose a special frienth risk for infants, young children, and people with severely sompromised in noting systems
- Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants: N₆
 - Trinalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L). Chloroform is regulated with this group but has no MCLG.
 - Halloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L). Monochicroacetic acid, bromoacetic acid, and dibromoacetic acid are regulated with this group but have to the LGs.
- N₃ Lead and copper are regulated by a Theatment Technique that requires systems to control the corrosiveness of their water. If there is an 10% of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0:015 mg/L.
- N9 Each water system must certify, in writing, to the state (using third-party or manufacturer's certification) third when acrylamide and epichlorohydrin are used in drinking water systems, the combination (or product) of close and monomer level does not excee

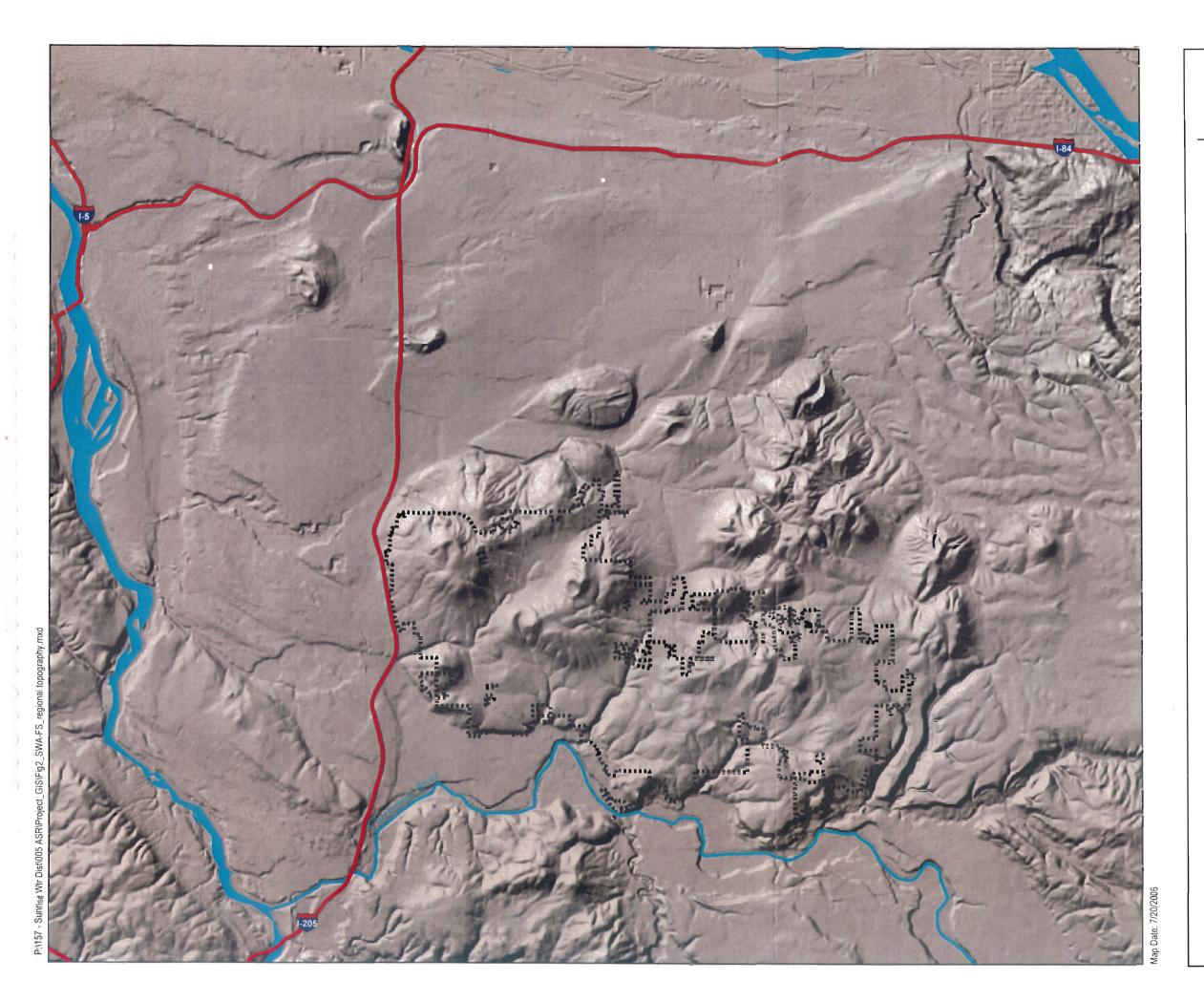
Acrylamide = 0.05% dosed at 1 mg/L (or equivalent) Epichlorohydrin = 0.01% dosed at 20 mg/L (or equivalent)

Disinfectans and Disinfection Byproducts testing requirements. N10

Eliromate testing required for plants that use ozone. Charite testing required for plants that use chlorine dioxide.

Chorine Dioxide testing required for plants that use chilorine dioxide:

Legend Service area boundary SWA Production Wells Map Notes: Map projection - UTM Zone 10 North, NAD 1927 Scale 1:50,000 Miles


Figure 1

Site Location Map

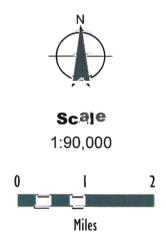
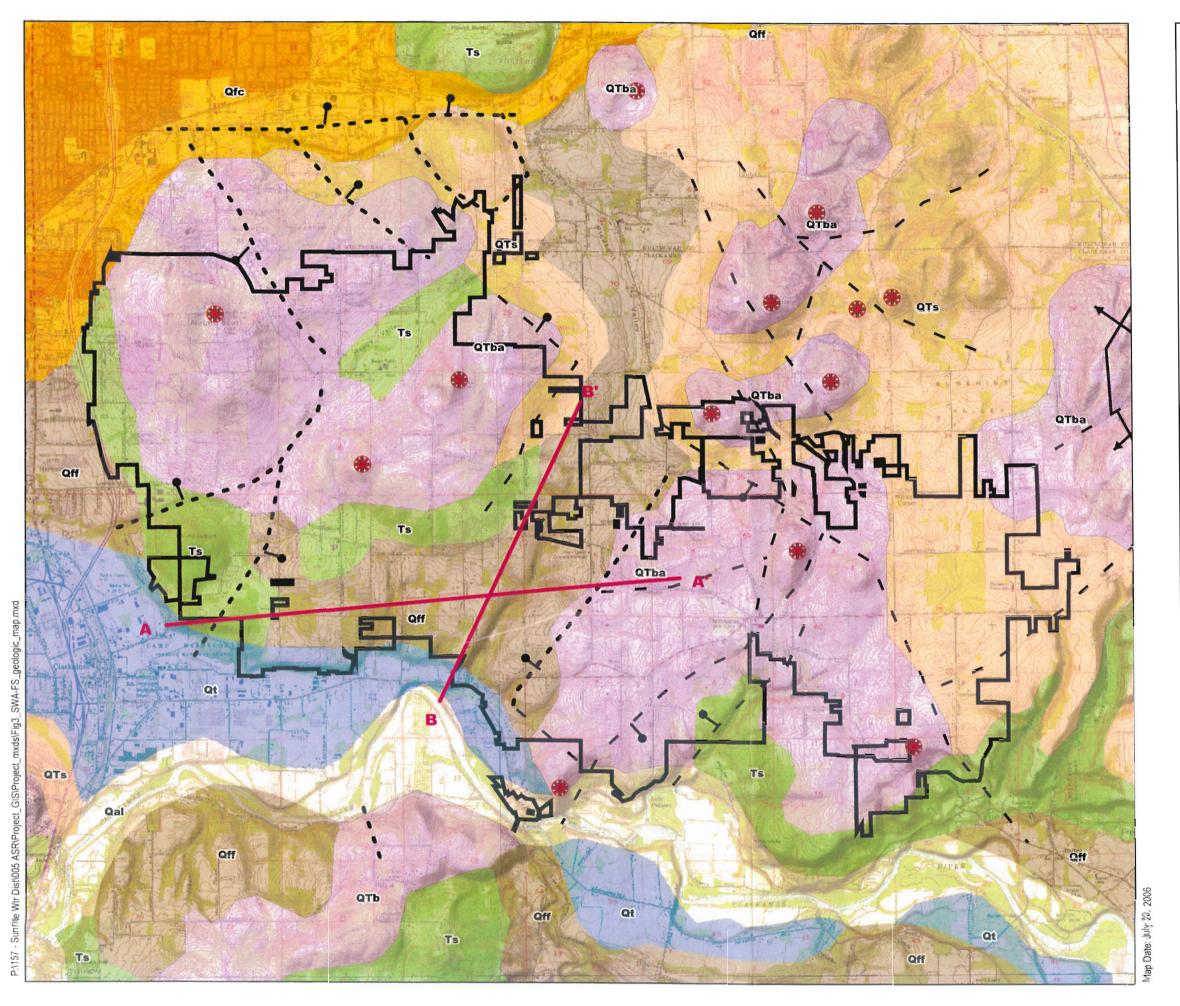
Sunrise Water Authority ASR Feasibility Study

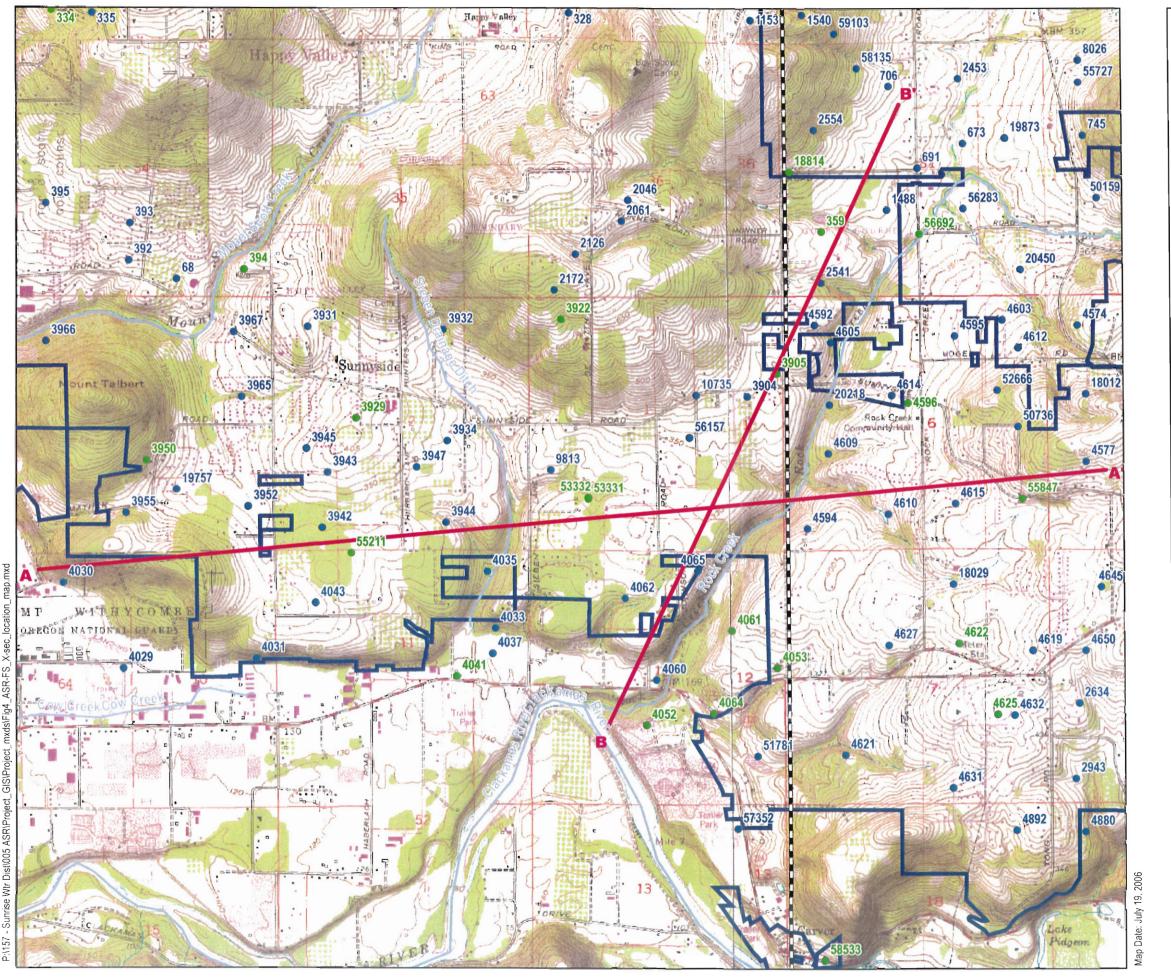
Groundwater solutions inc.

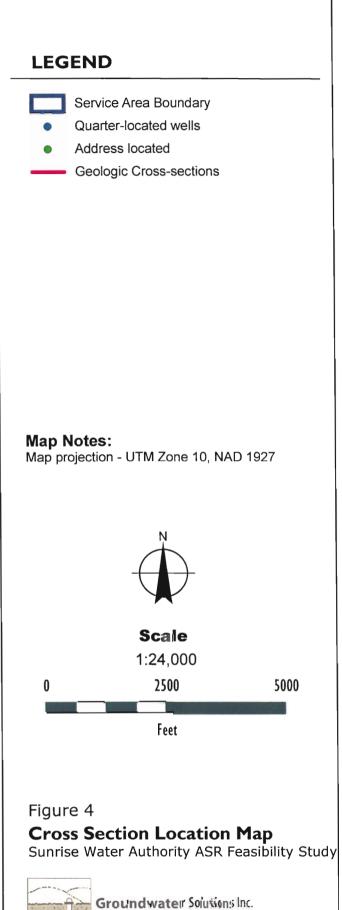
Legend

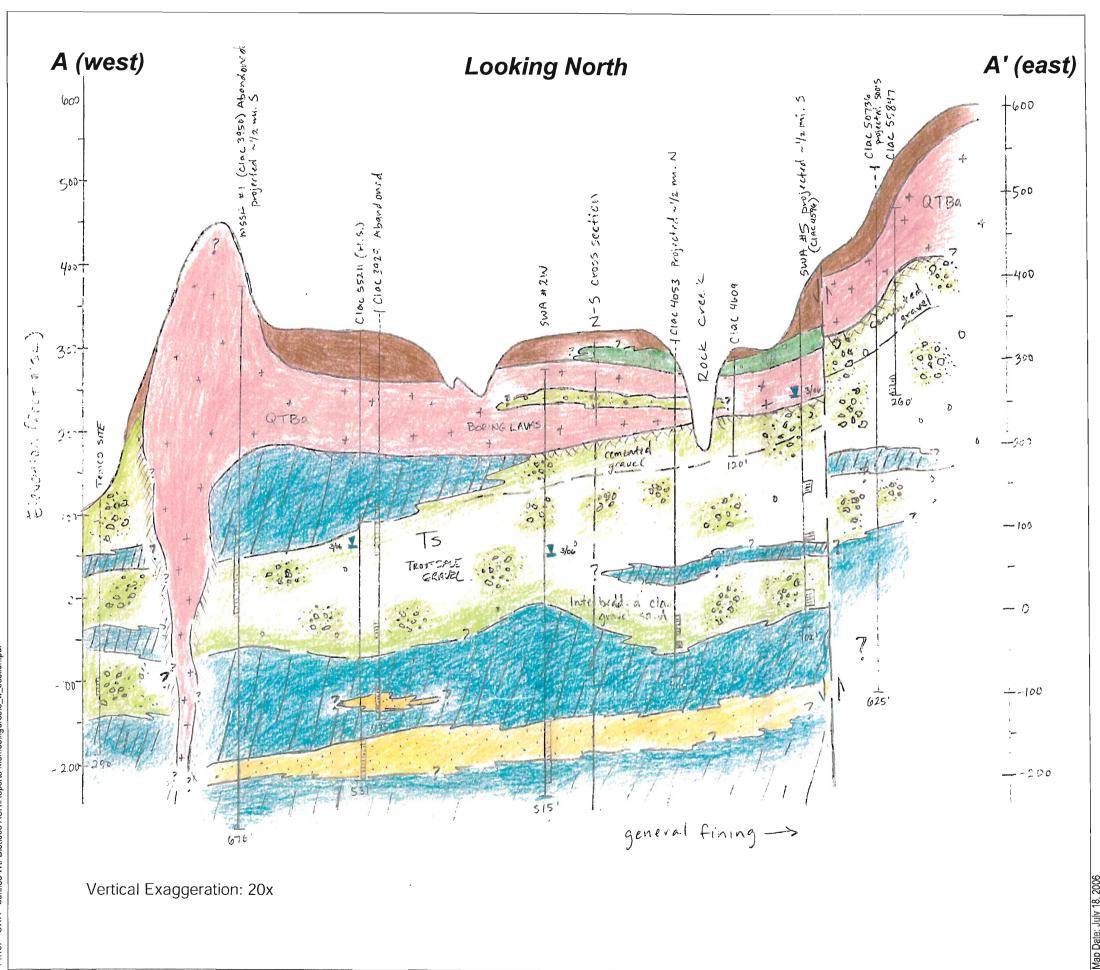
Service area boundary

Map Notes: Map projection - UTM Zone 10 North, NAD 1927

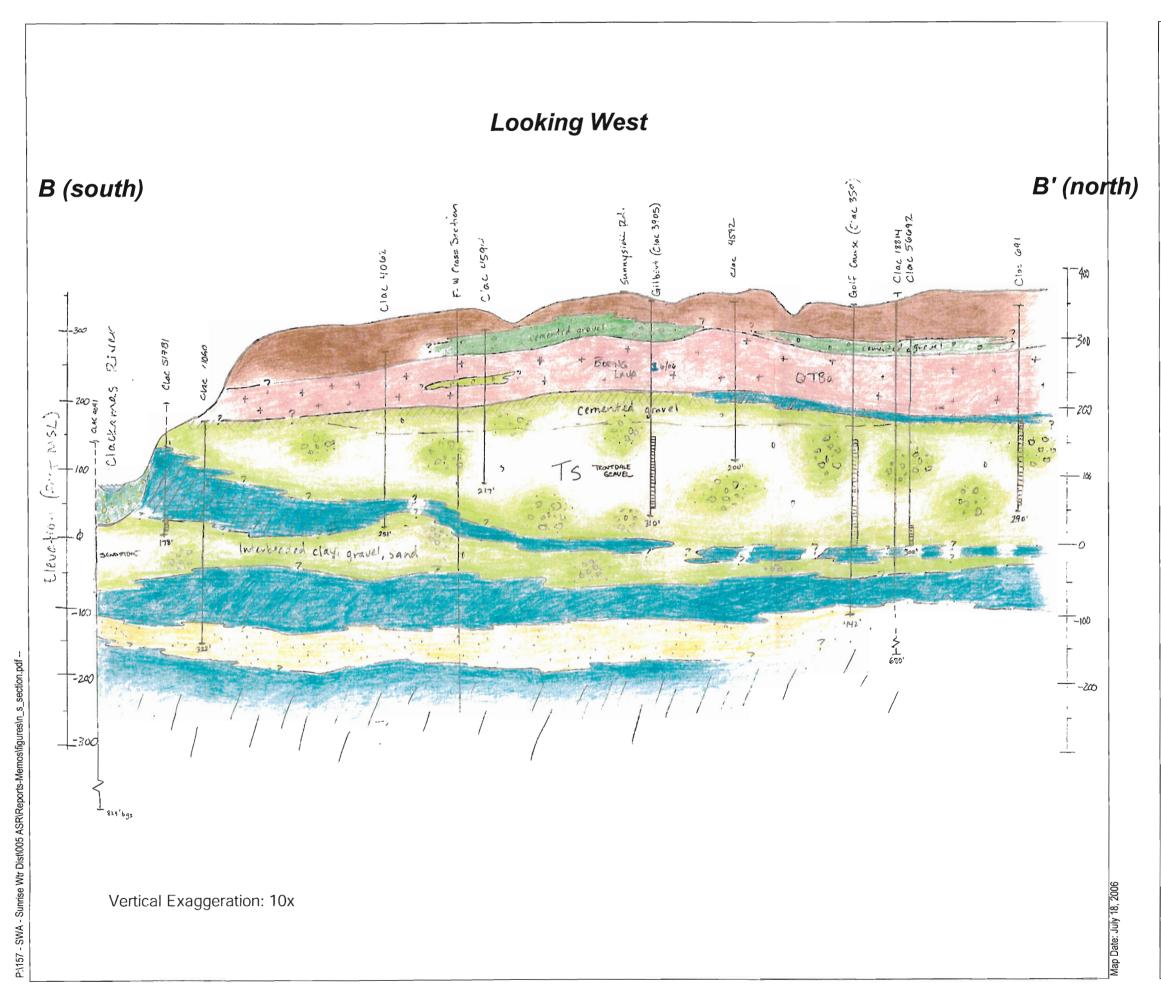



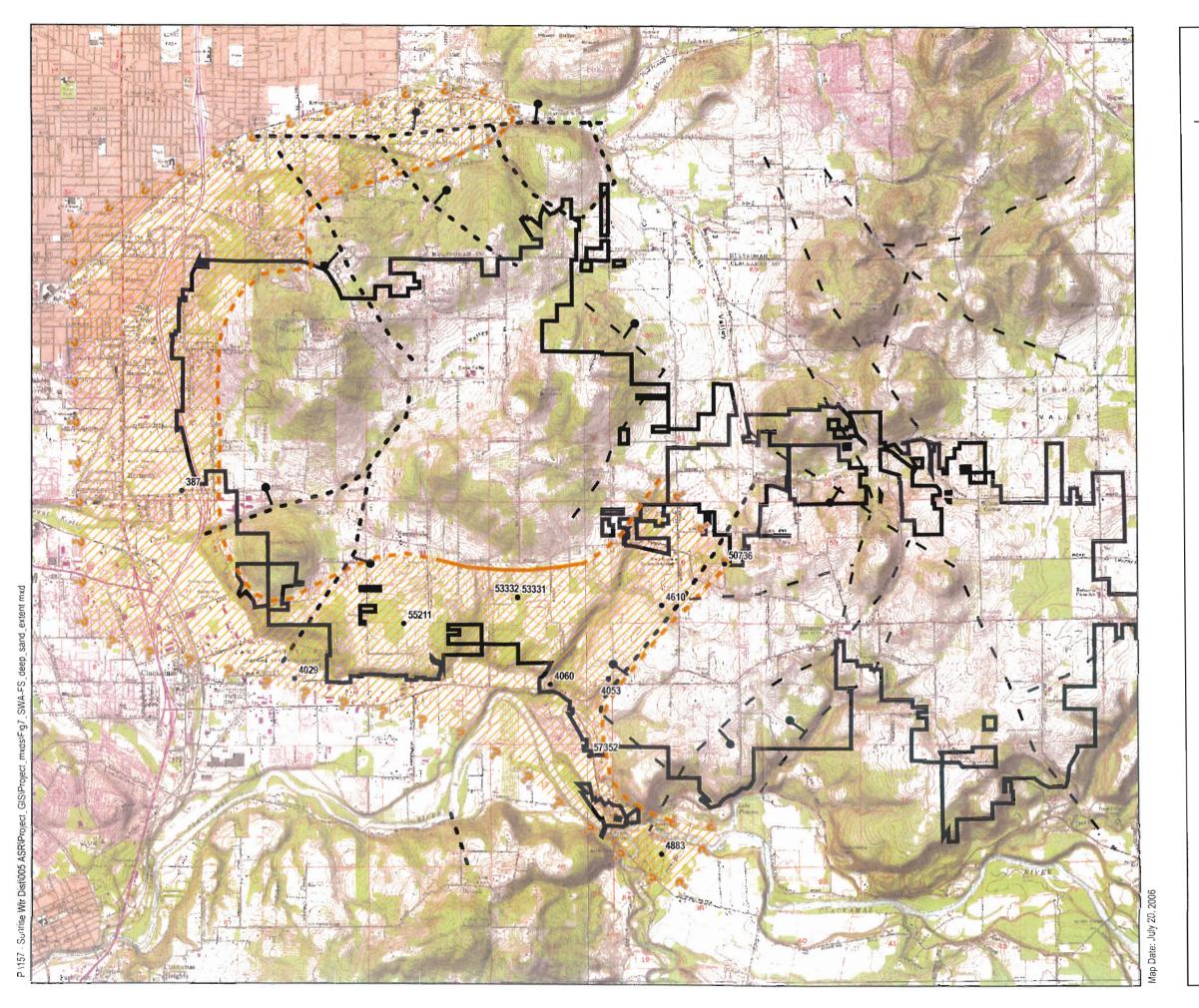

Figure 2 Regional Topography
Sunrise Water Authority ASR Feasibility Study




Groundwater solutions inc.

LEGEND Wolcanic Vents Service area boundary **Faults** Approximate (dashed) - - Conceled — Fold (solid) **Geologic Units** Qal - Alluvial deposits Qt - Clackamas River terrace deposits & channel facies Qff - Catastrophic flood deposits, fine-grained facies Qfc - Catastrophic flood deposits, coarse-grained facies QTba - Boring Lavas QTs - Springwater formation (Cascade gravels) Ts - Troutdale formation (Gravel and Sandy River Mudstone) Geologic Cross-sections Map Notes: Map projection - UTM Zone 10 North, NAD 1927 Geologic Map - Walker et al. 1991 Scale 1:50,000 Miles Figure 3 **Geologic Map**Sunrise Water Authority ASR Feasbility Study Groundwater Solutions Inc.





LEGEND Geologic Units Weathered Rock; Silt Boring Lava (※represents altered material) Troutdale Gravel Cemented in places; also includes sands Confining Unit (Clay) Deep Alluvial Aquifer Black sands Static water level Clac 4053 Well ID **Horizontal Scale** 2000 4000 Feet Figure 5 Geologic Cross Section A-A' Sunrise Water Authority ASR Feasibility Study **Groundwater Solutions Inc.**

A - Sunrise Wtr Dist\005 ASR\Reports-Memos\figures\e_w_sectic

LEGEND Geologic Units Weathered Rock; Silt Boring Lava (% represents altered material) Troutdale Gravel Cemented in places; also includes sands **Confining Unit** (Clay) Deep Alluvial Aquifer Black sands Static water level Clac 4062 Well ID **Horizontal Scale** 2000 4000 Feet Figure 6 **Geologic Cross Section B-B'** Sunrise Water Authority ASR Feasibility Study **Groundwater** Solutions Inc.

LEGEND

Service area boundary

//// Target Aquifer (Deep Alluvial Aquifer)

Faults

- Approximate (dashed)
- Conceled
 - Fold (solid)
- Wells used to delineate deep alluvial aquifer

Map Notes: Map projection - UTM Zone 10, NAD 1927

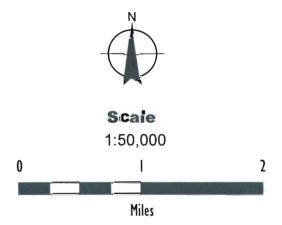


Figure 7

Extent of Target Aquifer for ASR
Sunrise Water Authority ASR Feasibility Study

Groundwater Solutions Inc.

Table 2
Mineral Saturation State of Native Groundwater and Source Waters

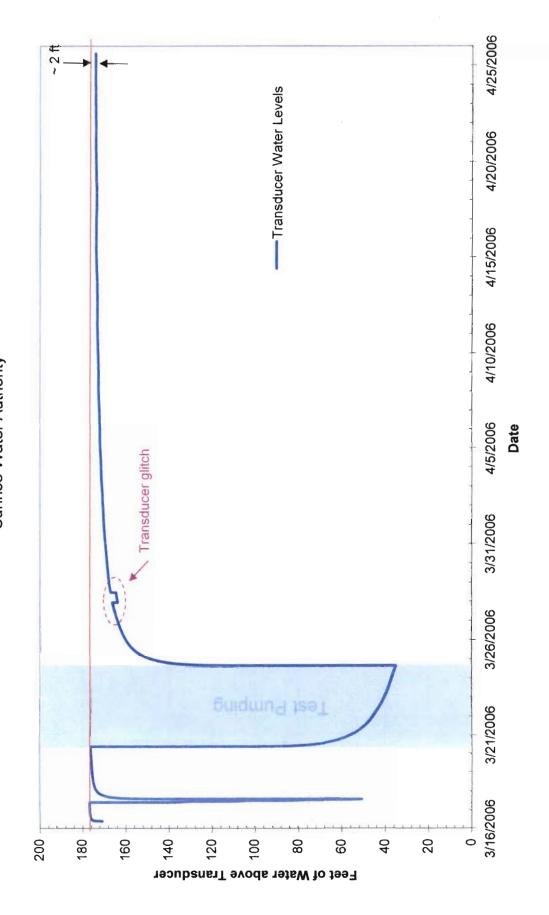
Mineral	Formula	Well 2W	CRW	NCCWC
<u>Carbonates</u>				
Calcite	CaCO ₃	-1.56	-2.77	-2.71
Dolomite	CaMg(CO ₃) ₂	-3.09	-5.94	-5.81
Magnesite	MgCO ₃	-2.08	-3.69	-3.62
Siderite	FeCO ₃	-1.66	-	-13.02
Rhodochrosite	MnCO ₃	-0.97	-	-
Witherite	BaCO ₃	-3.57	-6.11	-
<u>Sulfates</u>				
Gypsum	CaSO ₄ .2H ₂ O	-3.96	-4.14	-
Barite	BaSO ₄	-1.57	-2.04	-
<u>Silica</u>				
Amorphous SiO ₂	SiO ₂	-0.24	-0.72	-0.73
Chalcedony	SiO ₂	0.64	0.24	0.17
Quartz	SiO ₂	1.1	0.65	0.65
Iron Oxides				
Amorphous Fe(OH) ₃	Fe(OH) ₃	-1.58	-	1.63
Goethite	FeOOH	3.92	-	6.95
Hematite	Fe ₂ O ₃	9.8	-	15.84
Magnetite	Fe ₃ O ₄	8.85	-	4.17
Manganese Oxides				
Pyrolusite	MnO ₂	-16.85	-	-
Birnessite	Mn ₈ O ₁₉ H ₁₀	-17.31	-	-
Bixbyite	Mn ₂ O ₃	-18.17	-	-
Hausmannite	Mn ₃ O ₄	-21.95	-	-
Manganite	MnOOH	-8.32	-	-
Pyrochroite	Mn(OH) ₂	-7.45	=	-
Primary Silicates				
Forsterite	Mg ₂ SiO ₄	-12.92	-15.22	-15.27
Diopside	CaMgSi ₂ O ₆	-7.16	-9.44	-9.51
Clinoenstatite	MgSiO ₃	-5.05	-6.42	-6.44

Table 3 Projected Future Water System Demands

	Water Demand (mgd) ¹										
	Existing		Future								
	2003	2004	2008	2012	2016	2020	2024	Buildout			
Average day demand	4.41	4.67	6.60	9.34	15.05	20.59	25.56	29.87			
Peak day demand	10.86	11.50	16.16	21.83	33.27	44.22	54.26	63.12			

Notes:

^{1.} Future water system demands are based on projections for a 20-year planning period as detailed in the Sunrise Water Authority Water System Master Plan (SWA, 2004).

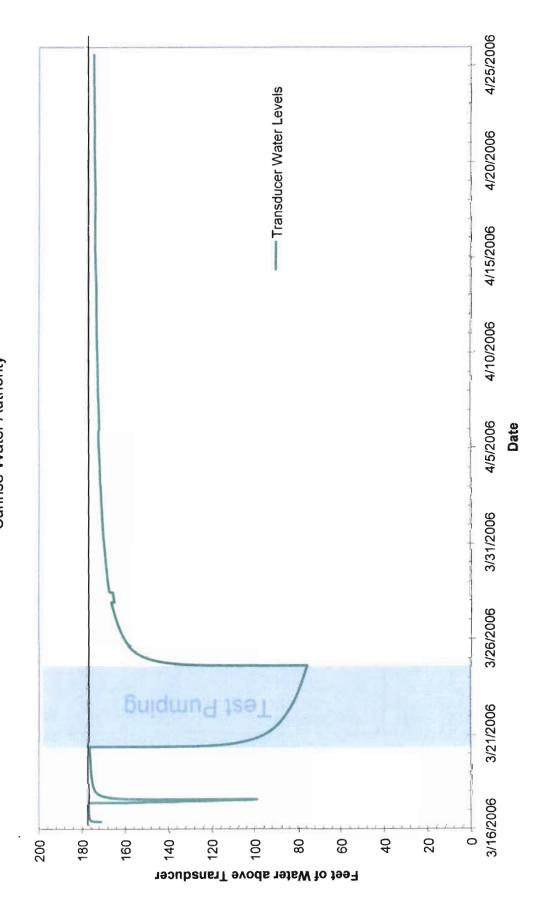

Table 4
Estimated Drawup and Drawdown During ASR Operation at SWA Well 2W

	Scenario	Water Level (feet bgs)						
		Year 1	Year 2	Year 3	Year 4	Year 5		
Α.	Injection – 100 days at 450 gpm	109	96	82	67	50		
A	Recovery – 650 gpm	345	362	380	400	422		
D	Injection – 150 days at 450 gpm	104	91	77	61	43		
В	Recovery – 650 gpm	334	351	369	389	412		
•	Injection – 240 days at 450 gpm	100	87	72	55	37		
C	Recovery – 650 gpm	312	329	347	368	390		
D	Injection – 100 days at 400 gpm	123	113	101	87	73		
D	Recovery – 600 gpm	348	364	382	402	424		
117	Injection – 100 days at 500 gpm	95	81	65	48	29		
E	Recovery – 700 gpm	355	373	392	414	438		
E	Injection – 100 days at 600 gpm	66	49	30	9	-14		
Recovery – 800 gpm		375	396	419	444	472		

Notes:

- 1. bgs = below ground surface.
- 2. Scenario assumes that the stored water is fully (100%) recovered each year.
- 3. Shading indicates the water level exceeds the established criteria (25 feet from ground surface during injection or water level above pump intake plus required submergence during pumping).

Water Level Hydrograph for SWA-2W During Aquifer Testing Period Sunrise Water Authority



SWA ASR Feasibility Study

Water Level Hydrograph for 2W Piezometer During Aquifer Testing Period Sunrise Water Authority

SWA ASR Feasibility Study

29.95 30.1 Water Level Hydrograph for High School Well During Aquifer Testing Period High School Water Level Sunrise Water Authority

256

257

Depth to Water (ft)

Barometric Pressure (in Hg)

9

29.85

Barometric
 Pressure

29.9

29.8

4/8/06

4/3/06

3/29/06

3/24/06

3/19/06

3/14/06 261

Constant Rate

Step Test

260

259

258

Time

30.05

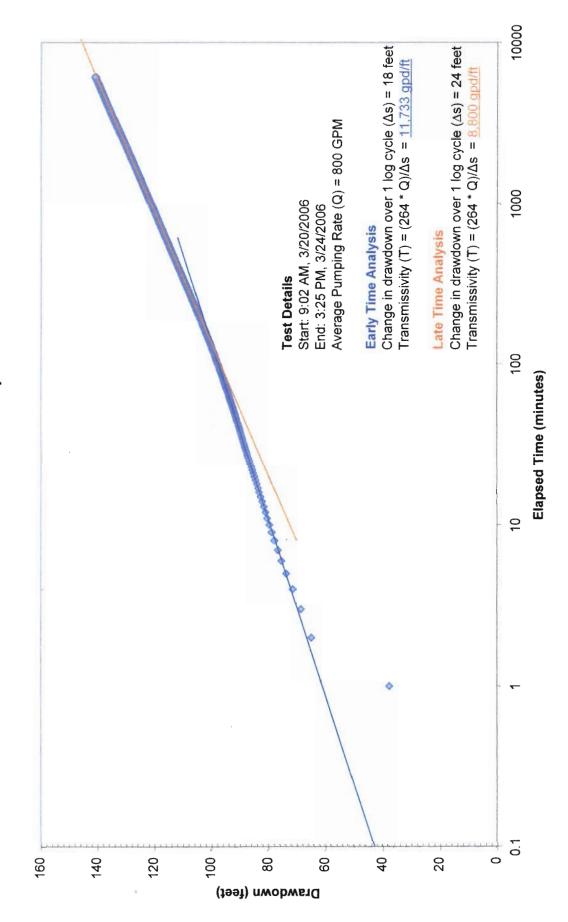
30.15

30.2

252

253

254


255

Groundwater Salutions.Inc.

SWA ASR Feasibility Study


Drawdown in SWA-2W During Constant Rate Aquifer Test Sunrise Water Authority

SWA ASR Feasibility Study

Drawdown in 2W Piezometer During Constant Rate Aquifer Test

SWA ASR Feasibility Study

Groundwater Solutions Inc.

High School Drawdown

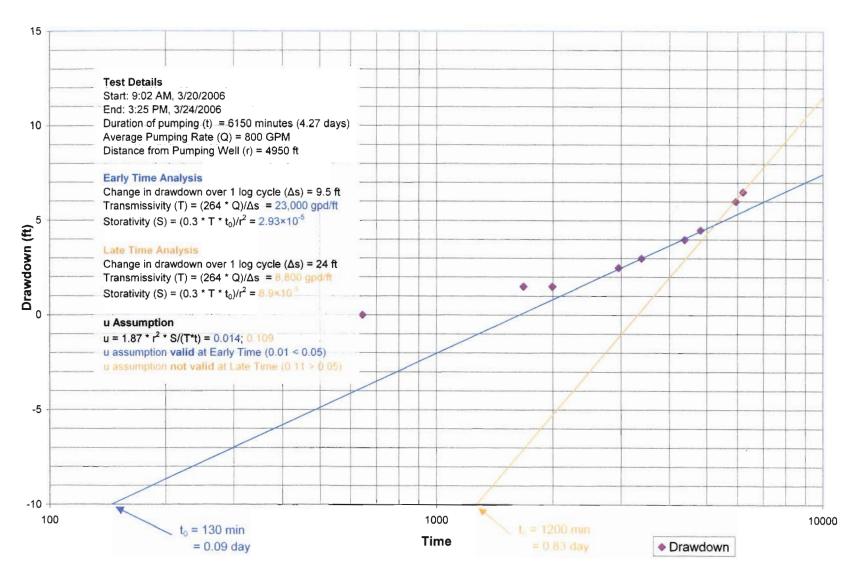


Figure SWA ASR Feasibility Study

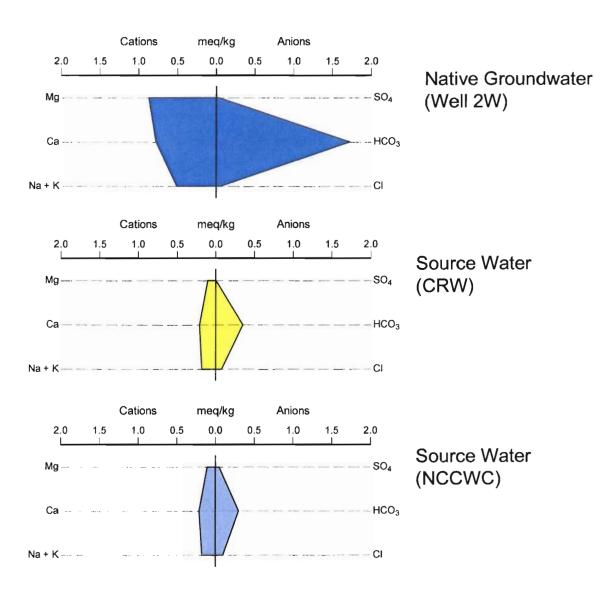


Figure 8 **Stiff Diagrams**Sunrise Water Authority Feasibility Study

Groundwater Solutions, Inc.

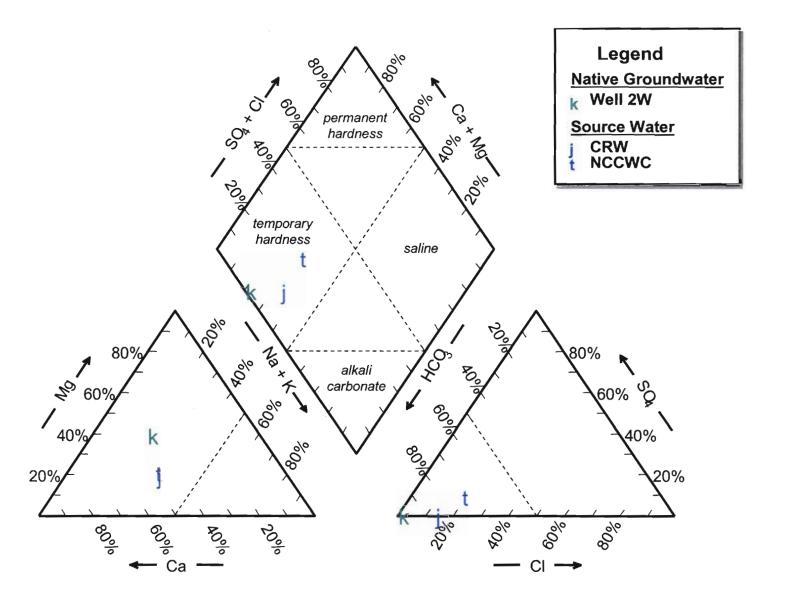


Figure 9 **Piper Diagram**Sunrise Water Authority Feasibility Study

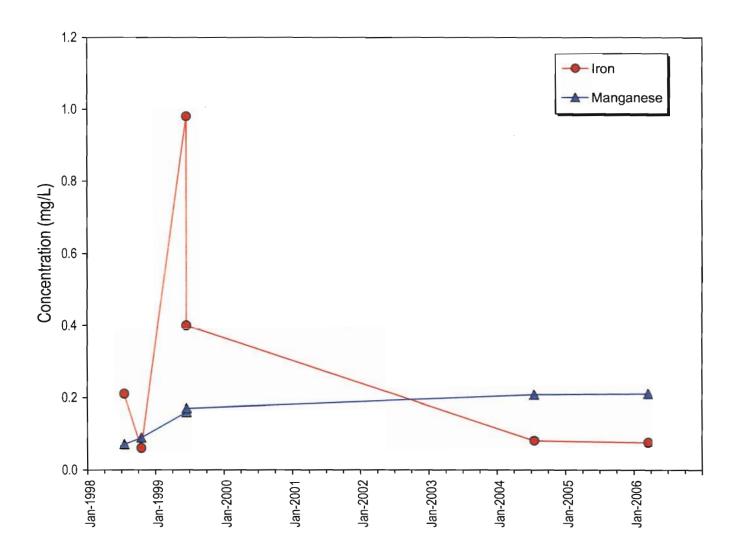


Figure 10
Iron and Manganese in Native Groundwater
Sunrise Water Authority Feasibility Study

Figure 11A
Assesment of Target Injection and Recovery Rates
Water Level Predictions for ASR Well
Sunrise Water Authority ASR Feasibility Study

Groundwater Solutions, Inc.

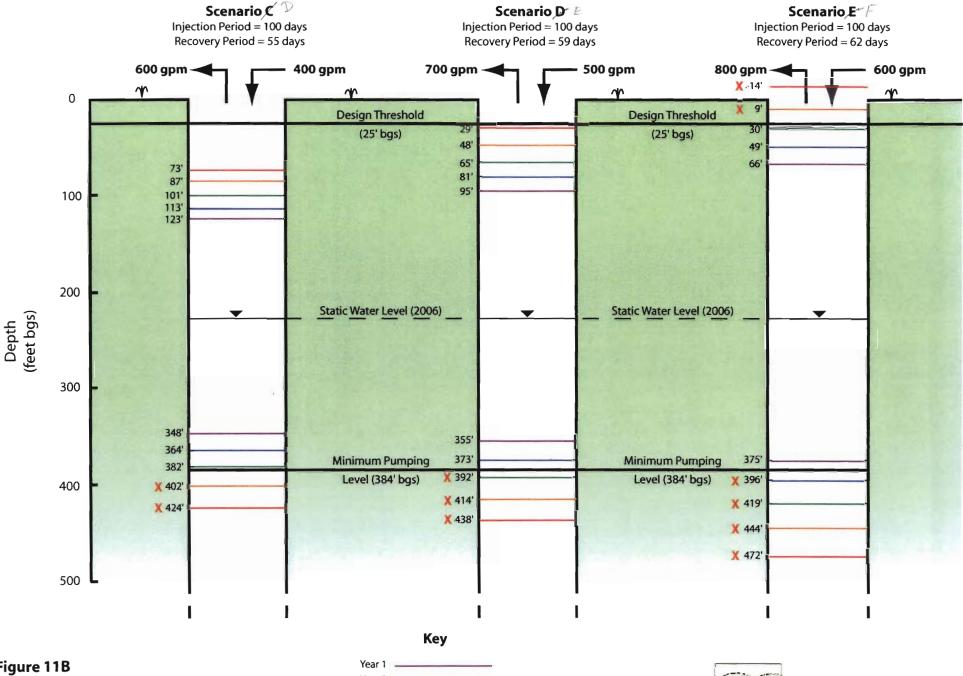


Figure 11B
Assesment of Target Injection and Recovery Rates
Water Level Predictions for ASR Well
Sunrise Water Authority ASR Feasibility Study

Groundwater Solutions.Inc.

Projected Water Level Drawdown at Selected Production Rates (Current Conditions) Sunrise Water Authority

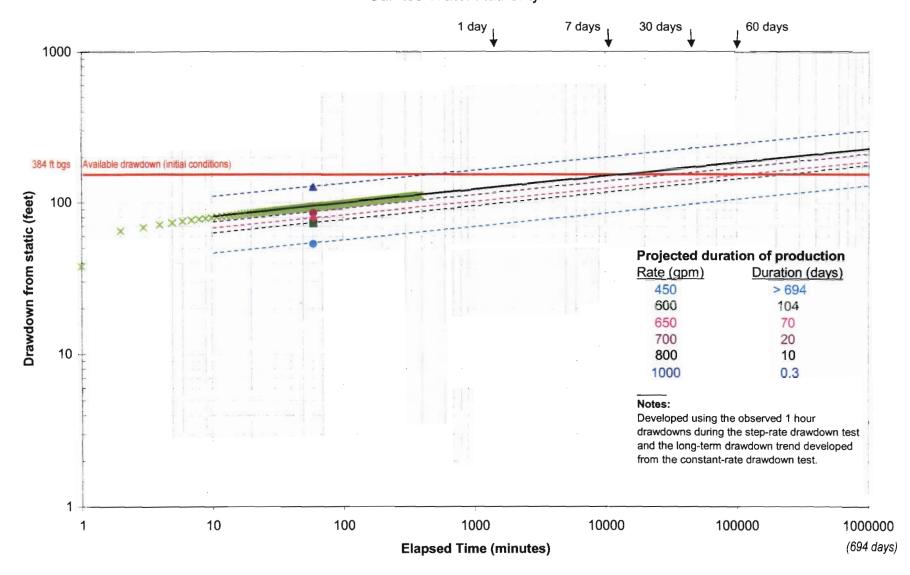
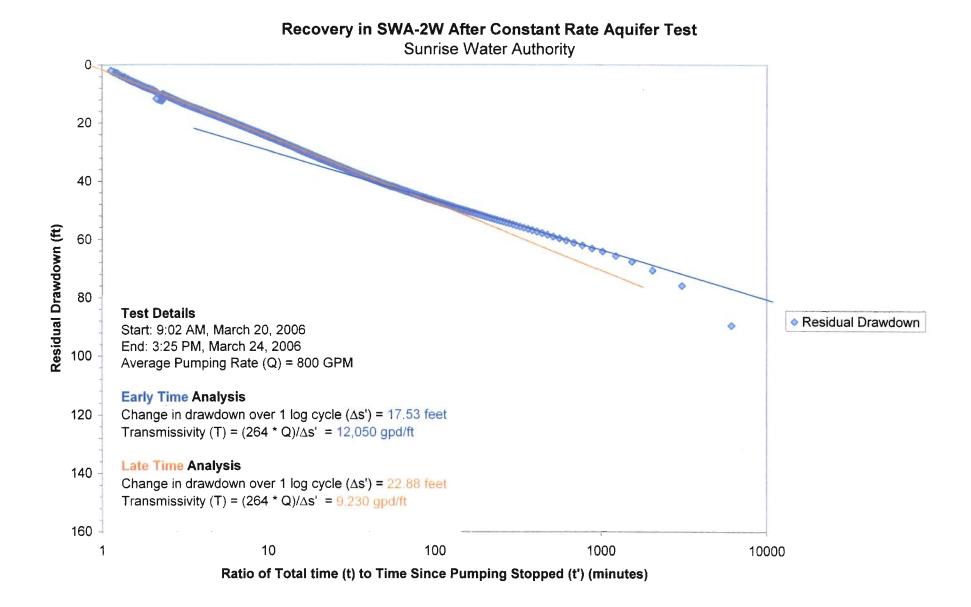
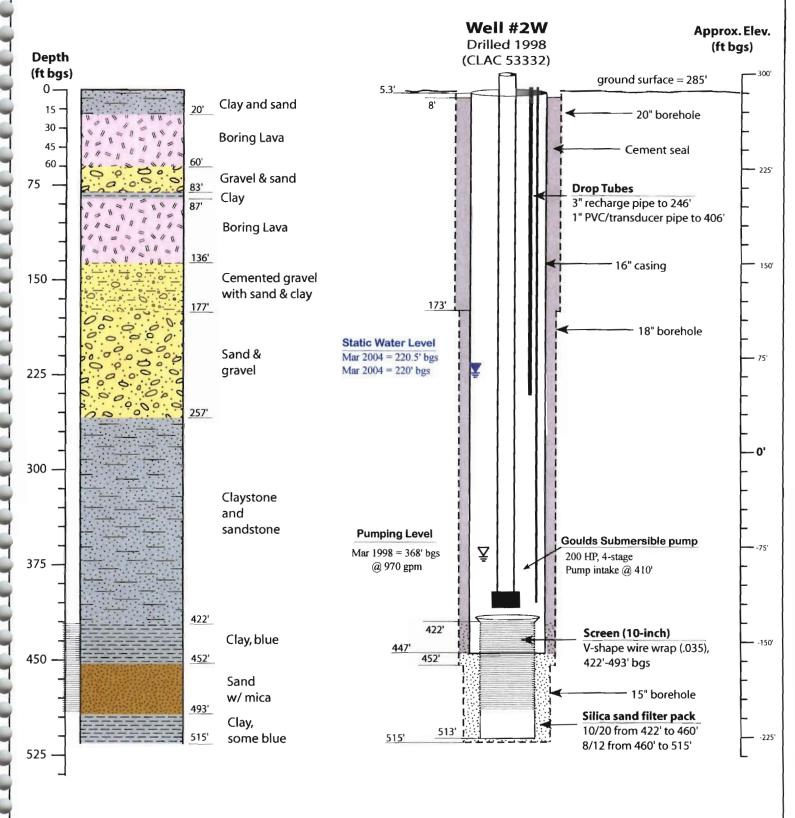



Figure 12 SWA ASR Feasibility Study

Appendix A: SWA Well 2W Aquifer Test Results



SWA ASR Feasibility Study

Recovery in SWA-2W Piezometer After Constant Rate Aquifer Test Sunrise Water Authority **Test Details** Start: 9:02 AM, 3/20/2006 End: 3:25 PM, 3/24/2006 $= 0.8 \, \text{min}$ Average Pumping Rate (Q) = 800 GPM = 5.56×10⁻⁴ day 10 Distance from Pumping Well (r) = 17 ft **Early Time Analysis** Change in drawdown over 1 log cycle (Δ s) = 17.33 ft 20 Transmissivity (T) = $(264 * Q)/\Delta s = 12,187 \text{ gpd/ft}$ Storativity (S) = $(0.3 * T * t_0)/r^2 = 4.39 \times 10^{-4}$ 30 Late Time Analysis Residual Drawdown (ft) Change in drawdown over 1 log cycle (Δ s) = 23.16 ft $t_0 = 0.05 \, \text{min}$ Transmissivity (T) = $(264 * Q)/\Delta s = 9.184 \text{ gpd/ft}$ $= 3.47 \times 10^{-5} \text{ day}$ Storativity (S) = $(0.3 * T * t_0)/r^2 = 5.30 \times 10^{-3}$ 40 u Assumption $u = 1.87 * r^2 * S/T*t = 4.56 \times 10^{-6}; 7.29 \times 10^{-5}$ u assumption valid at Early Time (4.56×10⁻⁶ < 0.05) u assumption valid at Late Time (7.29×10⁻⁵ < 0.05) 60 70 80 0 Residual Drawdown 90 10 100 1000 10000 Ratio of Total Time (t) to Time Since Pumping Stopped (t') (minutes)

SWA ASR Feasibility Study

Appendix B: Water Well Logs

WELL LOCATION: 2S/2E-1 SE/SW 14701 Territory Drive

> SWA Well No. 2W Lithology and Construction Sunrise Water Authority

Groundwater Solutions Inc.

KEUEIVED

JUN - 2 1998

STATE OF OREGON

WATER SUPPLY WELL REPORTATER RESOURCES DEP'I.
(as required by ORS 537.765)

Label L14914 (START CARD) # 87136

Instr	uctions fo	r complet	ing this repe	ort are on	the hist	lage of this to	ormi							
(1) OV	VNER:			,	Well Num	ber		(9) LOCA	TION OI	FWELL by	v legal des	crintion:		
Name	Mt. S	cott W	ater Di	stric	t					Latit			Consitude	
Address	1060	2 SE 1	29th Av	e.				Township	25	N o	r S Range	2F	E or	W WM
City	Portl	and			OR	Zio 97	7236	Section	1	S	F. 1/4	SM	1/4	*** *****
	PE OF V							Tax Lot 1	1200	Lot	Block		Subdivision	
*_ <u>-</u> _			Alteration	on (repair/	/reconditio	m) 🔲 Aband	onment	Street Ad	dress of W	ell (or neares	ut address)	14701	Territo	
		THOD:		(7				(01 11-11 01			as OR	
			Mud C	Cable	Ange	r		(10) STAT	IC WAT	ER LEVEI	.:	Watkali	15. VA.	3/013
	-	_	irculat					200		clow land su			Date 3/	13/98
	OPOSE		11 Carac	TOIL IC	acar y								210 _ 3/	
Dom			unity [] b	ndussial		riantion		(11) WATI				are men.	Date	
			n [L		[X]O	rigation ASR		(12)		ALIO DOI				
					MO	ther Piezon	eter_	Depth at whi	ch water w	as first form	. 80	9		
5/	15/96	, 7/18	194 v 27	2/98.	,3/31/	/98 picted Well	511,	Dopus at with	CI WELLI W	as mat round				
Evalori	vae nead	□ vee K	No Tune	jino Depi	And And	ount		From	<u> </u>		То	Estima	ated Flow Rat	e SWL
	HOLE	_ res E	Jano Type	SEAL	An			89		119		10		78
Diameter	r From	To	Material		To	Sacks or pou	unde	140		22		20		78±
12			ement	From *	1428	511 sks	S	232		25		20		110±
10						x 8' bes)		298			11 lense			150 [±]
8	-		ntonite		Ot	1 sk**		451		49				
0	142)		* betwe	P1 2"	& A1	LSK**				1 49		see (0)	see (1
Ц	a anni -1-							(12) WEL	L LOG:		201	TOY 3	001	
		cea:	Method [٦ ٨	le K	C D	ΠE	ł	Grou	nd Elevation	app	I OA. J		
Ot	her	511	6 . 54	1 6	24	1 -1			N .					T
						1 <u>slough</u> endcssi			Mate	riai		Fron	To To	SWL
			11. to 43	<u> 1 </u>	Size of	& III		See a	ttache	ed log			+	 -
(6) CA	SING/L							1 500	- Cucin	108				+
	0		To Gau				hreaded	[+
Casing:		5.8	451 .25	쐿녶		XX	닏	 -						
-11	4	5,3	454 sct			XX		! }						
snai	e trap	sion 4"	@ 451 ¹	_,				I						
		_	 										 -	
Liner:	5	500	 - - - - - 	ᇩᄆ				i						
-			511 sch		X		X.	 						
					aded pl	ug in bot	ton_	 						
			CREENS:											
X Pe	rforation	Me	thod <u>Air</u>	Rotai	c <u>y (4r</u>	ows)		l						
X Sc	reens *	Тур	e see b	<u>elow</u>	Mate	erial PVC	sch40	! ├						
From	To	, size	Number , L)lameter	size	: Casing	Liner	l						
9_	430	.2x1	8600	8	ps	_ 🗶							<u> </u>	
	-		factory		 	_ 🗆						\rightarrow		
*441	451	_	slotted	6	ps	_ 🔲		[
<u>*451</u>	501	.010	cont	_5	ps	_ 🗆		I						
	<u> </u>		v-shape			_ 🖸		I I						+
								L	K /4 × ·				150 /	
(8) WE	LLTES	TS: Min	imum testi	ing time	is 1 hour	r		Date started	3/19/	<u>96</u>	Com	pleted 5	/19/98	
						Flowin	ne	(unbonded)	Water We	Il Constructo	or Certifica	tion:		
X Pu	mp	Bail	er	Air		Antesi							teration, or al	
Yield	gal/min	Drawe	lown	Drill ste	m at	Th	me	of this well is Materials use						
20	00	34	, 1			4	hr.	and belief.	//				or my	
] .	lance	MI 1	Min	WWCN	Number	1367
								Signed					Date 5/	/28/98
Tempera	ture of wa	ater 50°F	± Der	pth Artesia	an Flow Fo	ound		(bonded) Wa	ter Well (onstructor	Certificatio	n:		
	ater analy			By whom			-/	1 ' / '					abandonment	work
	•		not suitable f			Too littl	le C	performed on	this well o	iuring the co	nstruction d	ates reported	d above. All	work
Salty			dor Col		Other			performed du construction	inng this ti	me is in comp	thue to the	best of my	ter supply we knowledge ==	ш id belief.
Depth of	_	, <u> </u>			~ ~~~~	0	+11	1	1		10	WWD	Vimber	649
pui Ol	JHULES				ح_–	EL 7	8 //	Signed	tolle	w/x	dans	de	Date 5/	/28/98

ORIGINAL & FIRST COPY-WATER RESOURCES DEPARTMENT SECOND COPY-ONSTRUCTOR THIRD COPY-CUSTOMER

JUN - 2 1998

WATER RESOURCES DEPI. SALEM, OREGON

MT. SCOTT WATER DISTRICT PIEZOMETER WELL

Label #L14914 - Start Card No.87136 by Schneider Drilling Co.

D -	41
100	\mathbf{n}
-	7 644

Der	otn .	
From	<u>To</u>	<u>Description</u>
0	3	Top soil, brown
3	20	Clay, brown, fine, sandy
20	24	Basalt, black, soft
24	30	Basalt, black, med, broken
30	35	Basalt, brown, soft, broken
35	60	Basalt, black, brown, & red, soft
60	70	Gravel 1"-, sluffing
7 0	75	Gravel 2"-, & sand, brown, med
75	84	Gravel 2"-
84	89	Clay, brown
89	97	Basalt, black, cindery
97	114	Basalt, black, vesicular, soft, w/claystone, brown
114	119	Basalt, black & gray, vesicular
119	133	Basalt, black, fractured, med-hard
133	137	Basalt, brown, broken, & claystone, brown
137	140	Clay, brown
140	145	Gravel & sand, brown, cemented
145	156	Gravel 2"-, & sand, brown, med
156	169	Gravel 2"-, & sand, brown, w/clay, brown
169	177	Sand, cemented & clay, hard, brown
1 77	181	Sand, brown, med-fine, some cemented
181	199	Sand, brown, med-course, & gravel, 2"-
199	206	Sand, brown, med-course, w/gravel
206	213	Gravel 2"-, & sand, med-course
213	225	Gravel 2"-, sand, med, cemented
225	227	Sand, brown, cemented
227	229	Clay, brown
229	232	Clay, gray
232	236	Gravel 1"-, sand, black
236	248	Gravel & sand, cemented, w/some claystone
248	252	Gravel & hard clay, brown
252	256	Claystone, brown

1

WATER RESOURCES DEPT.

256	259	Sandstone, brown
259	275	Claystone, sandstone & clay lenses, brown
275	283	Claystone & siltstone, dark gray
283	296	Sandstone, black
296	298	Clay, blue-gray
298	305	Sandstone & claystone, brown, w/some gravel
305	307	Clay & claystone, gray
307	317	Sandstone & claystone, brown, w/some gravel
317	319	Claystone & clay, brown
319	322	Clay, gray & sandstone
322	327	Sandstone, brown
327	332	Sandstone & claystone, brown
332	336	Clay, gray
336	345	Sandstone, gray
345	347	Sand, black, w/some gravel & wood
347	354	Clay, blue
354	357	Claystone & sandstone, black
357	363	Clay, dark brown & claystone, sand, fine
363	372	Sandstone, clay & siltstone, black
372	380	Claystone & siltstone, dark gray
380	390	Sandstone & claystone, black
390	393	Claystone, gray
393	398	Clay, blue
398	411	Clay w/sand, green, dry
411	417	Sandstone, green-blue
417	421	Clay, blue, sticky
421	425	Clay, brown, sticky
425	430	Clay, gray, sticky
430	443	Clay, blue, sticky
443	445	Sand, dark gray, fine
445	451	Clay, blue
451	495	Sand, silty, gray, w/wood
495	497	Clay, blue
497	505	Clay, gray, sticky
505	515	Clay, brown, sticky
515	527	Clay, gray, sticky
527	541	Claystone, siltstone & clay, multi-colored

STATE OF OREGON

WATER SUPPLY WELL REPORT

(as required by ORS 837.765)
Instructions for completing this report are on the last page of this form.

Cl.AC 55211

Received Date 11/16/1909

Well	ID	Teg i	ŧ L
------	----	-------	-----

33632

Start Card # 124777

(1) OWNER	Well Number	(9) LOCATION OF HO	LE By legal descrip	otion
Name		County	Latitude	Longitude
NORTH CLACKAMAS SCHOOL	DL DISTRICT	Township 2.00 S	Range 2.00 E	0.1.0.1.
Street 4444 SE LAKE RD		Tax lot 2300 Lot	Block	Subdivision
City MILWAUKIE	State OR Zip 97222	Section 2 SE 1/	4 SW 14	
(2) TYPE OF WORK		Street Address of Well (or near		
	r (Recondition)	14486 SE 122ND AVE		
	ndonment	MAP with location indentified	must be attached	
(3) DRILL METHOD		(10) STATIC WATER L	EVEL	
Rotary Air Rotary Mud	Cable Auger	260.0 Ft. below	land surface.	Date 11/03/1999
Other		Arteelan Pressure	lb/eq. in.	Date
(4) PROPOSED USE				
19	Industrial 🛛 Irrigation 🗌 Injection	(11) WATER BEARING	3 ZONES	
Livestock Thermal Other	м	Depth at which water was	first found 260 ft.	
(5) BORE HOLE CONSTRUCT	TION		low Rate SWL	
<u> </u>	Depth of completed well 531 ft.	253 265 325 363	25 190 25 250	
Explosives Used Amount	Туре	678 604	720 200	
Diameter From To	Begin End Material	(12) WELL LÖG	Ground Elevation From To	ft. . aw.
20.00 0.00 143 Me	terial Depth Unite	SILTY CLAY BROWN	F 3	
17.00 143.00 286 Com	ent 0.00 143.00 176.00 8	CLAY & GRAVELS BASALT WEATHERED	32 4	
12.00 286.00 631 Cem	ent 43.60 286.60 88.00 8	BASALT GREY MED	40 4 40 13	
		CLAY WIGRAVELS	134 17	
		CLAY BROWN GRAVELS WITH CLAY	174 179 178 24	
		CLAY STICKY GREY	178 24 247 24	
How as seel placed: Method C Other	<i>t</i>	CLAY BILTY GREY	249 28	-
Backfill placed from ft. TO	ft. Material	SANO, GRAVELS GRAVELS CEMENTED	253 26 265 28	
Filter pack from ft. TO	ft. Size in.	CLAY BLUE OREY	245 26	
(6) CASING/LINER		GRAVELS CEMENTED	264 31	
Casing	Construction	CLAY STICKY SILTY CLAY	313 22 326 33	-
or Begin End Liner Diameter Depth Depth G	Locati auge Material Weld Threaded Of Sh.	PI SILT AND SANDSTONE	331 36	
	•	SAND LOOSE FINE BROW		
C 12.00 0.00 481.00	375 B 48	SAND FREE BLACK	363 466 408 413	
		SILTY CLAY GREEN	412 44	
		SAND PINE BLACK CLAY GREY	440 44	
(7) PERFORATION/SCREENS		SAND PINE BROWN	443 471 471 471	
Perforation: Method		SAND FINE BROWN	476 479	i
Screens Type	Material	SAND FINE BLACK SILYSTONE	478 821 621 831	
			421 65	
		1		
Diameter From To Geographic 12.00 481 481	e Material Type Slot Size S Y .818			
12.00 401 516	8 T .606			
12.00 516 522	*S Y .626			
(8) WELL TESTS (Minimum to	_	Date started 09/28/	1999 Complet	ed 11/03/1999
	vdown Stem at Duration	(unbonded) Water Well Construc		11/03/1949
Air 720.0 G G	480 1.0	i certify that the work I perform	ed on the construction, alt	eration, or abandonment
Air 300.0 G	360 1.0	of this well is in compliance with and information reported above a	Oregon well construction :	tenderds. Materials used
	Depth artesian flow found fl.	Signed By TERRY M M		and the state of t
Temperature of water 54 °F/C Was water analysis done?	C Depth artesian flow found fl.	(bonded) Water Well Construct		Number 1872
By Whom?	•	I accept responsibility for the co	netruction, alteration, or al	sendonment work
Old any strate contain water not suitable	for intended use? Too Little Salty	performed on this well during the	construction dates reports	d above. All work
☐ Muddy ☐ Odor ☐ Colored	Other	the best of my knowledge and be	Hef.	-
Depth of strate ft.		Signed By GREG MCINNIS		Number 1464 ECH EXPLORATIONS

CLAC

File Original and First Copy with the STATE ENGINEER, SALEM, OREGON WATER WELL REPORT

(CLAC) 04060 Style Well No. 2/2-12

STATE OF OREGON State Permit No.

(1) OWNER:	(11) WELL TESTS: Drawdown is amount lowered below static is	water leve	el is
Name John Mueller	Was a pump test made? Yes No If yes, by who		
Address Rt Clackamas Ore.	Yield: gal./min. withft. drawdox		hrs.
Box Ti21, Rt# I	n n		
(2) LOCATION OF WELL:	19 19		
County - lack 417195 Owner's number, if any-	Bailer test 20 gal./min. with 200 fittirawdow	m after	2 hrs.
1/4 1/4 Section T. R. W.M.	Artesian flow g.p.m. Date		
Bearing and distance from section or subdivision corner	Temperature of water Was a chemical analysis m	ade? 🔲 🤇	es No
Ix 40+ 38, -14.59 Heres; Acct No 44-221384	(12) WELL LOG: Diameter of well	8	inches.
407-12	Depth drilled 322 ft. Depth of completed v	-	22 ft.
Bik - 25	Formation: Describe by color, character, size of materi	al and str	ucture, and
7 - 2 5	Formation: Describe by color, character, size of materi show thickness of aquifers and the kind and nature of stratum penetrated, with at least one entry for each	the mater change of	formation.
ove Area - 6402	MATERIAL	FROM	то
(3) TYPE OF WORK (check):	soil	0	25
New Well Deepening Reconditioning Abandon	soap stone	25	40
bandonment, describe material and procedure in Item 11.	gravel	40	62
(I) PROPOSED LISE (-book). (E) TWEE OF HER L.	gravel & bolders	62	82
(4) PROPOSED USE (check): (5) TYPE OF WELL:	hard cement gravel	82	105
Cable Jetted	# #	105	120
Irrigation Test Well Other Dug Bored	sandy clay	105	1115
(6) CASING INSTALLED: Threaded □ Welded □	yellow clay	145	195
"Diam. fromft. toft. Gage	quick sand	195	200
" Diam. from ft. to ft. Gage	blue clay Pipe drives hard	200	215
"Diam. fromft, toft. Gage	Coures black sand washed small	245	295
(F) DUDDON A STONE	gravels	295	322
(7) PERFORATIONS: Perforated?	55-11-12-1		766
Type of perforator used SIZE of perforations in. by in.			
perforations from ft. to ft.			
perforations fromft_ toft_			
perforations fromft. toft.		↓	<u> </u>
perforations fromft_ toft			
perforations from ft. to ft.		<u> </u>	
(a) CORPERIO		 	
(8) SCREENS: Well screen installed ☐ Yes ☐ No			
Manufacturer's Name Model No.		1	
Slot size Set from ft. to ft.			
Slot size Set from ft. to ft.	Work started Qct I 1960. Completed N	OT 7	1960
		<u> </u>	
(9) CONSTRUCTION:	(13) PUMP:		
Was well gravel packed? Yes No Size of gravel:	Manufacturer's Name		·
Gravel placed from	Туре:	H.P	
Was a surface seal provided? ☐ Yes ☐ No To what depth?ft. Material used in seal—	Well Driller's Statement:		
Did any strata contain unusable water? Tyes No	This well was drilled under my jurisdiction	and this	ropout le
Type of water? Depth of strata	true to the best of my knowledge and belief.	апа шц	report is
Method of sealing strate off	NAMES Designed A Chicago		
(10) WEY A TREATE A PREFER CI.	NAME Barron & Strayer (Person, firm, or corporation) (T	ype or pri	nt)
(10) WATER LEVELS: Static level 90 ft. below land surface Date 200-3-0	Address Rt # I Box 254 Beaverton	Ore	
Artesian pressure lbs. per square inch Date	, , , , , , , , , , , , , , , , , , ,		
and sometimes having an army ber offered a source and	Driller's well number		
Log Accepted by:	[Signed] Janea Miages	/	
[Signed] Date	License No. 35 Date Nov 3	60	
(Owner)	License No. 22 Date 100 2		, 19

NOTICE TO WATER WELL CONTRACTOR		1
NOTICE TO WATER WELL CONTRACTOR The original and first copy of this reput are to be filed with the NOTICE TO WATER WELL ARE OF THE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OF THE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OF	L REPORT	25/2E-12 aa
WATER RESOURCES DEPARTMENT,	OREGON State Well No.	DIAL IN MO
Auto and the state Auto I all		0
of well completion. WATER RESOURCES DEPT	ove thus line)	
	(10) LOCATION OF WELL	
Lac Calination		mhan
Name Lee SCH Delle	County C 77 C Driller's well nu	7 -
Address 16 109 S.E. HYW A.T.	NEWEW Section 18 T. 25	R. S. E. W.M.
(2) TYPE OF WORK (check):	Bearing and distance from section or subdivision	on corner
	<u> </u>	
New Well Deepening Reconditioning Abandon II If abandonment, describe material and procedure in Item 12.		
	(11) WATER LEVEL: Completed w	
(3) TYPE OF WELL: (4) PROPOSED USE (check):	Depth at which water was first found	130
Royary Driven Domestic Dindustrial Municipal Domestic Dindustrial Municipal Domestic Dindustrial Dinustrial Dindustrial Dindustrial Dindustrial Dindustrial Dinustrial Dindustrial Dinustrial	Static level 35 5 ft. below land s	urface. Date 5/85/80
☐ Bored ☐ Irrigation Test Well ☐ Other ☐	Artesian pressure lbs. per squar	e inch. Date
(5) CASING INSTALLED: Threaded Welded	440	4,000
Threaded Welded Welded To Threaded To Welded To The Diam. from To the to 333 ft. Gage 2550	11 -	pelow casing NONE
	Depth drilled 405 ft. Depth of compl	
"Diam. from 300 ft. to 405 ft. Gage ft. to 405 ft. Gage	Formation: Describe color, texture, grain size and show thickness and nature of each stratum	
	with at least one entry for each change of format	tion. Report each change in
(6) PERFORATIONS: Perforated? Yes No.	position of Static Water Level and indicate prin	cipal water-searing strata.
Type of perforator used	MATERIAL	From To SWL
Size of perforations in. by in.	TOP SOIL	0 3
perforations from ft. to ft.	Red CIAY	3 8
perforations from ft. to ft.	Block ROCK	8 7
perforations from	G-FAVE - DOGGA ERS	05 100
(7) SCREENS: Well screen installed? Yes No	Lement of Avel	100 210
Manufacturer's Name JOHN SON	Asmente De Alle	210 230
Type STAINLESS Model No. N-A.	CIAN Brown GIAN BLAR	232 5 60
Diam. 8 Slot size 1.5 Set from 335 ft. to 345 ft.	Five Black SANd	335 345 W/B
Diam. Slot size Set from 350 ft. to 355 ft.	COArse SANd+Very	345 1110
(8) WELL TESTS: Drawdown is amount water level is	Fived Grave	35940
lowered below static level	Five Black SAND	354 370 4/13
a pump test made? Yes No If yes, by whom?	Black SANDSTONE	310 595
Yield: / 6 5 gal./min. with 5 5 ft. drawdown after 8 hrs.	Blue CIHY	7393 703
// // // // // // // // // // // // //	BOFTScreen used	
" " "	Will the second second	,
Heretest BLOW gal./min. with 45t. drawdown after 1 hrs.	7" BLOCK PIRE 300 335/	C.335345/RL
desian flow g.p.m.	345-350/SC, 350355/BL.35	5365VS- 865370
Temperature of water Depth artesian flow encounteredft.	Work started 4/19 1980 Complete	ed 5/85 1080
(9) CONSTRUCTION:	Date well drilling machine moved off of well	5/25 10 SC
Compat Ulla Part	Drilling Machine Operator's Certification:	
Well seal—Material used College To Devol	This well was constructed under my	
Diameter of well bore to bottom of sealin.	Materials used and information reported best knowledge and belief	above are true to my
Diameter of well bore below seal		Date 5/85 1980
Number of sacks of cement used in well seal	(Dinning Machine Operator)	11417
How was cement grout placed?	Drilling Machine Operator's License No.	
Grouf Pumped	Water Well Contractor's Certification:	
*	This well was drilled under my jurisdi	iction and this report is
Control of the second s	true to the best of my knowledge and bel	
Was a drive shoe used? Yes No Plugs Size: location ft.	Name Ted Pull 17711 Well	Drilling
Did any strata contain unusable water? Yes No	(Person, firm or corporation)	(Type or print)
Type of water? depth of strata	Address / Address	GG Fessann
Method of sealing strata off	[Signed] Les Wage	Ellan
Was well gravel packed? Yes No Size of gravel:	(Water Well Contr	-1000 00
Gravel placed fromft. toft.	Contractor's License No. Co. L. Date	2/845 , 19.80
MER ADDITIONAL OF	THE PARTY OF THE P	97D+45858_110

NOTICE TO WATER WELL CONTRACTOR WATER WELL REPORTS E I VE The original and first copy of this report are to be STATE OF OREGON JUL 251973 Hate Well No. 25 filed with the (Please type or print) STATE ENGINEER, SALEM, OREGON 97310 C4610 within 30 days from the date (Do not write above this ine EM OREGON of well completion. (1) OWNER: (10) LOCATION OF WELL: Joesph R. Dixon County Cleckenes Driller's well number Name Address 320 High St. Oregon City. Ore. 97045 6 T.2S R. **3E** S.W. 14 Section Bearing and distance from section or subdivision corner (2) TYPE OF WORK (check): Deepening [] Reconditioning [] New Well 😭 Abandon | If abandonment, describe material and procedure in Item 12. (11) WATER LEVEL: Completed well. (3) TYPE OF WELL: (4) PROPOSED USE (check): Depth at which water was first found Driven 🗆 Rotary X ft. below land surface. Date 7_12_73 Domestic 🗸 Industrial 🗌 Municipal 🗌 Static level Jetted 🔲 Cable Irrigation | Test Well | Other Bored | Dug Artesian pressure lbs. per square inch. Date CASING INSTALLED: Threaded [] Welded (12) WELL LOG: Depth drilled 627 ft. Depth of completed well 5 9/16_{Diam. from} 1t. to 1t. Gage 188 Formation: Describe color, texture, grain size and structure of materials; and show thickness and nature of each stratum and aquifer penetrated, with at least one entry for each change of formation. Report each change in position of Static Water Level and indicate principal water-bearing strata. PERFORATIONS: Perforated? [] Yes 🛣 No. Type of perforator used MATERIAL Size of perforations in. by 2 n Topsoil Boulders set in clay-red 2 8 ft. to perforations from perforations from ______ft. to ______ft. B Clay-brown ay-light br 18 26 perforations from _____ft. to _____ft. Clay-yellow-sticky 26 (7) SCREENS: Well screen installed? Tyes I No Clay-br-sandy 42 Manufacturer's Name Clay-gray-sand trace Model No. .. Clay-blue-sand trace 67 Diam. Slot size Set from ___ ft. to ft. Clay-blue-hard 84 102 Diam. Slot size Set from _ ft. to _____ ft. Sand-krewn-compacted 102 149 149 Clay-blue 200 Drawdown is amount water level is lowered below static level (8) WELL TESTS: 200 306 Sand-gray-compacted Was a pump test made? [] Yes T No If yes, by whom? Sand-comp.-hard-w/seems clay-379 blne gal./min. with ft. drawdown after hrs. Clevetene-blue 520 rotary 30 " Total 6laystone-blne-w/seams sand-520 600 gal./min. with Bailer test ft. drawdown after hrs. Sand-blk-fine-water 600 tesian flow g.p.m. erature of water Depth artesian flow encountered ft. Work started 7_4 19 73 Completed Date well drilling machine moved off of well (9) CONSTRUCTION: Drilling Machine Operator's Certification: Well seal-Material used Bentonite-puddled clay This well was constructed under my direct supervision. Materials used and information reported above are true to my best knowledge and believed. Well sealed from land surface to _______50 Diameter of well bore to bottom of seal _____9 TCL Date 7-20 1973 Number of sacks of cement used in well seal Number of sacks of bentonite used in well seal Water Well Contractor's Certification: Number of pounds of bentonite per 100 gallons This well was drilled under my jurisdiction and this report is

true to the best of my knowledge and belief.

Name S & K Drilling & Supply, Tno.
(Person, firm or corporation) (Type or print)

Address 399 S.E. Walnut, Canby, Ore. 97013 [Signed] (Water Well Contractor)

Contractor's License No. 497 Date 7-20 , 1973

Was a drive shoe used? 🗌 Yes 🗷 No Pluga Size: location ft.

depth of strata

Did any strata contain unusable water? Tyes 🝱 No

Gravel placed from ______ft. to _____

Was well gravel packed? [] Yes [No Size of gravel: ...

Type of water?

Method of sealing strata off

STATE ENCINEER SALEM OF CONDUCATION No. 6-12300	1 ' '	ELL T	lo Io	rawdown is amount wered below static l] No. If yes, by who	evci	i is
(1) OP Pormit No.	Yield:	40	gal/min. with	ft. drawdo		hrs.
Permit No.	_		**	•		
AN LOCAMION OF THEY L.			*			-
Ounty 100431145 Owner's number, if any—	Baller tes	it	gal./min. with	ft. drawdo	wn after	. hes.
NE 14 SE 14 Section / T. 25 R. 3E W.M.	Artesian	flow		g.p.m. Date		
** rearing and distance from section or subdivision corner		ture of wa	ter Was a	chemical analysis n	nade? 🖸 Y	es No
35 9 + 620 W from E'H comer of Sectionle	(12) 38	ELL L	OG:	Diameter of well	8	inches.
O DEFENDE	Depth dr		and the same of th	epth of completed	-	7 5 4
				racter, size of mater		cture, and
	show thic	kness of a	iquifers and the	kind and nature of one entry for each	the materi	al in rach
	-				FROM	TO
(9) TUPE OF WORK (about).	` —	- بيمس	PSUIL	. 1	1	7
(3) TYPE OF WORK (check): Yew Well [2] Despening [3] Reconditioning [5] Abandon [6]	,		JCLAY		1 2	30
if shandonment, describe material and procedure in Item 11.	' 	73	Polary		30	80
	بار وس	100	the state of the	mek	80	2/5
(4) PROPOSED USE (check): (5) TYPE OF WELL:		2200	e - celu	5	2/5	225
Domestic Industrial Municipal Rotary Driven	Signe		low class	2 amure V	225	27.0
frrigation [] Test Well [] Other [2] Dug [] Bored []	2	Per e e	90000		1290	325
	.	Rlun	stand	(water	325	340
(6) CASING INSTALLED: Threaded Welded	\					
B "Diam from the 521 st. Gage 280	3/2	we is	1 au		.74.0	41.0
" Dlam. from ft. to ft. Gage	· #	70-4-7	char	•	410	415
" Diam. from ft. to ft. Cage	92	Tan	clasts		415	426
(7) PERFORATIONS: Perforated? Yes No	0.	His	alant		420	440
Type of perforator used / KALFS	Lay	Ma	V. John	d water	440	457
SIZE of perforations in. by in.		bear				
perforations from ft. to ft.		Lai	12		450	45
perforations fromft. toft	-4	Wel.	ar san	de l	453	45
	ر کار ا	MAO	(clan	many	458	465
perforations from ft. to ft.	1 ,	Alus	clar		465	200
perforations from ft. toft.	1.2/	usla	y' dref	and, stock	50:01	623
	·				-{	
(8) SCREENS: Well screen installed Yes No					-	
Manufacturer's Name	·					
Type ' Model No.	· ——				 	
Diam, Slot size Set from ft. to ft.	·					
Diam Slot size Set from ft. to ft.	Work sta	rted	19	Completed		19 /
(9) CONSTRUCTION:	(13) PI	IMP:		-		
Was well gravel packed? Yes No Size of gravel:	1 ' '	urer's Na	The Chief	Ba il		
Gravel placed fromft_ toft_	Type	Libr	e the	No	н.р. Д.С	3
Was a surface scal provided? \Box Yes \Box No To what depth? $\Box 300$ ft. Material used in seal— $CLRY$		Ilee's Sta	· ·	L 1 2 1		
Did any strata contain unusable water? Yes No	1	iller's Sta well was		r my jurisdiction	and this	report is
Type of water? Depth of strata				ge and belief.	2114 MIIS	. opole is
Method of sealing strata off				•,	-	
	NAME	17	Person, firm, or c	orporation) (Type or prin	(t)
(10) WATER LEVELS:	Address					
Static level 275 ft. below land surface Date MARCH.	·					-
Artesian pressure lbs. per square inch Date	Driller's	well nur	nber			
Log Accepted by:	10:					
	(Signed)	,		Vell Driller)	::	
[Signed]				Date!		
					. 1	1962
. (USE ADDITIONAL	SHERTS IF NE	CESSARY				170%

Olsen well Orilling

Damascus Heights Community
Well Association
Ch Secretary Treasurer
Donna Bauld
13530 SE 180th Avenue
Boring, OR 97009

CLAC
50736

Appendix C: Laboratory Data Reports

	000000000000000000000000000000000000000
	0
	_
	-
	-
	-
	-
	_
	_
	-
	-
	_
	0
	-
	0
	(0)
	-
	_
	0
	-
	-
	-
	-
	_
	-
	0
	000000000000000000

SWA Well 2W
Native Water
Laboratory Data Reports

_
•
•
_
_
-
-
•
•
•
-
_
_
_
_
_
_
_
-
_
_
_
and the second s
•
•
•
· · · · · · · · · · · · · · · · · · ·
•
_

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

May 08, 2006

Ted Ressler Ground Water Solutions 55 SW Yamhill St, Suite 400 Portland, OR 97204

RE: Sunrise Water Authority

Enclosed are the results of analyses for samples received by the laboratory on 03/23/06 15:35. The following list is a summary of the Work Orders contained in this report, generated on 05/08/06 17:24.

If you have any questions concerning this report, please feel free to contact me.

Work OrderProjectProjectNumberP6C0992Sunrise Water Authorityna

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: na

Ted Ressler

Report Created:

05/08/06 17:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SWA-2W-GW	P6C0992-01	Water	03/23/06 14:10	03/23/06 15:35

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Suran Rockwell

Sarah Rockwell, Project Manager

Page 2 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions
55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: па

Ted Ressler

Report Created: 05/08/06 17:24

Analytical Case Narrative

North Creek Analytical - Portland

P6C0992

Report is not complete without data from Neilson Research Corporation and Severn Trent Laboratories.

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

- Saran Frehwell

Page 3 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager:

na

Ted Ressler

Report Created:

05/08/06 17:24

Total Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed N	otes
P6C0992-01	(SWA-2W-GW)		Water		Sampled	: 03/23/06	5 14:10				
Aluminum		EPA 200.7	ND		0.100	mg/I	1x	6040018	04/02/06 22:12	04/03/06 13:18	
Antimony		EPA 200.8	ND		0.00100		**	6031490	03/31/06 10:19	04/01/06 15:43	
Arsenic		**	0.00503		0.00100	**	.,		03/31/06 10:19		
Barium		19	0.0354		0.00100			**	03/31/06 10:19	н	
Beryllium		**	ND		0.000500			•	03/31/06 10:19	*	
Cadmium		"	ND		0.000500		н		03/31/06 10:19	"	
Calcium		EPA 200.7	15.6		0.100	*		6040018	04/02/06 22:12	04/03/06 13:18	
Chromium		EPA 200.8	ND		0.00100	"		6031490	03/31/06 10:19	04/01/06 15:43	
Copper			ND		0.00100	**		**	03/31/06 10:19	*	
Iron		EPA 200.7	0.0760		0.0100			6040018	04/02/06 22:12	04/03/06 13:18	
Lead		EPA 200.8	ND		0.000500	"		6031490	03/31/06 10:19	04/01/06 15:43	
Magnesium		EPA 200.7	10.6		0.100	"		6040018	04/02/06 22:12	04/03/06 13:18	
Manganese		EPA 200.8	0.212		0.00200	**	"	6031490	03/31/06 10:19	04/01/06 15:43	
Nickel		EPA 200.7	ND		0.0500			6040018	04/02/06 22:12	04/03/06 13:18	
Potassium		n .	1.92		1.00	"			04/02/06 22:12	"	
Selenium		EPA 200.8	ND		0.00100	"	н	6031490	03/31/06 10:19	04/04/06 13:24	
Silver		**	ND		0.00100	"	"		03/31/06 10:19	04/01/06 15:43	
Sodium		EPA 200.7	10.6		1.00	**		6040018	04/02/06 22:12	04/03/06 13:18	
Thallium		EPA 200.8	ND		0.00100			6031490	03/31/06 10:19	04/01/06 15:43	
Zinc		*	ND		0.00500		**		03/31/06 10:19	*	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekurdl

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Project Manager:

Sunrise Water Authority

Project Number:

na

Ted Ressler

Report Created: 05/08/06 17:24

Dissolved Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P6C0992-01	(SWA-2W-GW)		Water		Sampled	: 03/23/06	14:10				
Iron Manganese		EPA 200.7	0.0752 0.210		0.0100 0.0100	mg/l	lx "	6040019	04/02/06 22:17 04/02/06 22:17	04/03/06 13:50)

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager:

na

Ted Ressler

Report Created:

05/08/06 17:24

Total Mercury per EPA Method 245.1

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P6C0992-01 (SWA-2W-GW)		Water Sampled: 03/23/06 14:10								
Mercury	EPA 245.1	ND		0.000200	mg/l	1x	6040195	04/05/06 16:19	04/05/06 23:38	3

TestAmerica - Portland, OR

- Sarain Erchwell

Sarah Rockwell, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

na Ted Ressler Report Created: 05/08/06 17:24

Conventional Chemistry Parameters per APHA/EPA Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed N	Notes
P6C0992-01 (SWA-2W-GW)		Water		Sample	d: 03/23/06	14:10				
Bicarbonate Alkalinity	SM 2320B	105		5.00	mg/l	lx	6031439	03/30/06 10:05	03/30/06 17:39	
Carbonate Alkalinity	я	ND		5.00	*	**	*1	03/30/06 10:05	*	
Chlorine Residual (Total)	SM 4500-CI G	ND		0.100	*1		6031136	03/24/06 08:09	03/24/06 08:30	
Color	EPA 110.2	ND		5.00	Color Units	"	6031150	03/24/06 09:22	03/24/06 09:45	
Cyanide (total)	EPA 335.4	ND		0.00500	mg/l	>#	6031229	03/27/06 08:52	03/28/06 13:36	
Hardness (Ca)	SM 2340B-Ca	82.7		0.250	,,		6040018	04/02/06 22:12	04/03/06 13:18	
Silica (SiO2)	SM 4500-Si F	54.6		1.00	"	2x	6031213	03/27/06 07:32	03/27/06 11:44	
Threshold Odor Number	EPA 140.1	0.33		0.20	TON	lx	6031184	03/24/06 14:49	03/24/06 14:55	
Total Alkalinity	SM 2320B	105		5.00	mg/L as CaCO3	"	6031439	03/30/06 10:05	03/30/06 17:39	
Total Dissolved Solids	SM 2540C	155		10.0	mg/l	**	6031226	03/27/06 08:35	03/27/06 13:46	
Total Suspended Solids	EPA 160.2	ПИ		10.0	10	"	6031227	03/27/06 08:40	03/27/06 16:20	
Turbidity	EPA 180.1	ND		0.200	NTU	"	6031152	03/24/06 09:23	03/24/06 09:30	
Total Organic Carbon	SM 5310C	ND		1.00	mg/l	**	6040002	04/01/06 11:19	04/01/06 15:31	

TestAmerica - Portland, OR

Saras Frekwell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

na

Ted Ressler

Report Created:

05/08/06 17:24

Anions per EPA Method 300.0

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P6C0992-01 (SWA-2W-GW)		Water		Sampled	: 03/23/06	5 14:10				
Chloride	EPA 300.0	2.03		0.500	mg/l	lx	6031146	03/24/06 08:53	03/24/06 12:05	5
Nitrate/Nitrite-Nitrogen		ND		0.200				03/24/06 08:53		
Nitrate-Nitrogen	,,	ND	****	0.100	•	61	**	03/24/06 08:53	**	
Nitrite-Nitrogen	**	ND		0.100	"	**	•	03/24/06 08:53		
Sulfate	"	1.25		1.00	**	P		03/24/06 08:53	u	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Rockwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

Ted Ressler

Report Created: 05/08/06 17:24

Disinfection By-Products in Drinking Water per EPA 552.2

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P6C0992-01RE3 (SWA-2W-GW)		Water		Sampled	: 03/23/06	4:10				
Monochloroacetic acid (MCAA)	EPA 552.2	ND		0.00150	mg/l	lx	6040250	04/06/06 11:42	04/07/06 03:19	
Monobromoacetic acid (MBAA)	**	ND		0.00100	**	**	"	04/06/06 11:42	**	
Dibromoacetic acid (DBAA)		ND		0.000500	**	н	*	04/06/06 11:42		
Dichloroacetic acid (DCAA)		ND		0.00150		"	**	04/06/06 11:42	19	
Trichloroacetic acid (TCAA)	*	ND		0.000500		**	"	04/06/06 11:42	**	
Total Haloacetic Acids (HAA5)	а	ND		0.00150		*		04/06/06 11:42	н	
Surrogate(s): 2,3-Dibromopropionic acid	I	85.6%			70 - 130 %	"			"	

TestAmerica - Portland, OR

of custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain

Sarah Rockwell, Project Manager

- Saras Rockwell

Page 9 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: na Ted Ressler Report Created: 05/08/06 17:24

Total Trihalomethanes in Drinking Water per EPA 524.2

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P6C0992-01 (SWA-2W-GW)		Water		Sampled	1: 03/23/06 1	14:10			-	
Bromodichlorome	ethane	EPA 524.2	ND		0.000500	mg/l	lx	6031297	03/28/06 08:54	03/28/06 19:07	
Bromoform		D .	ND		0.000500	"	*	41	03/28/06 08:54	51	
Chloroform		**	ND		0.000500	u		**	03/28/06 08:54	н	
Dibromochlorome	ethane	н	ND		0.000500		10	*1	03/28/06 08:54	•	
Total Trihalometh	nanes	и	ND		0.000500		n	**	03/28/06 08:54	n	
Surrogate(s):	Dibromofluoromethane		108%			70 - 130 %	"			"	
	1,2-DCA-d4		103%			70 - 130 %	"			"	
	Toluene-d8		102%			70 - 130 %	"			"	
	4-BFB		93.8%			70 - 130 %	"			"	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarain Frehwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions 55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager:

na

Ted Ressler

Report Created: 05/08/06 17:24

Physical Parameters per APHA/ASTM/EPA Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P6C0992-01 (SWA-2W-GW)		Water		Sampled	: 03/23/06	14:10				
Corrosivity	EPA 9040A	7.34			pH Units	1x	6031151	03/24/06 09:22	03/24/06 09:30)

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarain Frekwell Sarah Rockwell, Project Manager

Page 11 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400

Project Number:

na

Report Created:

Portland, OR 97204

Project Manager: Ted Ressler

05/08/06 17:24

Microbiological Parameters per APHA Standard Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P6C0992-01 (SWA-2W-GW)		Water		Sampleo	1: 03/23/06	14:10				
Total Coliforms	SM 9223	ND		1.00	/100 ml	lx	6031168	03/24/06 11:43	03/26/06 11:05	
E. Coli		ND		1.00	*	\$1		03/24/06 11:43	"	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saraes Rockwell

Sarah Rockwell, Project Manager

Page 12 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager: па

Ted Ressler

Report Created: 05/08/06 17;24

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

Analyte Blank (6031490-BLK1) Antmony Arsenic Barium Beryllium Cadmium Chromium Copper Lead	Method EPA 200.8	ND ND ND ND ND ND	MDL*	0.00100 0.00100 0.00100	Units mg/l	Dil	Source Result	Spike Amt Extr	REC	(Limits)	RPD	(Limits) Analyzed	Notes
Antimony Arsenic Barium Beryllium Cadmium Chromium Copper	"	ND ND ND		0.00100				Extr	acted:	03/21/07/10	. 10			
Arsenic Barium Beryllium Cadmium Chromium Copper	"	ND ND ND		0.00100					mere ar	03/31/06 10	,17			
Barium Beryllium Cadmium Chromium Copper		ND ND				l×		~					04/01/06 15:16	
Beryllium Cadmium Chromium Copper	# # # # # # # # # # # # # # # # # # #	ND		0.00100		*								
Cadmium Chromium Copper	M H			3,00100	"				**				*	
Chromium Copper	11 12	ND		0.000500	*									
Copper	EF H			0.000500	•	"	**						r	
• •		ND		0.00100										
Lead		ND		0.00100		*							"	
	-	ND		0.000500	*	-	**						**	
Manganese	"	ND		0.00200	*								**	
Selenium	**	ND		0.00100	**								04/04/06 13:09	
Silver		ND		0.00100				-			_		04/01/06 15:16	
Thallium		ND		0.00100		*							п	
Zinc	.,	ND		0.00500									*	
LCS (6031490-BS1)								Extr	acted: (03/31/06 10	:19			
Antimony	EPA 200.8	0.0524		0.00100	mg/l	lx		0.0500	105%	(85-115)			04/01/06 15:30	
Arsenic		0.0996		0.00100				0.100	99.6%				"	
Banum	10	0,102		0.00100	*				102%				**	
Beryllium		0.0607		0.000500		-		0.0500	121%	,,			u	BS
Cadmium		0.109		0.000500	*	**		0.100	109%				4	
Chromium	41	0.107		0.00100	"				107%				n	
Copper	*	0.108		0.00100					108%	44				
Lead		0.106	**-	0.000500	**				106%	,,				
Manganese		0.104		0 00200					104%					
Selenium	"	0.0476		0.00100	,	*		0.0500	95 2%				04/04/06 13.16	
Silver		0.0503		0.00100					101%			*-	04/01/06 15:30	
	le .	0.0500		0.00100	,,				100%				ь	
Thallium Zinc	н	0.102		0.00500				0.100	102%				•	
Duplicate (6031490-DUP1)				QC Source:	P6C0992-0	1		Extr	acted: (03/31/06 10	:19			
	EPA 200,8	ND		0.00100	mg/l	lx	ND ND				NR	(30)	04/01/06 15:57	
Antimony	EFA 200.8	0.00481		0.00100	"	"	0.00503				4.47%	"	"	
Arsenic		0.0350		0.00100			0.0354				1.14%	**		
Barium				0.000500			ND				NR			
Beryllium		ND									NR			
Cadmium	-	ND		0.000500			ND				NR NR		,,	
Chromium		ND	***	0.00100			ND							
Copper		ND		0.00100	-		ND				NR (DSP/			
Lead		ND 0.204		0.000500	*		ND 0.212				6.95% 3.85%		~	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Surac Frehwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Project Manager:

Sunrise Water Authority

Project Number:

na

Ted Ressler

Report Created:

05/08/06 17:24

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6031490	Water P	reparation M	ethod: E	PA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	Analyzed	Notes
Duplicate (6031490-DUP1)				QC Source:	P6C0992-01			Extr	acted:_	03/31/06 10	:19			
Selenium	EPA 200.8	ND		0.00100	mg/l	lx	ND				NR	(30)	04/04/06 13:32	
Silver		ND		0.00100		•	ND				NR	"	04/01/06 15:57	
Thallium	"	ND		0.00100			ND				NR		*	
Zinc	"	ND		0.00500		0	ND				7.49%	*	"	
Matrix Spike (6031490-MS1)				QC Source:	P6C0992-01			Extr	acted:	03/31/06 10	:19			
Antimony	EPA 200.8	0.0491		0.00100	mg/l	lx	ND	0.0500	98.2%	(70-130)			04/01/06 16:25	
Arsenic		0.104		0.00100	D#	,	0.00503	0.100	99.0%					
Barium		0.130		0.00100		"	0.0354	**	94.6%	,,				
Beryllium		0 0582		0.000500	**	н	ND	0.0500	116%	**				
Cadmium		0.104		0.000500			ND	0 100	104%	*			*	
Chromium		0.102		0.00100	**		ND	n	102%	**				
Copper		0 102		0.00100			ND	4	102%	**			μ	
ead		0.0982		0.000500	**		0.000134	*1	98.1%	10			*	
Manganese		0.311		0.00200	**		0.212	,,	99.0%				11	
Selenium	**	0.0486		0.00100	**	**	ND	0.0500	97.2%				04/04/06 13:47	
Silver	*	0.0468		0 00100		**	ND	n	93.6%	*			04/01/06 16:25	
Challium	*	0.0475		0.00100	**		0 0000331	и	94.9%	"			н	
Zinc	*	0.101		0.00500	**	•	0.00291	0,100	98.1%			-		
Matrix Spike (6031490-MS2)				QC Source:	P6C1044-01			Extr	acted:	03/31/06 10	:19			
Antimony	EPA 200.8	0.0495		0.00100	mg/l	1x	0.000291	0.0500	98.4%	(70-130)			04/01/06 18:13	
Arsenic	**	0,0978		0.00100	н .	**	ND		97.8%	"			"	
Barium	"	0.0995		0.00100	"		0.00690	н	92.6%	"				
Beryllium		0.0553		0.000500			ND	0 0500	111%	65				
Cadmium		0.104		0.000500			ND	0.100	104%	•			*	
Chromium	h	0.101		0 00100	*	н	0.000343		101%					
Соррег		0.107		0.00100	4	41	0.00572		101%	*			**	
ead		0.0960		0.000500			0.000466	,,	95.5%					
Manganese		0.266		0.00200			0.175	,	91.0%	in .			"	
Selenium		0.0502		0.00100			0.000365		99.7%				04/04/06 14:48	
Silver		0.0490		0.00100	-		0.00144		95.1%	13			04/01/06 18:13	
Thallium	*	0.0464		0.00100			ND		92.8%				"	
Zinc		0.116		0.00500			0.0195		96.5%					

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 14 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Project Manager:

Sunrise Water Authority

Project Number: r

na

Ted Ressler

Report Created: 05/08/06 17:24

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040018	Water P	reparation M	ethod: E	PA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6040018-BLK1)								Extr	acted:	04/02/06 22	2:12			
Alumínum	EPA 200.7	ND		0.100	mg/l	lx							04/03/06 13:38	
Calcium		ND	***	0.100	**								-	
Iron		ND		0.0100		"								
Magnesium	**	ND		0,100					•-				,	
Nickel	ч	ND	**-	0 0500	"	*							**	
Potassium	-	ND		1.00			-						"	
Sodium	•	ND		1.00		**							*	
LCS (6040018-BS1)								Extra	acted:	04/02/06 22	:12		_	
Aluminum	EPA 200.7	10.6		0.100	mg/l	lx		10.0	106%	(85-115)			04/03/06 13:31	
Calcium	**	9.67		0.100		*		**	96.7%	"				
ron		10.6		0.0100	"	**		"	106%	,,			*	
Magnesium	я	10.4		0.100	**	**			104%	•				
vicke)		0.408		0.0500	**			0.400	102%	"			и	
otassium		10.2		1.00	7			10.0	102%				•	
Sodium		10.1		1.00	**			"	101%	**			"	
Duplicate (6040018-DUP1)				QC Source:	P6C0992-0	1		Extra	icted:	04/02/06 22	:12			
Aluminum	EPA 200.7	ND		0.100	mg/l	l×	ND				NR	(20)	04/03/06 12:56	
Calcium	84	15.6		0.100			15.6				0.00%	(30)	*	
ron	•	0.0739		0.0100		-	0.0760				2.80%	(20)		
Magnesium	41	10.7	***	0 100		=	10.6				0.939	(30)		
Nickel	"	ND		0.0500	**	**	ND		_		NR	(20)	*	
Potassium	*	1.94		1.00		*	1.92				1.04%	(30)	•	
Sodium	v	10.6		1.00	•	•	10.6			••	0 00%	4	a	
Matrix Spike (6040018-MS1)				QC Source:	P6C0992-0	1		Extra	ected:	04/02/06 22	:12			
Aluminum	EPA 200.7	2.31		0.111	mg/l	lx	ND	2.21	105%	(75-125)			04/03/06 13:03	
Calcium		26.6		0.111	"	-	15.6	11.1	99.1%	(80-120)	-		"	
ron		4.72		0.0111			0.0760	4.42	105%	(75-125)			**	
Magnesium	19	21.9		0.111			10.6	11.1	102%	(80-120)			*	
Nickel	**	0.523		0.0556	"		ND	0.556	94.1%	(75-125)			11	
Potassium		16.0		1.11			1.92	11.1	127%	(80-120)	_		44	Q-
Sodium		21.9		1.11		,,	10.6			lr .				-

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager:

na

Ted Ressler

Report Created:

05/08/06 17:24

Dissolved Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040019	Water P	reparation Me	thod:	EPA 200/30	05 Diss									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (6040019-BLK1)								Extr	acted:	04/02/06 22	:17			
Iron	EPA 200.7	ND		0.0100	mg/l	lx							04/03/06 14:54	
Manganese	•	ND		0.0100	"								"	
LCS (6040019-BS1)								Extr	acted:	04/02/06 22	:17			
Iron	EPA 200.7	10.7		0.0100	mg/l	lx		100	107%	(85-115)			04/03/06 14:48	
Manganese	•	0.429		0.0100		**		0.400	107%	**			•	
Duplicate (6040019-DUP1)				QC Source:	P6C0992-)1		Extr	acted:	04/02/06 22	:17			
Iron	EPA 200.7	0.0792		0.0100	mg/l	lx	0.0752				5.18%	(20)	04/03/06 13:25	
Manganese	*	0.212	*	0.0100			0.210				0.948			
Matrix Spike (6040019-MS1)				QC Source:	P6C0992-)1		Extr	acted:	04/02/06 22	:17			
Iron	EPA 200.7	4.81		0.0111	mg/l	lx	0.0752	4.42	107%	(75-125)			04/03/06 13.44	
Manganese		0.771		0.0111		*	0.210	0,556	101%	**			"	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarain Frehwell
Sarah Rockwell, Project Manager

Page

Page 16 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions
55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: na

Ted Ressler

Report Created: 05/08/06 17:24

Total Mercury per EPA Method 245.1 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040195	Water F	reparation M	lethod: E	PA 245.1					_					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% EC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (6040195-BLK1)								Extract	ed:	04/05/06 16	:19			
Mercury	EPA 245. I	ND		0.000200	mg/l	lx							04/05/06 23:23	
LCS (6040195-BS1)								Extracto	ed:	04/05/06 16	:19			
Mercury	EPA 245.1	0.00507		0.000200	mg/l	1×	*-	0.00500 10)1%	(85-115)			04/05/06 23:26	
LCS Dup (6040195-BSD1)								Extracte	ed:	04/05/06 16	: 19			
Mercury	EPA 245.1	0.00518		0.000200	mg/l	lx		0.00500 10)4%	(85-115)	2.15%	(20)	04/05/06 23:28	
Duplicate (6040195-DUP1)				QC Source:	P6C1261-01			Extracte	ed:	04/05/06 16	: 19			
Mercury	EPA 245.1	ND		0.000200	mg/l	lx	ND				NR	(30)	04/05/06 23:31	
Matrix Spike (6040195-MS1)				QC Source:	P6C1261-01			Extracte	ed:	04/05/06 16	:19			
Mercury	EPA 245.1	0.00531		0.000200	mg/l	lx	ND	0.00500 10	6%	(75-125)			04/05/06 23:33	
Matrix Spike Dup (6040195-MS	D1)			QC Source:	P6C1261-01			Extracte	ed:	04/05/06 16	:19			
Mercury	EPA 245.1	0.00516		0.000200	mg/I	lx	ND	0.00500 10	3%	(75-125)	2.87%	(20)	04/05/06 23:36	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

na Ted Ressler Report Created:

05/08/06 17:24

Cow	wantional Chan	nioten Paran	antana nan	A DET A /I	CDA Moth	ods	Laborat	on Ou	olity	Control	Dage	ulte		
Con	ventional Chen		-		- Portland, (Laborat	ory Qu	анц	Control	Rest		_	_
QC Batch: 6031136	Water P	reparation M	lethod: Ge	eneral Pi	reparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6031136-BLK1)								Extr	acted:	03/24/06 08	3:09			
Chlorine Residual (Total)	SM 4500-Cl G	ND		0.100	mg/l	lx						**	03/24/06 08:30	
LCS (6031136-BS1)								Extra	acted:	03/24/06 08	3:09			
Chlorine Residual (Total)	SM 4500-Cl G	0.869		0.100	mg/l	lx		1.00	86.9%	(85-115)			03/24/06 08:30	
Duplicate (6031136-DUP1)				QC Source	e: P6C0992-0	1		Extra	acted:	03/24/06 08	:09			
Chlorine Residual (Total)	SM 4500-CI G	ND		0.100	mg/l	lx	ND			-	NR	(30)	03/24/06 08:30	
QC Batch: 6031150	Water P	reparation M	lethod: Ge	eneral Pi	reparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6031150-BLK1)								Extra	acted:	03/24/06 09	:22			_
Color	EPA 110.2	ND		5.00	Color Units	lx						(03/24/06 09:45	
LCS (6031150-BS1)								Extra	acted:	03/24/06 09	:22			
Color	EPA 110.2	20.0		5.00	Color Units	lx		20.0	100%	(80-120)		(03/24/06 09:45	
Duplicate (6031150-DUP1)				OC Source	: P6C0992-0	1		Extr	acted:	03/24/06 09	:22			
Color	EPA 110.2	ND			Color Units	lx	ND					(30)	03/24/06 09:45	
QC Batch: 6031152	Water P	reparation M	lethod: Ge	eneral Pr	reparation				_					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6031152-BLK1)								Extra	cted:	03/24/06 09	:23			
Turbidity	EPA 180 I	ND		0.200	NTU	lx				-		(03/24/06 09:30	
LCS (6031152-BS1)								Extra	icted:	03/24/06 09	:23			
Turbidity	EPA 180.1	18.9		0.200	NTU	lx		20.0	94.5%	(85-115)		(03/24/06 09:30	

QC Source: P6C0992-01

0.200

TestAmerica - Portland, OR

Duplicate (6031152-DUP1)

EPA 180.1

ND

Turbidity

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4.38% (30)

Extracted: 03/24/06 09:23

ND

- Sarain Frekwell

Sarah Rockwell, Project Manager

03/24/06 09:30

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

na Ted Ressler Report Created: 05/08/06 17:24

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6031184	Water P	reparation M	ethod: Ger	neral Pre	paration									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6031184-BLK1)								Extr	acted:	03/24/06 14	1:49			
Threshold Odor Number	EPA 140.1	ND	***	0.20	TON	lx							03/24/06 14:55	

QC Batch: 6031213	Water P	reparation M	ethod: G	eneral Pre	paration							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits) %	D (Limit	s) Analyzed	Notes
Blank (6031213-BLK1)								Extracted:	03/27/06 07:32			
Silica (SiO2)	SM 4500-Si F	ND		0.500	mg/l	lx			*/		03/27/06 11:44	
LCS (6031213-BS1)								Extracted:	03/27/06 07:32			
Silica (SiO2)	SM 4500-Si F	41.9		0.500	mg/I	lx		40,0 105%	(85-115)		03/27/06 11:44	
Duplicate (6031213-DUP1)				QC Source:	P6C0613-0	1		Extracted:	03/27/06 07:32			
Silica (SiO2)	SM 4500-Si F	1.67		0.500	mg/l	lx	1.40		17,6	% (20)	03/27/06 11:44	·
Matrix Spike (6031213-MS1)				QC Source:	P6C0613-0	1		Extracted:	03/27/06 07:32			
Silica (SiO2)	SM 4500-Si F	11.4		0.500	mg/l	lx	1 40	10.0 100%	(75-125)		03/27/06 11:44	

QC Batch: 6031226	Water P	reparation M	ethod: Ge	eneral Pre	paration								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE		s) % RPD	(Limit	s) Analyzed	Notes
Blank (6031226-BLK1)								Extracte	1: 03/27/00	08:35			
Total Dissolved Solids	SM 2540C	ND		10.0	mg/l	lx						03/27/06 13:46	
LCS (6031226-BS1)								Extracte	: 03/27/06	08:35			
Total Dissolved Solids	SM 2540C	102		10.0	mg/l	lx		100 102	% (85-11	5)		03/27/06 13:46	
Duplicate (6031226-DUP1)				QC Source:	P6C0992-0	t		Extracted	: 03/27/06	08:35			
Total Dissolved Solids	SM 2540C	154		10.0	mg/l	lx	155			0 647	(30)	03/27/06 13:46	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager:

na Ted Ressler Report Created:

05/08/06 17:24

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6031227	Water P	reparation M	ethod: G	eneral Pre	paration									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6031227-BLK1)								Extr	acted:	03/27/06 08	:40			
Total Suspended Solids	EPA 160.2	ND		10.0	mg/l	lx							03/27/06 16:20	
LCS (6031227-BS1)								Extr	acted:	03/27/06 08	3:40			
Total Suspended Solids	EPA 160.2	49.0		10.0	mg/l	lx		50.0	98.0%	(80-120)			03/27/06 16:20	
Duplicate (6031227-DUP1)				QC Source:	P6C0992-01	<u> </u>		Extr	acted:	03/27/06 08	:40	_		
Total Suspended Solids	EPA 160,2	ND		10.0	mg/l	lx	ND				NR	(20)	03/27/06 16:20	

QC Batch: 6031229	Water P	reparation M	lethod: G	eneral Pre	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt F	س REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6031229-BLK1)								Extrac	ted:	03/27/06 08	:52			
Cyanide (total)	EPA 335.4	ND		0.00500	mg/l	lx							03/28/06 13:36	
LCS (6031229-BS1)								Extrac	ted;	03/27/06 08	:52			
Cyanide (total)	EPA 335.4	0.414		0.00500	mg/l	1x		0.400 1	104%	(90-110)			03/28/06 13:36	
Duplicate (6031229-DUP1)				QC Source:	P6C1068-0	03		Extrac	ted:	03/27/06 08	:52			
Cyanide (total)	EPA 335 4	0.0241		0.00500	mg/l	lx	0 0257				6.43%	(30)	03/28/06 13:36	
Matrix Spike (6031229-MS1)				QC Source:	P6C1068-0	03		Extrac	:ted:	03/27/06 08	:52			
Cyanide (total)	EPA 335.4	0.418		0.00500	mg/l	lx	0.0257	0.400 9	8.1%	(80-120)			03/28/06 13:36	
Matrix Spike Dup (6031229-MS	D1)			QC Source:	P6C1068-0	03		Extrac	ted:	03/27/06 08	:52			
Cyanide (total)	EPA 335.4	0.438		0.00500	mg/l	lx	0.0257	0.400 1	03%	(80-120)	4.67%	(20)	03/28/06 13:36	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarain Rockwell, Project Manager

Page 20 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400

Project Number:

na

Report Created:

Portland, OR 97204

Project Manager: Ted Ressler

05/08/06 17:24

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

			Tes	stAmerica -	Portland,	OR								
QC Batch: 6031439	Water F	reparation Meth	od: (General Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6031439-BLK1)								Extr	acted:	03/30/06 10	:05			
Total Alkalinity	SM 2320B	ND		5.00	mg/L as CaCO3	l×	-			-			03/30/06 17:39	
Carbonate Alkalinity		ND		5.00	mg/l				-				"	
Bicarbonate Alkalinity	**	ND		5.00	ь								*	
LCS (6031439-BS1)								Extr	acted:	03/30/06 10	:05			
Total Alkalinity	SM 2320B	196		5.00	mg/L as CaCO3	lx	••	200	98.0%	(85-115)			03/30/06 17:39	
Duplicate (6031439-DUP1)				QC Source:	P6C0992-	01		Extra	icted:	03/30/06 10	:05			
Bicarbonate Alkalinity	SM 2320B	105		5 00	mg/l	lx	105				0.00%	(20)	03/30/06 17:39	
Total Alkalinity	"	105		5.00	mg/L as CaCO3	*	105				0.00%	(30)	n	
Carbonate Alkalinity		ND		5.00	mg/l	u	ND				NR	(20)		
QC Batch: 6040002	Water P	reparation Meth	od: (General Pro	paration									_
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6040002-BLK1)								Extra	icted:	04/01/06 11	:19			
Total Organic Carbon	SM 5310C	ND		1.00	mg/l	lx							04/01/06 14:07	
LCS (6040002-BS1)								Extra	cted:	04/01/06 11	:19			
Total Organic Carbon	SM 5310C	21.7		1.00	mg/l	İx		20.0	108%	(85-115)		(04/01/06 14:22	
Duplicate (6040002-DUP1)				QC Source:	P6C0992-	01		Extra	icted:	04/01/06 11	:19			
Total Organic Carbon	SM 5310C	ND		1.00	mg/l	ix	ND				0.00%	(30)	04/01/06 14:35	

Matrix Spike (6040002-MS1)			QC Source:	P6C0992-01			Extr	acted: (04/01/06 11:1	19	
Total Organic Carbon	SM 5310C	28.3	 1.01	mg/I	lx	0.730	25.3	109%	(80-130)		 04/01/06 15:18

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarain Richwell

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Portland, OR 97204

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400

Project Number: Project Manager:

Ted Ressler

Report Created:

05/08/06 17:24

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040018	Water F	reparation M	lethod: E	PA 200/30	05							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits) %	(Limits) Analyzed	Notes
Blank (6040018-BLK1)								Extracted:	04/02/06 22:12			
Hardness (Ca)	SM 2340B-Ca	ND	***	0.250	mg/l	l×	-				04/03/06 13.38	
LCS (6040018-BS1)								Extracted:	04/02/06 22:12			
Hardness (Ca)	SM 2340B-Ca	66.8		0.250	mg/l	lx	-	25.0 267%	(85-115)		04/03/06 13:31	
Duplicate (6040018-DUP1)				QC Source:	P6C0992-0	1		Extracted:	04/02/06 22:12			
Hardness (Ca)	SM 2340B-Ca	83.0		0.250	mg/l	1x	82.7		0.36	2 (20)	04/03/06 12:56	
Matrix Spike (6040018-MS1)				QC Source:	P6C0992-0	1		Extracted:	04/02/06 22:12			
Hardness (Ca)	SM 2340B-Ca	157		0.278	mg/l	lx	82.7	27.8 267%	(75-125)		04/03/06 13:03	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Suras Frekurell Sarah Rockwell, Project Manager

Page 22 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

Ted Ressler

Report Created: 05/08/06 17:24

Anions per EPA Method 300.0 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6031146	Water P	reparation M	lethod: W	et Chem										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (6031146-BLK1)								Extr	acted:	03/24/06 08	3:53			
Sulfate	EPA 300.0	ND		1.00	mg/l	lx				-			03/24/06 10:23	
Nitrate/Nitrite-Nitrogen	"	ND	***	0.200	•	4			**				-	
Chloride	"	ND		0.500		**							**	
Nitrite-Nitrogen	"	ND		0.100	**									
Nitrate-Nitrogen	**	ND		0.100		-				~-			к	
LCS (6031146-BS1)								Extr	acted:	03/24/06 08	3:53			
Sulfate	EPA 300.0	31.4		1.00	mg/l	l×		30.0	105%	(90-110)			03/24/06 10:38	
Nitrite-Nitrogen	"	5.02		0.100	10	*		5.00	100%				*	
Nitrate-Nitrogen		5.12		0.100				"	102%	•			-	
Chloride	-	10.2	***	0.500	h	"		10.0	102%					
Duplicate (6031146-DUP1)				QC Source:	P6C0972-0	3		Extr	acted;	03/24/06 08	:53	_		
Nitrate/Nitrite-Nitrogen	EPA 300.0	ND		0.200	mg/l	1x	ND				0.00%	(30)	03/24/06 10:53	
Sulfate	ia .	11.8		1.00			11.9				0.844	•	•	
Chloride	14	170		0.500	0		17.0				0.00%		*	
Nitrate-Nitrogen	"	0 150		0.100			0 150				0 00%			
Nitrite-Nitrogen	**	ND		0.100	"	*	ND				NR	"		
Matrix Spike (6031146-MS1)				QC Source:	P6C0972-0	3		Extr	acted:	03/24/06 08	:53			
Chloride	EPA 300.0	19.2		0.556	mg/l	lx	17.0	2.22	99.1%	(80-120)			03/24/06 11:07	
Sulfate		16.4		1.11	*	-	11.9	4.44	101%					
Nitrate-Nitrogen	*	2.40		0.111		**	0.150	2.22	101%	**				
Nitrite-Nitrogen		2.18		0.111			ND	**	98.2%					
Matrix Spike (6031146-MS2)				QC Source:	P6C0992-0	1		Extr	acted:	03/24/06 08	:53			
Chloride	EPA 300.0	4.19		0.556	mg/l	lx	2.03	2.22	97.3%	(80-120)			03/24/06 12:20	
Sulfate	и	5.60		1.11	•	4	1.25	4.44	98.0%		٠.	-	E.	
Nitnte-Nitrogen	9	2.19		0.111			ND	2.22	98.6%	**			**	
Nitrate-Nitrogen	19	2.28		0.111	"	*	ND		103%	•				
Matrix Spike Dup_(6031146-MS	SD1)			QC Source:	P6C0972-0	3		Extr	acted:	03/24/06 08	:53			
Chloride	EPA 300.0	19.3		0.556	mg/l	lx	17.0	2.22	104%	(80-120)	0.519	(20)	03/24/06 11:22	
Nitrate-Nitrogen	**	2.42		0111	•	*	0.150		102%	•	0.830	**	a .	
Nitrite-Nitrogen		2.18		0.111	*	-	ND	**	98.2%	,	0.00%	-	n	
Sulfate		16.5		1.11			11.9	4.44	104%		0.608			

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Surain Frekwell

Sarah Rockwell, Project Manager

Page 23 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: na Ted Ressler Report Created: 05/08/06 17:24

Disinfection By-Products in Drinking Water per EPA 552.2 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040250	Water	Preparation	Method: N	Aicro Liq/	Liq Shake								
Inalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE		% RPD	(Limits)	Analyzed	Note
Blank (6040250-BLK1)								Extracte	1: 04/06/06 1	1:42			
Monochloroacetic acid (MCAA)	EPA 552.2	ND		0.00150	mg/l	lx						04/07/06 00:34	
Monobromoacetic acid (MBAA)		ND		0.00100	n	*						0	
Dibromoacetic acid (DBAA)		ND		0.000500	4							*	
Dichloroacetic acid (DCAA)	u	ND		0 001 50		-			*-				
Frichloroacetic acid (TCAA)		ND		0.000500									
Total Haloacetic Acids (HAA5)		ND		0 00150								*	
Surrogate(s): 2,3-Dibromopropios	nic acid	Recovery:	72.6%	Lin	nits. 70-130%	, "						04/07/06 00:34	
LCS (6040250-BS1)								Extracte	l: 04/06/06 1	1:42			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00850		0.00150	mg/l	1x		0.00750 113	% (70-130)		_	04/07/06 00:00	
Aonobromoacetic acid (MBAA)	•	0.00559		0.00100	"	,		0.00500 112	% "				
Dibromoacetic acid (DBAA)		0.00295		0.000500	"	•		0.00250 118	% "				
Dichloroacetic acid (DCAA)		0.00871		0.00150	**			0.00750 116	% "	_			
Frichloroacetic acid (TCAA)		0.00274		0.000500	*	*		0.00250 110	% "			•	
Surrogate(s): 2,3-Dibromopropion	nic acid	Recovery:	96.4%	Lin	nits: 70-130%	. "						04/07/06 00:00	
LCS (6040250-BS3)								Extracte	l: 04/06/06 1	1:42			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00163		0.00150	mg/l	lx		0.00150 109	% (70-130)			04/11/06 16:41	
Monobromoacetic acid (MBAA)		0.000748	***	0.00100	**	•		0.00100 74.8	% "			h	
Dibromoacetic acid (DBAA)		0.000414		0.000500	"			0.000500 82.8	% "				
Dichloroacetic acid (DCAA)		0.00134		0.00150	*	*		0.00150 89.3	% "			*	
richloroacetic acid (TCAA)		0.000348	***	0.000500		-		0.000500 69.6	% "			•	
Surrogate(s): 2,3-Dibromopropion	nic acid	Recovery:	176%	Lin	nits: 70-130%	"			-			04/11/06 16:41	
LCS (6040250-BS4)								Extracted	l: 04/06/06 1	1:42			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00168		0.00150	mg/l	1x		0.00150 112	% (70-130)		- (04/11/06 17:15	
Aonobromoacetic acid (MBAA)	"	0.000858		0.00100	"			0.00100 85.8	% "			*	
Dibromoacetic acid (DBAA)		0.000493		0.000500		•		0.000500 98.6	% "	_		"	
Dichloroacetic acid (DCAA)	41	0.00156		0.00150	,,	-		0.00150 104	% "				
Trichloroacetic acid (TCAA)		0 000450		0.000500	"	*	-	0.000500 90.0					
Surrogate(s): 2,3-Dibromopropios	nic acid	Recovery:	185%	Lin	nus: 70-130%	.,						04/11/06 17:15	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekwell

Sarah Rockwell, Project Manager

Page 24 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

Ted Ressler

Report Created:

05/08/06 17:24

Disinfection By-Products in Drinking Water per EPA 552.2 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040250	Water	Preparation	Method: N	1icro Liq/I	Jiq Shake								
nalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Matrix Spike (6040250-MS1)				QC Source:	PPD0171-01			Extracted:	04/06/06 11	:42			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00648		0.00150	mg/l	lx	ND	0.00750 86.4%	(70-130)			04/07/06 01:40	
Nonobromoacetic acid (MBAA)		0.00455	***	0.00100	,		0.000158	0.00500 87.8%					
Dibromoacetic acid (DBAA)	"	0.00255		0.000500	•		0.000254	0.00250 91.8%				**	
Pichloroacetic acid (DCAA)		0.00752		0.00150			0 00289	0.00750 61.7%				-	MS
richloroacetic acid (TCAA)	**	0.00250		0.000500			0.00228	0.00250 8.80%	"	-		4	MS
Surrogate(s): 2.3-Dibromopropios	nic acid	Recovery:	81.6%	Lin	nits: 70-130%	*						04/07/06 01:40	
Matrix Spike Dup (6040250-M	ASD1)			QC Source:	PPD0171-01			Extracted:	04/06/06 11	:42			
	EPA 552.2	0.00659		0.00150			ND	0.00750 87.9%	(70-130)	1.68%	(30)	04/07/06 02:13	
Ionochloroacetic acid (MCAA)	EPA 332.2	0.00639		0.00130	mg/l	lх	ND	0.00730 07.570	(,		()		
, ,	EPA 332.2	0.00639		0.00130	mg/i	ix 	0.000158	0,00500 85.0%	,	3.13%	29	o	
lonobromoacetic acid (MBAA)					_				*		n	O P	
Monochloroacetic acid (MCAA) Monobromoacetic acid (MBAA) Dibromoacetic acid (DBAA) Dichloroacetic acid (DCAA)		0.00441		0.00100	**		0.000158	0,00500 85.0%		3.13%	v		MS-

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarain Erckwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager:

na Ted Ressler Report Created: 05/08/06 17:24

Total Trihalomethanes in Drinking Water per EPA 524.2 - Laboratory Quality Control Results

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (603129	97-BLK1)		_						Ext	acted:	03/28/06 08	3:54			
Bromodichlorometh	ane	EPA 524.2	ND		0.000500	mg/l	Ix							03/28/06 11:50	
Bromoform		n	ND		0.000500					**			-	•	
Chloroform			ND		0.000500								~-		
Dibromochlorometh	ane		ND		0.000500										
Total Trihalomethan	es	**	ND		0.000500	**	**				*-		-		
Surrogate(s):	Dibromofluoromethane	-	Recovery:	120%	Limi	15 70-130%	"							03/28/06 11:50	
	1,2-DCA-d4			117%		70-130%	**							44	
	Toluene-d8			98.0%		70-130%	**								
	4-BFB			73.0%		70-130%	*							"	
LCS (6031297	'-BS1)								Exti	acted:	03/28/06 08	3:54			
Bromodichlorometh:	ane	EPA 524.2	0.00588		0.000500	mg/l	lx		0.00500	118%	(70-130)			03/28/06 10:53	
Bromoform		*	0.00478		0.000500					95.6%				*	
Chloroform		**	0.00578		0.000500		**			116%	*		44.4		
Dibromochlorometh	ane	"	0.00519		0.000500	u	**			104%					
Surrogate(s):	Dibromofluoromethane		Recovery	112%	Limi	is: 70-130%	"							03/28/06 10:53	
	1,2-DCA-d4			105%		70-130%	**							"	
	Toluene-d8			99.6%		70-130%	*							"	
	4-BFB			106%		70-130%	**							"	
Matrix Spike	(6031297-MS1)				QC Source:	P6C0983-12			Extr	acted:	03/28/06 08	:54			
Bromodichlorometh	ane	EPA 524.2	0.0261		0.000500	mg/l	lx	ND	0.0250	104%	(70-130)		(03/28/06 21:01	
Bromoform		-	0.0169		0.000500			ND		67.6%					MS-2
Chloroform		**	0.0265		0.000500	и		ND		106%					
Dibromochlorometh	ane	le .	0.0223		0.000500	**		ND	**	89.2%					
Surrogate(s):	Dibromofluoromethane		Recovery:	107%	Limi	ts: 70-130%	**					_		03/28/06 21:01	
0 17	1,2-DCA-d4			101%		70-130%	*							*	
	Toluene-d8			98.0%		70-130%	**							14	
	4-BFB			100%		70-130%	"							"	
Matrix Spike D	Oup (6031297-MSD	1)			QC Source:	P6C0983-12			Extr	acted:	03/28/06 08	:54			
Bromodichlorometh	але	EPA 524.2	0.0259		0.000500	mg/l	lx	ND	0.0250	104%	(70-130)	0.769	(30)	03/28/06 21:29	
Bromoform			0.0169		0.000500	"	*	ND		67 6%		0.00%	н		MS-2
Chloroform		II .	0.0258		0.000500	н		ND	**	103%		2.68%	-		
Dibromochlorometh	ane		0.0223		0.000500			ND	-	89 2%	**	0.00%	"	•	
Surrogate(s):	Dibromofluoromethane		Recovery	110%	Limi	s 70-130%	**							03/28/06 21:29	
2 1,7	1,2-DCA-d4			99.2%		70-130%	**							"	
	Toluene-d8			99.8%		70-130%	**							,,	
	4-BFB			98.8%		70-130%	"							**	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Surais Frehwell

Sarah Rockwell, Project Manager

Page 26 of 28

EPA 9040A

7.32

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

0.273 (30)

Ground Water Solutions

Portland, OR 97204

Согтоѕічіту

55 SW Yamhill St, Suite 400

Project Name:

Sunrise Water Authority

7.34

Project Number: Project Manager: па

Ted Ressler

Report Created:

05/08/06 17:24

03/24/06 09:30

Physical Parameters per APHA/ASTM/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6031151 Water Preparation Method: General Preparation

Analyte Method Result MDL* MRL Units Dil Source Result Amt REC (Limits) % (Limits) Analyzed Notes

Duplicate (6031151-DUP1) QC Source: P6C0992-01 Extracted: 03/24/06 09:22

pH Units

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

- Sarain Rickwell

Page 27 of 28

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Number:

na

Report Created:

Project Manager: Ted Ressler

05/08/06 17:24

Notes and Definitions

Report Specific Notes:

Q-02

BS-1 - Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the laboratory control limits. Analyte not detected, data not impacted.

MS-2 - The Matrix Spike and/or Matrix Spike Duplicate were below the acceptance limits due to sample matrix interference. See Laboratory Control Sample.

- The matrix spike recovery, and/or RPD, for this QC sample is outside of established control limits due to sample matrix interference.

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' or 'dry' are reported on a Wet Weight Basis.

a wet weight basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil - Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Sarah Rockwell, Project Manager

Page 28 of 28

Environmental Testing Laboratory

03/30/06

Sarah Rockwell
North Creek Analytical - Portland
9405 SW Nimbus Avenue
Beaverton, OR 97008

TEL: (503) 906-9200 FAX (503) 906-9210

RE: P6C0992-01

Dear Sarah Rockwell:

Order No.: 0603540

Neilson Research Corporation received 1 sample(s) on 03/24/06 for the analyses presented in the following report.

The results relate only to the parameters tested or to the sample as received by the laboratory. This report shall not be reproduced except in full, without the written approval of Neilson Research Corporation. If you have any questions regarding these test results, please feel free to call.

Sincerely,

Neilson Research Corporation

Fay L. Fowler

Project Manager

Tay towler

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis Report

ORELAP 100016 EPA OR00028

CLIENT:

North Creek Analytical - Portland

Date: 30-Mar-06

Project:

P6C0992-01

CASE NARRATIVE

Lab Order: 0603540

The analyses were performed according to the guidelines in the Neilson Research Corporation Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

Neilson Research Corporation certifies that this report is in compliance with the requirements of NELAP. No unusual difficulties were experienced during analysis of this batch except as noted below or qualified with data flags on the reports.

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis Report

RELAP 100016 EPA OR00028

North Creek Analytical - Portland

9405 SW Nimbus Avenue

Beaverton, OR 97008

Lab Order: 0603540

NRC Sample ID: 0603540-01A

Collection Date: 03/23/06 2:10:00 PM

Received Date: 03/24/06 8:28:00 AM

Reported Date: 03/30/06 12:23:41 PM

Sample Information:

P6C0992-01

Client Sample ID: P6C0992-01

Collectors Name: Client

Sample Location: SWA-2W-GW

Source:

ANALYTICAL RESULTS

	•	NELA(2				EPA	Date	
Analyses	Method A	Accredit	ed Result	Qual	MRL	Units	Limit	Analyzed	Analyst
MBAS	SM 5540C	Α	ND		0.2	mg/L	0.5	03/24/06	KLT

Notes:

ND - Not Detected at the MRL

N.L. - No Limit

MRL - Minimum Reporting Limit

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis Report

North Creek Analytical - Portland

9405 SW Nimbus Avenue

Beaverton, OR 97008

Lab Order: 0603540

NRC Sample ID: 0603540-01B

Collection Date: 03/23/06 2:10:00 PM

Received Date: 03/24/06 8:28:00 AM

Reported Date: 03/30/06 12:23:41 PM

Sample Information:

P6C0992-01

Client Sample ID: P6C0992-01

Collectors Name: Client

Sample Location: SWA-2W-GW

Source:

ANALYTICAL RESULTS

		NELAC	C				EPA	Date	
Analyses	Method	Accredit	ed Result	Qual	MRL	Units	Limit	Analyzed	Analyst
Fluoride	EPA 300.0	Α	ND		0.2	mg/L	2 - 4	03/24/06	KRM

Notes:

ND - Not Detected at the MRL

N.L. - No Limit

MRL - Minimum Reporting Limit

oration	
h Corp	4
Research	
eilson I	

Date: 30-Mar-06

TestCode: EPA300_W

ANALYTICAL QC SUMMARY REPORT North Creek Analytical - Portland P6C0992-01 0603540 Work Order: CLIENT: Project:

Sample ID MB	SampType: MBLK	TestCod	TestCode: EPA300_W	Units: mg/L		Prep Date:	'n		RunNo: 29156	26	
Client ID: ZZZZZ	Batch ID: R29156	TestN	TestNo: EPA 300.0		1	Analysis Date	Analysis Date: 03/24/06		SeqNo: 437970	970	
Analyte	Result	MRL	MRL SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Fluoride	QN	0.200		,							
Sample ID LCS2	SampType: LCS	TestCod	TestCode: EPA300_W	Units: mg/L		Prep Date:	di		RunNo: 29156	56	
Client ID: ZZZZZ	Batch ID: R29156	TestN	TestNo: EPA 300.0		1	Analysis Date	Analysis Date: 03/24/06		SeqNo: 437971	971	
Analyte	Result	MRL	SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit Qual	Quai
		000	L	(C	ć	4,1				

N Fluoride		2.454	0.200	2.5	0	98.2	06	110		
Sample ID	Sample ID 0603565-01BMS	SampType: MS	TestCo	de: EPA300_V	TestCode: EPA300_W Units: mg/L		Prep Date:		RunNo: 29156	
© Client ID: ZZZZZ	22222	Batch ID: R29156	Test	TestNo: EPA 300.0			Analysis Date: 03/24/06	03/24/06	SeqNo: 437983	
G Analyte		Result	MRL	MRL SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	_
7 Fluoride		3.887	0.200	3.75	3.75 0.1407	6.96	80	120		
Sample ID	Sample ID 0603565-01BMSD	SampType: MSD	TestCo	de: EPA300_V	TestCode: EPA300_W Units: mg/L		Prep Date:		RunNo: 29156	
Client ID: ZZZZZ	22222	Batch ID: R29156	Test	TestNo: EPA 300.0	_		Analysis Date: 03/24/06	. 03/24/06	SeqNo: 437984	

Quai

RPDLimit

%RPD 4.85

LowLimit HighLimit RPD Ref Val

%REC 95.0

SPK value SPK Ref Val

MRL 0.200

Result 3.703

Fluoride Analyte

20

3.887

120

8

Qualifiers:	Э	Value above quantitation range	Ξ
	NO	Not Detected at the Minimum Reporting Limit	æ

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits œ

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits

North Creek Analytical - Portland

P6C0992-01 0603540

Work Order: CLIENT:

Project:

Date: 30-Mar-06

ANALYTICAL QC SUMMARY REPORT

TestCode: MBAS

Sample II	Sample ID MBLK	SampType: MBLK	TestCode: MBAS	Units: mg/L		Prep Date:		RunNo: 29150	
Client ID:	Client ID: ZZZZZ	Batch ID: R29150	TestNo: SM 5540C		An	Analysis Date: 03/24/06		SeqNo: 437873	
Analyte		Result	MRL SPK value	SPK value SPK Ref Val	%REC L	%REC LowLimit HighLimit RPD Ref Val	PD Ref Val	%RPD RPDLimit Qual	Qual
MBAS		QN	0.20						
Sample ID LCS	D LCS	SampType: LCS	TestCode: MBAS	Units: mg/L		Prep Date:		RunNo: 29150	
Client ID:	Client ID: ZZZZZ	Batch ID: R29150	TestNo: SM 5540C		An	Analysis Date: 03/24/06		SeqNo: 437874	
Analyte		Result	MRL SPK value	SPK value SPK Ref Val	%REC L	%REC LowLimit HighLimit RPD Ref Val	PD Ref Val	%RPD RPDLimit Qual	Qual
NBAS		0.4200	0.20 0.482	0	87.1	80 120			
Sample II	Sample ID 0603540-01AMS	SampType: MS	TestCode: MBAS	Units: mg/L		Prep Date:		RunNo: 29150	
Client ID:	Client ID: P6C0992-01	Batch ID: R29150	TestNo: SM 5540C		An	Analysis Date: 03/24/06		SeqNo: 437876	
O Analyte		Result	MRL SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit RPD Ref Val	PD Ref Val	%RPD RPDLimit	Qual
f 7		0.4440	0.20 0.5	0	88.8	80 120			
		H							

Sample ID	Sample ID 0603540-01AMSD	SampType: MSD	TestCoc	TestCode: MBAS	Units: mg/L		Prep Date:	ái		RunNo: 29150	150	
Client ID:	Client ID: P6C0992-01	Batch ID: R29150	Test	TestNo: SM 5540C			Analysis Date:	9: 03/24/06		SeqNo: 437877	7877	
Analyte		Result	MRL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD	%RPD RPDLimit Qual	Qual
MBAS		0.4600	0.20	0.5	0	92.0	80	120	0.444	3.54	15	

Not Detected at the Minimum Reporting Limit Value above quantitation range ы Б Qualifiers:

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H &

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits - s

SUBCONTRACT ORDER

North Creek Analytical - Portland P6C0992

SENDING LABORATORY:

North Creek Analytical - Portland

9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager:

RECEIVING LABORATORY:

Neilson Research Corp. 245 S. Grape St. Medford, OR 97501 Phone:541-770-5678

Fax: 541-770-2901

Sarah Rockwell

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: P6C0992-01	Water	Sampled:03/23/06 14:10		0603540
DW MBAS - SUB	04/05/06 23:59	9 03/25/06 14:10	,	OIA
DW IC Fluoride (300)	04/05/06 23:59	9 04/20/06 14:10		013
Containers Supplied:				
1L Poly - Unpres (AB)	250 mL Poly -	Unpres. (A	· .	

3.9°C Cooler of Gel Packs

Released By

Date

Received By

Date

		_
		_
		_
		_
		_
		_
		_
		-
		and the same of th
		, in
		_
		_
		_
		_
		_
		_
		_
		•
		_
		•
		_
		_
		_
		_
		400
		_
		_
		_

STL Richland 2800 George Washington Way Richland, WA 99352 (509) 375-3131 ORELAP ID No. WA100002

System ID#:	Source ID:	Sou	ırce Nar	ne(s):	
Water System:					
Address:					
City:			Stat	e: OR	Zip:
	Sam	ple Ide	ntificat	ion	
Single Sample	Four Year Res	ample [Comp	osite of Quarterly Samples
Sampled at:			Sample	d by:	
Date(s) Collected: 3/	23/06		Time C	ollected: 14	l:10 pm
Date Received: 3/24/	/06		Date A	nalyzed: 5/1	/06
Sample Characteristic: Trea	Raw or Area Water	om Sou Distri	irce or bution	⊠ s	ingle or Combined Source
Lab Sample ID #: P6 H10DP, H1XQW	6C0992-01; STL Lot#:	J6C24	0224, J	6C240298 S	SDG#: 31201, 31196/HNMJ9,

Contaminant	Code	MCL pCi/l	Analysis pCi/l	Method	Analyst
Gross Alpha	4000	15	ND @ 1.6	EPA 900.0	PA
Combined Radium 226/228	4010	5	1.7 @ 0.8	EPA 903.0 & 904.0	PA
Combined Uranium	4006	30	0.25 @ 0.07 ug/L	ASTM D5174	MIL
Gross Beta	4100	50	3.1 @ 2.5	EPA 900.0	PA

ND=MDA Indicates the analyte was measured and was not detected at a level greater than or equal to the Minimum Detectable Amount (MDA).

See comments on back.

Comments

Gross Beta Analysis:

The initial analysis and rerun both had a high blank. A third analysis was started when the tech noticed that another sampled popped into these samples causing contamination. There was no more sample for reanalysis. The sample must be called failed.

Radon 222 Analysis:

The sample had a result of 245 pCi/L with an MDX of 36.9 pCi/L.

I certify that this Certificate of Analysis is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. The Laboratory Manager or a designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Reviewed and approved:

Sherryl A. Adam Project Manager

CRW Source Water Laboratory Data Reports

		000000000000000000000
		0
		0
		- 0
		_
		-
		-
		- 0
		-
		- 0
		-
		- 6
		-
		0
		- 0
		_
		0
		_
		_
		-
		0
		0
		-
		_
		0
		-
		0
		-
		0000
		-
		0
		0

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

June 05, 2006

Ted Ressler Ground Water Solutions 55 SW Yamhill St, Suite 400 Portland, OR 97204

RE: Sunrise Water Authority

Enclosed are the results of analyses for samples received by the laboratory on 04/19/06 12:40. The following list is a summary of the Work Orders contained in this report, generated on 06/05/06 11:53.

If you have any questions concerning this report, please feel free to contact me.

Work Order PPD0805 <u>Project</u>

Sunrise Water Authority

ProjectNumber 157:005

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Portland, OR 97204

55 SW Yamhill St, Suite 400

Project Name:

Sunrise Water Authority

Project Number: Project Manager:

157:005 Ted Ressler Report Created:

06/05/06 11:53

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SWA-SW-CRW	PPD0805-01	Water	04/19/06 11:30	04/19/06 12:40

TestAmerica - Portland, OR

The results in this report opply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frehwell

Sarah Rockwell, Project Manager

Page 2 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager:

157:005

Ted Ressler

Report Created:

06/05/06 11:53

Total Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01	(SWA-SW-CRW)		Wa	ter		Samı	pled: 04/1	9/06 11:30			
Aluminum		EPA 200.7	ND		0.100	mg/l	lx	6040892	04/19/06 15:33	04/20/06 13:36	
Antimony		EPA 200.8	ND		00100.0	**	**	6040893	04/19/06 15:40	04/29/06 11:48	
Arsenic		**	ND		0.00100	**		•	•		
Barium			0,00368		0.00100	•	*	**	*	05/02/06 11:18	
Beryllium			ND		0.000500	н	**	*		04/29/06 11:48	
Cadmium			ND		0.000500	*		-		н	
Calcium		EPA 200.7	4.19		0.100	"	*	6040892	04/19/06 15:33	04/20/06 13:36	
Chromium		EPA 200.8	ND		0.00100		*	6040893	04/19/06 15:40	04/29/06 11:48	
Copper			0.00158		0.00100	"	,	"		•	
ron		EPA 200.7	ND		0.0100	*		6040892	04/19/06 15:33	04/20/06 13:36	
Lead		EPA 200.8	ND	_	0.000500		41	6040893	04/19/06 15:40	04/29/06 11:48	
Magnesium		EPA 200.7	1.26	_	0.100	v	*	6040892	04/19/06 15:33	04/20/06 13:36	
Manganese		EPA 200.8	ND		0.00200		•	6040893	04/19/06 15:40	04/29/06 11:48	
Nickel		EPA 200.7	ND		0.0500			6040892	04/19/06 15.33	04/20/06 13:36	
Potassium			ND		1.00		6	**	**	nr .	
Selenium		EPA 200.8	ND		0.00100			6040893	04/19/06 15:40	04/29/06 11:48	
Silver		,,	ND		0.00100			н	**		
Sodium		EPA 200 7	4.13		1.00	**		6040892	04/19/06 15:33	04/20/06 13:36	
Thallium		EPA 200.8	ND	_	0.00100		51	6040893	04/19/06 15:40	04/29/06 11:48	
Zinc			ND		0.00500			-			

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Suras Frehwell Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Portland, OR 97204

55 SW Yamhill St, Suite 400

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:53

Dissolved Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dii	Batch	Prepared	Analyzed	Notes
PPD0805-01 (SWA-SW-CR	W)	Wa	iter		Sam	pled: 04/1	9/06 11:30			M-04
Iron	EPA 200.7	ND	_	0 0100	mg/l	lx	6041222	04/27/06 10:07	05/01/06 21:29	
Manganese	"	ND		0.0100	*	•	**	•	w	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saraes Rockwell

Sarah Rockwell, Project Manager

Page 4 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:53

Total Mercury per EPA Method 245.1

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01	(SWA-SW-CRW)		Wate	r		Sampl	ed: 04/19	0/06 11:30			
Mercury		EPA 245.1	ND	_	0.000200	mg/I	lx	6041059	04/24/06 10:21	04/24/06 13:44	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

- Sarais Erchwell

Page 5 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:53

Conventional Chemistry Parameters per APHA/EPA Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01 (SWA-SW-CRW)		Wa					19/06 11:30			TYOTES
Bicarbonate Alkalinity	SM 2320B	17.9		5.00	mg/l	lx	6040896	04/19/06 15:53	04/20/06 17:50	
Carbonate Alkalinity		ND		5.00						
Chlorine Residual (Total)	SM 4500-CI G	0.511		0.100	"	"	6040905	04/19/06 21:00	04/19/06 21:21	
Color	EPA 110.2	ND	_	5.00	Color Units	•	6040904	04/19/06 20:39	04/19/06 20:41	
Cyanide (total)	EPA 335.4	ND		0.00500	mg/l		6041172	04/26/06 10:29	04/28/06 16:56	
Hardness (Ca)	SM 2340B-Ca	10.5		0.250	•		6040892	04/19/06 15:33	04/27/06 13:52	
Silica (SiO2)	SM 4500-Si F	16.4		0.500	0	0	6041037	04/24/06 07:53	04/24/06 12:18	
Threshold Odor Number	EPA 140 I	3.7	_	0 20	TON	•	6040932	04/20/06 11:16	04/20/06 12:00	
Total Alkalinity	SM 2320B	17.9		5.00	mg/L as CaCO3	14	6040896	04/19/06 15:53	04/20/06 17:50	
Total Dissolved Solids	SM 2540C	48.0		10.0	mg/l	**	6041047	04/24/06 08.57	04/24/06 13:35	
Total Suspended Solids	EPA 160.2	ND		10.0		•	6041048	04/24/06 09:02	04/24/06 15:25	
Turbidity	EPA 180.1	ND		0.200	NTU		6040899	04/19/06 16:08	04/19/06 16:15	
Total Organic Carbon	SM 5310C	ND		1 00	mg/l		6041023	04/21/06 22:05	04/22/06 00:45	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 6 of 26

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:53

Anions per EPA Method 300.0

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01 (SWA-SW-CRW)		Wa	ter		Sam	pled: 04/1	9/06 11:30			
Chloride	EPA 300.0	3.33		0.500	mg/l	lx	6040844	04/19/06 16:00	04/19/06 20:25	
Nitrate/Nitrite-Nitrogen		0.230	_	0.200			"	*	n	
Nitrate-Nitrogen		0.230		0.100	**		*	16		
Nitrite-Nitrogen	*	ND	_	0.100	•	*	*	H	"	
Sulfate	*	2.21		1.00	*	*	•	•	"	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekurde Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:53

Disinfection By-Products in Drinking Water per EPA 552.2

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01 (SWA-SW-CRW)		Wa	ter		Samı	oled: 04/1	9/06 11:30			
Monochloroacetic acid (MCAA)	EPA 552.2	ND		0.00150	mg/l	l×	6041285	04/28/06 10:03	05/02/06 17:19	
Monobromoacetic acid (MBAA)	•	ND		0.00100		*	•		•	
Dibromoacetic acid (DBAA)	*	ND	_	0.000500	*		*		•	
Dichloroacetic acid (DCAA)	"	0.0148		0.00150	•		•		**	
Trichloroacetic acid (TCAA)		0.0190		0.000500		•	u	•		
Total Haloacetic Acids (HAA5)	"	0.0337	_	0.00150		*	**	*	n	

Surrogate(s): 2,3-Dibromopropionic acid

99.8%

70 - 130 %

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 8 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: 157:005
Project Manager: Ted Ressler

Report Created:

06/05/06 11:53

Total Trihalomethanes in Drinking Water per EPA 524.2

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01	(SWA-SW-CRW)		Wa	iter		Samp	oled: 04/	19/06 11:30			
Bromodichloromet	hane	EPA 524.2	0.00156		0.000500	mg/l	lx	6041116	04/25/06 10:04	04/25/06 15:57	
Bromoform			ND		0.000500	"		"	**	н	
Chloroform			0.0205		0.000500	*	**	•	*	*	
Dibromochlorometh	nane		ND		0.000500	•	*	•		"	
Total Trihalometh	anes	II .	0.0220	_	0.000500	-		*		*	
Surrogate(s):	Dibromofluoromethane			112%		70	- 130 %	"		"	
	1,2-DCA-d4			111%		70	- 130 %	"		"	
	Toluene-d8			94.2%		70	- 130 %	"		"	
	4-BFB			85.2%		70	- 130 %	"		"	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 9 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:53

Physical Parameters per APHA/ASTM/EPA Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01	(SWA-SW-CRW)		Wa	iter		Samp	oled: 04/1	9/06 11:30			
Corrosivity		EPA 9040A	7.27	****		pH Units	lx	6040891	04/19/06 15:23	04/19/06 15:30	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 10 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Project Manager:

Sunrise Water Authority

Project Number: 157

157:005 Ted Ressler Report Created:

06/05/06 11:53

Microbiological Parameters per APHA Standard Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0805-01 ((SWA-SW-CRW)		Wat	er		Sam	pled: 04/1	9/06 11:30			
Total Coliforms		SM 9223	ND		1.00	/100 ml	lx	6040885	04/19/06 14:34	04/20/06 15:00	
E. Coli		*	ND		1.00	*	14	*	*	*	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

- Saran Frekwell

Page 11 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions
55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:53

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040892	Water P	reparation M	ethod: El	PA 200/30	05									
nalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6040892-BLK1)								Ext	acted:	04/19/06 15	:33			
Aluminum	EPA 200.7	ND		0.100	mg/l	lx		-					04/20/06 13:55	
Calcium		ND		0.100	**	-			-	*-				
Iron		ND		0.0100	•			-					*	
Magnesium		ND		0.100	-			-		-				
Nickel		ND		0.0500	**	**		-			-	-		
Potassium		ND		1.00	*	*							•	
Sodium	н	ND		1.00	"	"								
LCS (6040892-BS1)								Ext	acted:	04/19/06 15	5:33			
Aluminum	EPA 200.7	9.78		0 100	mg/l	lx		10.0	97.8%	(85-115)			04/20/06 13:48	
Calcium		10.4		0.100	-	"			104%			••		
Iron .	н	10.0	***	0.0100	•			•	100%	"		-	"	
Magnesium	**	10.2		0.100	**	**		•	102%				•	
Nickel	n	0.392		0.0500			-	0.400	98.0%	,,			ii .	
Potassium		9.35		1.00				10.0	93.5%					
Sodium	и	10.0		1.00	*	*		"	100%	"	-			
Duplicate (6040892-DUP1)				QC Source:	PPD0806-	01		Ext	acted:	04/19/06 15	:33			
Aluminum	EPA 200.7	ND		0.100	mg/l	1×	ND				1.45%	(20)	04/20/06 14:01	
Calcium		4.25	•	0.100			4.23				0.472%	(30)	"	
Iron	**	0.0391		0.0100	10		0.0392	_			0.255%	(20)	,,	
Magnesium		1.34		0.100		**	1.34				0.00%	(30)		
Nickel		ND	•	0.0500	a	"	ND				NR	(20)	"	
Potassium		ND		1.00		μ	ND				0.00%	(30)	"	
Sodium		4.07		1.00	•	•	4.03	-			0,988%		*	
Matrix Spike (6040892-MS1)				QC Source:	PPD0806-	D1		Extr	acted:	04/19/06 15	:33			
Aluminum	EPA 200.7	2.23	***	0.111	mg/l	lx	0 0624	2.21	98.1%	(75-125)		(04/20/06 14:08	
Calcium		15 9	•••	0.111	м	-	4.23	11.1	105%	(80-120)				
lron	19	4.49		0 0111		*	0.0392	4.42	101%	(75-125)	**		*	
Magnesium		12.5		0.111			1.34	11.1	101%	(80-120)			*	
Nickel	н	0.544		0.0556	M	**	ND	0.556	97.8%	(75-125)			,,	
Potassium		11.1		1.11	-		0.477	11.1	95.7%	(80-120)			*	
Sodium		15.4		1.11			4.03		102%	. ,				

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 12 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Project Manager:

Sunrise Water Authority

Project Number: 15

157:005 Ted Ressler Report Created: 06/05/06 11:53

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040893	Water P	reparation M	ethod: E	PA 200/30	005									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6040893-BLK1)								Extr	acted:	04/19/06 15	:40			
Antimony	EPA 200.8	ND		0.00100	mg/l	lx							04/29/06 07:44	
Arsenic	*	ND		0.00100	-				_		**			
Barium	•	ND		0.00100	**							(05/02/06 07:09	
Beryllium	**	ND		0.000500	**	**						1	04/29/06 07:44	
Cadmium		ND		0.000500	40								*	
Chromium	н	ND		0.00100	*		_	**	~~				•	
Copper	*	ND		0.00100		*							*	
Lead		ND	***	0.000500		"								
Manganese	р	ND		0.00200		-								
Selenium	"	ND		0 00100		-							u	
iilver		ND		0.00100									,,	
Thallium	**	ND		0.00100									н	
Cinc	**	ND		0.00500										
LCS (6040893-BS1)								Extra	acted:	04/19/06 15:	:40			
Antimony	EPA 200.8	0.0569		0 00100	mg/l	lx			114%	(85-115)		(04/29/06 08:01	
Arsenic	'n	0.106		0 00100	"			0.100	106%	,			"	
3arium		0.0995		0.00100					99.5%			(05/02/06 07:25	
Beryllium	0	0.0531		0.000500				0.0500	106%	*			04/29/06 08:01	
Cadmium	,	0.107	***	0.000500				0.100	107%			`	"	
Chromium		0.118		0.00100	.,				118%					BS-I
Copper		0.113		0.00100					113%			_	*	D 3-1
Lead	,,	0.110		0.000500					110%		-			
Manganese	el .	0.113		0.00200					113%		-			
Selenium	н	0.0490		0.00100				0.0500	98.0%				u	
ilver	м	0.0522		0.00100				0.0300	104%				**	
Thallium		0.0522		0.00100					100%					
Zinc		0.115		0.00500				0.100	115%					
Duplicate (6040893-DUP1)				QC Source:				Extra	cted: (04/19/06 15:	40			
Antimony	EPA 200.8	ND	•	0.00100	mg/l	lx	ND		•-				4/29/06 11:00	
Arsenic	**	0.0185		0.00100		*	0.0205			*-	10.3%		"	
Barium	n	0.155		0.00100		*	0.159				2.55%	" c	5/02/06 10:31	
Beryllium		ND		0.000500	•		ND			*-	NR	. 0	4/29/06 11:00	
Cadmium	**	ND		0.000500	**	"	ND				NR	**	*	
hromium	*	ND		0.00100	*	•	ND				5.90%			
Copper	н	ND	**-	0.00100	*	"	ND	~~		••	2.50%	"	н	
Lead	**	ND		0.000500	**	•	ND				1.54%	"		
Manganese	v	0.608		0.00200	"	•	0.619				1.79%	**		

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 13 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:53

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040893	Water P	reparation M	lethod: E	PA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (6040893-DUP1)				QC Source:	PPD0802-01			Extr	acted:	04/19/06 15	:40			
Selenium	EPA 200.8	ND		0.00100	mg/I	lx	ND	_	_		NR	(30)	04/29/06 11:00	
Silver	•	ND		0.00100			ND				NR	-	*	
Thallium	м	ND	***	0.00100	**	"	ND				NR		,	
Zinc	*	0.0117	***	0.00500		*	0.0128			-	8.98%	. "		
Matrix Spike (6040893-MS1)				QC Source:	PPD0802-01			Extr	acted:	04/19/06 15	:40			
Antimony	EPA 200.8	0.0638		0.00100	mg/l	1 x	ND	0.0500	128%	(70-130)			04/29/06 11:33	
Arsenic	**	0.131		0.00100			0.0205	0.100	110%				"	
Barium		0.257		0.00100	*		0.159	"	98.0%	*			05/02/06 11:02	
Beryllium		0.0531		0.000500	"	*	ND	0.0500	106%				04/29/06 11:33	
Cadmium		0.109		0.000500	**		ND	0.100	109%	**	-		*	
Chromium	**	0.130	***	0.00100	4	-	0.000214		130%	*				
Copper		0.112		0.00100	**		0 000930		111%					
Lead	"	0.0989		0.000500	*		0,000129		98.8%					
Manganese	,,	0.775		0.00200	4	٦,	0.619	"	156%				•	Q-03
Selenium	14	0.0504		0.00100	*	*	ND	0 0500	101%	*			•	
Silver	66	0.0540		0.00100		*	ND		108%	*				
Thallium	*	0.0450		0.00100	n		ND	*	90.0%	*			,	
Zinc		0.123	***	0.00500			0.0128	0.100	110%				0	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarain Frehwell

Sarah Rockwell, Project Manager

Page 14 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:53

Dissolved Metals per EPA 200 Series Methods - Laboratory Quality Control Results

			Test	America -	Portland,	OR								
QC Batch: 6041222	Water P	reparation M	ethod: E	PA 200/30	05 Diss									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (6041222-BLK1)								Ext	acted:	04/27/06 10	:07			
Iron	EPA 200.7	ND		0.0100	mg/l	lx							05/01/06 20:51	
Manganese	~	ND		0.0100	•	u							*	
LCS (6041222-BS1)								Ext	acted:	04/27/06 10	:07			
Iron	EPA 200.7	3.68		0.0100	mg/l	lx	-	3.98	92.5%	(85-115)			05/01/06 20:58	
Manganese		0.461		0.0100	•			0.500	92.2%	*				
Duplicate (6041222-DUP1)				QC Source:	PPD0737-	02		Ext	acted:	04/27/06 10	:07			
Iron	EPA 200.7	1.85		0.0100	mg/l	1×	1.82				1.63%	(20)	05/01/06 21:10	
Manganese		26.7		0.200		20x	26.4				1.13%	*	05/02/06 16:25	
Matrix Spike (6041222-MS1)				QC Source:	PPD0737-	02		Extr	acted:	04/27/06 10	:07			
Iron	EPA 200.7	5.32		0.0100	mg/l	1×	1.82	3.98	87.9%	(75-125)			05/01/06 21:17	
Manganese	*	26,4		0.200		20x	26.4	0.500	0.00%	**			05/02/06 16:31	MS-4
Matrix Spike (6041222-MS2)				QC Source:	PPD0846-	01		Exti	acted:	04/27/06 10	:07			
Iron	EPA 200.7	852		0.100	mg/l	10x	831	3.98	528%	(75-125)			05/02/06 17:36	MS-4
Manganese		34.7		0.100		-	34.1	0.500	120%					

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarais Erchwell Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400

Project Number:

157:005

Report Created:

Portland, OR 97204

Project Manager:

Ted Ressler

06/05/06 11:53

Total Mercury per EPA Method 245.1 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6041059	Water I	Preparation M	lethod: E	PA 245.1									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6041059-BLK1)			_		_			Extracted	: 04/24/06 1	0:21			
Mercury	EPA 245.1	ND		0.000200	mg/l	lx						04/24/06 13:16	
LCS (6041059-BS1)								Extracted	: 04/24/06 1	0:21			
Mercury	EPA 245 1	0.00549		0.000200	mg/l	1x		0.00500 1109	% (85-115)			04/24/06 13:18	
LCS Dup (6041059-BSD1)								Extracted	: 04/24/06 1	0:21			
Mercury	EPA 245.1	0.00522		0.000200	mg/l	lx		0.00500 1049	(85-115)	5 04%	(20)	04/24/06 13:21	
Duplicate (6041059-DUP1)				QC Source:	PPD0802-01			Extracted	: 04/24/06 1	0:21			
Mercury	EPA 245.1	ND		0 000200	mg/l	lx	ND	**		NR	(30)	04/24/06 13:24	
Matrix Spike (6041059-MS1)				QC Source:	PPD0802-01			Extracted	: 04/24/06 10	0:21			
Mercury	EPA 245.1	0.00513		0.000200	mg/l	lx	ND	0.00500 103%	6 (75-125)		-	04/24/06 13:26	
Matrix Spike Dup (6041059-MS	(D1)			QC Source:	PPD0802-01			Extracted	: 04/24/06 10	0:21			
Mercury	EPA 245.1	0.00507		0.000200	mg/l	lx	ND	0.00500 1019	6 (75-125)	1.18%	(20)	04/24/06 13:29	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saras Rockwell

Sarah Rockwell, Project Manager

Page 16 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Number: Project Manager: 157:005 Ted Ressler

Report Created: 06/05/06 11:53

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

OC Batch: 6040892	Water P	reparation M	ethod: Fl	PA 200/30	05									
QC Batch. 0040032			ctilou. Li	1 /4 200/30										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6040892-BLK1)								Extr	acted:	04/19/06 1	5:33			
Hardness (Ca)	SM 2340B-Ca	ND		0,250	mg/l	l×			-		-		04/27/06 13:52	
LCS (6040892-BS1)		_						Extr	acted:	04/19/06 1	5:33			
Hardness (Ca)	SM 2340B-Ca	26.0		0.250	mg/l	lx		25.0	104%	(85-115)			04/27/06 13:52	
Duplicate (6040892-DUP1)				QC Source:	PPD0806-0	1		Extr	acted:	04/19/06 1	5:33			
Hardness (Ca)	SM 2340B-Ca	10.6		0.250	mg/l	lx	10.6				0.00%	% (20)	04/27/06 13:52	
Matrix Spike (6040892-MS1)				QC Source:	PPD0806-0	1		Extr	acted:	04/19/06 15	5:33			
Hardness (Ca)	SM 2340B-Ca	39.7		0.278	mg/l	lx	10.6	27.8	105%	(75-125)			04/27/06 13:52	

QC Batch: 6040896	. Water F	reparation M	lethod: Ge	eneral Pi	eparation								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6040896-BLK1)								Extracted:	04/19/06 15	5:53			
Total Alkalinity	SM 2320B	ND		5,00	mg/L as CaCO3	lx						04/20/06 17:50	
Bicarbonate Alkalinity	•	ND		5.00	mg/l	u						p.	
Carbonate Alkalinity	Ħ	ND		5.00	н	n						*	
LCS (6040896-BS1)								Extracted:	04/19/06 15	5:53			
Total Alkalinity	SM 2320B	185		5.00	mg/L as CaCO3	lx	-	200 92.5%	(85-115)			04/20/06 17:50	
LCS (6040896-BS2)								Extracted:	04/19/06 15	5:53			
Total Alkalinity	SM 2320B	100	***	5.00	mg/L as CaCO3	lx		100 100%	(85-115)			04/20/06 17:50	
Duplicate (6040896-DUP1)				QC Source	: PPD0515-0	1		Extracted:	04/19/06 15	5:53			
Carbonate Alkalinity	SM 2320B	ND	***	5.00	mg/l	lx	ND			NR	(20)	04/20/06 17:50	
Total Alkalinity		75.3	•••	5.00	mg/L as CaCO3	ч	75.6			0.3989	(30)	м	
Bicarbonate Alkalinity	**	75.3		5,00	mg/l		75.6		••	0,3989	(20)		

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarais Rochwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:53

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040899	Water P	reparation M	fethod: G	eneral Pre	paration									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6040899-BLK1)								Extra	acted:	04/19/06 16	5:08			
Turbidity	EPA 180.1	ND		0.200	NTU	lx			-	-			04/19/06 16:15	
LCS (6040899-BS1)					_			Extra	acted:	04/19/06 16	5:08			
Furbidity	EPA 180 I	19.8		0.200	NTU	1x		20.0	99.0%	(85-115)	-		04/19/06 16:15	
Duplicate (6040899-DUP1)				QC Source:	PPD0746-0)1		Extra	acted:	04/19/06 16	6:08_			
Turbidity	EPA 180.1	1.98		0.200	NTU	lx	2.00				1,01%	6 (30)	04/19/06 16:15	

QC Batch: 6040904	Water P	reparation M	lethod: Ge	eneral Preparation	1						
Analyte	Method	Result	MDL*	MRL Units	Dil	Source Result	Spike % Amt REC	(Limits) % RPD	(Limit	s) Analyzed	Notes
Blank (6040904-BLK1)							Extracted:	04/19/06 20:39			
Color	EPA 110.2	ND		5.00 Color Units	lx	-				04/19/06 20:41	
LCS (6040904-BS1)							Extracted:	04/19/06 20:39			
Color	EPA 110.2	20.0		5.00 Color Units	lx		20.0 100%	(80-120)		04/19/06 20:41	
Duplicate (6040904-DUP1)				QC Source: PPD0797	-01_		Extracted:	04/19/06 20:39			
Color	EPA 110.2	ND		5 00 Color Units	lx	ND			(30)	04/19/06 20:41	

QC Batch: 6040905	Water P	reparation M	Iethod: G	eneral Pre	paration		_						
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6040905-BLK1)								Extracted:	04/19/06 2	1:00			
Chlorine Residual (Total)	SM 4500-Cl G	ND	•••	0.100	mg/l	lx						04/19/06 21:21	
LCS (6040905-BS1)		_						Extracted:	04/19/06 2	1:00			
Chlorine Residual (Total)	SM 4500-Cl G	0.942		0.100	mg/l	lx		1,00 94.2%	6 (85-115 <u>)</u>			04/19/06 21:21	
Duplicate (6040905-DUP1)				QC Source:	PPD0805-0	i		Extracted:	04/19/06 2	1:00			
Chlorine Residual (Total)	SM 4500-Cl G	0.500		0.100	mg/l	lx	0.511			2.18%	(30)	04/19/06 21:21	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarain Rockwell

Page 18 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: 157:005

Report Created:

fanager: Ted Ressler 06/05/06 11:53

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040932	Water F	reparation N	lethod: Ge	neral Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6040932-BLK1)								Ext	racted:	04/20/06 1	1:16			
Threshold Odor Number	EPA 140.1	ND		0.20	TON	lx		-				(04/20/06 12:00	

QC Batch: 6041023	Water P	reparation M	ethod: G	eneral Pro	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6041023-BLK1)								Extra	acted:	04/21/06 22	2:05			
Total Organic Carbon	SM 5310C	ND		1.00	mg/l	lx							04/21/06 23:34	
LCS (6041023-BS1)			_					Extra	acted:	04/21/06 22	2:05			
Total Organic Carbon	SM 5310C	17 5		1.00	mg/l	lx		20.0	87.5%	(85-115)			04/21/06 23:48	
Duplicate (6041023-DUP1)				QC Source:	PPD0510-	01		Extra	acted:	04/21/06 22	:05			
Total Organic Carbon	SM 5310C	ND		1.00	mg/l	lx	ND	-			NR	(30)	04/22/06 00:04	
Matrix Spike (6041023-MS1)				QC Source:	PPD0510-	01		Extra	acted:	04/21/06 22	:05			
Total Organic Carbon	SM 5310C	24.8		1.01	mg/l	lx	0.510	25.3	96.0%	(80-130)			04/22/06 00:19	

QC Batch: 6041037	Water P	reparation M	ethod: G	eneral Pre	paration					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits) % (Limi	its) Analyzed Note
Blank (6041037-BLK1)								Extracted:	04/24/06 07:53	
Silica (SiO2)	SM 4500-Si F	ND		0.500	mg/l	lx			h	04/24/06 12:18
LCS (6041037-BS1)		_						Extracted:	04/24/06 07:53	
Silica (SiO2)	SM 4500-Si F	42.7		0.500	mg/l	İx		40.0 107%	(85-115)	04/24/06 12:18
Duplicate (6041037-DUP1)				QC Source:	PPD0570-	08		Extracted:	04/24/06 07:53	
Silica (SiO2)	SM 4500-Si F	55.9		1.00	mg/l	2x	55.6		0.538% (20)	04/24/06 12:18
Matrix Spike (6041037-MS1)				QC Source:	PPD0570-	08		Extracted:	04/24/06 07:53	
Silica (SiO2)	SM 4500-Si	75.8		1.00	mg/l	2x	55,6	20.0 101%	(75-125)	04/24/06 12:18

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

- Saran Rockwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number:

157:005

Project Manager: Ted Ressler

Report Created: 06/05/06 11:53

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6041047	Water Preparation Method: General Preparation													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt R	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6041047-BLK1)								Extrac	ted:	04/24/06 08	:57			
Total Dissolved Solids	SM 2540C	ND		10.0	mg/l	lx			-				04/24/06 13:35	
LCS (6041047-BS1)								Extrac	ted:	04/24/06 08	:57			
Total Dissolved Solids	SM 2540C	102		10.0	mg/l	lx		100 I	02%	(85-115)			04/24/06 13:35	
Duplicate (6041047-DUP1)				QC Source:	PPD0805-	D1		Extrac	ted:	04/24/06 08	:57			
Total Dissolved Solids	SM 2540C	48.0		10.0	mg/l	lx	48.0		_		0.009	6 (30)	04/24/06 13:35	

QC Batch: 6041048	Water P	1												
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6041048-BLK1)								Ext	racted:	04/24/06 09	:02			
Total Suspended Solids	EPA 160.2	ND		10.0	mg/l	lx	**						04/24/06 15:25	
LCS (6041048-BS1)								Ext	racted:	04/24/06 09	:02			
Total Suspended Solids	EPA 160.2	50.0		10.0	mg/I	lx		50.0	100%	(80-120)			04/24/06 15:25	
Duplicate (6041048-DUP1)				QC Source:	PPD0805	-01		Ext	racted:	04/24/06 09	:02			
Total Suspended Solids	EPA 160.2	ND		10.0	mg/l	lx	ND				NR	(20)	04/24/06 15:25	

QC Batch: 6041172	Water P	reparation M	ethod: G	eneral Pre	paration								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RI		% RPD	(Limits)	Analyzed	Notes
Blank (6041172-BLK1)								Extracte	d: 04/26/06	10:29			
Cyanide (total)	EPA 335.4	ND		0.00500	mg/l	ix						04/28/06 16:56	
LCS (6041172-BS1)								Extracte	d: 04/26/06	10:29			
Cyanide (total)	EPA 335.4	0.422		0.00500	mg/l	lx		0.400 100	5% (90-110)	-	04/28/06 16:56	_
Duplicate (6041172-DUP1)				QC Source:	PPD0800-0	D1		Extracte	d: 04/26/06	10:29			
Cyanide (total)	EPA 335.4	ND		0.00500	mg/l	lx	ND				(30)	04/28/06 16:56	
Matrix Spike (6041172-MS1)				QC Source:	PPD0800-0	01		Extracte	d: 04/26/06	0:29			
Cyanide (total)	EPA 335.4	0.282		0.00500	mg/l	lx	ND	0.400 70.	5% (80-120)		04/28/06 16:56	Q-01
Matrix Spike Dup (6041172-MS	5D1)			QC Source:	PPD0800-0)1		Extracte	d: 04/26/06	10:29			

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frehwell

Sarah Rockwell, Project Manager

Page 20 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number:

157:005

Report Created: 06/05/06 11:53

Project Manager: Ted Ressler

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results TestAmerica - Portland, OR

QC Batch: 6041172 Water Preparation Method: **General Preparation**

REC (Limits) % (Limits) Analyzed Source Result Spike Amt Analyte Method Result MDL* MRL Units Dil Notes

Matrix Spike Dup (6041172-MSD1) QC Source: PPD0800-01 Extracted: 04/26/06 10:29

Cyanide (total) EPA 335.4 0.309 0.00500 mg/l ND 0.400 77.2% (80-120) 9.14% (20) 04/28/06 16:56 lx Q-01

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekwell

Sarah Rockwell, Project Manager

Page 21 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: 157:005 Ted Ressler Report Created: 06/05/06 11:53

Anions per EPA Method 300.0 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040844	Water P	reparation M	lethod: W	et Chem											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes	
Blank (6040844-BLK1)								Extra	acted:	04/19/06 08	3:33				
Nitrate/Nitrite-Nitrogen	EPA 300.0	ND		0.200	mg/l	lx		_				-	04/19/06 10:48		
Sulfate		ND	***	1.00	*	н							н		
Chloride		ND		0.500		*							**		
Nitrite-Nitrogen	а	ND		0,100	e e				~-				"		
Nitrate-Nitrogen	"	ND		0.100	U	м						-	н		
LCS (6040844-BS1)								Extra	acted:	04/19/06 08	1:33				
Sulfate	EPA 300.0	32.0		1.00	mg/l	lx		30.0	107%	(90-110)			04/19/06 11:04		
Chloride	п	10.4		0 500		"		10.0	104%	к			ч		
Nitrite-Nitrogen	n .	5.09		0.100	м	p		5.00	102%	ja.			14		
Nitrate-Nitrogen	u	5.16		0.100	"	n		"	103%	н					
Duplicate (6040844-DUP1)				QC Source:	PPD0570-6	08		Extra	acted:	04/19/06 08	3:33				
Sulfate	EPA 300.0	20.7		1.00	mg/l	l×	20.7			-	0.00%	(30)	04/19/06 11:19		
Nitrate/Nitrite-Nitrogen	11	8.02		0.200	*	н	8.03				0.1259	6 "	и		
Nitrite-Nitrogen		ND		0.100	n	-	ND				NR		н		
Nitrate-Nitrogen	16	8.02		0.100			8.03				0.125%	6 -	21		
Chloride	u	11.8		0.500	"	,	11.8				0.00%	· "	n		
Matrix Spike (6040844-MS1)				QC Source:	PPD0570-6	08		Extra	acted:	04/19/06 08	3:33				
Chloride	EPA 300.0	14.2		0.556	mg/l	lx	11.8	2.22	108%	(80-120)			04/19/06 11:35		
Sulfate	и	25.4		1.11			20.7	4.44	106%	v			н		
Nitrate-Nitrogen	-	10.4		0.111	"		8.03	2.22	107%	*					
Nitrite-Nitrogen	н	2.23		0 111	u	"	ND	"	100%	•					
Matrix Spike (6040844-MS2)				QC Source:	PPD0805-0) I	Extracted: 04/19/06 08:33								
Chloride	EPA 300.0	5.71	***	0.556	mg/l	lx	3.33	2.22	107%	(80-120)			04/19/06 20:40		
Nitrate-Nitrogen	10	2.56		0.111	u		0.230	н	105%	*					
Nitrite-Nitrogen	**	2.03		0.111	"	U	ND		91.4%	"		_			
Sulfate	**	6.56		1.11	,	**	2.21	4.44	98.0%	"			•		
Matrix Spike Dup_(6040844-M:	SD1)			QC Source:	PPD0570-0	08		Extra	icted:	04/19/06 08	:33				
Nitrate-Nitrogen	EPA 300.0	10.4		0.111	mg/l	1x	8.03	2.22	107%	(80-120)	0.00%	(20)	04/19/06 11:50		
Chloride	0	14.2	_	0 556	•		11.8	**	108%		0.00%	, "	u		
Sulfate	n	25.5		1.11	"		20.7	4.44	108%	•	0.393%	6 "	·		
Nitrite-Nitrogen		2.23		0.111			ND		100%		0.00%				

TestAmerica - Portland, OR

The results in this report apply to the somples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saras Rockwell

Sarah Rockwell, Project Manager

Page 22 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Number: Project Manager: 157:005 Ted Ressler

Report Created: 06/05/06 11:53

Disinfection By-Products in Drinking Water per EPA 552.2 - Laboratory Quality Control Results

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6041285-BLK1)								Éxtrac	ted:	04/28/06 10	:03			
Monochloroacetic acid (MCAA)	EPA 552.2	ND		0.00150	mg/l	lx						-	05/02/06 15:06	
Monobromoacetic acid (MBAA)	*	ND		0.00100	и	"							•	
Dibromoacetic acid (DBAA)		ND		0.000500					_				•	
Dichloroacetic acid (DCAA)	*	ND		0.00150	и	**							•	
Frichloroacetic acid (TCAA)		ND		0.000500	*								•	
otal Haloacetic Acids (HAAS)	•	ND		0.00150	**	•								
Surrogate(s): 2,3-Dibromopropio	nic acid	Recovery	96.2%	Lin	nits: 70-130%	"							05/02/06 15:06	
LCS (6041285-BS1)								Extrac	ted:	04/28/06 10	:03			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00790		0.00150	mg/l	1x		0.00750 1	05%	(70-130)		(05/02/06 14:33	
Monobromoacetic acid (MBAA)		0.00491		0.00100		**		0.00500 9	8.2%	н			•	
Dibromoacetic acid (DBAA)		0.00277		0.000500				0,00250 1	11%	*				
Dichloroacetic acid (DCAA)	н	0.00873		0.00150	*	**		0.00750 I	16%	-	••			
richloroacetic acid (TCAA)	,	0.00301	~~	0.000500				0.00250 1	20%					
Surrogate(s): 2,3-Dibromopropio	nic acid	Recovery:	125%	Lim	its: 70-130%	4							05/02/06 14:33	-
Matrix Spike (6041285-MS1)				QC Source:	PPD0800-01			Extrac	ted:	04/28/06 10:	:03			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00762		0.00150	mg/l	lx	ND	0.00750 1	02%	(70-130)		(05/02/06 16:12	
Monobromoacetic acid (MBAA)		0.00559		0.00100	ч		ND	0.00500 1	12%	**		••	**	
Dibromoacetic acid (DBAA)	•	0.00282		0.000500	19	•	0.000147	0.00250 1	07%	,			•	
Dichloroacetic acid (DCAA)	-	0.0104		0.00150	18		0.00286	0.00750 1	01%	**			**	
richloroacetic acid (TCAA)		0.00485		0.000500	"	99	0.00211	0.00250 1	10%	**		-	*	
Surrogate(s): 2.3-Dibromopropio	nic acid	Recovery:	105%	Lin	iiis 70-130%	**							05/02/06 16:12	
Matrix Spike Dup (6041285-N	(SD1)			QC Source:	PPD0800-01			Extrac	ted:	04/28/06 10:	:03			
Aonochloroacetic acid (MCAA)	EPA 552.2	0.00737		0.00150	mg/l	lx	ND	0.00750 98	8.3%	(70-130)	3.34%	(30)	05/02/06 16:45	
Monobromoacetic acid (MBAA)		0.00524		0.00100			ND	0.00500 1	05%		6.46%	. "	•	
Dibromoacetic acid (DBAA)	-	0.00271		0.000500	•		0.000147	0.00250 1	03%		3.98%		н	
Dichloroacetic acid (DCAA)	*	0.0102		0.00150		"	0.00286	0.00750 9	7.9%	-	1.94%		н	
richloroacetic acid (TCAA)		0.00448		0.000500		**	0.00211	0.00250 9	4 8%		7.93%	*		

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Surais Frehwell

Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:53

Total Trihalomethanes in Drinking Water per EPA 524.2 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batc	h: 6041116	Water	Preparation	Method: I	EPA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (60411)	(6-BLK1)								Extr	acted:	04/25/06 10	:04	_		
Bromodichlorometh	ane	EPA 524.2	ND		0.000500	mg/l	lx	-					-	04/25/06 13:59	
Bromoform		-	ND	~-	0.000500	-								-	
Chloroform			ND		0.000500	*	"						*-	4	
Dibromochlorometh	ane	и	ND		0.000500	*	"							•	
Total Trihalomethan	es	4	ND		0.000500	**	"							*	
Surrogate(s):	Dibromofluoromethane	-	Recovery:	104%	Lin	nits: 70-130%	"							04/25/06 13:59	
	1.2-DCA-d4			112%		70-130%	**							~	
	Toluene-d8			97.0%		70-130%	"							"	
	4-BFB			78.0%		70-130%	"							"	
LCS (6041116	-BS1)								Extr	acted:	04/25/06 10	:04			
Bromodichlorometha		EPA 524.2	0.00557		0.000500	mg/l	lx		0.00500	111%	(70-130)			04/25/06 12:34	
Bromoform			0.00496		0.000500				•	99.2%					
Chloroform			0 00551		0.000500	-				110%	n				
Dibromochlorometh	ane	"	0.00508		0 000500					102%	w	-			
Surrogate(s):	Dibromofluoromethane	-	Recovery:	101%	Lin	nits: 70-130%	**							04/25/06 12:34	-
	1.2-DCA-d4			101%		70-130%	"							**	
	Toluene-d8			99.6%		70-130%	"							"	
	4-BFB			110%		70-130%	"							*	
Matrix Spike	(6041116-MS1)				QC Source:	PPD0615-01			Extr	acted:	04/25/06 10	:04			
Bromodi chlorometh:	ane	EPA 524.2	0.0272		0.000500	mg/l	lx	ND	0.0250	109%	(70-130)			04/25/06 20:42	
Bromoform			0.0218		0.000500			ND		87.2%				*	
Chloroform		**	0.0270		0.000500			ND		108%	,	_		*	
Dibromochlorometh	ane		0.0246		0.000500			ND		98.4%	**				
Surrogate(s):	Dibromofluoromethane		Recovery:	101%	Lin	nits: 70-130%	19							04/25/06 20:42	
	1,2-DCA-d4			97.2%		70-130%	"							**	
	Toluene-d8			101%		70-130%	"							"	
	4-BFB			106%		70-130%	"							"	
Matrix Spike D	Oup (6041116-MSD	01)			QC Source:	PPD0615-01			Extr	acted:	04/25/06 10	:04			
Bromodichloromeths	ane	EPA 524.2	0.0264		0.000500	mg/l	lx	ND	0,0250	106%	(70-130)	2.99%	(30)	04/25/06 21:10	
Bromoform		,	0.0206		0.000500	*	"	ND	-	82.4%		5.66%	. "		
Chloroform		"	0.0258		0.000500		*	ND	"	103%		4.55%			
Dibromochlorometh	ane	u	0.0243	***	0.000500	-		ND	-	97.2%		1.23%	, "		
Surrogate(s):	Dibromofluoromethane		Recovery:	103%	Lin	nits: 70-130%	"							04/25/06 21:10	
	1,2-DCA-d4			101%		70-130%	"							"	
	Toluene-d8			103%		70-130%	"							"	
	4-BFB			102%		70-130%	"							er .	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Surais Frehwell Sarah Rockwell, Project Manager

Page 24 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

0.697% (30)

Ground Water Solutions

Project Name:

Sunrise Water Authority

7.20

55 SW Yamhill St, Suite 400 Portland, OR 97204

Согтовічіту

Project Number: Project Manager: 157:005 Ted Ressler

lx

Report Created: 06/05/06 11:53

04/19/06 15:30

Physical Parameters per APHA/ASTM/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

7.15

EPA 9040A

QC Batch: 6040891	Water	Preparation M	lethod: G	eneral Pro	paration							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits)	% RPD	(Limits)	Analyzed	Notes
Dunlicate (6040891-DUP1)				QC Source:	PPD0798-01	1		Extracted: 04/19/06	5:23			

pH Units

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Rockwell

Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Number: Project Manager 157:005 Ted Ressler Report Created:

06/05/06 11:53

Notes and Definitions

Report Specific Notes:

BS-1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the laboratory control limits. Analyte not detected, data not impacted.

M-04 Sample Filtered through 0.45 micron filter in Laboratory prior to analysis.

MS-4 Due to high levels of analyte in the sample, the Matrix Spike/Matrix Spike Duplicate calculation does not provide useful spike recovery information. See Laboratory Control Sample.

Q-01 The matrix spike recovery, and/or RPD, for this QC sample is outside of established control limits. Failure of a matrix spike QC sample does not represent an out-of-control condition for the batch.

Q-03 The matrix spike recovery, and/or RPD, for this QC sample cannot be accurately calculated due to the high concentration of analyte already present in the source sample.

Laboratory Reporting Conventions:

dry

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries)

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.

Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

- Sarais Richwell

Sarah Rockwell, Project Manager

Page 26 of 26

Neilson Research Corporation

Environmental Testing Laboratory

04/25/06

Sarah Rockwell
North Creek Analytical - Portland
9405 SW Nimbus Avenue
Beaverton, OR 97008

TEL: (503) 906-9200 FAX (503) 906-9210

RE: NCA # PPD0805-01

Dear Sarah Rockwell:

Order No.: 0604394

Neilson Research Corporation received 1 sample(s) on 04/20/06 for the analyses presented in the following report.

The results relate only to the parameters tested or to the sample as received by the laboratory. This report shall not be reproduced except in full, without the written approval of Neilson Research Corporation. If you have any questions regarding these test results, please feel free to call.

Sincerely,

Neilson Research Corporation

Fay L. Fowler

Project Manager

They broles

Neilson Research Corporation

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis Report

RELAP 100016 EPA **OR**00028

North Creek Analytical - Portland

9405 SW Nimbus Avenue

Beaverton, OR 97008

Lab Order: 0604394

NRC Sample ID: 0604394-01B

Collection Date: 04/19/06 11:30:00 AM

Received Date: 04/20/06 8:50:00 ANi

Reported Date: 04/25/06 11:52:35 AM

Sample Information:

NCA # PPD0805-01

Client Sample ID: PPD0805-01

Collectors Name: Client

Sample Location: SWA-SW-CRW

Source: Sunrise ASR

ANALYTICAL RESULTS

Analyses	Method A	NELA(Accredit	ed Result	Qual	MRL	Units	EPA Limit	Date Analyzed	Analyst
Fluoride	EPA 300.0	A	ND		0.2	mg/L	2 - 4	04/20/06	KRM

Notes:

ND - Not Detected at the MRL

N.L. - No Limit

MRL - Minimum Reporting Limit

orporation	
()	
Research (
Neilson	

The second control of the second control of North Creek Analytical - Portland CLIENT:

0604394 Work Order:

NCA # PPD0805-01 Project:

ANALYTICAL QC SUMMARY REPORT

The second secon

Date: 25-Apr-06

TestCode: EPA300_W

Sample ID MB		SampType: MBLK	TestCode	TestCode: EPA300_W	Units: mg/L		Prep Date:			RunNo: 29474	474	
Client ID: ZZZZZ	22	Batch ID: R29474	TestNo	TestNo: EPA 300.0		ď	Analysis Date: 04/20/06	04/20/06		SeqNo: 442763	2763	
Analyte		Result	MRL	SPK value SF	SPK Ref Val	%REC	LowLimit H	LowLimit HighLimit RPD Ref Val	O Ref Val	%RPD	RPDLimit	Qual
Fluoride		QN	0.200									
Sample ID LCS		SampType: LCS	TestCod	TestCode: EPA300_W	Units: mg/L		Prep Date:			RunNo: 29474	474	
Client ID: ZZZZZ	72	Batch ID: R29474	TestN	TestNo: EPA 300.0		4	Analysis Date: 04/20/06	04/20/06		ŞeqNo: 442764	2764	
Analyte		Result	MRL	SPK value SF	SPK Ref Val	%REC	LowLimit HighLimit	lighLimit RPI	RPD Ref Val	%RPD	RPDLimit	Qual
N Fluoride		2.607	0.200	2.5	0	104	06	110				
Sample ID 0604405-01AMS	4405-01AMS	SampType: MS	TestCod	TestCode: EPA300_W	Units: mg/L		Prep Date:			RunNo: 29474	474	
Client ID: ZZZZZ	77	Batch ID: R29474	TestN	TestNo: EPA 300.0		4	Analysis Date: 04/20/06	04/20/06		SeqNo: 442786	2786	
G Analyte		Result	MRL	SPK value SPK Ref Val	γK Ref Val	%REC	LowLimit F	%REC LowLimit HighLimit RPD Ref Val	D Ref Val	%RPD	RPDLimit	Qual
of 7		4.801	0.200	3.75	1.13	97.9	80	120				
Sample ID 0604405-01AMSD	4405-01AMSD	SampType: MSD	TestCod	TestCode: EPA300_W	Units: mg/L		Prep Date:			RunNo: 29474	474	
Client ID: ZZZZZ	22	Batch ID: R29474	TestN	TestNo: EPA 300.0		Q.	Analysis Date: 04/20/06	04/20/06		SeqNo: 442787	2787	
Analyte		Result	MRL	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	D Ref Val	%RPD	RPDLimit	Qual
Fluoride		4.934	0.200	3.75	1.13	101	80	120	4.801	2.74	20	

Not Detected at the Minimum Reporting Limit Value above quantitation range N ON Qualifiers:

Holding times for preparation or analysis exceeded H &

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits

Neilson Research Corporation

North Creek Analytical - Portland CLIENT:

0604394 Work Order: NCA # PPD0805-01

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: MBAS

Sample ID MBLK	SampType: MBLK	TestCo	TestCode: MBAS	Units: mg/L		Prep Date:	ie.		RunNo: 29500	
Client ID: ZZZZZ	Batch ID: R29500	Test	TestNo: SM 5540C			Analysis Da	Analysis Date: 04/20/06		SeqNo: 443217	
Analyte	Result	MRL	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD RPDLimit	Qual
MBAS	QN	0.10								
Sample ID LCS	SampType: LCS	TestCo	TestCode: MBAS	Units: mg/L		Prep Date.	.e.		RunNo: 29500	
Client ID: ZZZZZ	Batch ID: R29500	Test	TestNo: SM 5540C			Analysis Da	Analysis Date: 04/20/06		SeqNo: 443218	
Analyte	Result	MRL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val) Ref Val	%RPD RPDLimit	Qual
Z MBAS	0.5010	0.10	0.482	0	104	80	120			
Sample ID 0604394-01AMS	SampType: MS	TestCo	TestCode: MBAS	Units: mg/L		Prep Date:	نو		RunNo: 29500	
Client ID: PPD0805-01	Batch ID: R29500	Test	TestNo: SM 5540C			Analysis Da	Analysis Date: 04/20/06		SeqNo: 443221	
Φ Analyte	Result	MRL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val) Ref Val	%RPD RPDLimit	Qual
of 7	0.5170	0.10	0.5	0.0284	97.7	80	120			

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H × Not Detected at the Minimum F.eporting Limit Value above qua..titation range B B Qualiffers:

Analyte detected below quantitation limits - s

Spike Recovery outside accepted recovery limits

Page 2 of 2

Qual

%RPD RPDLimit

LowLimit HighLimit RPD Ref Val

%REC 106

SPK value SPK Ref Val

MRL 0.10

Result 0.5560

Analyte MBAS

TestNo: SM 5540C

Batch ID: R29500

SampType: MSD

Sample ID 0604394-01AMSD Client ID: PPD0805-01

TestCode: MBAS

Analysis Date: 04/20/06

Prep Date:

Units: mg/L

7.27

0.517

120

8

0.0284

0.5

SeqNo: 443222 RunNo: 29500

SUBCONTRACT ORDER

North Creek Analytical - Portland PPD0805

SENDING LABORATORY:

North Creek Analytical - Portland

9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: S

Sarah Rockwell

RECEIVING LABORATORY:

Neilson Research Corp. 245 S. Grape St. Medford, OR 97501 Phone :541-770-5678 Fax: 541-770-2901

Analysis Due Expires Laboratory ID Comments 0604394

 Sample ID: PPD0805-01
 Water
 Sampled:04/19/06 11:30

 DW MBAS - SUB
 05/02/06 23:59
 04/21/06 11:30
 DIA

 DW IC Fluoride (300)
 05/02/06 23:59
 05/17/06 11:30
 DIB

 Containers Supplied:
 1L Poly - Unpres (W)
 250 mL Poly - Unpres. (X

2.10c cooler of la

Released By Date Received By

Released By

Date

Received By

Date

		_
		-
		_
		(44)
		_
		-
		-
		_
		_
		66
		_
		and a second
		_
		(0)
	•	400
		400
		(3)
		-
		_
		478
		6
		400
	•	
		-
		-
		-

Analytical Data Package Prepared For

North Creek Analytical

Radiochemical Analysis By

STL Richland

2800 G.W. Way, Richland Wa, 99354, (509)-375-3131.

Assigned Laboratory Code:

Data Package Contains 19 Pages

Report No.: 32207

SDG No.	Order No.	Client Sample ID (List Order)	Lot-Sa No.	Work Order	Report DB ID	Batch No.
31430		PPD0805-01	J6D200273-2	H3PNP1AA	9H3PNP10	6110559
		PPD0805-01	J6D200273-1	H3PM51AE	9H3PM510	6114557
		PPD0805-01	J6D200273-1	H3PM51AD	9H3PM510	6114559
		PPD0805-01	J6D200273-1	H3PM51AA	9H3PM510	6114561
		PPD0805-01	J6D200273-1	H3PM51AC	9H3PM510	6114562
		PPD0806-01	J6D200273-3	H3PNR1AA	9H3PNR10	6110559
		PPD0806-01	J6D200273-4	H3PN21AE	9H3PN210	6114557
		PPD0806-01	J6D200273-4	H3PN21AD	9H3PN210	6114559
		PPD0806-01	J6D200273-4	H3PN21AA	9H3PN210	6114561
		PPD0806-01	J6D200273-4	H3PN21AC	9H3PN210	6114562

Certificate of Analysis

STL Richland 2800 George Washington Way Richland, WA 99352

Tel: 509 375 3131 Fax: 509 375 5590

www.stl-inc.com

May 26, 2006

North Creek Analytical - Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Attention: Sarah Rockwell

Date Received

April 20, 2006

Sample Number/Matrix

Two (2) Waters

SDG Number

31430

Project Number

PPD0805-01, PPD0806-01

CASE NARRATIVE

I. Introduction

On April 20, 2006, two water samples were received at the STL Richland (STLR) laboratory for radiochemical analysis. Upon receipt, the samples were assigned the STLR identification numbers as described on the cover page of the Analytical Data Package. These samples were assigned to Lot Number J6D200276.

II. Sample Receipt

The samples were received in good condition and no anomalies were noted during check-in.

III. Analytical Results/Methodology

The analytical results for this report are presented by laboratory sample ID. Each set of data includes sample identification information; analytical results and the appropriate associated statistical uncertainties.

The analyses requested were:

Gas Proportional Counting

Gross Alpha by method RICH-RC-5014 (EPA 900.0) Gross Beta by method RICH-RC-5014 (EPA 900.0) Radium-228 by method STL RICH-RC-5005 (EPA 904.0) Liquid Scintillation Counting Radon-222 by Method RICHRC-5082 (EPA 913.0) Alpha Scintillation

Radium-226 by method RICH-RC-5005 (EPA 903.1)

North Creek Analytical - Portland April 7, 2006

IV. Quality Control

The analytical result for each analysis performed includes a minimum of one laboratory control sample (LCS), and one reagent blank sample analysis. Any exceptions have been noted in the "Comments" section.

V. Comments

Gross Alpha by method RICH-RC-5014:

The LCS, batch blank, matrix spike, sample, and sample duplicate results are within acceptance limits.

Gross Beta by method RICH-RC-5014:

The LCS, batch blank, matrix spike, sample, and sample duplicate results are within acceptance limits.

Radium-228 Analysis:

The LCS, batch blank, sample and sample duplicate results are within acceptance limits.

Radium-226 by method RICH-RC-5005:

The LCS, batch blank, sample, and sample duplicate results are within acceptance limits.

Radon-222 by Method EPA 913.0:

The LCS has a 147% recovery. All the sample results are below CRDL. The samples cannot be reanalyzed due to holding time violations. Data accepted. Except as noted, the LCS, batch blank, sample and sample duplicate results are within acceptance limits.

I certify that this Certificate of Analysis is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. The Laboratory Manager or a designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Reviewed and approved:

Sherryl A. Adam Project Manager **Drinking Water Method Cross References**

	DRINKING WAT	ER ASTM METHOD CROSS REFERENCES
Referenced Method	Isotope(s)	STL Richland's SOP number
EPA 901.1	Cs-134, I-131	RICH-RC-5017
EPA 900.0	Alpha & Beta	RICH-RC-5014
EPA 903.1	Ra-226	RICH-RC-5005
EPA 904.0	Ra-228	RICH-RC-5005
EPA 905.0	Sr89/90	RICH-RC-5006
ASTM D2460	Total Radium	RICH-RC-5027
Standard Method 7500-U-C & ASTM D5174	Uranium	RICH-RC-5058
EPA 906.0	Tritium	RICH-RC-5007
NOTE:		
The Gross Alpha LCS is prepared with Am-2-		
The Gross Beta LCS is prepared with Sr/Y-96	0 (unless otherwise	e specified in the case narrative)

Uncertainty Estimation

STL Richland has adopted the internationally accepted approach to estimating uncertainties described in "NIST Technical Note 1297, 1994 Edition". The approach, "Law of Propagation of Errors", involves the identification of all variables in an analytical method which are used to derive a result. These variables are related to the analytical result (R) by some functional relationship, R = constants * f(x,y,z,...). The components (x,y,z) are evaluated to determine their contribution to the overall method uncertainty. The individual component uncertainties (u_i) are then combined using a statistical model that provides the most probable overall uncertainty value. All component uncertainties are categorized as type A, evaluated by statistical methods, or type B, evaluated by other means. Uncertainties not included in the components, such as sample homogeneity, are combined with the component uncertainty as the square root of the sum-of-the-squares of the individual uncertainties. The uncertainty associated with the derived result is the combined uncertainty (u_c) multiplied by the coverage factor (1,2, or 3).

When three or more sample replicates are used to derive the analytical result, the type A uncertainty is the standard deviation of the mean value (S/vn), where S is the standard deviation of the derived results. The type B uncertainties are all other random or non-random components that are not included in the standard deviation.

The derivation of the general "Law of Propagation of Errors" equations and specific example are available on request.

	Report Definitions
Action Lev	An agreed upon activity level used to trigger some action when the final result is greater than or equal to the Action Level. Often the Action Level is related to the Decision Limit.
Batch	The QC preparation batch number that relates laboratory samples to QC samples that were prepared and analyzed together.
Bias	Defined by the equation (Result/Expected)-1 as defined by ANSI N13.30.
COC No	Chain of Custody Number assigned by the Client or STL Richland.
Count Error (#s)	Poisson counting statistics of the gross sample count and background. The uncertainty is absolute and in the same units as the result. For Liquid Scintillation Counting (LSC) the batch blank count is the background.
Total Uncert (#s) u _c _Combined Uncertainty.	All known uncertainties associated with the preparation and analysis of the sample are propagated to give a measure of the uncertainty associated with the result, u_c the combined uncertainty. The uncertainty is absolute and in the same units as the result.
(#s), Coverage Factor	The coverage factor defines the width of the confidence interval, 1, 2 or 3 standard deviations.
CRDL (RL)	Contractual Required Detection Limit as defined in the Client's Statement Of Work or STL Richland "default" nominal detection limit. Often referred to the reporting level (RL)
Lc	Decision Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume associated with the sample. The Type I error probability is approximately 5%. Lc=(1.645 * Sqrt(2*(BkgrndCnt/BkgrndCntMin)/SCntMin)) * (ConvFct/(Eff*Yld*Abn*Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability. Lc cannot be calculated when the background count is zero.
Lot-Sample No	The number assigned by the LIMS software to track samples received on the same day for a given client. The sample number is a sequential number assigned to each sample in the Lot.
MDC MDA	Detection Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume with a Type I and II error probability of approximately 5%. MDC = (4.65 * Sqrt((BkgrndCnt/BkgrndCntMin)/SCntMin) + 2.71/SCntMin) * (ConvFct/(Eff * Yld * Abn * Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability.
Primary Detector	The instrument identifier associated with the analysis of the sample aliquot.
Ratio U-234/U-238	The U-234 result divided by the U-238 result. The U-234/U-238 ratio for natural uranium in NIST SRM 4321C is 1.038.
Rst/MDC	Ratio of the Result to the MDC. A value greater than 1 may indicate activity above background at a high level of confidence. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.
Rst/TotUcert	Ratio of the Result to the Total Uncertainty. If the uncertainty has a coverage factor of 2 a value greater than 1 may indicate activity above background at approximately the 95% level of confidence assuming a two-sided confidence interval. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.
Report DB No	Sample Identifier used by the report system. The number is based upon the first five digits of the Work Order Number.
RER	The equation Replicate Error Ratio = $(S-D)/[sqrt(TPUs^2 + TPUd^2)]$ as defined by ICPT BOA where S is the original sample result, D is the result of the duplicate, TPUs is the total uncertainty of the original sample and TPUd is the total uncertainty of the duplicate sample.
SDG	Sample Delivery Group Number assigned by the Client or assigned by STL Richland upon sample receipt.
Sum Rpt Alpha Spec Rst(s)	The sum of the reported alpha spec results for tests derived from the same sample excluding duplicate result where the results are in the same units.
Work Order	The LIMS software assign test specific identifier.
Yield	The recovery of the tracer added to the sample such as Pu-242 used to trace a Pu-239/40 method.

Sample Results Summary

STL Richland

Ordered by Method, Batch No., Client Sample ID.

Report No.: 32207

SDG No: 31393

Date: 26-May-06

Client ld Batch Work Order Parameter	Result + Uncertainty (2s)	Qual	Units	Yield	MDC or MDA	CRDL	RER2
6114557 RICHRC5014							
1-1 DUP H3G3D1AE ALPHA	0.852 +- 0.812	U	pCi/L	100%	1.28	3.0	1.3
PPD0805-01 H3PM51AE ALPHA	-0.1970 +- 0.264	U	pCi/L	100%	1.2	3.0	
PPD0806-01 H3PN21AE ALPHA	-0.0881 +- 0.273	U	pCi/L	100%	1.1	3.0	
6114559 RICHRC5014 PPD0805-01 H3PM51AD BETA	1.18 +- 1.33	U	pCi/L	100%	2.75	4.0	
PPD0805-01 DUP H3PM51AF BETA	1.03 +- 1.16	U	pCi/L	100%	2.37	4.0	0.2
PPD0806-01 H3PN21AD BETA	1.45 +- 1.30	U	pCi/L	100%	2.62	4.0	
6114562 RICHRC5005 PPD0805-01 H3PM51AC RA-228	0.0326 +- 0.164	U	p Ci /L	88%	0.407	1.0	
PPD0805-01 DUP H3PM51AH RA-228	0.306 +- 0.179	U	pCi/L	96%	0.343	1.0	2.2
PPD0806-01 H3PN21AC RA-228	0.385 +- 0.216	บ	pCi/L	89%	0.407	1.0	
6110559 EITR PPD0805-01 H3PNP1AA RN-222	-10.800 +- 22.4	U	pCi/L	100%	34.8	50.0	
PPD0805-01 DUP H3PNP1AC RN-222	-6.3100 +- 22.6	U	pCi/L	100%	34.8	50.0	0.3
PPD0806-01 H3PNR1AA RN-222	-7.6700 +- 22.6	U	pCi/L	100%	34.8	50.0	
6114561 RICHRC5005 PPD0805-01 H3PM51AA RA-226	-0.0473 +- 0.111	U	pCi/L	100%	0.233	1.0	
PPD0805-01 DUP H3PM51AG RA-226	0.0971 +- 0.157	U	pCi/L	108%	0.271	1.0	
PPD0806-01 H3PN21AA RA-226	0.0822 +- 0.124	U	pCi/L	100%	0.214	1.0	
No. of Results: 15							

STL Richland rptSTLRchSaSum mary2 V4.15.0 A97

^{2 -} Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by 1CPT BOA.

QC Results Summary STL Richland

Date: 26-May-06

Ordered by Method, Batch No, QC Type,.

Report No.: 32207

SDG No.: 31393

Batch Work Order	Parameter	Result +- Uncertainty (2s)	Qual	Units	Yield	Recovery	Bias	MDCIMDA
RICHRC5014								John DA
6114557 MATRIX	SPIKE							
H3G3D1AD	ALPHA	29.2 +- 8.43		pCi/L	100%	72%	-0.3	1.01
6114557 BLANK	QC							
H30NP1AA	ALPHA	-0.0346 +- 0.344	U	pCi/L	100%			1.13
6114557 LCS								
H30NP1AC	ALPHA	43.3 +- 12.0		pCi/L	100%	106%	0.1	1.04
RICHRC5014								
6114559 BLANK (
H30N11AA	BETA	0.731 +- 1.25	U	pCi/L	100%			2.66
6114559 LCS								
H30N11AC	BETA	36.2 +- 6.27		pCi/L	100%	90%	-0.1	2.74
6114559 MATRIX	SPIKE							
H3PN21AF	BETA	111.0 +- 15.2		pCi/L	100%	98%	0.0	2.66
RICHRC5005								
6114562 BLANK (
H30N71AA	RA-228	0.0260 +- 0.0197	U	pCi/L	87%			0.0405
6114562 LCS								
H30N71AC	RA-228	5.19 +- 0.773		pCi/L	89%	102%	0.0	0.341
EITR								
6110559 BLANK	QC .							
H3P341AA	RN-222	-17.300 +- 18.2	U	pCi/L	100%			29.0
6110559 LCS								
H3P341AC	RN-222	9950.0 +- 1110.0		pCi/L	100%	147%	0.5	29.0
RICHRC5005								
6114561 BLANK								
H30N51AA	RA-226	0.126 +- 0.0905		pCi/L	99%			0.118
6114561 LCS				,				
H30N51AC	RA-226	1.37 +- 0.374		pCi/L	99%	100%	0.0	0.149
No. of Results:	12							

- (Result/Expected)-1 as defined by ANSI N13.30.

U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software.

FORM!

Date: 26-May-06

SAMPLE RESULTS

4/20/2006 10:30:00 AM Collection Date: 4/19/2006 11:30:00 AM WATER Received Date: Matrix: 31430 32207 Report No.: COC No.: SDG: STL Richland J6D200273-1 Client Sample ID: PPD0805-01 Lot-Sample No.: Lab Name:

Ordered by Client Sample ID, Batch No.

Parameter	Result	Qual	Count Error (2 s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL)	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Allquot Size	Primary Detector
Batch: 6114557	RICHRC5014	=	900	Work Order:	H3PM51AE	Repor	Report DB ID: 9H3PM510	M510	5/16/06 00:14 a		0.2016	GPC10D
		o	0.50			pc#L 0.442	3.0	-(1.5)	200000000000000000000000000000000000000		٦.	
Batch: 6114559	RICHRC5014			Work Order:	H3PM51AD	Repor	Report DB ID: 9H3PM510	M510				
BETA	1.18	\supset	1.3	1.3	2.75	pCi/L	100%	0.43	5/15/06 01:42 p		0.1982	GPC27A
						1.31	4.0	(1.8)			٦	
Batch: 6114561	RICHRC5005			Work Order:	H3PM51AA	Repor	Report DB ID: 9H3PM510	M510				
BA-226	-0.0473 U	\supset	0.11	0.11	0.233	pCi/L	100%	-0.2	5/25/06 12:57 p		0.9996	ASC2RC
						0.102	1.0	-0.85			ŀ	
Batch: 6114562	RICHRC5005			Work Order:	H3PM51AC	Repor	Report DB ID: 9H3PM510	M510				
RA-228	0.0326	⊃	0.13	0.16	0.407	pCi/L	88%	0.08	5/26/06 08:52 a		9666'0	GPC2A
						0.175	1.0	0.4				

No. of Results: 4 Comments:

MDC|MDA,Lc - Detection, Decision Level based on Instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.
U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. rptSTLRchSample V4,15.0 A97 STL Richland

Date: 26-May-06

SAMPLE RESULTS

Lab Name:	STL Richland	puq		SDG:	31	31430		Collection Date: 4/19/2006 11:30:00 AM	4/19/2006 1	1:30:00 AM	
Lot-Sample No.: J6D200273-2	J6D200273	3-2		Report No. :		32207		Received Date: 4/20/2006 10:30:00 AM	4/20/2006 10	0:30:00 AM	
Client Sample ID: PPD0805-01	PPD0805-(1		COC No. :				Matrix:	WATER		
								Ord	Ordered by Client Sample ID, Batch No.	sample ID, B	atch No.
Parameter	Result Qual	Count Total	Total Uncert(2 s)	MDC MDA, Rpt Unit, Action Lev Lc	Rpt Unit, Lc	Yield CRDL(RL)	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector

NP10	-0.31	-0.97	
rt DB ID: 9H3P	100%	50.0	
Repo)Ci/L	16.8	
H3PNP1AA	34.8		
Work Order:	22.0		1000
	14.0		
	\supset		
	-10.800		
EITR			
Batch: 6110559	RN-222		
		6110559 EITR Work Order: H3PNP1AA Report DB ID: 9H3PNP1 RN-222 -10.800 U 14.0 22.0 34.8 pCi/L 100%	6110559 EITR Work Order: H3PNP1AA Report DB ID: 9H3PNP10 RN-222 -10.800 U 14.0 22.0 34.8 pCi/L 100% 10.80 U 14.0 22.0 34.8 pCi/L 100%

LSC7

0.01 __

4/22/06 06:22 p

Comments: No. of Results: 1

Date: 26-May-06

SAMPLE RESULTS

4/19/2006 11:30:00 AM Collection Date: 31430 32207 Report No.: SDG: STL Richland J6D200273-3 Lot-Sample No.: Lab Name:

Received Date:

4/20/2006 10:30:00 AM

WATER Matrix:

COC No.:

Client Sample ID: PPD0806-01

Primary Detector LSC7 Ordered by Client Sample ID, Batch No. 0.01 Total Sa Size 4/22/06 06:22 p Analysis, Prep Date Yield Rst/MDC, CRDL(RL) Rst/TotUcert -0.22 -0.68 Report DB ID: 9H3PNR10 100% 50.0 Rpt Unit, 16.8 Lc pCi/L MDC/MDA, Action Lev Work Order: H3PNR1AA 34.8 Uncert(2s) 23.0 Error (2s) Count 14.0 Qual \supset -7.6700 Result EITH Batch: 6110559 RN-222 Parameter

Comments: No. of Results:

U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. rptSTLRchSample V4.15.0 A97 STL Richland

10

SAMPLE RESULTS

Date: 26-May-06

ab Name: STL Richland	SDG:	31430	Collection Date:	Collection Date: 4/19/2006 11:30:00 AM
	Report No.: 32207	32207	Received Date:	Received Date: 4/20/2006 10:30:00 AM
	COC No. :		Matrix:	WATER
			Orde	Ordered by Client Sample ID, Batch No.

Pa	Parameter	Result	Qual	Count Qual Error (2 s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL)	Yield RsVMDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector
Batch:	Batch: 6114557 ALPHA	RICHRC5014 -0.0881	n	0.27	Work Order: 0.27	H3PN21AE 1.1	Repor pCi/L 0.382	Report DB ID: 9H3PN210 100% -(-	N210 -0.08 -0.65	5/16/06 09:14 а		0.1984 L	GPC10E
Batch:	Batch: 6114559 BETA	RICHRC5014	ח	1.3	Work Order:	H3PN21AD 2.62	Repor pCi/L 1.24	Report DB ID: 9H3PN210 100% C 14 4.0 (2	N210 0.55 (2.2)	5/15/06 01:42 p		0.2003 L	GPC27C
Batch:	Batch: 6114561	RICHRC5005 0.0822 U	ລ	0.12	Work Order: 0.12	H3PN21AA 0.214 pCi/L	60.	Report DB ID: 9H3PN210 100% C	0.38 (1.3)	5/25/06 12:53 p		1.0054 L	ASC9RA
Batch:	Batch: 6114562 RA-228	RICHRC5005 0.385	ם	0.20	Work Order: 0.22	H3PN21AC 0.407	Report pCi/L 0.175	Report DB ID: 9H3PN210 89% C 75 1.0 (0.95 (3.6)	5/26/06 08:52 a		1.0055 L	GPC2C

Comments: No. of Results: MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.
U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. rptSTLRchSample V4.15.0 A97 STL Richland

Date: 26-May-06

DUPLICATE RESULTS

4/14/2006 10:00:00 AM Collection Date: 4/12/2006 WATER Received Date: Matrix: 31393 Report No.: 32207 COC No.: SDG: STL Richland Lot-Sample No.: J6D180205-1 Client Sample ID: 1-1 DUP Lab Name:

Parameter	Result, Orig Rst	Qual	Count Error (2 s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, CRDL	Yield	Rst/MDC, Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector
Batch: 6114557	RICHRC5014			Work Order: H3G3D1AE	3G3D1AE	Report D	Report DB ID: H3G3D1ER	3D1ER	Orig Sa DB ID: 9H3G3D10	3D10		
ALPHA	0.852	D	0.79	0.81	1.28	pCi/L	100%	0.67	5/16/06 09:14 a		0.2003	GPC10C
	0.209	\supset	RER2 1.3	1.3		3.0		(2.1)			_	

No. of Results: 1 Comments:

rptSTLRchDupV4.1 MDC|MDA,Lc. Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.
5.0 A97
U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. RER2 · Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA. STL Richland

12

Date: 26-May-06

DUPLICATE RESULTS

Collection Date: 4/19/2006 11:30:00 AM 4/20/2006 10:30:00 AM WATER Received Date: Matrix: 31430 32207 Report No.: COC No.: SDG: Client Sample ID: PPD0805-01 DUP STL Richland Lot-Sample No.: J6D200273-2 Lab Name:

Parameter	neter	Result, Orig Rst	Qual	Count Error (2 s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, CRDL	Yield	Rst/MDC, Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector
Batch: 6110559 RN-22	.110559 RN-222	EITR -6.3100 -10.8	ככ	Wo 14.0 RER2 0.3	Work Order: H3PNP1AC 23.0 34.8	13PNP1AC 34.8	Report D pCi/L 50.0	Report DB ID: H3PNP1CR /L 100% -0.	-0.18 -0.56	Orig Sa DB ID: 9H3PNP10 4/22/06 06:22 p	P10	0.01 L	LSC7
Batch: 6114559 BETA	114559 BETA	RICHRC5014 1.03	ככ	wo 1.1 RER2 0.2	Work Order: H3PM51AF 1.2 2.37 0.2	13PM51AF 2.37	Report D pCi/L 4.0	Report DB ID: H3PM51FR /L 100% 0.	0.43 (1.8)	Orig Sa DB ID: 9H3PM510 5/15/06 01:42 p	1510	0.2014 L	GPC27B
Batch: 6114561	114561 RA-226	RICHRC5005 0.0971 -0.0473	ם כ	Wo 0.16 RER2 1.5	Work Order: H3PM51AG 0.16 0.27	0.271	Report D pCi/L 1.0	Report DB ID: H3PM51GR	451GR 0.36 (1.2)	Orig Sa DB ID: 9H3PM510 5/25/06 12:56 p	510	1.0034 L	ASC4HB
Batch: 6114562 RA-226	114562 RA-228	RICHRC5005 0.306 0.0326	כ כ	0.17 RER2 2.2	Work Order: H3PM51AH 0.18 0.34:	13PM51AH 0.343	Report D pCi/L 1.0	Report DB ID: H3PM51HR	0.89 (3.4)	Orig Sa DB ID: 9H3PM510 5/26/06 08:52 a	510	1.0034 L	GPC2B

No. of Results: 4 Comments:

rptSTLRchDupV4.1 MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.
5.0 A97 U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. RER2 · Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA. STL Richland

Date: 26-May-06

BLANK RESULTS

31393 SDG:

STL Richland Lab Name: Matrix:

Report No.: 32207

WATER

Parameter	Result	Qua	Count Error (2 s)	Total Uncert(2 s)	MDC MDA, Lc	Rpt Unit, CRDL	Yield	Rst/MDC, Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector
Batch: 6114557	RICHRC5014			Work Order: H30NP1AA	H30NP1AA	Report I	Report DB ID: H30NP1AB	NP1AB				
ALPHA	-0.0346	⊃	0.34	0.34	1.13	pCi/L	100%	-0.03	5/16/06 10:18 a		0.2009	GPC10A
					0.407	3.0		-0.2			Ļ	
Batch: 6114559	RICHRC5014			Work Order: H30N11AA	H30N11AA	Report [Report DB ID: H30N11AB	N11AB				
BETA	0.731	\supset	1.2	1.3	2.66	pCi/L	100%	0.27	5/15/06 01:42 p		0.2006	GPC28B
					1.26	4.0		(1.2)			_	
Batch: 6114562	RICHRC5005			Work Order: H30N71AA	H30N71AA	Report [Report DB ID: H30N71AB	N71AB				
RA-228	0.0260	\supset	0.019	0.020	0.0405	pCi/L	87%	0.64	5/26/06 08:52 a		10.0006	GPC2D
14					0.0174	3.0		(2.6)			_	
Batch: 6114561	RICHRC5005			Work Order: H30N51AA	H30N51AA	Report I	Report DB ID: H30N51AB	N51AB				
RA-226	0.126		0.087	0.090	0.118	pCi/L	%66	(1.1)	5/25/06 12:54 p		1.0006	ASCPMA
					0.0469			(2.8)			٦	
Batch: 6110559	EITR			Work Order: H3P341AA	H3P341AA	Report	Report DB ID: H3P341AB	341AB				
RN-222	-17.300	\supset	11.0	18.0	29.0	pCi/L	100%	-0.6	4/22/06 06:22 p		0.01	LSC7
					14.0	50.0		-(1.9)				
No. of Results: 5	Comments:	1.5										

rptSTLRchBlank V4.15.0 A97 STL Richland

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software.

LCS RESULTS

Date: 26-May-06

STL Richland Lab Name:

WATER Matrix:

31393 32207 Report No.: SDG:

GPC10B GPC28C ASCASA GPC3A Primary Detector LSC7 0.1998 0.2003 1.0002 1.0002 Aliquot Size 0.01 5/16/06 10:18 a 5/15/06 01:42 p 5/25/06 12:55 p 4/22/06 06:22 p 5/26/06 08:53 a Analysis, Prep Date Recovery, Bias 147% 106% 102% 100% %06 0.0 0.0 0.5 170.0 Expected Uncert 0.022 0.32 0.35 4. 130 130 130 Report DB ID: H30NP1CS Report DB ID: H30N11CS Report DB ID: H30N71CS Report DB ID: H3P341CS Report DB ID: H30N51CS 6770.0 40.6 40.4 5.10 1.37 Expected 70 70 70 75 100% 100% 89% Yield Rec Limits: Rec Limits: Rec Limits: Rec Limits: Rec Limits: Report Unit pCi/L pCi/L pCi/L pCi/L 0.341 pCi/L Work Order: H30NP1AC Work Order: H30N51AC Work Order: H30N11AC Work Order: H30N71AC Work Order: H3P341AC MDCIMDA 1.04 29.0 2.74 Uncert(2s) 1100.0 12.0 Totai 0.77 0.37 6.3 Error (2s) Count 120.0 0.50 0.24 3.0 4.7 Qual 9950.0 Resuft RICHRC5014 RICHRC5014 RICHRC5005 RICHRC5005 43.3 5.19 36.2 1.37 EITR Batch: 6110559 Batch: 6114562 RA-226 Batch: 6114557 Batch: 6114559 RA-228 RN-222 Parameter Batch: 6114561 ALPHA BETA 15

Comments: No. of Results: 5

- (Result/Ex, ected)-1 as defined by ANSI N13.30. STL Richland

Bias

rptSTLRchLcs V4.15.0 A97

Date: 26-May-06

MATRIX SPIKE RESULTS

STL Richland Lab Name:

31393

SDG:

Lot-Sample No.: J6D180205-1

Report No.: 32207

Matrix: WATER

Analy Method, Primary Detector

RICHRC5014 GPC10B

ــا

0.2001 Aliquot Size 5/16/06 09:14 a Analysis, Prep Date 1.3 Exp Uncert 40.6 Exp-ected 9H3G3D10 71.84% Rec-overy Orig Sa DB ID: 100% Yield Rpt Unit, CRDL pCi/L Report DB ID: H3G3D1DW MDC|MDA 1.01 Uncert(2 s) 8.4 Error (2 s) Work Order: H3G3D1AD Qual SpikeResult, Orig Rst 0.209 29.2 Batch: 6114557 Parameter ALPHA

Number of Results:

Comments:

16

- Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA. - (Result/Expected)-1 as defined by ANSI N13.30. RER Blas

rptSTLRchMs V4.15.0 A97

STL Richland

Date: 26-May-06

MATRIX SPIKE RESULTS

31430 SDG:

STL Richland

Lab Name:

Analy Method, Primary Detector RICHRC5014 GPC27D Allquot Size 0.1981 Matrix: WATER __ 5/15/06 01:42 p Anaiysis, Prep Date 0.88 Exp Uncert 114.0 Exp-ected 9H3PN210 98.06% Rec-overy Report No.: 32207 Orig Sa DB ID: 100% Yield Rpt Unit, CRDL pCi/L Report DB ID: H3PN21FW MDC|MDA 2.66 Uncert(2 s) Total 15.0 Count Qual Error (2 s) 5.0 Work Order: H3PN21AF Lot-Sample No.: J6D200273-4 SpikeResult, Orig Rst 111.0 1.45 Batch: 6114559 Parameter BETA

Number of Results:

Comments:

17

 Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA.
 (Result/Expected)-1 as defined by ANSI N13.30. RER Bias

rptSTLRchMs V4.15.0 A97

STL Richland

SUBCONTRACT ORDER

North Creek Analytical - Portland PPD0805

J6D200273 31430 du

SENDING LABORATORY:

North Creek Analytical - Portland

9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210

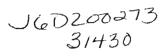
Project Manager:

Sarah Rockwell

RECEIVING LABORATORY:

Severn Trent Laboratories - Richland 2800 George Washington Way Richland, WA 99354-1613

Phone:509-375-3131 Fax: 509-375-5590


Analysis	Due	Expires	Laboratory ID	Comments	
Sample ID: PPD0805-01	Water Sample	d:04/19/06 11:30			
Subcontract Outside3	05/02/06 23:59	04/20/06 11:30		DW-Oregon	Radon
Subcontract Outside2	05/02/06 23:59	04/20/06 11:30		DW-Oregon	Radium 226/228, Uranium
Subcontract Outside	05/02/06 23:59	10/16/06 11:30		DW-Oregon	Gross Alpha/Beta
Containers Supplied:				,	
1L Poly - Unpres (R)	IL Poly - Unpres (S)	1L Poly - U	Inpres (T) 1L Po	ly - Unpres (U)	60 ml Amber Glass - Unpi
		11.2 0m	E		H3PNP -

H3PM5

4.20.06 Released By Date Received By Date

SUBCONTRACT ORDER

North Creek Analytical - Portland PPD0806

SENDING LABORATORY:

North Creek Analytical - Portland

9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210 Project Manager:

Sarah Rockwell

RECEIVING LABORATORY:

Severn Trent Laboratories - Richland 2800 George Washington Way Richland, WA 99354-1613

Phone:509-375-3131 Fax: 509-375-5590

Analysis	Due	Exp	oires	Laboratory ID	Comments	_
Sample ID: PPD0806-01	Water	Sampled:04/	19/06 10:20			
Subcontract Outside3	05/02/06 2	3:59 04/	20/06 10:20		DW-Oregon	Radon
Subcontract Outside2	05/02/06 2	3:59 04/	20/06 10:20		DW-Oregon	Radium 226/228, Uranium
Subcontract Outside	05/02/06 2	3:59 10/	16/06 10:20		DW-Oregon	Gross Alpha/Beta
Containers Supplied:				\		`
L Poly - Unpres (AA)	IL Poly - U	inpres (AB)	1L Poly - U	Jnpres (AC) 760 ml Ar	mber Glass - U	Jnpi 1L Poly - Unpres (Z)
H3	PNZ		_	1	H 3P	NR

Released By Date

Received By

Date

Released By

Date

Received By

Date

		,000000

NCCWC Source Water Laboratory Data Reports

		-00
		·
		-
		- 44
		000000000000000000000000000000000000000
		- 60
		_
		-
		0
		-
		6
		-
		-0
		w
		-0
		1
		-03
		- 4
		-
		- 66
		_
		- 4
		-
		- 68
		4
		0
		-
		0
		-
		1
		-
		400
		0
		- 6
		- 60
		_
		- 6
		-
		40
		-
		100
		-
		400
		w
		40
		400
		- 4
		-
		- Cui
		_
		- (4)
		-
		40
		-
		63
		-
		0
		-
		10
		-
		0
		-
		100
		-
		0
		-
		-
		100
		-
		0
		-
		1
		-
		-
		-
		1

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

June 05, 2006

Ted Ressler Ground Water Solutions 55 SW Yamhill St, Suite 400 Portland, OR 97204

RE: Sunrise Water Authority

Enclosed are the results of analyses for samples received by the laboratory on 04/19/06 12:40. The following list is a summary of the Work Orders contained in this report, generated on 06/05/06 11:29.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
PPD0806	Sunrise Water Authority	157:005	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Richwell
Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
SWA-SW-NCCWCWTP	PPD0806-01	Water	04/19/06 10:20	04/19/06 12:40	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saran Rockwell

Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number:

157:005

Project Manager: Ted Ressler

Report Created: 06/05/06 11:29

Total Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01	(SWA-SW-NCCWCWTP)	Wa	Water			Sampled: 04/19/06 10:20				
Aluminum	EPA 200.7	ND		0.100	mg/l	lx	6040892	04/19/06 15:33	04/20/06 13:42	
Antimony	EPA 200.8	ND	_	0.00100	0	"	6040893	04/19/06 15:40	04/29/06 12:05	
Arsenic	и	ND	_	0.00100	*			*		
Barium	•	0.00237	_	0.00100		•		,,	05/02/06 11:33	
Beryllium	и	ND		0.000500	**	"	н	"	04/29/06 12:05	
Cadmium	в	ND		0.000500		*	-	**	50	
Calcium	EPA 200.7	4.23		0.100		*	6040892	04/19/06 15:33	04/20/06 13:42	
Chromium	EPA 200 8	ND		0.00100	"	4	6040893	04/19/06 15:40	04/29/06 12:05	
Соррег	n	ND		0.00100	-		-	**	4	
Iron	EPA 200.7	0.0392	_	0.0100	•	**	6040892	04/19/06 15:33	04/20/06 13:42	
Lead	EPA 200.8	ND		0.000500	"	19	6040893	04/19/06 15:40	04/29/06 12:05	
Magnesium	EPA 200.7	1,34		0.100	-	,	6040892	04/19/06 15:33	04/20/06 13:42	
Manganese	EPA 200.8	ND		0.00200	u	**	6040893	04/19/06 15:40	04/29/06 12:05	
Nickel	EPA 200.7	ND		0.0500		çı	6040892	04/19/06 15:33	04/20/06 13:42	
Potassium		ND		1.00	4		er er		4	
Selenium	EPA 200.8	ND		0.00100	**	**	6040893	04/19/06 15:40	04/29/06 12.05	
Silver	и	ND		0.00100		is	•	*	**	
Sodium	EPA 200.7	4.03	_	1.00			6040892	04/19/06 15:33	04/20/06 13:42	
Thallium	EPA 200.8	ND		0.00100	"	U	6040893	04/19/06 15:40	04/29/06 12.05	
Zinc	н	ND		0.00500	**		**	*	eq	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions
55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:29

Dissolved Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01	(SWA-SW-NCCWCV	VTP)	Wa	iter		Sam	pled: 04/1	9/06 10:20			M-04
Iron		EPA 200.7	0.0183		0.0100	mg/l	lx	6041222	04/27/06 10:07	05/01/06 21:36	
Manganese		*	ND		0 0 1 0 0	•	"	п	**	n	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 4 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph; (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number:

157:005

Project Manager: Ted Ressler

Report Created:

06/05/06 11:29

Total Mercury per EPA Method 245.1

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01	(SWA-SW-NCCWCWTP)	Wa	ter		Sam	pled: 04/1	9/06 10:20			
Mercury	EPA 245.1	ND	_	0.000200	mg/l	lx	6041059	04/24/06 10:21	04/24/06 13:46	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarah Rickwell

Sarah Rockwell, Project Manager

Page 5 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created: 06/05/06 11:29

Conventional Chemistry Parameters per APHA/EPA Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01 (SWA-SW-NC	CWCWTP)	Wa	ter		Samp	led: 04/1	9/06 10:20			
Bicarbonate Alkalinity	SM 2320B	21.2	_	5.00	mg/l	lx	6040896	04/19/06 15:53	04/20/06 17:50	
Carbonate Alkalinity	N .	ND		5.00	*		•			
Chlorine Residual (Total)	SM 4500-Cl G	0.353	_	0.100	*	**	6040905	04/19/06 21:00	04/19/06 21:21	
Color	EPA 110.2	ND	_	5.00	Color Units	**	6040904	04/19/06 20:39	04/19/06 20:41	
Cyanide (total)	EPA 335.4	ND		0.00500	mg/l	**	6041172	04/26/06 10:29	04/28/06 16:56	
Hardness (Ca)	SM 2340B-Ca	10.6		0.250	**	и	6040892	04/19/06 15:33	04/27/06 13:52	
Silica (SiO2)	SM 4500-Si F	16.2		0.500	•		6041037	04/24/06 07:53	04/24/06 12:18	
Threshold Odor Number	EPA 140.1	2.3	_	0.20	TON	н	6040932	04/20/06 11:16	04/20/06 12:00	
Total Alkalinity	SM 2320B	21.2		5.00	mg/L as CaCO3		6040896	04/19/06 15:53	04/20/06 17:50	
Total Dissolved Solids	SM 2540C	53.0		100	mg/l	ø	6041047	04/24/06 08:57	04/24/06 13:35	
Total Suspended Solids	EPA 160.2	ND	_	10.0	"	•	6041048	04/24/06 09;02	04/24/06 15:25	
Turbidity	EPA 180.1	0.792		0.200	NTU	*	6040899	04/19/06 16:08	04/19/06 16:15	
Total Organic Carbon	SM 5310C	1.07		1.00	mg/l	υ	6041023	04/21/06 22:05	04/22/06 00:58	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number:

157:005

Project Manager: Ted Ressler

Report Created:

06/05/06 11:29

Anions per EPA Method 300.0

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01 (SWA-SW-NCC	CWCWTP)	Wa	ter		Samp	oled: 04/1	9/06 10:20			
Chloride	EPA 300.0	2.63		0.500	mg/l	1x	6040844	04/19/06 16:00	04/19/06 20:56	
Nitrate/Nitrite-Nitrogen	,	0.230	_	0.200	*		,			
Nitrate-Nitrogen	•	0.230		0.100		-	"	"	"	
Nitrite-Nitrogen	"	ND		0.100	"				"	
Sulfate		ND	~	1.00	**	**				

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Sarah Rockwell, Project Manager

Page 7 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions 55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:29

Disinfection By-Products in Drinking Water per EPA 552.2

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01 (SWA-SW-NCCW	/CWTP)	Wa	iter		Samp	oled: 04/1	9/06 10:20			
Monochloroacetic acid (MCAA)	EPA 552.2	ND		0.00150	mg/l	l×	6041285	04/28/06 10:03	05/02/06 17:52	
Monobromoacetic acid (MBAA)		ND		0.00100					a	
Dibromoacetic acid (DBAA)	11	ND	_	0.000500	•	*	•	•	**	
Dichloroacetic acid (DCAA)	*	0.00817	_	0.00150	*			•	•	
Trichloroacetic acid (TCAA)	39	0.00907		0.000500	*	4	•	78	•	
Total Haloacetic Acids (HAA5)	•	0.0172	_	0.00150	•	"	*	**	-	

Surrogate(s): 2,3-Dibromopropionic acid

91.8%

70 - 130 %

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarain Rockwell Sarah Rockwell, Project Manager

Page 8 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005 Ted Ressler Report Created: 06/05/06 11:29

Total Trihalomethanes in Drinking Water per EPA 524.2

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01	(SWA-SW-NCCWCW	TP)	Wa	ter		Samp	led: 04/1	9/06 10:20			
Bromodichloromet	hane	EPA 524.2	0.000910		0.000500	mg/l	lx	6041116	04/25/06 10:04	04/25/06 16:26	
Bromoform		н	ND		0.000500		**		ы	v	
Chloroform			0.0108	_	0.000500		"	"	*		
Dibromochlorometh	iane	34	ND		0.000500	•		**			
Total Trihalometha	anes	и	0.0117	_	0.000500		,,				
Surrogate(s):	Dibromofluoromethane			112%		70 -	130 %	n	_	"	
	1,2-DCA-d4			112%		70 -	130 %	"		"	
	Toluene-d8			91.2%		70 -	130 %	"		"	
	4-BFB			74.2%		70 -	130 %	"		"	

TestAmerica - Portland, OR

- Saran Brokwell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400

Project Number:

157:005

Report Created:

Portland, OR 97204

Project Manager: Ted Ressler

06/05/06 11:29

Physical Parameters per APHA/ASTM/EPA Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01	(SWA-SW-NCCWCWTP)	Wa	iter		Samp	led: 04/1	9/06 10:20			
Corrosivity	EPA 9040A	7.48			pH Units	lx	6040891	04/19/06 15:23	04/19/06 15:30	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Rockwell

Sarah Rockwell, Project Manager

Page 10 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: 157: Project Manager: Ted

157:005

Ted Ressler

Report Created:

06/05/06 11:29

Microbiological Parameters per APHA Standard Methods

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPD0806-01	(SWA-SW-NCCWCWTP)	W	ater		Samı	oled: 04/1	9/06 10:20			
Total Coliforms	SM 9223	ND		1.00	/100 ml	lx	6040885	04/19/06 14:34	04/20/06 15:00	
E. Coli	4	ND		1.00	"	"	"	*		

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 11 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number:

157:005

Report Created:

Project Manager: Ted Ressler

06/05/06 11:29

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040892	Water P	reparation M	lethod: E	PA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (6040892-BLK1)								Extr	acted:	04/19/06 15	;33			
Aluminum	EPA 200.7	ND		0.100	mg/l	lx		-	-	-			04/20/06 13:55	
Calcium		ND		0.100	•									
Iron		ND		0.0100	•	**					-		н	
Magnesium	•	ND		0.100										
Nickel		ND		0.0500	•									
Potassium	•	ND	***	1,00		**					_		*	
Sodium	ü	ND		1 00	•	•							п	
LCS (6040892-BS1)								Extr	acted:	04/19/06 15	:33			
Aluminum	EPA 200.7	9.78		0 100	mg/l	lx		10.0	97.8%	(85-115)		(04/20/06 13:48	
Calcium		10.4	~~	0.100	-				104%				19	
Iron		10.0		0.0100					100%	4				
Magnesium		10.2		0.100					102%	"			31	
Nickel	*	0.392		0.0500	**	*		0.400	98.0%				**	
Potassium		9.35		1.00	•			10.0	93.5%	*			и	
Sodium	н	10.0		1.00	*	н		"	100%		-		*	
Duplicate (6040892-DUP1)				QC Source:	PPD0806-	01		Extr	acted:	04/19/06 15	:33			
Aluminum	EPA 200.7	ND		0.100	mg/l	lx	ND				1.45%	(20)	04/20/06 14:01	
Calcium	41	4 25		0.100		•	4.23				0.472%	(30)	**	
iron	**	0.0391		0.0100			0.0392				0.255%	(20)	п	
Magnesium		1.34		0.100			1.34				0,00%	(30)	40	
Nickel		ND		0.0500		*	ND				NR	(20)	-	
Potassium	**	ND		1.00		*	ND				0.00%		п	
Sodium	н	4.07		1.00		"	4.03				0.988%	. "	м	
Matrix Spike (6040892-MS1)				QC Source:	PPD0806-	01		Extr	acted:	04/19/06 15	:33			
Aluminum	EPA 200.7	2.23		0.111	mg/l	1x	0.0624	2.21	98.1%	(75-125)		(04/20/06 14:08	
Calcium	•	15.9		0.111	*	*	4.23	11.1	105%	(80-120)			*	
iron .		4.49		0.0111			0.0392	4.42	101%	(75-125)				
Magnesium	D	12.5		0.111		"	1.34	11.1	101%	(80-120)				
Nickel	-	0.544		0.0556			ND		97.8%	(75-125)	_			
Potassium		11.1		1.11		*	0.477	11.1	95.7%	(80-120)			ø	
Sodium		15.4		1.11			4.03	_	102%				_	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: 157:005 Ted Ressler

Report Created: 06/05/06 11:29

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040893	Water P	reparation Me	thod: E	PA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6040893-BLK1)								Extr	acted:	04/19/06 15	:40			
Antimony	EPA 200.8	ND		0.00100	mg/l	1x		-					04/29/06 07:44	
Arsenic	"	ND		0.00100	**	•							,	
Barium		ND		0.00100	**				-				05/02/06 07:09	
Beryllium	15	ND		0.000500	**	-							04/29/06 07:44	
Cadmium	,	ND	***	0.000500							•-		*	
Chromium		ND		0.00100		*						-		
Copper	•	ND		0.00100										
Lead		ND		0.000500	•								•	
Manganese	•	ND		0.00200		"								
Selenium	•	ND		0.00100									*	
Silver		ND		0.00100	"	"							"	
Thallium	M	ND		0.00100		ja							"	
Zinc	•	ND	***	0.00500	te	"		-					"	
LCS (6040893-BS1)								Extr	acted:	04/19/06 15	:40			
Antimony	EPA 200.8	0.0569		0.00100	mg/l	lx		0.0500	114%	(85-115)			04/29/06 08:01	
Arsenic	29	0.106		0.00100				0.100	106%	**			**	
Barium	•	0.0995		0.00100	**			"	99.5%	"			05/02/06 07:25	
Beryllium	**	0.0531		0.000500	44			0.0500	106%				04/29/06 08:01	
Cadmium	11	0 107		0.000500	**			0.100	107%	•			н	
Chromium	μ	0.118		0.00100		*		**	118%	-			*	BS-
Copper	4	0.113		0.00100					113%				0	
Lead	te .	0.110		0.000500	**	*			110%	"				
Manganese	**	0 113		0.00200				**	113%					
Selenium	,	0.0490		0.00100	*	~		0.0500	98.0%	"			"	
Silver		0.0522		0.00100					104%					
Thallium	п	0.0500		0.00100		"		"	100%	"			-	
Zinc		0.115		0.00500	19			0.100	115%	*				
Duplicate (6040893-DUP1)				QC Source:	PPD0802-0	10		Extr	acted: (04/19/06 15:	:40			
Antimony	EPA 200.8	ND		0.00100	mg/l	l×	ND -					(30)	04/29/06 11:00	
Arsenic	9	0.0185		0.00100		*	0.0205			-	10.3%			
Barium	н	0.155		0.00100	-		0.159				2.55%		05/02/06 10:31	
Beryllium		ND		0.000500	"		ND				NR		04/29/06 11:00	
Cadmium	u	ND		0.000500	-	*	ND				NR		,	
Chromium	**	ND		00100.0	,		ND	~*	**		5.90%	"		
Copper	-	ND		0.00100	**		ND				2 50%			
Lead		ND	***	0.000500	4		ND				1 54%			
June														

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

-Sarain Frekwell

Sarah Rockwell, Project Manager

Page

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:29

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

						_								
QC Batch: 6040893	Water P	reparation Me	thod: I	EPA 200/30	05	_								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	Analyzed	Notes
Duplicate (6040893-DUP1)				QC Source:	PPD0802-0	1		Extr	acted:	04/19/06 15	:40			
Selenium	EPA 200.8	ND		0.00100	mg/l	1x	ND			~-	NR	(30)	04/29/06 11:00	
Silver	*	ND		0.00100	U		ND				NR	11		
Thallium	•	ND		0.00100	4	-	ND			-	NR	"		
Zinc	*	0.0117		0 00500	9	4	0.0128			-	8.98%		*	
Matrix Spike (6040893-MS1)				QC Source:	PPD0802-0	1		Extr	acted:	04/19/06 15	:40			
Antimony	EPA 200.8	0.0638		0.00100	mg/l	lx	ND	0.0500	128%	(70-130)			04/29/06 11:33	
Arsenic	"	0.131		0.00100	"	*	0.0205	0.100	110%	*			*	
Barium		0.257		0.00100	**	*	0.159		98.0%	*			05/02/06 11:02	
Beryllium		0.0531		0.000500	•	*	ND	0.0500	106%	"			04/29/06 11:33	
Cadmium		0.109		0.000500	*	"	ND	0.100	109%	"				
Chromium		0.130		0.00100		44	0.000214	*	130%	•			*	
Copper		0,112		0 00 1 00	**	-	0.000930		111%	*				
Lead	**	0.0989		0.000500	"	**	0.000129	••	98.8%					
Manganese		0.775		0.00200	•	"	0.619		156%				•	Q-03
Selenium	•	0.0504		0.00100	44	**	ND	0.0500	101%	~			*	
Silver	"	0.0540		0 00100		-	ND	"	108%	н				
Thallium		0.0450		0.00100		**	ND	*	90.0%	ø			"	
Zinc		0.123		0 00500		•	0.0128	0.100	110%	**			~	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarain Erchwell
Sarah Rockwell, Project Manager

Page 14 of 26

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager:

157:005 Ted Ressler Report Created:

06/05/06 11:29

Dissolved Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6041222	Water F	reparation M	ethod: E	PA 200/30	05 Diss								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits	3) Analyzed	Notes
Blank (6041222-BLK1)								Extracted:	04/27/06 10	:07			
Iron	EPA 200.7	ND		0.0100	mg/l	lx						05/01/06 20:51	
Manganese	n .	ND		0.0100	*	D						"	
LCS (6041222-BS1)								Extracted:	04/27/06 10	:07			
Iron	EPA 200.7	3.68		0.0100	mg/l	lx		3 98 92.5%	(85-115)			05/01/06 20:58	
Manganese	"	0.461		0.0100	**			0.500 92.2%				•	
Duplicate (6041222-DUP1)				QC Source:	PPD0737-	02		Extracted:	04/27/06 10	:07_			
Iron	EPA 200.7	1.85		0.0100	mg/l	lx	1.82			1.63%	(20)	05/01/06 21:10	
Manganese		26.7		0.200	"	20x	26.4			1 13%	н	05/02/06 16:25	
Matrix Spike (6041222-MS1)				QC Source:	PPD0737-	02		Extracted:	04/27/06 10	:07			
Iron	EPA 200.7	5.32		0.0100	mg/l	lx	1.82	3.98 87.9%	(75-125)			05/01/06 21:17	
Manganese	,,	26.4		0 200	**	20x	26.4	0.500 0.00%				05/02/06 16:31	MS-4
Matrix Spike (6041222-MS2)				QC Source:	PPD0846-	01		Extracted:	04/27/06 10	:07			
Iron	EPA 200.7	852		0.100	mg/l	10x	831	3.98 528%	(75-125)		-	05/02/06 17:36	MS-4
Manganese		34.7		0 100	,,		34.1	0.500 120%	-				

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekurde

Sarah Rockwell, Project Manager

Page 15 of 26

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:29

Total Mercury per EPA Method 245.1 - Laboratory Quality Control Results

QC Batch: 6041059	Water P	reparation M	lethod: H	PA 245.1					_					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6041059-BLK1)								Extract	ted:	04/24/06 10	:21			
Mercury	EPA 245 I	ND		0.000200	mg/l	lx				-	-		04/24/06 13:16	
LCS (6041059-BS1)								Extract	ted:	04/24/06 10	:21			
Мегсигу	EPA 245.1	0.00549		0.000200	mg/l	1x		0.00500 1	10%	(85-115)			04/24/06 13:18	
LCS Dup (6041059-BSD1)								Extract	ted:	04/24/06 10:	:21			
Mercury	EPA 245.1	0.00522		0.000200	mg/l	1x	_	0.00500 10	04%	(85-115)	5.04%	(20)	04/24/06 13:21	
Duplicate (6041059-DUP1)				QC Source:	PPD0802-	01		Extract	ted:	04/24/06 10:	:21			
Mercury	EPA 245.1	ND		0.000200	mg/l	lx	ND	-			NR	(30)	04/24/06 13:24	
Matrix Spike (6041059-MS1)				QC Source:	PPD0802~	01		Extract	ted:	04/24/06 10:	:21			
Мегсигу	EPA 245.1	0,00513		0.000200	mg/l	lx	ND	0.00500 10	03%	(75-125)			04/24/06 13:26	
Matrix Spike Dup (6041059-MS	D1)			QC Source:	PPD0802-	01		Extract	ted:	04/24/06 10:	:21			
Mercury	EPA 245.1	0.00507		0.000200	mg/l	lx	ND	0.00500 10	01%	(75-125)	1.18%	(20)	04/24/06 13:29	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekurell Sarah Rockwell, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Report Created:

Ted Ressler 06/05/06 11:29

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040892	Water P	reparation M	lethod: E	PA 200/30	05								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike %		% RPD	(Limits) Analyzed	Notes
Blank (6040892-BLK1)								Extracted	: 04/19/06 1	5:33			
Hardness (Ca)	SM 2340B-Ca	ND		0.250	mg/l	lx	~-					04/27/06 13:52	
LCS (6040892-BS1)								Extracted	: 04/19/06 1	5:33	_		
Hardness (Ca)	SM 2340B-Ca	26.0		0.250	mg/l	Ix		25,0 1049	% (85-115)			04/27/06 13:52	
Duplicate (6040892-DUP1)				QC Source:	PPD0806-	01		Extracted	: 04/19/06 1	5:33			
Hardness (Ca)	SM 2340B-Ca	10.6	••-	0.250	mg/l	1×	10.6			0.00%	6 (20)	04/27/06 13:52	
Matrix Spike (6040892-MS1)				QC Source:	PPD0806-	01		Extracted	: 04/19/06 1	5:33			
Hardness (Ca)	SM 2340B-Ca	39.7		0.278	mg/l	lx	10.6	27.8 1059	% (75-125)			04/27/06 13:52	

QC Batch: 6040896	Water P	reparation M	ethod: G	eneral Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6040896-BLK1)								Extr	acted:	04/19/06 15	:53			
Total Alkalinity	SM 2320B	ND		5.00	mg/L as CaCO3	lx	•-	-			•-		04/20/06 17:50	
Carbonate Alkalinity		ND		5.00	mg/l								н	
Bicarbonate Alkalinity	,	ND		5.00	4	"								
LCS (6040896-BS1)								Extra	acted:	04/19/06 15	:53			
Total Alkalinity	SM 2320B	185		5.00	mg/L as CaCO3	lx		200	92.5%	(85-115)			04/20/06 17:50	
LCS (6040896-BS2)								Extr	acted:	04/19/06 15	:53			
Total Alkalinity	SM 2320B	100	***	5,00	mg/L as CaCO3	lx		100	100%	(85-115)			04/20/06 17.50	
Duplicate (6040896-DUP1)				QC Source	: PPD0515-0	1		Extr	acted:	04/19/06 15	:53			
Carbonate Alkalinity	SM 2320B	ND		5.00	mg/l	1×	ND			-	NR	(20)	04/20/06 17:50	
Bicarbonate Alkalinity		75.3		5.00			75 6				0.3989	6 "	ь	
Total Alkalinity	v	75.3		5.00	mg/L as CaCO3		75.6			-	0.3989	(30)	н	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:29

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results TestAmerica - Portland, OR

QC Batch: 6040899	Water P	reparation M	lethod: G	eneral Pro	paration								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6040899-BLK1)								Extracted:	04/19/06 1	6:08			
Turbidity	EPA 180.1	ND		0.200	NTU	İx	-				-	04/19/06 16:15	
LCS (6040899-BS1)								Extracted:	04/19/06 1	6:08			
Turbidity	EPA 180.1	19.8		0,200	NTU	lx	-	20.0 99.0%	(85-115)			04/19/06 16:15	
Duplicate (6040899-DUP1)				QC Source:	PPD0746-0	ı		Extracted:	04/19/06 1	6:08			
Turbidity	EPA 180.1	1.98		0.200	NTU	l×	2.00			1.01%	6 (30)	04/19/06 16:15	

QC Batch: 6040904	Water P	reparation M	lethod: G	eneral P	reparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6040904-BLK1)								Extra	cted:	04/19/06 20	:39			
Color	EPA 110 2	ND		5.00	Color Units	1 x						_	04/19/06 20:41	
LCS (6040904-BS1)								Extra	cted:	04/19/06 20	1:39			
Color	EPA 110.2	20.0		5.00	Color Units	lx		20.0	100%	(80-120)			04/19/06 20:41	
Duplicate (6040904-DUP1)				QC Sourc	e: PPD0797-0	1		Extra	cted:	04/19/06 20	:39			
Color	EPA 110.2	ND		5.00	Color Units	lx	ND					(30)	04/19/06 20:41	

QC Batch: 6040905	Water P	reparation M	lethod: G	eneral Pre	paration									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (6040905-BLK1)								Extr	acted:	04/19/06 21	:00			
Chlorine Residual (Total)	SM 4500-CI G	ND		0.100	mg/l	lx							04/19/06 21:21	
LCS (6040905-BS1)								Extr	acted:	04/19/06 21	:00			
Chlorine Residual (Total)	SM 4500-CI G	0.942		0.100	mg/l	lx		1.00	94.2%	(85-115)	-		04/19/06 21:21	
Duplicate (6040905-DUP1)				QC Source:	PPD0805-0	01		Extr	acted:	04/19/06 21	:00			
Chlorine Residual (Total)	SM 4500-CI G	0.500		0.100	mg/l	lx	0.511				2.18%	(30)	04/19/06 21:21	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

lutions

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: 157:005
Project Manager: Ted Ressler

Report Created: 06/05/06 11:29

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

Project Name:

QC Batch: 6040932	Water P	reparation M	lethod: Ge	neral Pro	paration								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE		RPD	(Limits)	Analyzed	Notes
Blank (6040932-BLK1)								Extracted	: 04/20/06	11:16			
Threshold Odor Number	EPA 140.1	ND		0.20	TON	lx					(04/20/06 12:00	

QC Batch: 6041023	Water P	reparation M	ethod: G	eneral Pre	paration								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6041023-BLK1)								Extracted:	04/21/06 22:	05			
Total Organic Carbon	SM 5310C	ND		1.00	mg/l	lx						04/21/06 23:34	
LCS_(6041023-BS1)								Extracted:	04/21/06 22:	05			
Total Organic Carbon	SM 5310C	17.5		1.00	mg/l	lx		20.0 87.5%	(85-115)			04/21/06 23:48	
Duplicate (6041023-DUP1)				QC Source:	PPD0510-0	01		Extracted:	04/21/06 22:	05			
Total Organic Carbon	SM 5310C	ND		1.00	mg/l	lx	ND			NR	(30)	04/22/06 00:04	
Matrix Spike (6041023-MS1)				QC Source:	PPD0510-0	1		Extracted:	04/21/06 22:	05			
Total Organic Carbon	SM 5310C	24.8		1.01	mg/l	lx	0.510	25.3 96.0%	(80-130)			04/22/06 00:19	

QC Batch: 6041037	Water P	reparation M	ethod: G	eneral Pre	paration							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits) %	(Limits)	Analyzed	Notes
Blank (6041037-BLK1)								Extracted:	04/24/06 07:53			
Silica (SiO2)	SM 4500-Si F	ND		0.500	mg/l	lx				(04/24/06 12:18	
LCS (6041037-BS1)								Extracted:	04/24/06 07:53			
Silica (SiO2)	SM 4500-Si F	42.7	_	0.500	mg/l	lx		40.0 107%	(85-115)	(04/24/06 12:18	
Duplicate (6041037-DUP1)				QC Source:	PPD0570-	08		Extracted:	04/24/06 07:53			
Silica (SiO2)	SM 4500-Si F	55.9		1.00	mg/l	2x	55.6		0.538%	% (20)	04/24/06 12:18	
Matrix Spike (6041037-MS1)				QC Source:	PPD0570-	08		Extracted:	04/24/06 07:53			
Silica (SiO2)	SM 4500-Si	75 8		1.00	mg/l	2x	55 6	20.0 101%	(75-125)	(04/24/06 12:18	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400

Project Number:

157:005

Report Created:

Portland, OR 97204

TestAmerica - Portland, OR

- Surain Frehwell Sarah Rockwell, Project Manager

Project Manager: Ted Ressler 06/05/06 11:29

			Test	America -	Portland, C	R								
QC Batch: 6041047	Water P	reparation M	lethod: G	eneral Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6041047-BLK1)								Extra	cted:	04/24/06 08	:57			
Total Dissolved Solids	SM 2540C	ND		10.0	mg/l	lx					-		04/24/06 13:35	
LCS (6041047-BS1)								Extra	cted:	04/24/06 08	:57			
Total Dissolved Solids	SM 2540C	102		10.0	mg/l	lx			102%				04/24/06 13:35	
D. P ((041045 D1001)				000	DDD0005 01					0.472.4757.00				
Duplicate (6041047-DUP1) Total Dissolved Solids	SM 2540C	48.0		QC Source:	PPD0805-01	lx	48.0	Extra	ctea:	04/24/06 08		6 (30)	04/24/06 13:35	
Julia Dissolved Solids	3M 2340C	46.0		10.0	ilig/i	12	40.0				0.007	(30)	04/24/00 13.33	•
QC Batch: 6041048	Water P	reparation M	lethod: G	General Pro	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	‰ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6041048-BLK1)								Extra	cted:	04/24/06 09	:02			
Total Suspended Solids	EPA 160.2	ND		10.0	mg/l	1x							04/24/06 15:25	
LCS (6041048-BS1)								Extra	cted:	04/24/06 09	:02			
Total Suspended Solids	EPA 160.2	50.0		10.0	mg/l	lx		50.0	100%	(80-120)			04/24/06 15:25	
Duplicate (6041048-DUP1)				QC Source:	PPD0805-01			Extra	cted:	04/24/06 09	:02			
Total Suspended Solids	EPA 160.2	ND		10.0	mg/i	1x	ND				NR	(20)	04/24/06 15:25	
QC Batch: 6041172	Water P	reparation M	ethod: G	eneral Pro	eparation	_			_					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6041172-BLK1)								Extra	cted:	04/26/06 10	:29			
Cyanide (total)	EPA 335,4	ND		0.00500	mg/l	lx							04/28/06 16:56	
LCS (6041172-BS1)								Extra	cted:	04/26/06 10	:29			
Cyanide (total)	EPA 335.4	0.422		0 00500	mg/l	lx			106%	(90-110)	-	·	04/28/06 16:56	
D . II				000	DDD0000					0.192.55	••			
Duplicate (6041172-DUP1) Cyanide (total)	EPA 335.4	ND		QC Source: 0.00500	PPD0800-01	1x	ND	Extra	ted:	04/26/06 10	:29	(30)	04/28/06 16:56	
-, (101111)	2.1.220.7	110		0,0000	g.	**						(50)		
Matrix Spike (6041172-MS1)				QC Source:					_	04/26/06 10	29			
Cyanide (total)	EPA 335.4	0.282		0.00500	mg/l	l×	ND	0.400	70.5%	(80-120)		(04/28/06 16:56	Q-0
Matrix Spike Dup (6041172-MS	3D1)			QC Source:	PPD0800-01			Extra	ted:	04/26/06 10:	29			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 20 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Portland, OR 97204

55 SW Yamhill St, Suite 400

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005 Ted Ressler Report Created: 06/05/06 11:29

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results
TestAmerica - Portland, OR

QC Batch: 6041172 Water Preparation Method: General Preparation

Analyte Method Result MDL* MRL Units Dil Source Spike % (Limits) % (Limits) Analyzed Notes
Result Amt REC

 Matrix Spike Dup (6041172-MSD1)
 QC Source: PPD0800-01
 Extracted: 04/26/06 10:29
 04/26/06 10:29
 Extracted: 04/26/06 10:29
 Extracted: 04/26/06 10:29
 Extracted: 04/26/06 10:29
 Extracted: 04/26/06 10:29
 Octool (10 to provide to p

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sarah Rockwell, Project Manager

Page 21 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204

Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:29

Anions per EPA Method 300.0 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040844	Water P	reparation M	lethod: W	et Chem	_									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Note
Blank (6040844-BLK1)								Extra	acted:	04/19/06 08	3:33			
Nitrite-Nitrogen	EPA 300.0	ND		0.100	mg/l	lx		-					04/19/06 10:48	
Sulfate		ND		1.00	*	11			**	~~	-		-	
Nitrate/Nitrite-Nitrogen	•	ND		0.200	•						_			
Chloride	*	ND		0.500		*	_	-					*	
Nitrate-Nitrogen	*	ND		0.100	"	-								
LCS (6040844-BS1)								Extra	acted:	04/19/06 08	:33			
Sulfate	EPA 300.0	32.0		1.00	mg/l	lx		30.0	107%	(90-110)			04/19/06 11:04	
Nitrite-Nitrogen	"	5.09		0.100	н		_	5.00	102%				и	
Nitrate-Nitrogen		5.16		0.100				•	103%	•			*	
Chloride	*	10.4		0.500		"		10.0	104%	*				
Duplicate (6040844-DUP1)				QC Source:	PPD0570-0	8		Extra	acted:	04/19/06 08	:33			
Chloride	EPA 300.0	11.8		0.500	mg/l	lx	11.8				0.00%	(30)	04/19/06 11:19	
Sulfate	-	20.7		1.00	*	te	20.7				0.00%	. "		
Nitrate-Nitrogen	-	8.02		0.100	•	4	8,03				0.125%	6 "		
Nitrate/Nitrite-Nitrogen		8.02		0.200		**	8.03				0.125%	6 "		
Nitrite-Nitrogen	и	ND		0.100	"	*	ND				NR	"	u.	
Matrix Spike (6040844-MS1)				QC Source:	PPD0570-0	18		Extra	acted:	04/19/06 08	:33			
Sulfate	EPA 300.0	25.4		1.11	mg/l	lx	20.7	4.44	106%	(80-120)			04/19/06 11:35	
Chloride		14.2		0.556			11.8	2.22	108%	*				
Nitrite-Nitrogen	"	2.23		0.111	*		ND		100%	,				
Nitrate-Nitrogen	*	10.4		0.111	"		8.03	•	107%				"	
Matrix Spike (6040844-MS2)				QC Source:	PPD0805-0	1		Extra	cted:	04/19/06 08	:33			
Nitrate-Nitrogen	EPA 300.0	2.56		0.111	mg/l	lx	0.230	2.22	105%	(80-120)			04/19/06 20:40	
Chloride		5.71		0.556	**	*	3.33	,	107%	**				
Sulfate	•	6,56		1 11	"	*	2.21	4.44	98.0%	-				
Nitrite-Nitrogen	*	2.03		0.111			ND	2.22	91.4%	*				
Matrix Spike Dup (6040844-MS	D1)			QC Source:	PPD0570-0	8		Extra	cted:	04/19/06 08	:33			
Chloride	EPA 300.0	14.2		0.556	mg/l	lx	11.8	2.22	108%	(80-120)	0.00%	. (20)	04/19/06 11:50	
Sulfate	*	25.5		1.11			20.7	4.44	108%		0.393%			
Nitrate-Nitrogen	-	10.4		0.111		•	8.03		107%		0.00%		•	
-														

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Sarain Rockwell Sarah Rockwell, Project Manager

Page 22 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005

Ted Ressler

Report Created:

06/05/06 11:29

Disinfection By-Products in Drinking Water per EPA 552.2 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6041285	Water	Preparation	Method:	Micro Liq/	Liq Shake									
Analyte	Method	Result	MDL	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	RPD	(Limits)	Analyzed	Note
Blank (6041285-BLK1)								Extra	acted:	04/28/06 10	:03			
Monochloroacetic acid (MCAA)	EPA 552.2	ND		0.00150	mg/l	lx							05/02/06 15:06	
Monobromoacetic acid (MBAA)	*	ND		0.00100	**						-			
Dibromoacetic acid (DBAA)	"	ND		0.000500	*									
Dichloroacetic acid (DCAA)	*	ND		0.00150		*							**	
Trichloroacetic acid (TCAA)	•	ND		0.000500	**	•							•	
Total Haloacetic Acids (HAA5)	•	ND		0.00150		"								
Surrogate(s): 2.3-Dibromopropio	nic acid	Recovery:	96.2%	Lin	nits: 70-130%								05/02/06 15:06	-
LCS (6041285-BS1)								Extra	acted:	04/28/06 10	:03			
Monochloroacetic acid (MCAA)	EPA 552 2	0.00790		0.00150	mg/l	1x		0.00750	105%	(70-130)		(05/02/06 14:33	
Monobromoacetic acid (MBAA)	*	0.00491		0.00100	*	**		0.00500	98.2%					
Dibromoacetic acid (DBAA)		0.00277		0.000500				0.00250	111%	**		~-		
Dichloroacetic acid (DCAA)	"	0.00873		0.00150				0.00750	116%					
Trichloroacetic acid (TCAA)		0.00301		0.000500				0.00250	120%		-			
Surrogate(s): 2,3-Dibromopropio	nic acid	Recovery:	125%	Lin	nits: 70-130%								05/02/06 14:33	
Matrix Spike (6041285-MS1)				QC Source:	PPD0800-0	ı		Extra	icted:	04/28/06 10	;03			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00762		0.00150	mg/l	1x	ND	0.00750	102%	(70-130)		(05/02/06 16:12	
Monobromoacetic acid (MBAA)	**	0.00559		0.00100	P	**	ND	0.00500	112%	*			11	
Dibromoacetic acid (DBAA)	•	0.00282		0.000500	**	ø	0.000147	0.00250	107%					
Dichloroacetic acid (DCAA)	*	0.0104		0.00150	*		0.00286	0.00750	101%	**				
Trichloroacetic acid (TCAA)		0.00485		0.000500	"	*	0.00211	0.00250	110%					
Surrogate(s): 2.3-Dibromopropio	nic acid	Recovery	105%	Lin	nits: 70-130%	FF							05/02/06 16:12	•
Matrix Spike Dup (6041285-N	MSD1)			QC Source:	PPD0800-0	1		Extra	cted:	04/28/06 10	:03			
Monochloroacetic acid (MCAA)	EPA 552.2	0.00737		0.00150	mg/l	Lx	ND	0.00750	98.3%	(70-130)	3.34%	(30)	15/02/06 16:45	
Monobromoacetic acid (MBAA)	,	0.00524		0.00100			ND	0.00500	105%	•	6.46%	*		
Dibromoacetic acid (DBAA)	"	0.00271		0.000500		**	0.000147	0.00250	103%	-	3.98%	*	U	
Dichloroacetic acid (DCAA)		0.0102		0.00150	n	"	0.00286	0.00750	97.9%	ч	1.94%	-	ri .	
Trichloroacetic acid (TCAA)		0.00448	***	0.000500			0.00211	0.00250	94.8%	"	7.93%		n	
Surrogate(s): 2.3-Dibromopropio	nic acid	Recovery:	105%	Lin	iits: 70-130%	"							05/02/06 16:45	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saras Rockwell

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Name:

Sunrise Water Authority

Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:29

Total Trihalomethanes in Drinking Water per EPA 524.2 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Bate	h: 6041116	Water	Preparation	Method: I	EPA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (60411	16-BLK1)								Extr	acted:	04/25/06 10	:04			
Bromodichlorometh	ane	EPA 524.2	ND		0.000500	mg/l	lx					_		04/25/06 13:59	
Bromoform			ND		0.000500	*								-	
Chloroform		•	ND		0.000500		"							*	
Dibromochlorometh	ane		ND		0.000500	"	"	-					-	•	
Total Trihalomethan	es		ND		0.000500		**		-					•	
Surrogate(s):	Dibromofluoromethane		Recovery:	104%	Lin	nits: 70-130%	n							04/25/06 13:59	
	1,2-DCA-d4			112%		70-130%	"							"	
	Toluene-d8			97.0%		70-130%	"							**	
	4-8FB			78.0%		70-130%	"							*	
LCS (6041116	5-BS1)								Extr	acted:	04/25/06 10	:04			
Bromodichlorometh	ane	EPA 524.2	0.00557		0.000500	mg/l	lx		0.00500	111%	(70-130)		_	04/25/06 12:34	
Bromoform			0.00496		0.000500					99.2%	**				
Chloroform			0.00551		0.000500					110%					
Dibromochlorometh	ane .		0.00508		0.000500				**	102%	4	20	-		
Surrogate(s):	Dibromofluoromethane		Recovery:	101%	Lin	nis: 70-130%	-							04/25/06 12:34	
	1,2-DCA-d4			101%		70-130%	**								
	Toluene-d8			99.6%		70-130%	"							"	
	4-BFB			110%		70-130%	"							"	
Matrix Spike	(6041116-MS1)				QC Source:	PPD0615-01			Extr	acted:	04/25/06 10	:04			
Bromodichlorometh	ane	EPA 524.2	0.0272		0.000500	mg/l	1x	ND	0.0250	109%	(70-130)			04/25/06 20:42	
Bromoform			0.0218		0.000500	*		ND	*	87 2%	*			•	
Chloroform		-	0.0270		0.000500		**	ND	"	108%					
Dibromochlorometh	ane		0.0246		0.000500	"	•	ND		98.4%				•	
Surrogate(s):	Dibromofluoromethane		Recovery	101%	Lin	nits: 70-130%								04/25/06 20:42	
	1.2-DCA-d4			97.2%		70-130%	"							**	
	Toluene-d8			101%		70-130%	"								
	4-BFB			106%		70-130%	"							"	
Matrix Spike I	Oup (6041116-MSD	01)			QC Source:	PPD0615-01			Extr	acted:	04/25/06 10	:04			
Bromodichlorometh	ane	EPA 524.2	0.0264		0.000500	mg/l	lx	ND	0.0250	106%	(70-130)	2.99%	(30)	04/25/06 21:10	
Bromoform			0.0206		0.000500		*	ND	*1	82.4%		5.66%		•	
Chloroform			0.0258		0.000500		"	ND		103%		4.55%	-	-	
Dibromochlorometh	ane		0.0243		0.000500			ND	*	97.2%		1.23%	. "	•	
Surrogate(s):	Dibromofluoromethane		Recovery:	103%	Lim	iis: 70-130%	"							04/25/06 21:10	
	1,2-DCA-d4			101%		70-130%	"							~	
	Tohiene-d8			103%		70-130%	"							,,	
	4-BFB			102%		70-130%	"								

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saras Rockwell

Sarah Rockwell, Project Manager

Page 24 of 26

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

55 SW Yamhill St, Suite 400

Portland, OR 97204

Project Name:

Sunrise Water Authority

Project Number:

157:005

Project Manager: Ted Ressler Report Created: 06/05/06 11:29

ni i in	A DATA A A CODE A CODE A RAY ALL IN	TILL OF BUILD IN
Physical Parameters	per APHA/ASIM/EPA Methods	- Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6040891	Water P	reparation N	lethod: G	eneral Pre	paration									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (6040891-DUP1)				QC Source:	PPD0798-0			Extr	acted:	04/19/06 1	5:23			
Corrosivity	EPA 9040A	7.15		F	H Units	lx	7.20		_	~	0.697%	6 (30)	04/19/06 15:30	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

- Saras Frekwell Sarah Rockwell, Project Manager

Page 25 of 26

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Ground Water Solutions

Project Name:

Sunrise Water Authority

55 SW Yamhill St, Suite 400 Portland, OR 97204 Project Number: Project Manager: 157:005 Ted Ressler Report Created:

06/05/06 11:29

Notes and Definitions

Report Specific Notes:

BS-1 - Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the laboratory control limits. Analyte not detected, data not impacted.

M-04

Sample Filtered through 0.45 micron filter in Laboratory prior to analysis.

MS-4

Due to high levels of analyte in the sample, the Matrix Spike/Matrix Spike Duplicate calculation does not provide useful spike recovery information. See Laboratory Control Sample.

Q-01

The matrix spike recovery, and/or RPD, for this QC sample is outside of established control limits. Failure of a matrix spike QC sample does not represent an out-of-control condition for the batch.

Q-03

The matrix spike recovery, and/or RPD, for this QC sample cannot be accurately calculated due to the high concentration of analyte already present in the source sample.

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.

*MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil - Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Limits

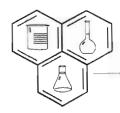
wet

Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic

Signature

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory


Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Sarain Rockwell

Page 26 of 26

Environmental Testing Laboratory

04/25/06

Sarah Rockwell
North Creek Analytical - Portland
9405 SW Nimbus Avenue
Beaverton, OR 97008

TEL: (503) 906-9200 FAX (503) 906-9210

RE: NCA # PPD0806-01

Dear Sarah Rockwell:

Order No.: 0604393

Neilson Research Corporation received 1 sample(s) on 04/20/06 for the analyses presented in the following report.

The results relate only to the parameters tested or to the sample as received by the laboratory. This report shall not be reproduced except in full, without the written approval of Neilson Research Corporation. If you have any questions regarding these test results, please feel free to call.

Sincerely, Neilson Research Corporation

Fay L. Fowler

Project Manager

Tay-Towler

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis Report

RELAP 100016 EPA OR00028

CLIENT:

North Creek Analytical - Portland

Project:

NCA # PPD0806-01

Lab Order:

0604393

Date: 25-Apr-06

CASE NARRATIVE

The analyses were performed according to the guidelines in the Neilson Research Corporation Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

Neilson Research Corporation certifies that this report is in compliance with the requirements of NELAP. No unusual difficulties were experienced during analysis of this batch except as noted below or qualified with data flags on the reports.

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis Report

RELAP 100016

North Creek Analytical - Portland

9405 SW Nimbus Avenue

Beaverton, OR 97008

Lab Order: 0604393

NRC Sample ID: 0604393-01A

Collection Date: 04/19/06 10:20:00 AM

Received Date: 04/20/06 8:50:00 AM

Reported Date: 04/25/06 11:48:27 AM

Sample Information:

NCA # PPD0806-01

Client Sample ID: PPD0806-01

Collectors Name: Client

Sample Location: SWA-SW-CRW

Source: Sunrise AST

ANALYTICAL RESULTS

		NELAC					EPA	Date	
Analyses	Method	Accredit	ed Result	Qual	MRL	Units	Limit	Analyzed	Analyst
MBAS	SM 5540C	Α	ND		0.04	mg/L	0.5	04/20/06	KRM

Notes: ND - Not I

ND - Not Detected at the MRL

N.L. - No Limit

MRL - Minimum Reporting Limit

245 South Grape Street, Medford, Oregon 97501 541-770-5678 Fax 541-770-2901

Analysis Report

RELAP 100016 EPA OR00028

North Creek Analytical - Portland

9405 SW Nimbus Avenue

Beaverton, OR 97008

Lab Order: 0604393

NRC Sample ID: 0604393-01B

Collection Date: 04/19/06 10:20:00 AM

Received Date: 04/20/06 8:50:00 AM

Reported Date: 04/25/06 11:48:27 AM

Sample Information:

NCA # PPD0806-01

Client Sample ID: PPD0806-01

Collectors Name: Client

Sample Location: SWA-SW-CRW

Source: Sunrise AST

ANALYTICAL RESULTS

:		NELA	C				EPA	Date		
Analyses	Method A	ccredit	ted Result	Qual	MRL	Units	Limit	Analyzed	Analyst	
Fluoride	EPA 300.0	A	ND		0.2	mg/L	2 - 4	04/20/06	KRM	

Notes:

ND - Not Detected at the MRL

N.L. - No Limit

MRL - Minimum Reporting Limit

CLIENT:		North Creek Analytical - Portland					ANAL	YTICAL	, QC SUI	ANALYTICAL QC SUMMARY REPORT	EPOR	Ξ
Project:		00806-01						Tes	TestCode: EPA300_W	PA300_W		
Sample ID MB		SampType: MBLK	TestCoc	TestCode: EPA300_W	Units: mg/L		Prep Date:	j		RunNo: 29474		
Client ID: ZZZZZ	777	Batch ID: R29474	Testh	TestNo: EPA 300.0		7	Analysis Date:	e: 04/20/06		SeqNo: 442763		
Analyte		Result	MRL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	HighLimit R	RPD Ref Val	%RPD RPI	RPDLimit Q	Qual
Fluoride		QN	0.200									
Sample ID LCS	S	SampType: LCS	TestCoc	TestCode: EPA300_W	Units: mg/L		Prep Date:			RunNo: 29474		1
Client ID: ZZZZZ	222	Batch ID: R29474	Testh	TestNo: EPA 300.0		7	Analysis Dati	Analysis Date: 04/20/06		SeqNo: 442764		
Analyte		Result	MRL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD RP	RPDLimit Q	Qual
Z Fluoride		2.607	0.200	2.5	0	104	06	110				
Sample ID 0604405-01AMS	04405-01AMS	SampType: MS	TestCoc	TestCode: EPA300_W	Units: mg/L		Prep Date:			RunNo: 29474		1
© Client ID: ZZZZZ	222	Batch ID: R29474	Testh	TestNo: EPA 300.0		7	Analysis Datı	Analysis Date: 04/20/06		SeqNo: 442786		
G Analyte		Result	MRL	SPK value	SPK Ref Val	%REC	LowLimit	LowLlmit HighLimit RPD Ref Val	PD Ref Val	%RPD RPI	RPDLimit Q	Qual
Fluoride		4.801	0.200	3.75	1.13	97.9	80	120				
Sample ID 060	Sample ID 0604405-01AMSD	SampType: MSD	TestCo	TestCode: EPA300_W	Units: mg/L		Prep Date:	ini		RunNo: 29474		1
Client ID: ZZ	22222	Batch ID: R29474	Test	TestNo: EPA 300.0		•	Analysis Datı	Analysis Date: 04/20/06		SeqNo: 442787		
Analyte		Result	MRL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	PD Ref Val	%RPD RPI	RPDLimit Q	Qual
Fluoride		4.934	0.200	3.75	1.13	101	80	120	4.801	2.74	20	

Date: 25-Apr-06

Neilson Research Corporation

Not Detected at the Minimum Reporting Limit Value above quantitation range ы Q Qualifiers:

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H &

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits - s

Date: 25-Apr-06

---North Creek Analytical - Portland CLIENT:

0604393 Work Order: NCA # PPD0806-01

Project:

TestCode: MBAS

ANALYTICAL QC SUMMARY REPORT

11

Qual %RPD RPDLimit SeqNo: 443217 RunNo: 29500 LowLimit HighLimit RPD Ref Val Analysis Date: 04/20/06 Prep Date: %REC Units: mg/L SPK Ref Val TestNo: SM 5540C SPK value TestCode: MBAS MRL 0.10 Batch ID: R29500 Result $\frac{1}{2}$ SampType: MBLK Sample ID MBLK Client ID: ZZZZZ Analyte MBAS

Sample ID LCS	S) TCS	SampType: LCS	TestCod	TestCode: MBAS	Units: mg/L		Prep Date:	a a		RunNo: 29500	00	
Client ID:	22222	Batch ID: R29500	TestN	TestNo: SM 5540C	,,	~	Analysis Date:	e: 04/20/06	9	SeqNo: 443218	218	
Analyte		Result	MRL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	" RREC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Z MBAS		0.5010	0.10	0.482	0	104	80	120				
Sample II	Sample ID 0604394-01AMS	SampType: MS	TestCod	TestCode: MBAS	Units: mg/L		Prep Date:			RunNo: 29500	00	
Client ID: Pag	22222	Batch ID: R29500	TestN	TestNo: SM 5540C	,	•	Analysis Dat	Analysis Date: 04/20/06	9	SeqNo: 443221	221	
က တ Analyte		Result	MRL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
MBAS 7		0.5170	0.10	0.5	0.0284	97.7	80	120				
Sample II	Sample ID 0604394-01AMSD	SampType: MSD	TestCod	TestCode: MBAS	Units: mg/L		Prep Date:	.: 		RunNo: 29500	00	
Client ID:	Client ID: ZZZZZ	Batch ID: R29500	TestN	TestNo: SM 5540C		~	Analysis Dat	Analysis Date: 04/20/06	و	SeqNo: 443222	222	
Analyte		Result	MRL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
MBAS		0.5560	0.10	0.5	0.0284	106	80	120	0.517	7.27	15	

Not Detected at the Minimum P.eporting Limit Value above quentitation range E E Qualifiers:

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H &

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits r s

Page 2 of 2

0000000000000

SUBCONTRACT ORDER

North Creek Analytical - Portland PPD0806

SENDING LABORATORY:

North Creek Analytical - Portland

9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager:

Sarah Rockwell

RECEIVING LABORATORY:

Neilson Research Corp. 245 S. Grape St. Medford, OR 97501

Phone:541-770-5678

Fax: 541-770-2901

Analysis	Due	Expires	Laboratory ID	Comments	0604393
Sample ID: PPD0806-01	Water	Sampled:04/19/06 10:20			
DW MBAS - SUB	05/02/06 23::	59 04/21/06 10:20	DIA		
DW IC Fluoride (300)	05/02/06 23:5	59 05/17/06 10:20	OB		•
Containers Supplied:					•
1L Poly - Unpres (X)	250 mL Poly	- Unpres. (Y			

2.1°C cooler w/ce

Released By

Date

Date

Received By

Date

		-
		- 2
		9
		9
		-
		9
		9
		9
		9
		- 5
		-

Analytical Data Package Prepared For

North Creek Analytical

Radiochemical Analysis By

STL Richland

2800 G.W. Way, Richland Wa, 99354, (509)-375-3131.

Assigned Laboratory Code:

Data Package Contains ___/ __ Pages

Report No.: 32207

SDG No.	Order No.	Client Sample ID (List Order)	Lot-Sa No.	Work Order	Report DB ID	Batch No.
31430		PPD0805-01	J6D200273-2	H3PNP1AA	9H3PNP10	6110559
		PPD0805-01	J6D200273-1	H3PM51AE	9H3PM510	6114557
		PPD0805-01	J6D200273-1	H3PM51AD	9H3PM510	6114559
		PPD0805-01	J6D200273-1	H3PM51AA	9H3PM510	6114561
		PPD0805-01	J6D200273-1	H3PM51AC	9H3PM510	6114562
		PPD0806-01	J6D200273-3	H3PNR1AA	9H3PNR10	6110559
		PPD0806-01	J6D200273-4	H3PN21AE	9H3PN210	6114557
		PPD0806-01	J6D200273-4	H3PN21AD	9H3PN210	6114559
		PPD0806-01	J6D200273-4	H3PN21AA	9H3PN210	6114561
		PPD0806-01	J6D200273-4	H3PN21AC	9H3PN210	6114562

Certificate of Analysis

STL Richland 2800 George Washington Way Richland, WA 99352

Tel: 509 375 3131 Fax: 509 375 5590 www.stl-inc.com

May 26, 2006

North Creek Analytical – Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Attention: Sarah Rockwell

Date Received

April 20, 2006

Sample Number/Matrix

Two (2) Waters

SDG Number

31430

Project Number

PPD0805-01, PPD0806-01

CASE NARRATIVE

I. Introduction

On April 20, 2006, two water samples were received at the STL Richland (STLR) laboratory for radiochemical analysis. Upon receipt, the samples were assigned the STLR identification numbers as described on the cover page of the Analytical Data Package. These samples were assigned to Lot Number J6D200276.

II. Sample Receipt

The samples were received in good condition and no anomalies were noted during check-in.

III. Analytical Results/Methodology

The analytical results for this report are presented by laboratory sample ID. Each set of data includes sample identification information; analytical results and the appropriate associated statistical uncertainties.

The analyses requested were:

Gas Proportional Counting

Gross Alpha by method RICH-RC-5014 (EPA 900.0) Gross Beta by method RICH-RC-5014 (EPA 900.0) Radium-228 by method STL RICH-RC-5005 (EPA 904.0) Liquid Scintillation Counting Radon-222 by Method RICHRC-5082 (EPA 913.0) Alpha Scintillation

Radium-226 by method RICH-RC-5005 (EPA 903.1)

IV. Quality Control

The analytical result for each analysis performed includes a minimum of one laboratory control sample (LCS), and one reagent blank sample analysis. Any exceptions have been noted in the "Comments" section.

V. Comments

Gross Alpha by method RICH-RC-5014:

The LCS, batch blank, matrix spike, sample, and sample duplicate results are within acceptance limits.

Gross Beta by method RICH-RC-5014:

The LCS, batch blank, matrix spike, sample, and sample duplicate results are within acceptance limits.

Radium-228 Analysis:

The LCS, batch blank, sample and sample duplicate results are within acceptance limits.

Radium-226 by method RICH-RC-5005:

The LCS, batch blank, sample, and sample duplicate results are within acceptance limits.

Radon-222 by Method EPA 913.0:

The LCS has a 147% recovery. All the sample results are below CRDL. The samples cannot be reanalyzed due to holding time violations. Data accepted. Except as noted, the LCS, batch blank, sample and sample duplicate results are within acceptance limits.

I certify that this Certificate of Analysis is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. The Laboratory Manager or a designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Reviewed and approved:

Sherryl A. Adam Project Manager

Drinking Water Method Cross References

	DRINKING WATE	ER ASTM METHOD CROSS REFERENCES
Referenced Method	Isotope (s)	STL Richland's SOP number
EPA 901.1	Cs-134, I-131	RICH-RC-5017
EPA 900.0	Alpha & Beta	RICH-RC-5014
EPA 903.1	Ra-226	RICH-RC-5005
EPÄ 904.0	Ra-228	RICH-RC-5005
EPA 905.0	Sr89/90	RICH-RC-5006
ASTM D2460	Total Radium	RICH-RC-5027
Standard Method 7500-U-C & ASTM D5174	Uranium	RICH-RC-5058
EPA 906.0	Tritium	RICH-RC-5007
NOTE:		
The Gross Alpha LCS is prepared with Am-24		
The Gross Beta LCS is prepared with Sr/Y-90) (unless otherwise	e specified in the case narrative)

Uncertainty Estimation

STL Richland has adopted the internationally accepted approach to estimating uncertainties described in "NIST Technical Note 1297, 1994 Edition". The approach, "Law of Propagation of Errors", involves the identification of all variables in an analytical method which are used to derive a result. These variables are related to the analytical result (R) by some functional relationship, R = constants * f(x,y,z,...). The components (x,y,z) are evaluated to determine their contribution to the overall method uncertainty. The individual component uncertainties (u_i) are then combined using a statistical model that provides the most probable overall uncertainty value. All component uncertainties are categorized as type A, evaluated by statistical methods, or type B, evaluated by other means. Uncertainties not included in the components, such as sample homogeneity, are combined with the component uncertainty as the square root of the sum-of-the-squares of the individual uncertainties. The uncertainty associated with the derived result is the combined uncertainty (u_c) multiplied by the coverage factor (1,2, or 3).

When three or more sample replicates are used to derive the analytical result, the type A uncertainty is the standard deviation of the mean value (S/vn), where S is the standard deviation of the derived results. The type B uncertainties are all other random or non-random components that are not included in the standard deviation.

The derivation of the general "Law of Propagation of Errors" equations and specific example are available on request.

	Report Definitions
Action Lev	An agreed upon activity level used to trigger some action when the final result is greater than or equal to the Action Level. Often the Action Level is related to the Decision Limit.
Batch	The QC preparation batch number that relates laboratory samples to QC samples that were prepared and analyzed together.
Bias	Defined by the equation (Result/Expected)-1 as defined by ANSI N13.30.
COC No	Chain of Custody Number assigned by the Client or STL Richland.
Count Error (#s)	Poisson counting statistics of the gross sample count and background. The uncertainty is absolute and in the same units as the result. For Liquid Scintillation Counting (LSC) the batch blank count is the background.
Total Uncert (#s) $u_{c-}Combined$ Uncertainty.	All known uncertainties associated with the preparation and analysis of the sample are propagated to give a measure of the uncertainty associated with the result, u_c the combined uncertainty. The uncertainty is absolute and in the same units as the result.
(#s), Coverage Factor	The coverage factor defines the width of the confidence interval, 1, 2 or 3 standard deviations.
CRDL (RL)	Contractual Required Detection Limit as defined in the Client's Statement Of Work or STL Richland "default" nominal detection limit. Often referred to the reporting level (RL)
Lc	Decision Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume associated with the sample. The Type I error probability is approximately 5%. Lc=(1.645 * Sqrt(2*(BkgrndCnt/BkgrndCntMin)/SCntMin)) * (ConvFct/(Eff*Yld*Abn*Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability. Lc cannot be calculated when the background count is zero.
Lot-Sample No	The number assigned by the LIMS software to track samples received on the same day for a given client. The sample number is a sequential number assigned to each sample in the Lot.
MDC MDA	Detection Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume with a Type I and II error probability of approximately 5%. MDC = (4.65 * Sqrt((BkgrndCnt/BkgrndCntMin)/SCntMin) + 2.71/SCntMin) * (ConvFct/(Eff * Yld * Abn * Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability.
Primary Detector	The instrument identifier associated with the analysis of the sample aliquot.
Ratio U-234/U-238	The U-234 result divided by the U-238 result. The U-234/U-238 ratio for natural uranium in NIST SRM 4321C is 1.038.
Rst/MDC	Ratio of the Result to the MDC. A value greater than 1 may indicate activity above background at a high level of confidence. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.
Rst/TotUcert	Ratio of the Result to the Total Uncertainty. If the uncertainty has a coverage factor of 2 a value greater than 1 may indicate activity above background at approximately the 95% level of confidence assuming a two-sided confidence interval. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.
Report DB No	Sample Identifier used by the report system. The number is based upon the first five digits of the Work Order Number.
RER	The equation Replicate Error Ratio = $(S-D)/[sqrt(TPUs^2 + TPUd^2)]$ as defined by ICPT BOA where S is the original sample result, D is the result of the duplicate, TPUs is the total uncertainty of the original sample and TPUd is the total uncertainty of the duplicate sample.
SDG	Sample Delivery Group Number assigned by the Client or assigned by STL Richland upon sample receipt.
Sum Rpt Alpha Spec Rst(s)	The sum of the reported alpha spec results for tests derived from the same sample excluding duplicate result where the results are in the same units.
Work Order	The LIMS software assign test specific identifier.
Yield	The recovery of the tracer added to the sample such as Pu-242 used to trace a Pu-239/40 method.
§ 1	

Date: 26-May-06

Sample Results Summary STL Richland

Ordered by Method, Batch No., Client Sample ID.

Report No.: 32207

SDG No: 31393

Client ld Batch Work Order Paramete	r Result +- Uncertainty (2s)	Qual	Units	Yield	MDC or MDA	CRDL	RER2
6114557 RICHRC5014							
1-1 DUP H3G3D1AE ALPHA	0.852 +- 0.812	U	pCi/L	100%	1.28	3.0	1.3
PPD0805-01 H3PM51AE ALPHA	-0.1970 +- 0.264	U	pCi/L	100%	1.2	3.0	
PPD0806-01 H3PN21AE ALPHA	-0.0881 +- 0.273	U	pCi/L	100%	1.1	3.0	
6114559 RICHRC5014 PPD0805-01							
H3PM51AD BETA	1.18 +- 1.33	U	pCi/L	100%	2.75	4.0	
PPD0805-01 DUP H3PM51AF BETA	1.03 +- 1.16	U	pCi/L	100%	2.37	4.0	0.2
PPD0806-01 H3PN21AD BETA	1.45 +- 1.30	U	pCi/L	100%	2.62	4.0	
6114562 RICHRC5005 PPD0805-01							
H3PM51AC RA-228	0.0326 +- 0.164	U	pCi/L	88%	0.407	1.0	
PPD0805-01 DUP H3PM51AH RA-228	0.306 +- 0.179	U	pCi/L	96%	0.343	1.0	2,2
PPD0806-01 H3PN21AC RA-228	0.385 +- 0.216	U	pCi/L	89%	0.407	1.0	
6110559 EITR PPD0805-01							
H3PNP1AA RN-222	-10.800 +- 22.4	U	pCi/L	100%	34.8	50.0	
PPD0805-01 DUP H3PNP1AC RN-222	-6.3100 +- 22.6	υ	pCi/L	100%	34.8	50.0	0.3
PPD0806-01 H3PNR1AA RN-222	-7.6700 +- 22.6	U	pCi/L	100%	34.8	50.0	
6114561 RICHRC5005			F				
PPD0805-01 H3PM51AA RA-226	-0.0473 +- 0.111	U	pCi/L	100%	0.233	1.0	
PPD0805-01 DUP H3PM51AG RA-226	0.0971 +- 0.157	U	pCi/L	108%	0.271	1.0	
PPD0806-01 H3PN21AA RA-226	0.0822 +- 0.124	U	pCi/L	100%	0.214	1.0	
No. of Results: 15			,				

STL Richland rptSTLRchSaSum mary2 V4.15.0 A97

ER2 - Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA.

Date: 26-May-06

QC Results Summary STL Richland

Ordered by Method, Batch No, QC Type,.

Report No.: 32207

SDG No.: 31393

Batch Work Order	Parameter	Result +- Uncertainty (2s)	Qual	Units	Yield	Recovery	Bias	MDC MDA
RICHRC5014								
6114557 MATRIX								
H3G3D1AD	ALPHA	29.2 +- 8.43		pCi/L	100%	72%	-0.3	1.01
6114557 BLANK (QC .							
H30NP1AA	ALPHA	-0.0346 +- 0.344	U	pCi/L	100%			1.13
6114557 LCS								
H30NP1AC	ALPHA	43.3 +- 12.0		pCi/L	100%	106%	0.1	1.04
RICHRC5014 6114559 BLANK 0	oc.							
H30N11AA	BETA	0.731 +- 1.25	U	pCi/L	100%			2.66
6114559 LCS				F	,			
H30N11AC	BETA	36.2 +- 6.27		pCi/L	100%	90%	-0.1	2.74
6114559 MATRIX	SPIKE							
H3PN21AF	BETA	111.0 +- 15.2		pCi/L	100%	98%	0.0	2.66
RICHRC5005 6114562 BLANK (OC.							
H30N71AA	RA-228	0.0260 +- 0.0197	U	pCi/L	87%			0.0405
6114562 LCS								
H30N71AC	RA-228	5.19 + 0.773		pCi/L	89%	102%	0.0	0.341
EITR								
6110559 BLANK	ac							
H3P341AA	RN-222	-17.300 +- 18.2	U	pCi/L	100%			29.0
6110559 LCS				,				
H3P341AC	RN-222	9950.0 +- 1110.0		pCi/L	100%	147%	0.5	29.0
PIOUPOFOOT				·				
RICHRC5005 6114561 BLANK	OC.							
H30N51AA	RA-226	0.126 +- 0.0905		pCi/L	99%			0.118
6114561 LCS	1,1, 220	3.120 , 3.3000		P = " =	00,0			00
H30N51AC	RA-226	1.37 +- 0.374		pCi/L	99%	100%	0.0	0.149
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.07 1 0.074		POIL	30 /0	10070	0.0	0,140
No. of Results:	12							

^{- (}Result/Expected)-1 as defined by ANSI N13.30.

Date: 26-May-06

SAMPLE RESULTS

4/19/2006 11:30:00 AM Collection Date: 31430

4/20/2006 10:30:00 AM Received Date:

32207

Report No.:

SDG:

STL Richland

Lab Name:

Lot-Sample No.: J6D200273-1

WATER Matrix:

Ordered by Client Sample ID, Batch No. Total Sa COC No.: Total Count Client Sample ID: PPD0805-01

Primary Detector GPC 10D GPC27A ASC2RC GPC2A 0.2016 0.9996 0.1982 0.9996 5/16/06 09:14 a 5/15/06 01:42 p 5/25/06 12:57 p 5/26/06 08:52 a Analysis, Prep Date Yield Rst/MDC, CRDL(RL) Rst/TotUcert -0.16 -(1.5) -0.85 0.43 (1.8)0.08 -0.2 0.4 Report DB ID: 9H3PM510 Report DB ID: 9H3PM510 Report DB ID: 9H3PM510 Report DB ID: 9H3PM510 100% 100% 100% 88% 3.0 4.0 0 0.1 Rpt Unit, Lc 0.102 0.442 0.175 1.31 pCi/L pCi/L pCi/L pCi/L MDC|MDA, Action Lev Work Order: H3PM51AE Work Order: H3PM51AD Work Order: H3PM51AA Work Order: H3PM51AC 0.233 2.75 0.407 1.2 Uncert(2s) 0.11 0.16 1.3 Error (2s) 0.26 0.11 0.13 1.3 Qual \supset \supset \supset \supset 0.0326 -0.1970-0.0473Result 1.18 RICHRC5005 RICHRC5005 RICHRC5014 RICHRC5014 Batch: 6114559 6114562 RA-228 Batch: 6114557 RA-226 ALPHA BETA 6114561 Parameter Batch: Batch: 8

Comments: 4 No. of Results:

U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. MDC|MDA,Lc - Detection, Decision Level based on Instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. rptSTLRchSample STL Richland V4.15,0 A97

SAMPLE RESULTS

Date: 26-May-06

OF ILICARA

Lab Name:	STL Richland	SDG:	31430	Collection Date: 4	4/19/2006 11:30:00 AM	
Lot-Sample No.: J6D200273-2	J6D200273-2	Report No. :	32207	Received Date:	Received Date: 4/20/2006 10:30:00 AM	
Client Sample ID: PPD0805-01	PPD0805-01	COC No. :		Matrix:	WATER	

										Ordered by Client Sample ID, Batch No.	Sample ID,	Batch No.
Parameter	Result	Qual	Count Total Qual Error (2s) Uncert(2s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL)	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Slze	Primary Detector
Batch: 6110559	EITR			Work Order:	H3PNP1AA	Repoi	Report DB ID: 9H3PNP10	NP10				
RN-222	-10.800 U	\supset	14.0	22.0	34.8 pCi/L	pCi/L	100%	-0.31	4/22/06 06:22 p	d	0.01	LSC7
						16.8	50.0	-0.97			_	

No. of Results: 1 Comments:

Date: 26-May-06

SAMPLE RESULTS

Lab Name:	STL Richland	SDG:	31430	Collection Date:	Collection Date: 4/19/2006 11:30:00 AM
Lot-Sample No.: J6D200273-3	J6D200273-3	Report No.: 32207	32207	Received Date:	Received Date: 4/20/2006 10:30:00 AM
Client Sample ID: PPD0806-01	PPD0806-01	COC No. :		Matrix:	WATER
				Orde	Ordered by Client Sample ID. Batch No.

							1 5%	COMME	A	Total	Allanot	Drimary
Parameter	Result	Qual	Count Qual Error (2s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL) F	Yield Asvindo, CRDL(RL) Ast/TotUcert	Analysis, Prep Date	Size	Size	Detector
Batch: 6110559	EITR			Work Order:	H3PNR1AA	Repo	Report DB ID: 9H3PNR10	JR10				
RN-222	U 0079.7-	⊋	14.0	23.0	34.8	pCi/L	100%	-0.22	4/22/06 06:22 p	.2 p	0.01	LSC7
						16.8	50.0	-0.68			ب	

No. of Results: 1 Comments:

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.
U Qual - Analyzed fc. but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. rptSTLRchSample V4.15.0 A97 STL Richland

10

Date: 26-May-06

SAMPLE RESULTS

4/19/2006 11:30:00 AM 4/20/2006 10:30:00 AM WATER Collection Date: Received Date: Matrix: 31430 32207 Report No.: COC No.: SDG: STL Richland Lot-Sample No.: J6D200273-4 Client Sample ID: PPD0806-01 Lab Name:

GPC10E GPC27C **ASC9RA** Primary Detector GPC2C Ordered by Client Sample ID, Batch No. 0.1984 0.2003 1.0055 Aliquot Size 1.0054 \dashv __ Total Sa Size 5/16/06 09:14 a 5/15/06 01:42 p 5/25/06 12:53 p 5/26/06 08:52 a Analysis, Prep Date CRDL(RL) Rst/TotUcert Rst/MDC, -0.08 -0.65 0.55 0.38 0.95 (2.2)(1.3) (3.6) Report DB 1D: 9H3PN210 Report DB ID: 9H3PN210 Report DB ID: 9H3PN210 Report DB ID: 9H3PN210 100% 100% 100% 3.0 Rpt Unit, Lc 0.0941 0.382 0.175 1.24 pCi/L pCi/L pCi/L pCi/L MDC|MDA, Action Lev Work Order: H3PN21AE Work Order: H3PN21AD Work Order: H3PN21AC Work Order: H3PN21AA 0.214 0.407 2.62 --Uncert(2s) Total 0.12 0.27 <u>t</u>. Count Error (2s) 0.12 0.20 0.27 1.3 Qual \supset \supset \supset \Box 0.0822 -0.08810.385 Result 1.45 RICHRC5014 RICHRC5005 RICHRC5005 RICHRC5014 ALPHA 6114559 Batch: 6114557 6114562 6114561 RA-226 **RA-228** BETA Parameter Batch: Batch: Batch: 1

Comments: 4 No. of Results: MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.
U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. rptSTLRchSample V4.15.0 A97

STL Richland

DUPLICATE RESULTS

Collection Date: 4/12/2006	Received Date: 4/14/2006 10:00:00 AM	Matrix: WATER
SDG : 31393	Report No.: 32207	COC No. :
Lab Name: STL Richland	Lot-Sample No.: J6D180205-1	Client Sample ID: 1-1 DUP

Parameter	Result, Orig Rst	Qual	Count Error (2 s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, CRDL	Yield	Rst/MDC, Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector
Batch: 6114557	RICHRC5014			Work Order: H	H3G3D1AE	Report	Report DB ID: H3G3D1ER	3D1ER	Orig Sa DB ID: 9H3G3D10	3D10		
ALPHA	0.852	ח	0.79	0.81	1.28	pCi/L	100%	0.67	5/16/06 09:14 a		0.2003	GPC10C
	0.209	\supset	RER2 1.3	1.3		3.0		(2.1)			_	

No. of Results: 1 Comments:

STL Richland RER2 - Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA.

rptSTLRchDupV4.1 MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.

5.0 A97

U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software. STL Richland

Date: 26-May-06

DUPLICATE RESULTS

31430

SDG:

STL Richland

Lab Name:

Collection Date: 4/19/2006 11:30:00 AM 4/20/2006 10:30:00 AM Received Date:

Client Sample ID: PPD0805-01 DUP

Lot-Sample No.: J6D200273-2

COC No.:

Report No.: 32207

WATER Matrix:

Parameter	Result, Orig Rst	Qual	Count Error (2 s)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, CRDL	Yield	Rst/MDC, Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector
Batch: 6110559 RN-222	EITR -6.3100	כ	14.0	Work Order: H3PNP1AC 23.0 34.8	34.8	Report D pCi/L	Report DB ID: H3PNP1CR	NP1CR -0.18	Orig Sa DB ID: 9H3PNP10 4/22/06 06:22 p	NP10	0.01	LSC7
	-10.8	ے ا	RER2 0.3	0.3		50.0		-0.56			٦	
Batch: 6114559	RICHRC5014			Work Order: H3PM51AF	3PM51AF	Report D	Report DB ID: H3PM51FR	M51FR	Orig Sa DB ID: 9H3PM510	M510		
BETA	1.03	\supset	1.	1.2	2.37	pCi/L	100%	0.43	5/15/06 01:42 p		0.2014	GPC27B
	1.18	D	RER2 0.2	0.2		4.0		(1.8)			ų	
1;												
Batch: 6114561	RICHRC5005			Work Order: H3PM51AG	3PM51AG	Report D	Report DB ID: H3PM51GR	M51GR	Orig Sa DB ID: 9H3PM510	M510		
RA-226	0.0971	\supset	0.16	0.16	0.271	pCi/L	108%	0.36	5/25/06 12:56 p		1.0034	ASC4HB
	-0.0473	n	RER2 1.5	1.5		1.0		(1.2)			_	
Batch: 0114562	5005045014			Work Order: H3PM51AH	PM51AH	Report D	Report DB ID: H3PM51HR	W51HR	Orig Sa DB ID: 9H3PM510	M510		
RA-228	0.306	n	0.17	0.18	0.343	pCi/L	%96	0.89	5/26/06 08:52 a		1.0034	GPC2B
	0.0326	n	RER2 2.2	2.2		1.0		(3.4)			٦	

Comments: No. of Results:

rptSTLRchDupV4.1 MDC|MDA,Lc. Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.
5.0 A97 U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the MdcMda or Total Uncert or not identified by gamma scan software. RER2 - Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA. STL Richland

Date: 26-May-06

BLANK RESULTS

Lab Name: STL Richland

Matrix:

WATER

SDG: 31393

Report No.: 32207

5 6

	1 200	3	Count Frror (2 s)	Total	MDC MDA,	Rpt Unit,		Rst/MDC,	Analysis, Dren Date	Total Sa	Aliquot	Primary Detector
Batch: 6114557	RICHRC5014	2		Work Order: H30NP1AA	H30NP1AA	Report [Report DB ID: H30NP1AB	NP1AB				
ALPHA	-0.0346	\supset	0.34	0.34	1.13	pCi/L	100%	-0.03	5/16/06 10:18 a		0.2009	GPC10A
					0.407	3.0		-0.2				
Batch: 6114559	RICHRC5014			Work Order: H30N11AA	H30N11AA	Report [Report DB ID: H30N11AB	N11AB				
BETA	0.731	⊃	1.2	1.3	2.66	pCi/L	100%	0.27	5/15/06 01:42 p		0.2006	GPC28B
					1.26	4.0		(1.2)			 .	
Batch: 6114562	RICHRC5005			Work Order: H30N71AA	H30N71AA	Report [Report DB ID: H30N71AB	N71AB				
RA-228	0.0260	\supset	0.019	0.020	0.0405	pCi/L	87%	0.64	5/26/06 08:52 a		10.0006	GPC2D
14					0.0174	3.0		(2.6)				
Batch: 6114561	RICHRC5005			Work Order: H30N51AA	H30N51AA	Report I	Report DB ID: H30N51AB	V51AB				
RA-226	0.126		0.087	0.090	0.118	pCi/L	%66	(1.1)	5/25/06 12:54 p		1.0006	ASCPMA
					0.0469			(2.8)			٦	
Batch: 6110559	EITR			Work Order: H3P341AA	H3P341AA	Report	Report DB ID: H3P341AB	341AB				
RN-222	-17.300	\supset	11.0	18.0	29.0	pCi/L	100%	9.0-	4/22/06 06:22 p		0.01	LSC7
					14.0	50.0		-(1.9)			٦	
												1000000

No. of Results: 5 Comments:

STL Richland rptSTLRchBlank V4.15.0 A97

MDC|MDA,Lc - Detection, Decision Level based on Instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.

U Qual - Analyzed for but not detected above limiting criteria. Limit criteria is less than the Mdc/Mda or Total Uncert or not identified by gamma scan software.

LCS RESULTS

Date: 26-May-06

Lab Name: STL Richland

Matrix: WATER

SDG: 31393

Report No.: 32207

	Parameter	Result	Qual	Count Qual Error (2s)	Total Uncert(2 s)	MDC MDA	Report Unit	Yield	Expected	Expected Uncert	Recovery, Bias	Analysis, Prep Date	Aliquot Size	Primary Detector
Batch:	6114557	RICHRC5014			Work Order:	Work Order: H30NP1AC		Report DB ID: H30NP1CS	H30NP1CS					
	ALPHA	43.3		4.7	12.0	1.04 p	pCi/L	100%	40.6	1.4	106%	5/16/06 10:18 a	0.1998	GPC10B
							ı.	Rec Limits:	. 22	125	0.1		_	
Batch:	6114559	RICHRC5014			Work Order:	Work Order: H30N11AC		Report DB ID:	H30N11CS					
	BETA	36.2		3.0	6.3	2.74 p	pCi/L	100%	40.4	0.32	%06	5/15/06 01:42 p	0.2003	GPC28C
							Œ.	Rec Limits:	. 02	130	-0.1		_	
Batch:	Batch: 6114562	RICHRC5005			Work Order:	Work Order: H30N71AC		Report DB ID: H30N71CS	H30N71CS					
1	RA-228	5.19		0.50	0.77	0.341 pCi/L	Ci/L	%68	5.10	0.022	102%	5/26/06 08:53 a	1.0002	GPC3A
5							ı.	Rec Limits:	. 02	130	0.0		_	
Batch:	6114561	RICHRC5005			Work Order:	H30N51AC		Report DB ID: H30N51CS	H30N51CS					
	RA-226	1.37		0.24	0.37	0.149 p	pCi/L	%66	1.37	0.35	100%	5/25/06 12:55 p	1.0002	ASCASA
							LE,	Rec Limits:			0.0		_	
Batch:	6110559	EITR			Work Order:	Work Order: H3P341AC		Report DB ID: H3P341CS	H3P341CS					
	RN-222	0.0366		120.0	1100.0	29.0 p	pCi/L	100%	6770.0	6770.0 170.0	147%	4/22/06 06:22 p	0.01	LSC7
							ır.	Rec Limits:	70	130	0.5			

No. of Results: 5 Comments:

- (ResultExpected)-1 as defined by ANSI N13.30.

Bias

Date: 26-May-06

MATRIX SPIKE RESULTS

Lab Name: STL Richland

SDG: 31393

Lot-Sample No.: J6D180205-1

Report No.: 32207

Matrix: WATER

od, ector		5014	ЭВ
Analy Method, Primary Detector		RICHRC501	GPC10B
Aliquot Size		0.2001	
Analysis, Prep Date		5/16/06 09:14 a	
Exp Uncert		1.3	
Exp- ected		40.6	
Rec- overy	9H3G3D10	71.84%	
Yield	Orig Sa DB ID:	100%	
Rpt Unit, CRDL	Ori	pCi/L	
мосімом	НЗСВОТОМ	1.01	
Total Uncert(2 s)	Report DB ID:	8.4	
Count Error (2 s)	3D1AD	3.9	
Qual	er: H3G		
SpikeResult, Orig Rst	Work Order: H3G3D1AD	29.2	0.209
Parameter	Batch: 6114557	ALPHA	

Number of Results: 1

Comments:

RER - Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA. Bias - (Resull/Expected)-1 as defined by ANSI N13.30.

rptSTLRchMs V4.15.0 A97

STL Richland

16

Date: 26-May-06

MATRIX SPIKE RESULTS

STL Richland Lab Name:

Analy Method, Primary Detector Aliquot Size WATER Matrix: Analysis, Prep Date Exp Uncert Exp-ected Rec-overy 31430 Report No.: 32207 Yield SDG: Rpt Unit, CRDL MDCIMDA Total Uncert(2 s) Count Error (2 s) Lot-Sample No.: J6D200273-4 Qual SpikeResuit, Orig Rst

RICHRC5014 GPC27D

0.1981

5/15/06 01:42 p

0.88

114.0

98.06%

pCi/L

2.66

15.0

9H3PN210

Orig Sa DB ID: 100%

Report DB ID: H3PN21FW

Work Order: H3PN21AF

Batch: 6114559

Parameter

111.0 1.45

Number of Results:

Comments:

RER

Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA.
 (Result/Expected)-1 as defined by ANSI N13.30.

rptSTLRchMs V4.15.0 A97

STL Richland

17

SUBCONTRACT ORDER

North Creek Analytical - Portland PPD0805

J6D200273 31430 dui

SENDING LABORATORY:

North Creek Analytical - Portland

9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager:

Sarah Rockwell

RECEIVING LABORATORY:

Severn Trent Laboratories - Richland 2800 George Washington Way Richland, WA 99354-1613

Phone:509-375-3131 Fax: 509-375-5590

Analysis	Due	Expires	Laboratory ID	Comments	
Sample ID: PPD0805-01	Water Sam	pled:04/19/06 11:30	The state of the s		
Subcontract Outside3	05/02/06 23:59	04/20/06 11:30		DW-Oregon	Radon
Subcontract Outside2	05/02/06 23:59	04/20/06 11:30		DW-Oregon	Radium 226/228, Uranium
Subcontract Outside	05/02/06 23:59	10/16/06 11:30		DW-Oregon	Gross Alpha/Beta
Containers Supplied:					
/ 1L Poly - Unpres (R)	IL Poly - Unpres ((S) 1L Poly - U	npres (T) 1L Poly	- Unpres (U)	60 ml Amber Glass - Unpi
		112 pm	<u> </u>		H3PNP)

H3PINS

4.20.0 G Date Released By Date Received By Date

SUBCONTRACT ORDER

North Creek Analytical - Portland PPD0806

J6D200273 31430

SENDING LABORATORY:

North Creek Analytical - Portland

9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager:

Sarah Rockwell

RECEIVING LABORATORY:

Severn Trent Laboratories - Richland 2800 George Washington Way Richland, WA 99354-1613 Phone: 509-375-3131

Fax: 509-375-5590

Analysis	Due	Expires	Laboratory ID	Comments
			VI 1300 1105 1105	

Sample ID: PPD0806-01	Water Samp	oled:04/19/06 10:20	The Park of State of Park Book State of	
Subcontract Outside3	05/02/06 23:59	04/20/06 10:20	DW-Oregon	Radon
Subcontract Outside2	05/02/06 23:59	04/20/06 10:20	DW-Oregon	Radium 226/228, Uranium
Subcontract Outside	05/02/06 23:59	10/16/06 10:20	DW-Oregon	Gross Alpha/Beta

Containers Supplied:

Released By

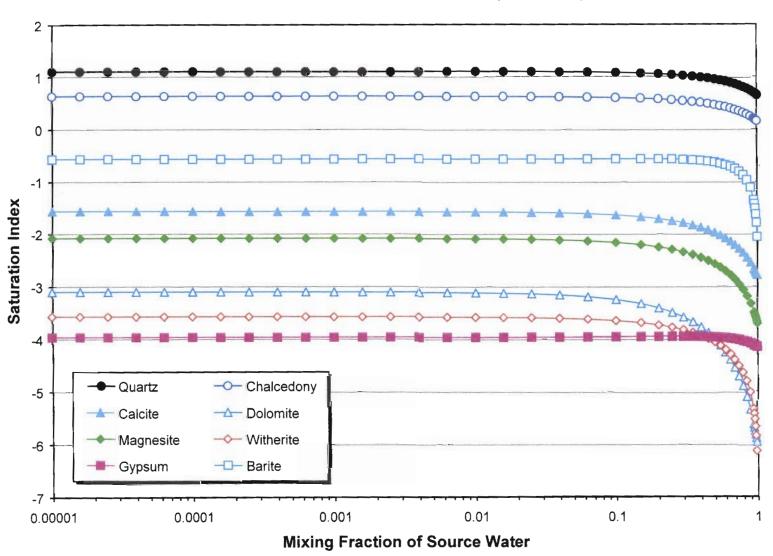
1L Poly - Unpres (AA) 1L Poly - Unpres (AB) 1L Poly - Unpres (AC)

Date

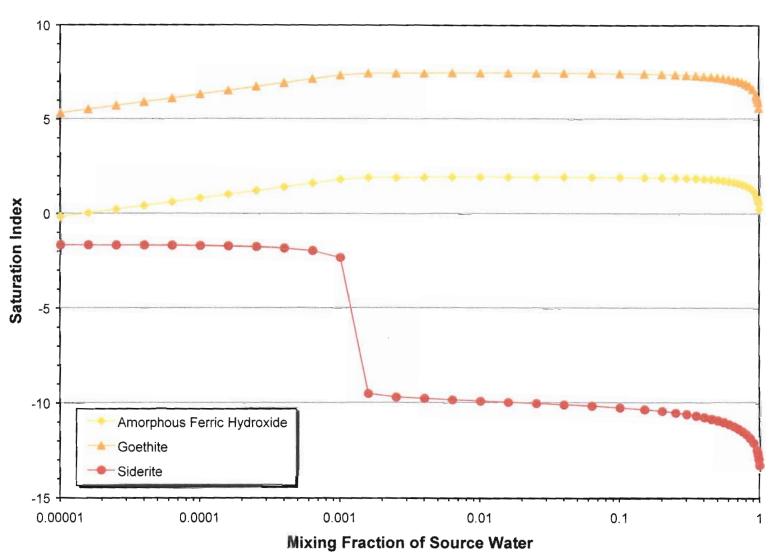
60 ml Amber Glass - Unpi 1L Poly - Unpres (Z)

H3PN2

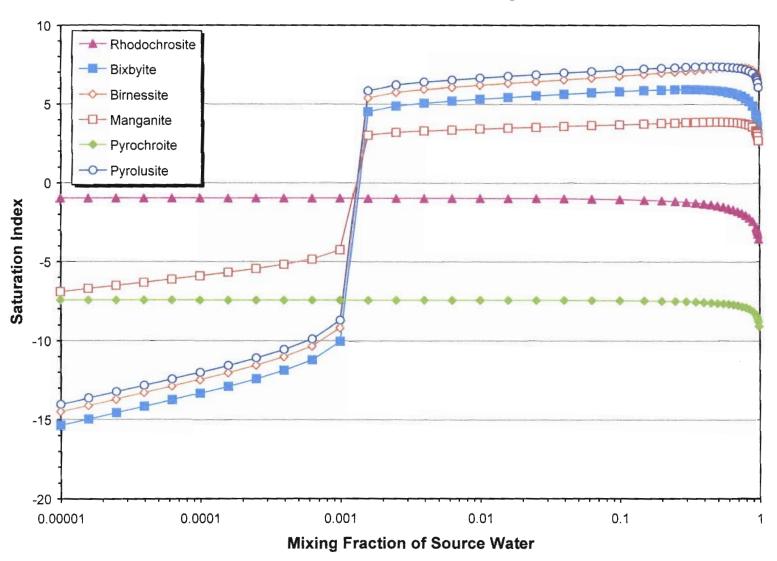
Released By Date Received By Date

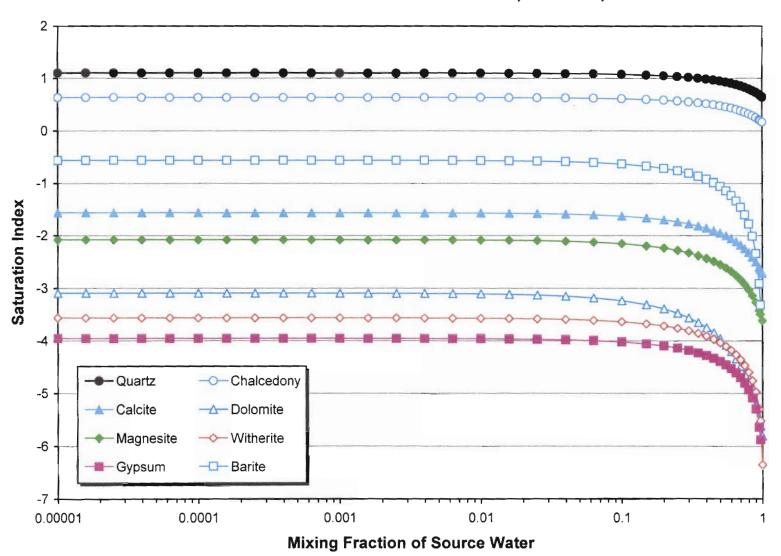

Received By

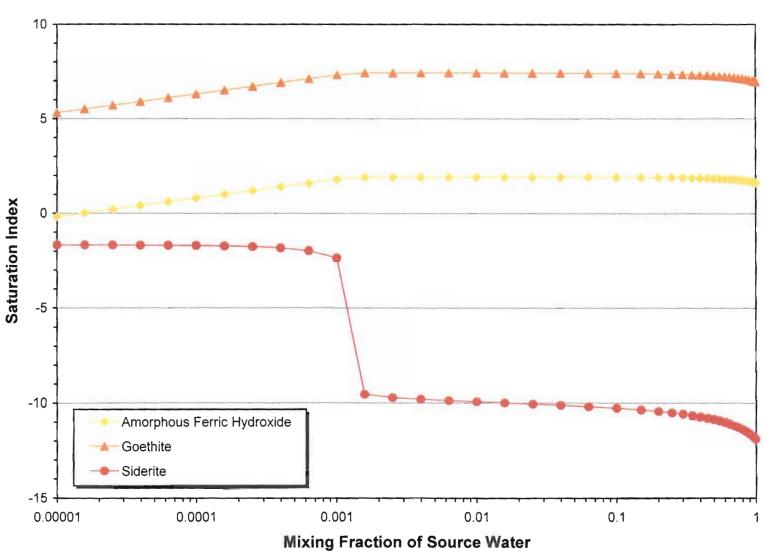
Date

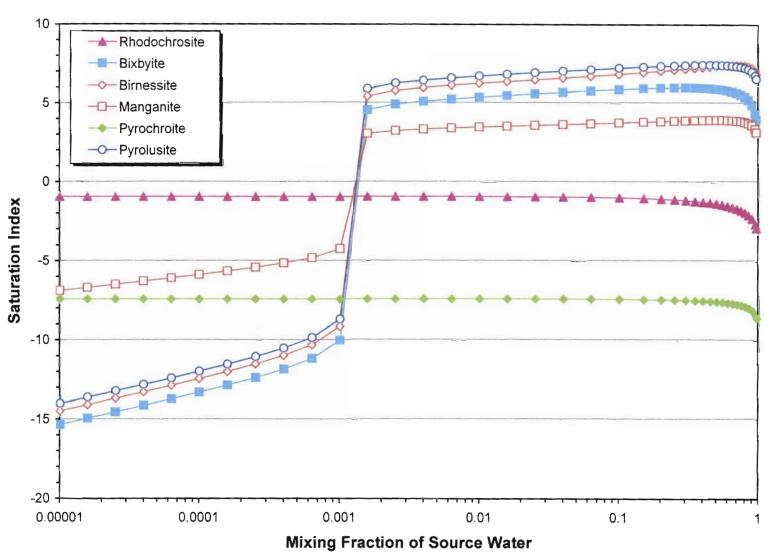


Appendix D: Geochemical Mixing Analysis


CRW Source Water - Carbonates, Sulfates, Silica


CRW Source Water - Iron


CRW Source Water - Manganese


NCCWC Source Water - Carbonates, Sulfates, Silica

NCCWC Source Water - Iron

NCCWC Source Water - Manganese

Appendix E: ASR Assumptions and Calculations

Assumptions ASR Head Buildup/Drawdown Calculations

Operational Assumptions

General

• No preconceived ASR injection volume target established prior to ASR evaluation. Target volume and injection/recovery rates based on the capacity of the target aquifer.

Injection

- Injection period: between October 1st to May 30th
- Assume 20 days of lost injection time due to turbidity events.
- Assume 30 minutes of back flushing the well will take place every 3 weeks during injection (loss of < 1 day of injection time
- Assume injection rate will be at most 70% of the projected long term (70-100 days) sustainable recovery rate of the well.

Storage

Assume a 30 day storage period: June 1st to June 31st

Recovery

- Assume 100% of the stored water is removed from storage
- Recovery period: July 1st to September 31st
- Assume 650 gpm for the typical recovery rate (i.e., long term sustainable recovery rate)

Conservative Assumptions

- 1. Aquifer characteristics further away from the well are uncertain. We have assumed no aquifer boundaries (e.g., faults or heterogeneities in aquifer hydraulic properties that could limit or affect storage) other than the one identified by the constant rate test data.
- 2. Since there was 2 feet of residual drawdown after the constant rate test, assumed that all of the water pumped (4.9 MG) was taken out of storage.
- 3. Assume a well efficiency of 80% based on step test data.
- 4. Assume back flushing will help control the head buildup in the ASR well.

- 5. The specific capacity at the end of an injection period is based on the drawdown trend established during the constant rate test (Q = 800 gpm) adjusted to the target injection rate using the step test data, the Bierschenk equation, and the assumed 15% difference between the specific capacity during pumping and during injection.
- 6. Threshold water level rise in ASR well during injection to be maintained 25 feet below ground surface (bgs).
- 7. Assume the head rise in the aquifer at the end of injection is the same from year to year, which is based on the assumption that the same volume of water is injected each year and all of the stored water is removed each year.
- 8. The specific capacity at the end of a recovery period is based on the drawdown trend established during the constant rate test (Q = 800 gpm) adjusted to the target recovery rate using the step test data and the Bierschenk equation.
- 9. Assume a 15% difference in specific capacity between injection and pumping.
- 10. Assume a 10% reduction in specific capacity at the well (both injection and recovery) from year-to-year due to residual clogging effects.
- 11. Assume no change in the specific capacity of the aquifer outside the borehole skin.
- 12. Assume the static water level in the aquifer returns to the pre-ASR static water level after recovery each year of operation, which is based on the assumption that all of the stored water is removed. No reduction in aquifer specific capacity beyond the borehole skin.
- 13. Drawdown during recovery is based on the equilibrated aquifer level after 30 days of storage, based on the assumption of 1 ft of aquifer rise for every 2.5 MG water injected (see #2).

unr	ise He	ad Bu	laup C	alculation	ons							
ssumpt					_					220	SWL bgs	-
-	SWL Start Inject	tion				1.Dec	Each year	-		220	SVVL DGS	
- 2	Stop Inject		-				Each year	+				
	Total Day						days			THE STATE OF	-	
			every 3 week	s			days			TO STATE OF		
	NTU even	ts greater th	an 0.5							MELT		La serie per de la conse
		1 events at	20 days per				days			Table 1		
			l		Total Days	80					days	
			based on ste	p test data		80	%	-			well efficie	
	Injection r					-					gpm inject MG	ion rate
			in well at 25 h	gs threshold		-					bgs thresh	old
	Recovery		III WOII at 25 t	95 - 0110011010							gpm pump	
		cover injecte	ed volume				1200				days	
				en required pu	mp submerge	ence				384	ft bgs	
						Control Control				CALL STORY	-	
				ing at 800 gpm					-4-1		gpm/ft	
	Projected	SC after 80	days of pump	ing at 650 gpr	n is 2.1% gre	ater than at 80	ou gpm (base	d on step test o	ata)	4.45	gpm/ft	
	Dumaina	C after 57	lave of numa	ing at 800 gpm	(extranolato	d from coneta	nt rate teet)			4.50	gpm/ft	
								d on step test d	ata)	4.75	gpm/ft	
		ifference of		between Pum			Spin (buse)	31.500 1551 0			gpm/ft	
				C between suc						10%		
lead Bui	ldup											
		Well Casir						ehole in Aquif				
	Year 1		ft of head bui			At end of Inje	_			labration 3		
SC yr 1	4.0	WL	108.55	bgs		131	bgs		199	bgs		
	Year 2	192.92	ft of head bui	Idun		-				-		
SC yr 2	3.63	WL	96.17	bgs		131	bgs	1	199	bgs	-	
50 yi 2	0.00	***	30.17	uga		,,,,	ogo			1.90		
	Year 3	137'.59	ft of head bui	ldup								
SC yr 3	3.27	WL	82.41	bgs		131	bgs		199	bgs		
	Year 4		ft of head bui	The state of the s					100			
SC yr 4	2.94	WL	67.12	bgs		131	bgs		199	bgs		-
	Year 5	160.97	ft of bond buil	atun				-		-		
SC yr 5	2.65	WL	ft of head bui 50.13	bgs		131	bgs		199	bgs		
JO YI U	2.00	***	50.15	ogo		107	Ligo			-30		
rawdow	n Estimate	s										
		Well Casin	ng			Water Level	Outside Bor	ehole in Aquif	er			
	Year 1	146.03	At drawdown			At end of Red	covery 1, 2					
SC yr 1	4.45	WL	345.27	bgs		316	bgs					
										10000000		
20	Year 2	-	ft dravvdown	has		246	hac	-		-		
SC yr 2	4.01	WL	361.50	bgs		316	bgs	1				
	Year 3	180 28	ft d rawdown			-						
SC yr 3	3.61	WL	379.53	bgs		316	hgs	-				
		Ly street and										
	Year 4	200.31	ft drawdown								-	
SC yr 4	3.24	WL	399.56	bgs		316	bgs	1				
	150					-				-		
	Year 5	-	it drawdown			240	(han a	-		-		
SC yr 5	2.92	WL	421.82	bgs		316	bgs			1	-	
lotes:	-					-		1		-		
ioles.	Drawnn/d	rawdown crit	eria exceeded				-					
		the aquifer	estimated usin	na projected w	ater level in the	ne we'll and the	e estimalted w	ell efficiency				
						e same volume						

Sunri	ise He	ad Bui	ildup C	alculation	ons								
													-
ssumpti												100000000000000000000000000000000000000	
	SWL									220	SWL bgs		-
	Start Inject						Each year			-			
	Stop Inject						Each year					-	
	Total Days						days			- NESSLO		-	-
		ts greater th	every 3 week	S		-0.15	days			- State of			-
	N10 even		t 20 days per			-20	days						1.75
	-	1 events a	20 days per	-	Total Days	130		17	-	130	days		
	Assume w	ell efficiency	based on ste	en test data	Total Days		%				well efficie	ncv	
	Injection ra		Daded on ou	p toot date			,,,,				gpm inject		
	Injection v										MG	T	
			in well at 25 b	gs - threshold							bgs thresh	old	
	Recovery	rate									gpm pump		
	Days to re	cover inject	ed volume			V				93	days		
	Minimum p	oumping leve	el allowed give	en required pur	np submerge	nce				384	ft bgs		
				The second second									
				ping at 800 gp							gpm/ft		
	Projected	SC after 13	days of pur	nping at 650 g	om is 2.1% gr	eater than at 8	300 gpm (based on ste	p test data)		4.39	gpm/ft		
	-					L	L						
	Pumping S	oc after 93	days of pump	ing at 800 gpn	(extrapolate	a from constar	nt rate test)	A			gpm/ft		
							00 gpm (based on step	test data)			gpm/ft		
				between Pur							gpm/ft		
	Assumed	percentage	reduction in S	C between suc	cessive year	8				10%			
and D.	ldun	-						-					
ead Bui	luup	Well Casin	200			Water I evel	Outside Borehole in	Aguifor					
	Voor 4		ft of head bui	ildun		At end of Inje		Aquirei	After Equi	lahration 3			
Cvr1	Year 1 3.9			A CONTRACTOR OF THE PARTY OF TH		127	bgs		186	bgs			
C yr 1	3.9	VVL	104.02	bgs		121	bgs		100	ugs		-	
	Year 2	129 97	ft of head bui	ildun									-
SC yr 2	3.49		91.13	bgs	200	127	bgs		186	bgs	-		
o yı z	3,40	AAL	31.13	ugs		121	Dy5		100	ings.			
	Year 3	143.19	ft of head bui	ildun								-	-
C yr 3	3.14		76.81	bgs		127	bgs		186	bgs			
, J. U	0.11	1112	70.01	ogo			L go		100	-3-		-	
-	Year 4	159.10	ft of head bui	ildup									-
C yr 4	2.83		60.90	bgs		127	bgs		186	bgs			
-	-												
	Year 5	176.77	ft of head bui	ildup									
C yr 5	2.55	WL	43.23	bgs		127	bgs		186	bgs			
rawdow	n Estimate						5005 DEXT 01-						
		Well Casin	ng .				Outside Borehole in	Aquifer	Land Inches				
	Year 1		ft drawdown		110000000000000000000000000000000000000	At end of Red							
C yr 1	4.39	WL	334.37	bgs		305	bgs		V-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	100 margins			
								Maria Solvan					
	Year 2		ft drawdown										
SC yr 2	3.95	WL	350.83	bgs		305	bgs						
									Victor II				
202	Year 3		ft drawdown			205	h						-
SC yr 3	3.56	WL	369.11	bgs		305	bgs						
	Voor 4	202.45	A deput						-	-	-		
C 1 4	Year 4		ft drawdown			205	han		-	-		-	-
C yr 4	3.20	WL	389.43	ogs		305	bgs			-			-
	Year 5	225.72	ft drawdown										
Cvrs	2.88		And the second s	hae		305	bgs	_					
C yr 5	2.68	WL	412.00	bgs		303	uyo						
lotes:		-		-									-
oles.	Drawnin/dr	awdown crit	eria exceede	d	-								
1					ater level in th	e well and the	estimated well efficier	ncv					
							e of water is injected/re		the year-t	o-vear resid	ual clogging	is limited to	o the
- 4	borehole s			and Jami' you		- Toronto			, ,	- , ,		,	
							wdown after constant			_		T	1

	136 116	au Du	liaup C	alculati	ons							
									11111111111111			
ssumpt												
	SWL			-						220	SWL bgs	
	Start Inject						Each year			1200		
	Stop Inject			-	-		Each year		-	-8500 or C		
-	Total Days				_		days		1	\$100 m		
			every 3 week	KS		-0.24	days			- DSF 180 SC	_	
	NTU event	s greater th				200	dene		+		-	
	-	1 events a	t 20 days per	-	Tatal Dave		days		-	220	alas or	+
	Accumo	oll officiones	y based on ste	on tost data	Total Days	220	%		-		days well efficie	
	Injection ra		based on ste	ep test data	-	80	70		-		gpm inject	
	Injection vo			_	-				-		MG	Jonrale
			in wall at 25 h	bgs - threshold	1						bgs thresh	old
	Recovery		III Well at 25 t	unesilon	1				+		gpm pump	
		cover inject	nd volume						-		days	ning rate
1177				en required pu	mn suhmeme	nce					ft bgs	
	IVIII III III D	diffpling leve	el allowed giv	en required po	inp submerge	100		-1	1	307	it bys	
	Pumping S	C after 157	days of num	ping at 800 gpi	n (extrapolate	d from consta	nt rate test)		-	4.27	gpm/ft	
	Projected 5	SC after 15	7 days of pur	nping at 650 gr	m is 2.1% are	ater than at 8	00 gpm (based on ster	test data)			gpm/ft	
		3 2.,0, 10	July or pair	g g	J. J. J. J. J. J. J. J. J. J. J. J. J. J	1	arm (amoud on otto	Julian			april 1	
	Pumping S	C after 220	days of pumi	ping at 800 gpi	n (extrapolate	d from consta	nt rate test)		-	4.19	gpm/ft	
							00 gpm (based on ste	o test data)		4.41	gpm/ft	
				between Pun			Sp (13000 0 010			3.75	gpm/ft	
				C between su						10%		
				1	1					1		
lead Bui	ldup											
		Well Casir	ng			Water Level	Outside Borehole in	Aquifer	100000			
	Year 1	120.14	ft of head bu	ildup		At end of Inje	ction 1, 2	-	After Equi	labration 3		
SC yr 1	3.7			bgs		124	bgs		163	bgs		1
7			40.00	-			-30		100	-95		
	Year 2	133.49	ft of head bu	ildup					100000			
SC yr 2	3.37		86.51	bgs		124	bgs		163	bgs		-
L. E.	0.01		00.01	1000			ogo		100	590		
1	Year 3	148.32	ft of head bu	ilduo	11-11-11							
SC yr 3	3.03		71.68	bgs		124	bgs		163	bgs		
7.0			7,1100	-			-30		100	-0.5		
	Year 4	164.80	ft of head bu	ildup							100	
SC yr 4	2.73		55.20			124	bgs		163	bgs		
- 2												
	Year 5	183.11	ft of head bu	ildup		ļ						- " "
SC yr 5	2.46			bgs		124	bgs		163	bgs		
											127	
rawdow	n Estimates	3										
		Well Casir	īg			Water Level	Outside Borehole in	Aquifer				
	Year 1		ft drawdown			At end of Red	covery 1, 2			1 100 100 100		
SC yr 1	4.36			bgs		282	bgs					
	Year 2	165.82	ft drawdown			The second						
SC yr 2	3.92	WL	328.75	bgs		282	bgs					
					100000		Commence					
	Year 3		ft drawdown		75-75-75							
C yr 3	3.53	WL	347.18	bgs		282	bgs					
	Year 4		ft drawdown									
C yr 4	3.18	WL	367.65	bgs		282	bgs					
										-		
	Year 5		ft drawdown									
C yr 5	2.86	WL	390.40	pas		282	bgs					
Catalan												
lotes:	Charles and de	awdow/II crit	eria exceede	ď								
otes:	Drawupiara	attaotti										
	Drawup in	the aquifer					estimated well efficier of water is injected/re					

ulli	se He	ad Bui	Idup Ca	aiculati	ons								
				_									
ssumpti													
	SWL									220	SWL bgs		
	Start Injec						Each year			A STATE OF THE PARTY OF			_
	Stop Injec						Each year						-
	Total Days						days			230000	1000000		_
		ts greater th	every 3 week	S	-	-0.10	days	1	1			-	
	MID SAGI		20 days per		-	20	days			-200-200		-	
		i events at	20 days per		Total Days	80				90	days	-	+
	Assume w	ell efficiency	based on ste	n test data	Total Days		%				well efficie	ncv	+
	Injection ra		babea on ste	p toot data	-	- 00	70				gpm inject		+-
	Injection v										MG	- Contract	+-
			in well at 25 b	gs - threshol	d						bgs thresh	old	1
	Recovery	rate									gpm pump		
	Days to re	cover injecte	ed volume								days		
	Minimum	oumping leve	el allowed give	en required pu	mp submerge	nce					ft bgs		
				-24-13								-704	
					n (extrapolated						gpm/ft		
	Projected	SC after 80	days of pump	oing at 650 gp	m is 2.1% great	ater than at 80	00 gpm (based on step	test data)		4.45	gpm/ft		
	2	20.0.		1000	1	<u> </u>							-
					n (extrapolated			toot data'	-		gpm/ft		
							00 gpm (based on step	test data)	-		gpm/ft		
					nping SC and ccessive years				-		gpm/ft	-	
	vesonined	percentage i	eduction in St	o between Su	coessive years	,	112222		-	10%		-	-
Head Buil	dup												-
TOUG DUIT	Сар	Well Casin	na -			Water I evel	Outside Borehole in	Aquifer					
	Year 1	-	ft of head buil	ldun		At end of Inje			After Foui	labration 3			
SC yr 1	4.1	90.74 WL	123.26	bgs		143	bgs		202	bgs			-
F		***	120.20	-90		. 10	-9"		202	-g-		100000000000000000000000000000000000000	1
	Year 2	107.49	ft of head buil	ldup					1	-			-
SC yr 2	3.72	WL	112.51	bgs		143	bgs		202	bgs			
					1		7			1			1
	Year 3	119.43	ft of head buil	ldup									
SC yr 3	3.35	WL	100.57	bgs		143	bgs		202	bgs			1
	Year 4	132.70	ft of head buil	ldup									
SC yr 4	3.01	WL	87.30	bgs		143	bgs		202	bgs			
	Year 5		ft of head buil										1_
SC yr 5	2.71	WL	72.55	bgs		143	bgs		202	bgs			-
						-			-	-			-
Jrawdowi	n Estimate					Motor !!	Outoido Baratata	A	-				1
	V	Well Casin					Outside Borehole In	м quпеr	-				
20 1 1	Year 1 4.45	146.03 WL	ft drawdown	hae	-	At end of Red 318							-
SC yr 1	4,40	VVL	347.58	bgs		310	bgs		-	-			
	Year 2	162.25	ft drawdown		-				-	-			-
SC yr 2	4.01	102.25 WL	363.81	bgs	1	318	bgs		-			-	1
J. J. Z	7.01	YYL	505.01	090		010	-333						1
	Year 3	180.28	ft drawdown						1	-			1
	3.61	WL		bgs		318	bgs						
SC yr 3				Color Color									
SC yr 3	Year 4	200.31	ft drawdown										
SC <u>y</u> r 3		WL		bgs		318	bgs			1000-100			
SC yr 3	3.24												
			ft drawdown										
		222.57		han		318	bgs						
	3.24	222.57 WL	424.12	bgs									
SC yr 4	3.24 Year 5		424.12	ogs									
SC yr 4	3.24 Year 5 2.92	WL											
SC yr 4 SC yr 5 Notes:	Year 5 2.92 Drawup/dr	WL awdown crit	eria exceeded										
SC yr 4 SC yr 5 lotes:	Year 5 2.92 Drawup/dr Drawup in	awdown crit	eria exceeded	i g projected w			estimated well efficier						

line	ico Ho	ad Pui	Idus C	alaulati	one						1		
Sulli	ізе пе	au Du	Idup C	aicuiati	ons								
		-			-					-			
Assumpti		-		-					_				
	SWL									220	SWL bgs		
	Start Inject						Each year				_		
	Stop Injec						Each year				_		
	Total Day					100	days			ESTABLISHED FOR			
	Back flush	n 30 minutes	every 3 week	S		-0.10	days						
	NTU ever	nts greater th	an 0.5										
		1 events a	t 20 days per			-20	days						
					Total Days	80				80	days		+
	Assume v	vell efficiency	based on ste	ep test data	-		%			0.8	well efficie	ncv	$\overline{}$
	Injection r		1				***************************************		-		gpm inject		_
	Injection v								1		MG	- I	_
			in well at 25 b	vis - threshol	d				+		bgs thresh	old	+
	Recovery		117 WOII at 20 D	go - unconor	1				+		gpm pump		+
		cover inject	ad volumo		-				+		days	ing rate	+
				an required no	mp submerge	222			-		ft bgs		+
	IVIN HETICITI	puriping levi	allowed give	en required po	inp submerge	lice			+	304	it bys	-	+
	Dumning	C offer DA	days of a	ing at 800 co	n (outre-slat-	d from comi	nt rote toot)		+	4.00	inner Ife	-	-
					n (extrapolate			toot data	-		gpm/ft		-
	Projected	SC after 80	days of pump	ping at 700 gp	m is 1.4% gre	ater than at 80	00 gpm (based on step	test data)	-	4.42	gpm/ft		-
	Durania	00 -6 50				16			-	the sales and the	-		-
					n (extrapolate						gpm/ft		
							00 gpm (based on step	test data)		4.69	gpm/ft		
		ifference of			nping SC and					3.98	gpm/ft		
	Assumed	percentage i	reduction in S	C between su	ccessive years	3				10%			1
Head Buil	ldup												
		Well Casir	ig .			Water Level	Outside Borehole in	Aquifer					
	Year 1		ft of head buil	ldup		At end of Inje			After Foui	ilabration 3			
SC yr 1	4.0	WL	94.51	bgs		120	bgs		197	bgs			1
	1.10	711				120	-30	1000	107	-90			-
	Year 2	130 42	ft of head buil	Idun					-	-			-
SC yr 2	3.59	WL	80.57		-	120	hae		197	hae			-
JO y Z	3.35	AAL	30.07	bgs		120	bgs		197	bgs			-
	V 2	154.00	A aftered 5 "	lafe on	-				+	-			-
202	Year 3		ft of head buil			400			/444	le si		-	-
SC yr 3	3.23	WL	65.08	bgs		120	bgs		197	bgs			-
									-				
	Year 4		ft of head buil										
SC yr 4	2.90	WL	47.86	bgs		120	bgs		197	bgs			
						- 200 March 200							
	Year 5	191.26	ft of head buil	ldup									
SC yr 5	2.61	WL	28.74	bgs		120	bgs		197	bgs			1
rawdow	n Estimate	9							-				
		Well Casin	g			Water Level	Outside Borehole in	Aguifer					1
	Year 1	_	ft drawdown			At end of Red	covery 1, 2						
SC yr 1	4.42	WL	355.29	bgs		324	bgs		1				
7. 1		11/2	565.25	-40	-	024	090						1
	Year 2	175 04	ft drawdown	-						1			
C 1#2	3.98	175.94 WL		has		224	han		-				-
SC yr 2	3.90	AAL	372.88	bgs		324	bgs		1	-			-
	Veer 2	100 10	Gi dianondo.						+	-			-
20	Year 3		ft drawdown	h		001	disass		-	-		-	-
SC yr 3	3.58	WL	392.43	bgs	-	324	bgs		-	-		-	-
	W	4			-				-			-	-
_	Year 4		ft drawdown						-	-		-	
C yr 4	3.22	WL	414.15	bgs		324	bgs	_0_0_0	127-25				
	Year 5	241.34	ft drawdown							1,			
	2.90	WL.	438.28	bgs		324	bgs						
C yr 5		1						417					
Сут5								-					
- 22					-								
	Drawnolde	alwdown and	ONO DVCOOR	i									
SC yr 5		the aguifor			ntor lovel le th	a wall and the	cotimated well off-to-	251	1				
lotes:	Drawup in	the aquifer e	estimated usin	g projected w			estimated well efficier		ID die		all alasses	the Market A.	

### SWIL Salar Injection 1-Dec Each year 220 SWL bgs		196 116	au Du	laup C	alculation	ons								
Sister injection Total Days Back flush 37 minutes every 3 weeks NTU events greater than 0.5 1 events at 20 days per 100 days NTU events greater than 0.5 1 events at 20 days per 100 days NTU events greater than 0.5 1 events at 20 days per 100 days NTU events greater than 0.5 1 events at 20 days per 100 days NTU events greater than 0.5 1 events at 20 days per 100 days 100		1							150 15000	1000	1			
Start hjecton Stop hjection Total Days Back flush 30 minutes every 3 weeks NTU events greater tran 0.5 1 events at 20 days per 1 events at 20 days events e	Assumpti	ions												175
Stop Injection		SWL						7			220	SWL bgs		
Total Days Back flush 20 minutes every 3 weeks NTU events greater than 0.5 I events at 20 days per I events at 20 days per Assume wait affiliancy based on step test data Assume wait affiliancy based on step test data I relection volume I rel							1-Dec	Each year			THE REAL PROPERTY.			
Back flush 30 minutes every 3 weeks NTU everts at 20 days per 1 everts at 20 days per everts everts at 20 days of per 1 everts at 20 days per 1 everts at 20 days per 1 everts at 20 days per 1 everts at 20 days per everts eve							1-Apr	Each year			Contract of			
NTU events greater than 0.5											010000055			
1 everts at 20 days per					S		-0.10	days			ALC: UNKNOWN			
Assume well efficiency based on step test data		NTU event								-				_
Assume well efficiency based on step test data linjection rate injection rate injection rate injection volume in well at 25 bgs — threshold		-	1 events at	20 days per						-				-
Injection rate			W - CC -1			Total Days				-				_
Recovery rate Recovery rat				based on ste	p test data		80	%						-
Maintain Read buildup well at 25 bgs - threshold Recovery rate 800 gpm pumping rate 80 days 800 gpm pumping rate 800 gpm pumping 800 gpm	-					-				-			on rate	
Recovery ratio Both				in well at 25 h	ae _ threehola					+			old	
Days to recover injected volume 62 days Minimum pumping level allowed given required pump submergence 334 ft bg				111 WOII At 20 D	gs - unesnoic									
Nimimum pumping level allowed given required pump submergence 3364 ft bgs	-			ed volume									I I I I I I	
Pumping SC after 80 days of pumping at 800 gpm (extrapolated from constant rate test)					en required pur	no submerce	nce			12.00				
Projected SC after 80 days of pumping at 850 gpm is 2.1% greater han at 800 gpm (based on step test data) 4.36 gpm/ft				give	- Jan Co par	- Downier got		7		1-17				
Projected SC after 80 days of pumping at 850 gpm is 2.1% greater han at 800 gpm (based on step test data) 4.36 gpm/ft	3 *** THE ST P.	Pumping S	C after 80 d	days of pump	ing at 800 gpm	(extrapolated	from constan	nt rate test)			4.36	gpm/ft	Lord Harden	-
Pumping SC after 62 days of pumping at 800 gpm (extrapolated from constant rate test) 4.47 gpm/ft Projected SC after 62 days of pumping at 800 gpm is 2.8% greater than at 800 gpm (based on step test data) Assumed inference of a 155. Assumed percentage reduction in SC between successive years 100% 100									test data)	1 100			v = 2,000 == 0	
Projected SC after 62 days of pumping at 600 gpm is 2.8% greater than at 800 gpm (based on step test data)										1 1 10 10 10			020270-0	
Assume difference of 15% Detween Pumping SC and Injection SC 10%														
Assumed percentage reduction in SC between successive years 10%								00 gpm (based on step	test data)				7.000	-
								A STATE OF THE STA				gpm/ft		
West Casing		Assumed p	ercentage i	reduction in S	C between suc	cessive years					10%			
West Casing										-				
Vear 1 153.64 n of head buildup At end of Injection 1:2 After Equilabration 3 192 bgs 193 bgs	Head Bui	ldup	141-0-0				144-4		4 16	1				-
Year 2		M							Aquifer		Internal 3		(A) == ==	-
Year 2	00													
Year 2 3.51 WL 49.29 bgs 97 bgs 192 bgs	SC yr 1	3.9	WL	66.36	bgs		97	bgs		192	bgs			
Year 2 3.51 WL 49.29 bgs 97 bgs 192 bgs		Vans 2	470.74	A of bond buil	ada am					+	-			
Year 3	C 2						07	h		102	han			
SC yr 3 3.16	SC yr Z	3.51	AAL	49.29	ogs		91	bgs		192	bgs			
SC yr 3 3.16		Vear 3	189 68	ft of head buil	ldun					-	-			
Year 4 210.75 ft of head buildup	SC vr 3	The second second second second					97	has		192	bas		700000	
SC yr 4 2.85 WL 9.25 bgs 97 bgs 192 bgs	oo ji o	0.10		30.02	ngo	(1-1-y-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	01	uga -		102	Ugo		750000	
SC yr 4 2.85 WL 9.25 bgs 97 bgs 192 bgs		Year 4	210.75	ft of head buil	ldup						1			
Year 5	SC yr 4	2.85			March Co.		97	bas		192	bgs			
SC yr 5 2.56 WL -14 17 bgs 97 bgs 97 bgs 192 bgs	-								-12				-12.22	
Walt Casing		Year 5	234.17	ft of head buil	dup					1	1		_	-
Well Casing	SC yr 5	2.56	WL	-14.17	bgs		97	bgs		192	bgs			
Well Casing													(C)	
Year 1 183.50 ft dirawdown At end of Recovery 1.2 3C yr 1 4.36 WL 375.83 bgs 339 bgs Year 2 203.89 ft drawdown 205.71 ft drawdown	Drawdow	n Estimates												
SC yr 1			Well Casir	ig .					Aquifer					
Year 2 203.89 ft drawdown SC yr 2 3.92 WL 396.22 bgs 3.38 bgs Year 3 226.54 ft drawdown SC yr 3 3.53 WL 418.87 bgs 339 bgs Year 4 251.71 ft drawdown SC yr 4 3.18 WL 444.04 bgs 339 bgs Year 5 279.68 ft drawdown SC yr 5 2.86 WL 472.01 bgs 339 bgs Orawup/drawdown criteria exceededs 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency														
SC yr 2 3.92 WL 396 22 bgs 3.39 bgs	SC yr 1	4.36	WL	375.83	bgs		339	bgs						
SC yr 2 3.92 WL 396 22 bgs 3.39 bgs			-											
Year 3											-			
Year 4 251.71 ft drawdown	SC yr 2	3.92	WL	396.22	bgs		3:38	bgs		-				-
Year 4 251.71 ft drawdown		Veer 6	000 51	A dual C						-				
Year 4	20 1113				han		900	e a c		-	-			-
Year 4 251.71 ft drawdown	SC yr 3	3.53		418.87	ugs		339	ogs		-		-		-
SC yr 4 3.18 WL 444.04 bgs 339 bgs Year 5 279.68 ft drawdown SC yr 5 2.86 WL 472.01 bgs 339 bgs Notes: Drawup/drawdown criteria exceeders 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency	_	Voor 4		6 demundance						-	-	-		
Year 5 279.68 ft drawdown SC yr 5 2.86 WL 4/2.01 bgs 339 bgs Notes: Drawup/drawdown criteria exceeders 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency	C 15 4				hae		220	has		-				-
SC yr 5 2.86 WL 472.01 bgs 339 bgs Notes: Drawup/drawdown criteria exceededs 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency	50 yr 4	3.18	WL	494.04	ugs		339	ogs		-		-	-	
SC yr 5 2.86 WL 472.01 bgs 339 bgs Notes: Drawup/drawdown criteria exceededs 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency		Voor 5	270.60	ft drawdour						-	-			
Orawup/drawdown criteria exceeded 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency	SC vr 5				bas		330	has		-				
Drawup/drawdown criteria exceederd 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency	J J 1	2.00	111		240	-	339	ngo .		1				
Drawup/drawdown criteria exceederd 1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency	Votes:													
1 Drawup in the aquifer estimated using projected water level in the well and the estimated well efficiency	.5.05.	Drawnn/dra	wdown crit	eria exceeded					-					
	1					ter level in the	e well and the	estimated well efficier	icv	1				
											77	of decide	A. Woodland A.	tho

SWA Total Aquifer Storage Volume Estimate

Volume removed during constant rate test @ 800 gpm for 4.27 days:

4.896 MG

Residual drawdown of aquifer level remaining following recovery period (see residual drawdown curve from constant rate aquifer test of SWA well 2W)

1.96 ft

Assuming all water pumped during constant rate test was from storage, the gallons pumped per foot of drawdown is

2.498 MG/ft

Current static water level in the target aquifer Injection cut-off water level threshold **SWL 2006**

220 ft bgs 25 ft bgs

Difference

195 ft

Assumes that the water level in the aquifer (i.e., the post-injection equilibrated aquifer water level) could be elevated to the injection

cutoff threshold of 25 ft bgs.

Available storage volume based on 2000 swl level is:

487 MG