Appendix 6

October 11, 2011 Geodesign Revised Groundwater Interference Testing Report (Application Question 8)

GEODESIGN²

REVISED

GROUNDWATER INTERFERENCE TESTING REPORT

Swan Lake North Pumped Storage Hydroelectric Project Klamath County, Oregon FERC No. 13318 OWRD Permit Application HE 592

> For Symbiotics

On behalf of Swan Lake North Hydro, LLC

October 11, 2011

GeoDesign Project: Symbiotics-3-01

October 11, 2011

Oregon Water Resources Department 725 Summer Street NE, Suite A Salem, OR 97301

Attention: Mr. Jerry Grondin

Revised Groundwater Interference Testing Report Swan Lake North Pumped Storage Hydroelectric Project Klamath County, Oregon GeoDesign Project: Symbiotics-3-01 FERC No. 13318 OWRD Permit Application HE 592

GeoDesign Inc. is pleased to submit this *Revised Groundwater Interference Testing Report* for the proposed Swan Lake North Pumped Storage Hydroelectric Project in Klamath County, Oregon.

Please call if you have questions regarding this submittal.

Sincerely,

GeoDesign, Inc.

uptur P. Palum

Stephen . Palmer, Ph.D., R.G. Principal Engineering Geologist

cc: Mr. Erik Steimle, Symbiotics (via email only)

EAH:SMD:SPP:kt Attachments One copy submitted Document ID: Symbiotics-3-01-1011111-geor-interference-rev.doc © 2011 GeoDesign, Inc. All rights reserved. REVISED

GROUNDWATER INTERFERENCE TESTING REPORT Swan Lake North Pumped Storage Hydroelectric Project Klamath County, Oregon FERC No. 13318 OWRD Permit Application HE 592 GeoDesign Project: Symbiotics-3-01

> Prepared for: Symbiotics

On Behalf Of

Swan Lake North Hydro, LLC

Prepared by: GeoDesign, Inc.

October 11, 2011

Fr t

Erik A. Hedberg, E.J. Project Manager

P. Palmin Stephen P. Palmer, Ph.D., R.G. Principal Engineering Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Purpose and Objectives	1
	1.2 Summary of Conclusions	2
2.0	BACKGROUND	2
	2.1 Proposed Reservoir Filling and Maintenance Pumping	2
	2.2 Calculated Pumping Rates	3
3.0	STUDY AREA CHARACTERISTICS	3
	3.1 Regional Geology	3
	3.2 Regional Hydrogeology	4
	3.2 Groundwater Use	5
4.0	TESTING WELLS AND METHODS	5
	4.1 Pumping Wells	5
	4.2 Observation Wells	6
	4.3 Water Level Monitoring	7
	4.4 Barometric Pressure Monitoring	7
	4.5 Flow Measurements	7
	4.6 Water Management	7
5.0	BASELINE DATA COLLECTION	8
6.0	SINGLE-WELL PUMPING TEST	8
7.0	MULTIPLE-WELL INTERFERENCE TEST	9
8.0	DATA REDUCTION AND ANALYSIS	11
	8.1 Data Corrections	11
	8.2 Data Analysis	14
9.0	PROBLEMS ENCOUNTERED AND RESOLUTION	21
10.0	CONCLUSIONS	22
REFER	ENCES	24
FIGUR	ES	
	Study Area and Proposed Reservoir Locations	Figure 1
	Baseline Water Levels	Figure 2
APPEN	DICES	
	Appendix A	
	Study Area Wells, Water Rights, and Projected Pumping Rates	A-1
	Appendix B	
	Water Level Plots	B-1
	Appendix C	
	Pumping Test Analysis Plots	C-1
	Appendix D	
	Drawdown Estimations	D-1

TABLE OF CONTENTS	PAGE NO.
APPENDICES (continued)	
Appendix E	
Tabulated Data (Compact Disk)	E-1
Appendix F	
OWRD Proposed Order, Hydroelectric Application HE 592	F-1

ACRONYMS

GEODESIGN

Symbiotics-3-01:101111

1

1.0 INTRODUCTION

This Groundwater Interference Testing Report has been prepared on behalf of Symbiotics and Swan Lake North Hydro, LLC in support of the proposed Swan Lake North Pumped Storage Project in Klamath County, Oregon (project site, Figure 1). GeoDesign completed groundwater testing in general accordance with our Groundwater Interference Testing Plan (Plan) dated January 14, 2011. Development of the testing program was based on (1) requirements set forth in OWRD's "Proposed Order for Preliminary Permit for Hydroelectric Application HE 592 at Swan Lake North," (2) input from project team members, and (3) input from OWRD Groundwater Section Staff.

For your reference, acronyms used in this report are defined at the end of the document.

1.1 PURPOSE AND OBJECTIVES

GeoDesign completed groundwater testing to support evaluation of potential water level drawdown interferences at selected water wells distal to pumping wells intended for use in filling the proposed reservoirs¹. Because the pumping wells and other irrigation wells in the study area are developed in common aquifer units², pumping the production wells over an extended period of time (for reservoir filling and maintenance) has the potential to cause drawdown at other wells. An estimation of the amount of drawdown at distal wells was required to evaluate possible damage to other water right holders; specifically, whether associated drawdowns could limit allowable pumping rates at other wells under their associated permitted or certificated appropriation rates.

Three primary objectives governed methods employed during this study, as follows:

- Conduct a single-well drawdown and recovery test by pumping one of the reservoir supply wells and measuring drawdown in selected observation wells within the groundwater compartment³. Selection of the pumping well and observation wells supported estimation of average transmissivity and storage coefficient values for the compartment.
- Conduct a multiple-well interference test by pumping each of the four reservoir supply wells at maximum allowable appropriation rates. Monitor water levels in the pumping wells and selected observation wells within and outside the compartment in order to support an evaluation of potential drawdown (interference) at the distal observation wells. Evaluate water levels with respect to pumping influence and other potential factors affecting water levels.
- Evaluate the collective data to determine the potential for groundwater interference at distal observation wells, and use the estimated values of transmissivity to project long-term drawdown values within and outside the compartment.

³ Groundwater compartments are defined in Section 3.2

¹ A description of the project background and scope is presented in Section 2.

² A description of hydrogeologic formations is presented in Section 3.

1.2 SUMMARY OF CONCLUSIONS

As presented in Section 10, this study presents the following conclusions:

- Evaluation of the single-well pumping test data suggests the principal basalt aquifer in the northern Swan Lake Valley compartment is highly transmissive. Overlying basin fill sedimentary deposits are characterized by much lower transmissivity values. Well log records indicate many area wells receive flows from both hydrogeologic units, and the wide range of reported specific capacities reflects the variable degree to which a given well communicates with the sedimentary deposit and basalt unit. Estimated transmissivity values ranged from 49,400 to 8,823,500 ft²/day. Storage coefficient values ranged from 0.0029 to 0.105.
- Water level response data to single-well pumping and multiple-well pumping indicates the presence of a subsurface in Swan Lake Valley causing resistance to groundwater flow that appears to reduce the effects of pumping stress beyond the feature. The location of this feature appears to be just north of Swan Lake.
- Drawdown and/or interference were not observed in project observation wells south of KLAM 2269.
- Theis' solution to the groundwater flow equation was used to derive conservative estimates
 of potential drawdowns arising from long-term (three years) pumping at prorated extraction
 rates from the pumping well array. The range of theoretical drawdowns in project
 observation wells ranged from 0.35 foot (at KLAM 2260, north end) to 0.13 foot (at KLAM
 12420, south end). The projected drawdown values are conservative based on assumed
 inputs. In all cases, the actual realized drawdowns (if observed or measurable) are expected
 to be less than the values presented and are not expected to impact the ability to fully
 exercise a given water right in the study area.

2.0 BACKGROUND

The project is located approximately 11 miles northeast of Klamath Falls in Klamath County, Oregon. The project boundary extends from the east side of Grizzly Butte to approximately 1 mile east of Swan Lake Rim, located in Sections 13, 14, 15, 22, 23 and 24, Township 32 South, Range 10 East, Willamette Meridian. The project site vicinity and locations of proposed reservoirs are shown on Figure 1.

A detailed summary of the project setting, background, and scope is presented in the "Swan Lake North Pumped Storage Project Pre-Application Document" (Symbiotics, 2010).

2.1 PROPOSED RESERVOIR FILLING AND MAINTENANCE PUMPING

The project will include an upper reservoir and a lower reservoir as depicted on Figure 1. The project proposes to initially fill the lower reservoir by pumping groundwater from four wells (herein referred to as supply wells or pumping wells) under transfer of water right Certificate 29530 and transfer of water right Certificate 87006. Additional water rights held under a subset of the pumping wells (specifically, Certificates 83121 and 67564) will not be exercised by the supply wells in filling the reservoirs. Once initial filling is completed, the lower reservoir will receive maintenance flows from one of the supply wells under permanent transfer. The project is expected to require 13,935 acre-feet of water for initial filling and an additional 1,574 acre-feet annually to offset evaporative losses (maintenance pumping).

A description of proposed supply wells is presented in Section 4.1 and Table A-1.

2.2 CALCULATED PUMPING RATES

Initial reservoir filling (13,935 acre-feet) is expected to take place over a two- to three-year period of continuous pumping. This duration is governed by annual duties applicable to the associated water rights and is intended to minimize potential damage to surrounding water right holders by distributing the pumping activities over an extended period of time. Based on the anticipated initial reservoir filling volume and annual maintenance pumping projections, initial estimates of long-term pumping rates were developed. The estimated long-term pumping rates for each supply well consider the allowable instantaneous pumping rates and annual duties associated with the respective water rights. In addition, the estimated pumping rates are intended to distribute the pumping period over the entire year as opposed to the typical irrigation season. This distribution of pumping over the entire year is expected to reduce the potential for interferences with other irrigation wells during peak demand periods (i.e., late summer). A summary of estimated pumping rates and associated water right conditions is presented in Table A-2.

Despite the reduced extraction rates (relative to typical irrigation season pumping) associated with proposed year-round pumping, pumping rates employed during this testing program reflected maximum allowable instantaneous appropriation rates under the relevant water rights. The rationale for testing the supply wells at a higher rate was twofold: (1) testing at the highest allowable pumping rates supports and evaluation of worst-case drawdown scenarios and (2) testing at the highest allowable pumping rates would increase the likelihood of obtaining measurable drawdown at relatively greater distances from the pumped wells; therefore, resulting in a more robust data set supporting estimates of transmissivity, effective transmissivity, and storage coefficient over a relatively larger area than could be obtained using lower pumping rates.

3.0 STUDY AREA CHARACTERISTICS

3.1 REGIONAL GEOLOGY

The project site is located in the northwest corner of the Great Basin physiographic region. This region is characterized by north-trending, fault-controlled mountain ranges and broad valleys. The proposed project is sited on the Modoc Plateau near the convergence of the Cascade Range physiographic region and Great Basin physiographic region. The proposed upper reservoir is sited near the Swan Lake Rim, a steep escarpment bounding the eastern side of Swan Lake Valley. The lower reservoir is located along the eastern margin of Swan Lake Valley, north of Swan Lake and south of Grizzly Butte. Geomorphic characteristics throughout much of this region include large vertical escarpments with gently sloping plateaus and broad valleys. Faulting has formed the graben and half-graben valleys throughout much of the region. Vertical displacement from faulting has created the Swan Lake Rim escarpment, which is 2,000 feet tall (Sherrod and Pickthorn, 1992).

Swan Lake Valley is bound on the east and west by plateaus of Pliocene volcanic rock. The volcanic and volcaniclastic rocks found on the Modoc Plateau are part of the Winema Volcanic

Field. The valley floor is primarily composed of Plio-Pleistocene sediments and Holocene lake deposits. Tertiary and Quaternary sedimentary rocks and deposits form alluvial fans near the base of the escarpment.

The lower reservoir sits atop Quaternary sediment. The proposed lower reservoir is bound by Pliocene andesite on the west side and Pliocene basalt on the east side. The upper reservoir sits atop Pliocene basaltic andesite.

3.2 REGIONAL HYDROGEOLOGY

As summarized by Grondin (2004), early researchers, including Newcomb and Hart (1958), Illian (1970), and Leonard and Harris (1974), described the basin's primary hydrogeologic units as:

- an older, highly permeable lower basalt unit that serves as the principal aquifer in the area;
- the Yonna Formation (a medial zone of stratified lacustrine deposits consisting of tuff, agglomerate, shale, diatomite, sandstone, and volcanic ash with some volcanic intrusives or interbeds of thin lava flows) that primarily confines groundwater; and
- upper, younger units of lava flows forming cap rock in places, eruptive deposits, and alluvium, which occur above the water table or yield small quantities of perched water.

Sherrod and Pickthorn (1992) described and mapped a more complex stratigraphic sequence and abandoned the Yonna Formation as a valid stratigraphic unit. Grondin (2004) indicates that the geology and water-bearing characteristics may be more complex than previously described.

The two principle sources of groundwater recharge are underflow from the unconfined system of the adjacent volcanic rocks and, less significantly, infiltration of surface water through sedimentary deposits. In the Swan Lake Valley groundwater in the deeper portion of the basin fill has an efficient hydraulic connection to groundwater in the basalt below. The hydraulic properties of the basin fill and basalt aquifers generally differ, resulting in low yield from the basin fill and much higher yields from the basalt. Although the surface layer of fine-grained, unconsolidated aquifers yield little water, the underlying volcanic aquifers have large water yields. Maximum well yields are approximately 4,750 gpm at depths between 180 and 860 feet BGS (Grondin, 2004; Whitehead 2004).

The general pattern of groundwater movement is from north to south. In the Swan Lake Valley groundwater flow direction tends toward the Lost River to the south with a gradient less than 10 feet per mile (Grondin, 2004). Swan Lake Valley groundwater appears to discharge from basalt at springs adjacent to the Lost River in western Poe Valley (Grondin, 2004).

Grondin (2004) categorized the Swan Lake Valley to Poe Valley as one of four hydraulically connected sub-areas within the upper Lost River sub-basin. Within the Swan Lake to Poe Valley sub-area, there are hydraulically connected compartments. The pumping wells pertinent to this study are located in the northern-most compartment of the sub-area. Although the bounding conditions of the compartments are poorly defined, they appear to create some resistance to groundwater flow and help categorize compartment and sub-area response to seasonal stress. As suggested by Grondin (2004) and indicated by this study, the north Swan Lake Valley

compartment roughly coincides with the approximate northern one-third of the Swan Lake Valley, with a southern boundary of the compartment consisting of an east to west-trending line at the approximate latitude of Swan Lake.

Grondin (2004) conducted a pumping test in northern Poe Valley, located in the Swan Lake Valley to Poe Valley sub-area (approximately 16 miles southeast of the north Swan Lake Valley compartment). Results of the pumping test indicated an effective transmissivity of 150,000 ft²/day and a storage coefficient of 0.0004 for the central portion of the Swan Lake Valley Valley to Poe Valley sub-area.

Estimates of hydraulic parameters within the greater Eastern Lost River sub-basin (including South Langell Valley, Lorella, Bonanza and Swan Lake Valley to Poe Valley sub-areas) vary considerably, with effective transmissivity estimates ranging from 2,050 to 600,000 ft²/day and storage coefficient estimates ranging from 0.00015 to 0.00096 (Grondin, 2004).

3.3 GROUNDWATER USE

Groundwater is heavily utilized for irrigation within the study area and within the primary basalt hydrogeologic unit. Between the northern limit of Swan Lake Valley and Pine Flat (generally coinciding with this study area), 39 irrigation wells were identified during our water well review. Review of the associated well logs indicates that nearly all of the wells are developed primarily within the basalt unit, although a number of wells also pump water from the valley fill. Based on our review of available water right records, associated groundwater appropriations for these wells is on the order of 35,000 acre-feet per year. A summary of wells identified within the study area is presented in Table A-1.

Grondin (2004) indicated seasonal groundwater level fluctuations on the order of 2 to 4 feet in the north Swan Lake Valley compartment and 4 to 7 feet in the central Swan Lake to Poe Valley sub-area. These seasonal groundwater fluctuations helped distinguish the compartments.

4.0 TESTING WELLS AND METHODS

This section presents a discussion of wells utilized during this testing program. Detailed information gathered for the study wells are also summarized in Table A-1. The locations of the pumping observation wells are depicted on Figure 2. Copies of well logs and records for the proposed pumping wells, observation wells, and other wells within the study area are presented in Appendix A.

4.1 PUMPING WELLS

The pumping wells utilized during this study are briefly described in Table 1. These pumping wells are proposed for use in initial reservoir filling; pumping well KLAM 2265 is proposed for use in providing maintenance flows to compensate for evaporative reservoir losses as described in Section 2.1.

Pumping Well	Installation Date	Total Depth (feet BGS)	Cased Depth (feet BGS)	Source Aquifer	Allowable Appropriation Rate (gpm)	Allowable Annual Duty (acre-feet)
KLAM 2263 (Well #1; "Cove")	1951	142	19	Basalt	2,800	1,503.3
KLAM 2259 (Well #2; "100-Horse")	1952	281	170	Basalt	2,033	1,944.0
KLAM 2262 (Well #4; "Aspen")	1979	187	81	Basalt	2,567	1,371.6
KLAM 2265 (Well #5; "Lake")	Unknown	123	Unknown	Basalt, Basin Fill	3,541	1,894.2

Table 1. Summary of Pumping Wells

OBSERVATION WELLS 4.2

Observations wells used during this study are briefly characterized in Table 2. Observation wells were selected based on input from OWRD Groundwater Section Staff and further selected based on accessibility and/or permission for access.

Table 2.	Summary	of	Observatio	n	Wells
----------	---------	----	------------	---	-------

Observation Well	Installation Date	Total Depth (feet BGS)	Cased Depth (feet BGS)	Source Aquifer(s)	Allowable Appropriation Rate (gpm)
KLAM 2260 ("Wilson")	1977	200	20	Basalt	3,236
KLAM 2269 ("Marengo")	1954	325	Unknown	Basalt, Basin Fill	431
KLAM 2289 ("Coleman")	1949	99	81	Basalt, Basin Fill	875
KLAM 12186 ("Liskey""	1957	850	39	Basalt, Basin Fill	1,450
KLAM 12203 ("Venable")	1949	221	40	Basalt	3,914
KLAM 12420	1950	1 35	16	Basalt	1,629
KLAM 50362	Unknown	224	16	Basalt, Basin Fill	2,684

4.3 WATER LEVEL MONITORING

Water level measurements were collected using calibrated, vented In Situ LevelTroll 700[®] pressure transducer data loggers with 5 psi pressure ratings⁴. During deployment, water level datums were established by comparing logger readings with manual depth-to-water measurements to calculate the transducer depth relative to the static water level. For this purpose, a consistent measuring point at each wellhead was established. Transducer readings were collected during all phases of the testing program at one minute intervals⁵.

Manual depth-to-water measurements were collected using a Slope-Indicator® electronic tape. Manual water-level readings were collected during transducer deployment and retrieval, and periodically during pumping/recovery periods of the tests pending access.

4.4 BAROMETRIC PRESSURE MONITORING

Barometric pressures were recorded during all phases of the testing program. Barometric pressures were recorded in proximity to pumping well KLAM 2259 using a calibrated In Situ Baro-Troll® instrument rated for 15 psi. Barometric pressures were recorded at one minute intervals during the entire testing program.

4.5 FLOW MEASUREMENTS

Flow measurements were recorded for each pumping well using McCrometer analog flow meters with instantaneous and totalizer capability. Instantaneous flow readings were displayed in gpm, and totalizer readings were displayed in acre-feet x 0.001. Total pumped volumes were recorded from flow meter totalizer readings. Totalizer readings were also used to calculate averaged time-step pumping rates as an independent check against the instantaneous readings. Comparison of the instantaneous readings and calculated rates based on periodic totalizer readings indicated close agreement.

Flow measurements were collected in general accordance with the schedule described in our Plan, as follows:

- Hourly for the first 24 hours of pumping
- Every 4 hours for the subsequent 48 hours of pumping
- Every 8 hours for subsequent periods of pumping

Observed flow meter readings from each pumping well indicated steady flow rates. As such, no measures were required to maintain consistent flow rates from the pumping wells.

4.6 WATER MANAGEMENT

Pumped water from each supply well was routed via 12-inch-diameter irrigation pipe to nearby conveyance ditches discharging to Swan Lake. A total of approximately 486 acre-feet of water

⁵ Initial baseline water level and barometric pressure readings were collected at one hour intervals. Upon transducer change-out to the 5 psi transducers, the water level and barometric pressure measurement schedule was updated to one minute readings for the remainder of the testing program.

⁴ Initial baseline water levels were recorded using 30 psi transducers. The 30 psi transducers were replaced with 5 psi transducers on February 5, 2011. The 5 psi transducers provided a measurement accuracy of 0.01 foot of water or better.

was generated and directed to Swan Lake during this testing program. Each canal discharge point was located at least 3,940 feet from any respective pumping well and at least 5,490 feet from any given observation well.

5.0 BASELINE DATA COLLECTION

Baseline data was used to evaluate ambient water levels and any associated trends during prepumping periods. Baseline data collection included continuous logging of barometric pressure and water levels in all pumping and observation wells. The baseline data collection period began on January 27, 2011 and extended to the beginning of the single-well pumping test on February 8, 2011. Baseline water level data was collected in two phases representing different equipment deployment and measurement frequency, as shown in Table 3.

Baseline Data	Equipment	Measurement Frequency	Begin Date	End Date
Water Levels -	30 psi Transducers	One Hour	1/27/11	2/5/11
Pumping and Observation Wells	5 psi Transducers ¹	One Minute	2/5/11	Initiation of Single- Well Pumping Test
		One Hour	1/27/11	2/5/11
Barometric Pressure	15 psi Transducer	One Minute	2/5/11	2/24/11

Table 3. Baseline Measurement Schedule

1. Pressure transducer change-out from 30 psi to 5 psi units was completed in accordance with OWRD request.

6.0 SINGLE-WELL PUMPING TEST

A single-well pumping and recovery test was performed by pumping KLAM 2259 (Well #2; "100-Horse"). Generally speaking, a single-well test usually refers to an aquifer test where the pumping well is the sole source of data used to derive hydraulic property estimates (i.e., no observation wells are utilized). However, we use this terminology herein to clearly differentiate this initial test from the multiple-well interference test.

Pumping well KLAM 2259 was selected due its approximate central location relative to the other three pumping wells. Pumping well KLAM 2259 was pumped at a rate to approximately reflect the maximum allowable instantaneous rate allowed under Water Right Certificate 29530. A summary of pumping rate, duration, and observed drawdown in pumping well KLAM 2259 (Well #2; "100-Horse") are presented in Table 4.

GEODESIGN[¥]

Begin Pumping	End Pumping	Pumping Duration (minutes)	Flow Rate (gpm)	Pumping Well Drawdown (feet)
2/8/11 10:39	2/10/11 10:39	2,880	3,000	4.5

Table 4. Pumping SummarySingle-Well Pumping Test

Although transducers were deployed in all study area wells during the single-well pumping test, the observation wells most closely observed during the single-well test included those presented in Table 5. This pumping/observation well distribution was selected to support estimates of transmissivity in several directions within the northern Swan Lake Valley compartment.

Observation Well	Distance From KLAM 2259 (miles)	Direction From KLAM 2259	Remarks
KLAM 2262 (Well #4)	0.37	North	Future pumping well for reservoir
KLAM 2269	0.41	Southwest	Marengo Well
KLAM 2260	0.79	North/Northeast	Jesperson Edgewood ("Wilson")
KLAM 2263 (Well #1)	1.64	East	Future pumping well for reservoir
KLAM 2265 (Well #5)	3.37	East/Southeast	Future pumping well for reservoir

Table 5. Observation Wells for Single-Well Pumping Test

Cessation of the pumping phase initiated the recovery phase of the single-well pumping test. Recovery measurements were obtained in the pumping and observation wells until initiation of the multiple-well interference test (a minimum of 5,762 minutes).

Tabulated data for the pumping and observation wells is presented in Appendix B. Water level plots for the pumping and observation wells are presented in Appendix C. Evaluation of the data and corresponding hydraulic parameter estimates are discussed in Section 8.

7.0 MULTIPLE-WELL INTERFERENCE TEST

Multiple-well testing was performed to support the evaluation of potential groundwater interferences at distal wells relative to the supply well array (KLAM 2259, KLAM 2262, KLAM 2263, and KLAM 2265). Completion of the multiple-well testing program included pumping each of the four supply wells at the approximate maximum allowable instantaneous rates allowed from the wells under the respective water rights.

The multiple-well interference test was initiated on February 14, 2011. Pumping rates for each pumping well approximately reflected the maximum allowable instantaneous rates allowed from their respective water rights. A summary of the pumping duration is presented in Table 6.

Table 6. Pumping Summary Multiple-Well Interference Test

Pumping Well	Begin Pumping	End Pumping	Pumping Duration (minutes) ¹	Pumping Rate (gpm)
KLAM 2263 (Well #1; "Cove")	2/14/11 11:16	2/23/11 07:50	12,754	2,350
KLAM 2259 (Well #2; "100-Horse")	2/14/11 10:40	2/23/11 07:45	12,785	3,000
KLAM 2262 (Well #4; "Aspen")	2/14/11 10:45	2/23/11 07:39	12,774	3,500
KLAM 2265 (Well #5; "Lake")	2/14/11 11:01	2/23/11 07:40	12,759	3,400

1. Intermittent power outages experienced during the multiple-well interference test affected the testing duration, as discussed in Section 9.

2. The initial 188 minutes of pumping of KLAM 2263 did not include booster pump; refer to Appendix B.

The distribution of observation wells utilized during the multiple-well interference test reflected locations inside and outside the north Swan Lake Valley compartment. A summary of observation wells relative to the pumping wells used for the multiple-well interference test are detailed in Table 7.

Observation Well	Distance From KLAM 2260' (miles)	Well Owner	Water Right Priority Date (earliest if multiple)
KLAM 2260 ("Wilson")	0.00	Jesperson Edgewood	3/3/1977
KLAM 2269	1.19	Jesperson Edgewood	5/28/1952
KLAM 2289	3.04	Coleman	8/2/1948
KLAM 12186	5.44	Liskey	2/10/1958
KLAM 12203	7.66	Venable	7/19/1949
KLAM 50362 ("Lone Rock")	6.64	Jesperson Edgewood	7/19/1949
KLAM 12420	10.42	Hankins	7/19/1949

Table 7. Observation Wells for Multiple-Well Interference Test

1. Relative distances are based on the location of KLAM 2260, which represents the northern-most well located in the north Swan Lake Valley compartment.

Tabulated data for the pumping and observation wells is presented in Appendix B. Water level plots for the pumping and observation wells are presented in Appendix C. Evaluation of potential interferences is discussed in Section 8.

GEODESIGN

8.0 DATA REDUCTION AND ANALYSES

Data collected during the initial single-well pumping and recovery test was evaluated with the following objectives:

- Estimate values of transmissivity and storage coefficient representative of the north Swan Lake Valley compartment. These estimates were derived using drawdown and recovery data from pumping and observation wells. Methods employed for this analysis included those developed by Theis (1935) and Cooper and Jacob (1946).
- Identify potential leaky conditions and/or flow boundaries that may affect piezometric surfaces during extended periods of pumping. As appropriate, approximate the locations of flow boundaries based on image-well methodology.
- Project long-term pumping water level conditions in the reservoir supply wells.
- Develop drawdown scenarios within the north Swan Lake Valley compartment that reflect different pumping periods and/or durations relative to initial reservoir filling and reservoir maintenance pumping.

Data collected during the multiple-well pumping and recovery test was evaluated with the following objectives:

- Characterize the likelihood and magnitude of drawdown at selected distal wells as a result of
 pumping the array of supply wells required to fill the reservoir. Project long-term drawdown
 conditions at distal wells based on different pumping scenarios.
- Based on field data, develop values of "effective" transmissivity and storage coefficient that
 represent larger areas and/or multiple compartments of the basalt aquifer. Inherently, these
 estimates may incorporate flow boundaries that may affect long-term pumping and
 drawdown conditions. As appropriate, approximate the locations of flow boundaries based
 on image-well methodology.
- Evaluate the projected drawdown values at distal wells with respect to allowable appropriation rates, well specific capacity, and available drawdown based on well construction and pump intake settings.

8.1 DATA CORRECTIONS

This section presents a discussion of the methods employed to correct water level data records. As demonstrated in the appended water level plots, ambient water level trends observed in the study wells varied considerably. We attribute the variability in ambient water level trends to several factors described below.

8.1.1 Factors Affecting Water Levels

Our review of the collective water level data in pumping and observation wells indicates study area water levels are affected by three phenomena, as follows.

8.1.1.1 Barometric Pressure

Changes in water levels caused by variations in barometric pressure are evident in all wells, and variations in barometric pressure observed during the testing program were significant. The degree to which water levels change with respect to the magnitude of barometric pressure

change (i.e., barometric efficiency) varied considerably. Generally, wells situated in the northern Swan Lake Valley compartment exhibit a relatively higher degree of barometric efficiency than those wells observed in the southern portions of the study area. A summary of estimated barometric efficiencies calculated from the baseline record is presented in Table 8.

Well Estimated Efficiency		Remarks
KLAM 2259	0.60	Pumping well, northern compartment (west side)
KLAM 2260	0.60	Observation well, northern compartment (west side)
KLAM 2262	0.70	Pumping well, northern compartment (west side)
KLAM 2263	0.55	Pumping well, northern compartment (east side)
KLAM 2265	0.45	Pumping well, northern compartment (east side)
KLAM 2269	0.88	Observation well, northern compartment (west side)
KLAM 2289	0.15	Observation well, west of Swan Lake
KLAM 12186	0.65	Observation well, southwest of Swan Lake
KLAM 50362	0.30	Observation well, east/southeast of Swan Lake
KLAM 12203	0.20	Observation well, south of Swan Lake
KLAM 12420	0.28	Observation well, southeast of Swan Lake

Table 8. Estimated Barometric Efficiencies for Study Wells

Observation wells situated in the middle and southern portion of the study area (e.g., outside the northern Swan Lake Valley compartment) exhibit a more dampened response to barometric pressure change. Variability in response to barometric pressure changes is evident in the baseline (and generally all) data records presented in Appendix B.

8.1.1.2 Earth Tidal Influences

Water level data corrected for barometric changes using the simple barometric efficiency method revealed an influence from earth tides. This influence was characterized by an underlying harmonic in water levels that generally coincided with a periodicity of the moon phase. Again, the magnitude of observed changes due to the earth tide harmonic varied by location within the study area with more discernable effects occurring in wells located in the northern Swan Lake Valley compartment, suggesting a more rigid structure in those locations.

8.1.1.3 Ambient Recharge

Water level records indicate natural recharge to several of the wells during the course of the study. A marked difference (increase) in recharge rate was observed in selected wells located in the southern portion of the study area relative to those wells in the northern Swan Lake Valley compartment (specifically, refer to the magnitude of recharge experienced at KLAM 12186 in Appendix B). A depiction of the variable recharge rates observed during the baseline data collection period is presented on Figure 2. We infer the rate of recharge experienced by a given well may be directly related to the extent of intake interval open to the sedimentary deposits overlying the principal basalt aquifer. Refer to Table A-1 for a summary of well intake intervals.

8.1.2 Baseline Data

The baseline data record provided the most reliable information for establishing corrected data sets because the potential effects of outside influences (i.e., pumping were removed). The initial baseline water level record was obtained through the use of 30 psi data loggers recording at one hour intervals from January 27 through February 5, 2011. In accordance with OWRD request and in preparation for pumping phases of the testing program, the baseline water level record was obtained through the use of 5 psi data loggers recording at one minute intervals from February 5 through February 8, 2011. Our comparative evaluation of the early baseline records and the later baseline records indicates the information generated from the 30 psi dataloggers (at one hour intervals) yielded data of sufficient quality to incorporate into the data analysis.

Evaluation of the baseline data record revealed notable differences in water level responses to barometric pressure changes, earth tides, and ambient recharge which support the hypothesis that the northern Swan Lake Valley compartment experiences some level of hydraulic separation from areas generally south of Swan Lake. The baseline hydrographs depicting water levels and barometric pressures for each well are presented in Appendix B. Figure 2 depicts corrected baseline water level trends in pumping an observation wells used in this study.

8.1.3 Methodology for Water Level Corrections

Water level corrections for barometric pressure and earth tide influences were generally successful. Significant weather changes occurred throughout the testing program, resulting in a maximum barometric pressure change of approximately 1.16 feet (of equivalent water head). Because the magnitude of barometric pressure change was greater than any observed observation well drawdown, correction of the data was necessary to support the evaluation.

In correction of the water level data records, we employed two methods to remove barometric pressure effects. The first method included preparation of a parallel plot of baseline water levels and barometric pressures on a consistent time scale. During more significant barometric events, we calculated slopes for water levels and barometric changes to derive a ratio of water level response versus atmospheric pressure change. This ratio is defined as barometric efficiency. The second method for barometric pressure correction included the use of BETCO software available from the University of Georgia (Rasmussen) at http://www.hydrology.uga.edu/rasmussen/BETCO/BETCO.html.

The BETCO software provided the most rigorous analytical tool for generating corrected (synthetic) hydrographs. However, our analysis suggests the BETCO software is most successful when applied to long-term data sets not affected by pumping wells. As such, the BETCO-derived water level plots were largely applied to the baseline data records because it provided the most useful tool for filtering the effects of earth tides. The BETCO analysis created edge effects in the data, which reflect the algorithm inherent to the software. A certain number of initial data points must be contemplated by the algorithm before output begins. These edge effects are apparent on the baseline hydrographs presented in Appendix B.

Drawdown and recovery phases associated with well pumping were best evaluated using a dataset corrected using the barometric efficiency method. We point out that application of the barometric efficiency method does not filter effects of earth tides but provided "smoothed"

dataset of sufficient quality to evaluate potential response to pumping. Drawdown and recovery plots for pumping and observation wells are presented in Appendix B.

8.2 DATA ANALYSIS

Analysis of the pumping data proceeded in two phases. The single-well pumping test data was evaluated to determine if measurable drawdown was experienced at any given observation well. If response to pumping was discernable, we utilized the non-equilibrium method developed by Theis (1935) and the modified non-equilibrium method developed by Cooper and Jacob (1946) to derive estimates of transmissivity and storage coefficient. In addition, we employed a simple distance-drawdown plot to visualize the radius of influence created by pumping well KLAM 2259. Rapid drawdown/stabilization and/or relatively turbulent conditions in selected wells precluded the use of some analytical methods, including the Theis drawdown (match-point) method. We also noted that late-recovery data in some datasets may have been affected (although corrected) by ambient factors affecting water levels.

Analysis of the pumping data generated during the multiple-well interference test was generally more simplistic. The corrected water level data from observation wells was reviewed to determine if any measurable or discernable effect was created via pumping the four supply wells. In light of the observed recharge experienced by several observation wells, "interference" could be signaled by drawdown as well as a reduction in the rate of recharge experienced by the well. For the multiple-well testing data, we also employed the Cooper-Jacob wellfield method (Kruseman and de Ridder, 1994) to estimate values of "effective" transmissivity for the area of influence created by the pumping well array.

Pumping test analysis plots for all pumping and observation wells are presented in Appendix C.

8.2.1 Observed Drawdowns

This section presents a discussion of responses to pumping observed at study area wells and a general discussion of boundary effects drawn from the drawdown and recovery plots presented in Appendix C.

8.2.1.1 Single-Well Pumping Test

Review of corrected water levels from the single-well pumping test indicated measurable drawdown at three of the five observation wells used for this phase of testing. The estimated drawdown values are presented in Table 9.

GEODESIGN

Observation	Distance From KLAM 2259		Estimated Drawdown	Remarks
Well	miles	feet	(feet)	
KLAM 2262	0.37	1,940	0.15	
KLAM 2269	0.41	2,190	0.10	
KLAM 2260	0.79	4,150	0.13	
KLAM 2263	1.64	8,660	0.00	No drawdown observed
KLAM 2265	3.37	17,800	0.00	No drawdown observed

Table 9. Estimated Drawdown at Study Observation WellsInduced from Constant-Rate Pumping Well KLAM 2259Single-Well Pumping Test

Drawdown and/or interference was also not observed in other study area observation wells during the singlewell pumping test.

8.2.1.2 Multiple-Well Interference Test

Aside from the pumping well drawdown levels summarized in Section 7.0, review of corrected water levels from the multiple-well interference test indicated measurable drawdown at two of the seven observation wells used for this phase of testing. The estimated drawdown values are presented in Table 10.

Observation Well	Distance From KLAM 2260' (miles)	Estimated Drawdown² (feet)	Remarks	
KLAM 2260	0.00	0.50		
KLAM 2269	1.19	0.26		
KLAM 2289	3.04	0.00	No drawdown or interferenc observed	
KLAM 12186	5.44	0.00	No drawdown or interference observed	
KLAM 12203	7.66	0.00	No drawdown or interference observed	
KLAM 50362	6.64	0.00	No drawdown or interference observed	
KLAM 12420	10.42	0.00	No drawdown or interference observed	

Table 10. Estimated Drawdown at Study Observation Wells Multiple-Well Interference Test

1. Relative distances are based on the location of KLAM 2260, which represents the northern-most well located in the north Swan Lake Valley compartment.

 Estimated drawdown reflects maximum value determined from water level data corrected for barometric effects.

Estimated drawdowns at observation wells KLAM 2260 and 2269 reached their maximum values at pumping time of approximately 7,900 to 8,400 minutes. Theoretically, the maximum induced drawdown would be realized at the end of the pumping period (approximately 12,780 minutes). We attribute this deviation from theoretical conditions to several possible factors, including (1) a significant barometric event near the completion of the pumping phase that may have not been fully corrected using the calculated barometric efficiencies designed to most accurately correct the majority of the data record and/or (2) recharge effects to the aquifer.

8.2.2 Well Performance and Hydraulic Property Estimates

8.2.2.1 Specific Capacity

Specific capacity is defined as well yield per unit drawdown. Pumping rates and observed drawdown for each pumping well are presented in Table 11.

Pumping Well	Pumping Rate (gpm)	Observed Drawdown ^{1,2} (feet)	Calculated Specific Capacity (gpm/ft)
KLAM 2263 (Well #1; "Cove")	2,350	2.6	903.8
KLAM 2259 (Well #2; "100-Horse")	3,000	3.3	909.1
KLAM 2262 (Well #4; "Aspen")	3,500	15.3	229.8
KLAM 2265 (Well #5; "Lake")	3,400	21.1	161.1

Table 11. Pumping Rates and Pumping Well Drawdowns for Multiple-Well Interference Test

 Observed values given to nearest 1/10th of 1 foot due to turbulence associated with pumping. Refer to appended data.

 The pumping level drawdown observed at KLAM 2259 during the multiple-well test was 1.2 feet less than the observed pumping level drawdown during the single-well pumping from this well. This may be attributed to an overall loss in formation pressure head as a result of pumping other wells.

We point out two specific observations from the summary table above:

- Calculated specific capacity for pumping wells KLAM 2262 and 2265 are significantly less than the calculated values for pumping wells KLAM 2259 and 2263. We infer the differences to reflect well intake intervals with more extensive communication with the basin fill overlying the principal basalt unit in wells KLAM 2262 and 2265.
- The pumping level drawdown observed at KLAM 2259 during the multiple-well test was

 2 feet less than the observed pumping level drawdown during the single-well pumping from
 this well. We verified this observation at the end of the pumping phase of the multiple-well
 test by shutting off nearby pumping well KLAM 2262 prior to shutting off KLAM 2259; the
 pumping water level almost immediately increased in KLAM 2259 when this was performed.
 We infer this to reflect partial de-pressurization of the formation as a result of pumping the
 other three production wells.

GEODESIGN

8.2.2.2 Transmissivity and Storage Coefficient

A summary of estimated transmissivity and storage coefficient values are presented in Table 12. As demonstrated by this summary, supporting analysis plots in Appendix C, and calculated specific capacity values, the northern Swan Lake Valley compartment is characterized as highly transmissive.

Well	Testing Phase	Analysis Method ²	Transmissivity (ft²/day)³	Storage Coefficient	Remark	
KLAM 2259	SWT, P	CJ	176,500		Early Drawdown	
		CJ	705,900		Late Drawdown	
		TR	4,812,800	••	Early Recovery	
		TR	1,393,200		Middle Recovery	
		TR	2,941,200		Late Recovery	
		CJ	529,400		Best Fit All Data	
	MWT, P	TR	2,406,400		Early Recovery	
		TR	980,400	64	Late Recovery	
KLAM 2259 KLAM 2260 SW	SWT, P/O		146,044	0.1 05	Using observation wells 2262 and 2269	
KLAM 2262 KLAM 2269		DD	176,470	0.028	Using observation well 2260	
	SWT, O		CJ	1,925,100	0.0044	Early Drawdown
		CJ	814,500	0.0063	Late Drawdown	
		Т	919,300	0.0069	Late Drawdown	
KLAM 2260		TR	8,144,800		Early Recovery	
		TR	1,512,600		Middle Recovery	
		TR	920,716		Late Recovery	
	MWT, O	CJW	1,896,200	0.0074	Wellfield Method	
	SWT, O	CJ	5,294,100		Early Drawdown	
		CJ	1,008,400	0.013	Middle Drawdown	
		Т	1,532,100	0.008	Middle-Late Drawdown	
		TR	2,647,100		Middle-Late Recovery	
KLAM 2262	MWT, P	C)	4 9 ,400		Early Drawdown, may reflect component from basin fill	
		TR	1,314,100		Early Recovery	
		TR	667,700		Late Recovery	
KI AM 2262	MWT, P	CI	188,100		Middle Drawdown	
KLAM 2263		2203 MW1, P	CJ	82,100		Late Drawdown

Table 12. Summary of Estimated Transmissivity and Storage Coefficient Values Northern Swan Lake Valley Compartment

GEODESIGN[¥]

Well	Testing Phase ¹	Analysis Method ²	Transmissivity (ft²/day)³	Storage Coefficient	Remark
		CJ	171,400		Middle Drawdown, may reflect component from basin fill
KLAM 2265	MWT, P		266,700		Late Drawdown, may reflect component from basin fill.
		TR	130,400		Indicates delayed yield or leaky condition
			240,000	-	Indicates delayed yield or leaky condition
KLAM 2269	SWT, O	CJ	8,823,500		Early Drawdown
			1,825,600		Middle Drawdown
		, ο <u></u> Τ	2,298,100	0.0029	Middle-Late Drawdown
		TR	3,529,400		Middle-Late Recovery
	MWT, O	CJW	4,392,000	0.0069	Wellfield Method

Table 12. Summary of Estimated Transmissivity and Storage Coefficient Values Northern Swan Lake Valley Compartment (continued)

1. SWT = Single-Well Test; MWT = Multiple-Well Interference Test; P = Pumping Well; O = Observation Well

2. CJ = Cooper-Jacob semi-log; T = Theis Log-Log Drawdown vs. t/r'; TR = Theis Recovery; DD = Distance

Drawdown; CJW = Cooper-Jacob wellfield

3. Values rounded to nearest 100 ft²/day

The values of the test data analysis indicate that the North Swan Lake Valley basalt aquifer is highly transmissive. The range of estimated transmissivity varies considerably; the lower ranges of values likely represent those wells with substantial communication with basin fill overlying the basalt unit. The higher range reflects results from early drawdown/recovery data and "effective" transmissivities representing the effects of potential boundary conditions. We estimate transmissivity values of the primary basalt unit in North Swan Lake Valley on the order of 300,000 to 900,000 ft²/day. The Cooper-Jacob wellfield method provides a good basis for estimating an overall effective transmissivity supporting long-term drawdown estimates. Effective transmissivity inherently considers the effects of overlying basin fill and boundary conditions present between pumping and observation wells.

General evaluation of the drawdown and recovery data indicate the possible presence of both negative and positive flow boundaries near the pumping well array. While present, these boundary conditions did not appear to heavily influence the later drawdown curves, which is most important to this study. The changes in slopes present on the pumping test analysis charts (Appendix C) reveal these features. The limited number of observation wells exhibiting discernable drawdown complicates the ability to identify the specific locations of positive and/or negative flow boundaries. Recovery data from pumping well KLAM 2265 exhibits a characteristic curve indicative of delayed yield and/or leaky aquifer response from the basin fill sediments. Pumping test analysis plots are presented in Appendix C.

We note a particular observation during the drawdown phase of the single-well pumping test. Approximately 250 minutes into the pumping phase, a sharp increase in barometric pressure was experienced. Although the calculated drawdown values were based on barometrically corrected data, the middle drawdown data at observation wells KLAM 2260 and KLAM 2269 (suggesting a negative flow boundary) could be misinterpreted as the result of a sharp increase in barometric pressure, particularly in light of the barometric effects on the data during late pumping time. However, evaluation of the multiple-well testing drawdown data (when barometric pressures were much more constant) also indicated a break in slope at the 100-minute elapsed time, similar to the single-well drawdown data. Evaluation of the recovery curves also indicated the existence of the feature. This exercise verified the existence of some boundary condition affecting the middle drawdown data. To support this discussion, additional analytical charts depicting barometric pressures and uncorrected data for observation well KLAM 2260 during the single-well and multiple-well testing phases are included in Appendix C.

8.2.3 Projected Drawdowns Associated with Reservoir Filling and Maintenance

The Theis method was applied to estimate long-term drawdowns associated with reservoir filling and maintenance. Spreadsheet calculations are presented in Appendix D. These estimates were developed based on hydraulic parameters derived from the testing program, and the projected pumping rates and durations described in Section 2.2. The spreadsheet calculation was initially calibrated to match observed drawdowns at KLAM 2260 and KLAM 2269 during the testing program by adjusting entered values of transmissivity These entered values fall within the range of estimates provided above and inherently represent "effective" hydraulic parameters. Further calibration calculations were then completed using the entered values of transmissivity and storage coefficient to estimate potential drawdowns at other distal wells. Resulting estimates for distal wells did not match observed values for a seven-day pumping projection. For example, entering the calibrated values of transmissivity and storage coefficient and the pumping rates/durations reflecting actual multiple-well pumping test conditions (or the average of values determined by the Cooper-Jacob wellfield method) yielded a projected drawdown of 0.16 feet at KLAM 2289; however, no actual drawdown or interference was observed during the field study. This exercise was repeated for other observation wells in the southern portion of the study area. The results support the idea that some resistance to flow is apparently located near the northern latitude of Swan Lake. Using observation well KLAM 2289 as a further example, the entered value of transmissivity required to effect 0.01-foot of drawdown (based on actual multiple-well test pumping rates and duration) would be on the order of 91,000,000 ft²/day; an unrealistically high value.

The Theis method is the most appropriate approach in estimating potential drawdowns at distal wells. We employed the Theis method to conservatively assess the aquifer response to the threeyear reservoir filling duration at prorated pumping rates. Prorated pumping rates reflect annual duties applicable to the respective water rights distributed throughout the entire year and are calculated in Table A-2. To estimate projected drawdowns at the pumping (supply) wells, values of transmissivity and storativity were entered into the spreadsheet that resulted in a match to observed data from the multiple-well interference test. The entered values of time and prorated pumping rate were then used to estimate long-term pumping well drawdowns. To estimate projected drawdowns at distal observation wells, values of transmissivity and storativity were

GEODESIGN¥

entered into the spreadsheet that reflected calibration values (for KLAM 2260 and KLAM 2269) or average values obtained using the Cooper-Jacob wellfield analysis method. Projected theoretical drawdowns are summarized in Table 13.

Well	Pumping Rate (gpm)	Calculated Drawdown² (feet)	Remark
	Reservoir Supply W	ells	
KLAM 2263 (Well #1; "Cove")	932	1.8	
KLAM 2259 (Well #2; "100-Horse")	1,205	2.0	
KLAM 2262 (Well #4; "Aspen")	893	8.4	
KLAM 2265 (Well #5; "Lake")	1,190	13.7	Also to serve as maintenance well for reservoir losses
Observation	Wells Used in Grou	undwater Study	
KLAM 2260		0.35	
KLAM 2269		0.17	
KLAM 2289		0.17	
KLAM 12186		0.15	
KLAM 50362		0.15	
KLAM 12203		0.14	
KLAM 12420		0.13	

Table 13. Projected Theoretical Drawdowns Arising from Reservoir Filling and Maintenance Pro-Rated Pumping Rates for Three Years of Pumping'

1. Projected values assume three years (1,095 days) of uninterrupted pumping at prorated rates based on water right limitations for a given pumping well (see Table A-2).

 Projected values for pumping wells given to nearest 1/10th of 1 foot given the level of assumptions in the analytical method.

The projected theoretical drawdowns are conservative for the following reasons:

- Reservoir filling will not be completed by an uninterrupted 1,095 days of pumping. Temporary idle periods related to pump/equipment maintenance and/or power interruptions are expected. The resulting periods of recovery will reduce distal drawdown caused by supply well pumping.
- The values entered into the calculation spreadsheet reflect an assumed, effective transmissivity calibrated to the northern Swan Lake Valley compartment. Because drawdowns and/or interference were not observed in wells south of Swan Lake during the field testing program, the actual effective transmissivity value representing the presence of the flow boundary between the northern compartment and southern study areas is greater than the values assumed. This actual value also is not accurately estimated given the results of the multiple-well interference test because no observed drawdown or interference was observed outside the northern Swan Lake Valley compartment.

This analysis indicates that projected drawdowns and/or interferences to wells in the Swan Lake Valley would be minimal under the most conservative conditions. The estimated, theoretical drawdown values of approximately 0.17 to 0.13 feet are not expected to affect the ability to fully exercise a given water right within the study area.

9.0 PROBLEMS ENCOUNTERED AND RESOLUTION

This section presents a discussion of problems encountered during the field investigation program and measures implemented to remedy the problems.

Problem: GeoDesign did not receive owner authorization to access proposed observation wells KLAM 12223 and KLAM 12224.

<u>Resolution</u>: GeoDesign notified OWRD of the access limitation. OWRD concurred with the revised array of proposed observation wells in comments dated February 2, 2011.

Problem: Water level meter and transducer deployment was not possible in proposed observation wells KLAM 12385 and KLAM 12386.

Resolution: GeoDesign was able to deploy equipment in proposed observation well KLAM 50362. Anticipating access limitations to some wells, we proposed use of one of the three wells located in this area (KLAM 50362, KLAM 12385, or KLAM 12386). As such, this did not cause a change in scope.

Problem: Water level meter and transducer deployment was not possible in proposed observation wells KLAM 10082 and KLAM 50341.

<u>Resolution</u>: GeoDesign notified OWRD of the access limitation and achieved deployment in another nearby replacement wells (KLAM 10082 replaced with KLAM 2269 and KLAM 50341 replaced with KLAM 12420). OWRD concurred with the revised array of proposed observation wells in comments dated February 2, 2011.

Problem: Many of the study wells had no access ports or did not have sufficient annular space to deploy transducers along with manual water level indicators. Equipment hang-up was generally a problem, and some deployment depths were limited based on space restrictions (i.e., pump column couplings).

<u>Resolution</u>: GeoDesign anticipated this potential problem and indicated in our Plan that manual measurements would be collected during deployment and retrieval of transducers and also as possible during pumping/recovery periods of the testing program. We collected and recorded hand-measurements in accordance with these limitations and our Plan.

Problem: Transducer deployment in pumping well KLAM 2263 during the multiple-well testing program was not possible given access limitations.

<u>Resolution</u>: GeoDesign deployed a transducer within the pump column at this well to record baseline observations and potential response to the initial single-well test. During the multiplewell interference testing, access to the pump column was not possible so manual measurements were obtained to the extent possible during this period to document pumping water levels and associated total drawdown.

<u>Problem</u>: During change-out of the 30 psi transducers to 5 psi transducers in pumping and observation wells, the 30 psi transducer encountered a hang-up during retrieval in observation well KLAM 2260.

<u>Resolution</u>: The original 30 psi transducer was re-lowered to the original setting depth and manual measurements were collected to verify setting depth. The use of the 30 psi transducer was required given this hang-up problem. Fortunately, the drawdown response in this well was sufficient to allow data analysis despite the lower resolution of the transducer.

Problem: The observed drawdown in pumping well KLAM 2265 was significantly greater than prior specific capcacity records indicated. Consequently, the water level fell below the transducer depth, which was deployed to the maximum extent possible given down-hole obstructions. **Resolution:** Upon discovery of the problem, GeoDesign initiated hand measurements to the extent possible to document (later) drawdown pumping levels. Sufficient manual measurements were collected to evaluate total drawdown and general characteristics of the late drawdown curve. The transducer was allowed to continue recording in order to capture recovery data.

Problem: Several minutes into the single-well pumping test, electrical problems at KLAM 2259 caused the pump to shut down approximately seven minutes into the test.

<u>Resolution</u>: Jesperson fixed the electrical problem and the well was allowed to recover to within 0.01 foot of the baseline water level. The test was re-initiated after recovery was allowed to occur.

Problem: Three power outages were experienced during the multiple-well interference testing. Power outages were experienced between February 15, 2011 at 0117 and February 26, 2011 at 0658.

<u>Resolution</u>: GeoDesign notified OWRD of the problem and extended the pumping period of the multiple-well interference test to achieve seven consecutive days of uninterrupted pumping as proposed in our Plan. This circumstance was not entirely detrimental. Review of the data shows clear response to the power outages at observation well KLAM 2269 and no response signal at any other observation wells. This provided a separate check on the overall evaluation of study area well communication.

<u>Problem</u>: Several weather fronts were experienced during the testing program, causing significant shifts in barometric pressure. This, coupled with minor (if any) drawdowns and variable barometric efficiencies at the observation well array, made data reduction and correction more complex

Resolution: GeoDesign put forth significant effort in correcting the dataset for barometric influences to prepare a dataset suitable to evaluate potential interferences with project area wells.

10.0 CONCLUSIONS

Groundwater interference testing was completed in general accordance with our Plan dated January 14, 2011. We incorporated comments received from OWRD on February 2, 2011 into the testing program. This analysis supports the following conclusions:

- Evaluation of the single-well pumping test data suggests the principal basalt aquifer in the northern Swan Lake Valley compartment is highly transmissive. Overlying basin fill sedimentary deposits are characterized by much lower transmissivity values. Well log records indicate many area wells receive flows from both hydrogeologic units, and the wide range of reported specific capacities reflects the variable degree to which a given well communicates with the sedimentary deposit and basalt unit. Estimated transmissivity values ranged from 49,400 to 8,823,500 ft²/day. Storage coefficient values ranged from 0.0029 to 0.105. We estimate transmissivity values of the primary basalt unit in North Swan Lake Valley on the order of 300,000 to 900,000 ft²/day.
- Water level response data to single-well pumping and multiple-well pumping indicates the presence of a hydrologic boundary condition that appears to reduce the effects of pumping stress on wells located on the distal side of this boundary. The location of this boundary appears to be just north of Swan Lake and correlates to the division of the North Swan Lake and Central Swan Lake to Poe Valley sub-areas postulated by Grondin (2004).
- Drawdowns and/or interferences were not observed in project observation wells south of KLAM 2269.
- Theis' solution to the groundwater flow equation was used to derive conservative estimates
 of potential drawdowns arising from long-term (three years) pumping at prorated extraction
 rates from the pumping well array. The range of theoretical drawdowns in project
 observation wells ranged from 0.35 foot (at KLAM 2260, north end) to 0.13 foot (at
 KLAM 12420, south end). The projected drawdown values are conservative based on
 assumed inputs.

The 2 to 7 feet of seasonal groundwater fluctuation reported by Grondin (2004) reflects the cumulative effect of groundwater withdrawal from all wells within the Swan Lake Basin. This analysis suggests that use of the four proposed reservoir supply wells at year-round, prorated pumping rates under current annual duties will not create additional or excessive stress on the groundwater resource. Actual realized drawdowns (if observed or measurable) caused by the proposed reservoir filling are expected to be less than the values estimated during this analysis, particularly for wells located south of the apparent flow boundary between the North Swan Lake and Central Swan Lake to Poe Valley sub-areas.

In conclusion, this study indicates that the proposed reservoir filling is not expected to impact the ability to fully exercise a given water right in the study area.

GEODESIGN¥

REFERENCES

Cooper, H.H., J.R., and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well-field history. American Geophysical Union Transaction, v. 27, p. 526-534.

Grondin, G.H., 2004. Ground Water in the Eastern Lost River Sub-Basin, Langell, Yonna, Swan Lake, and Poe Valleys of Southeastern Klamath County, Oregon. Ground Water Report Number 41, Oregon Water Resources Department, Salem, Oregon.

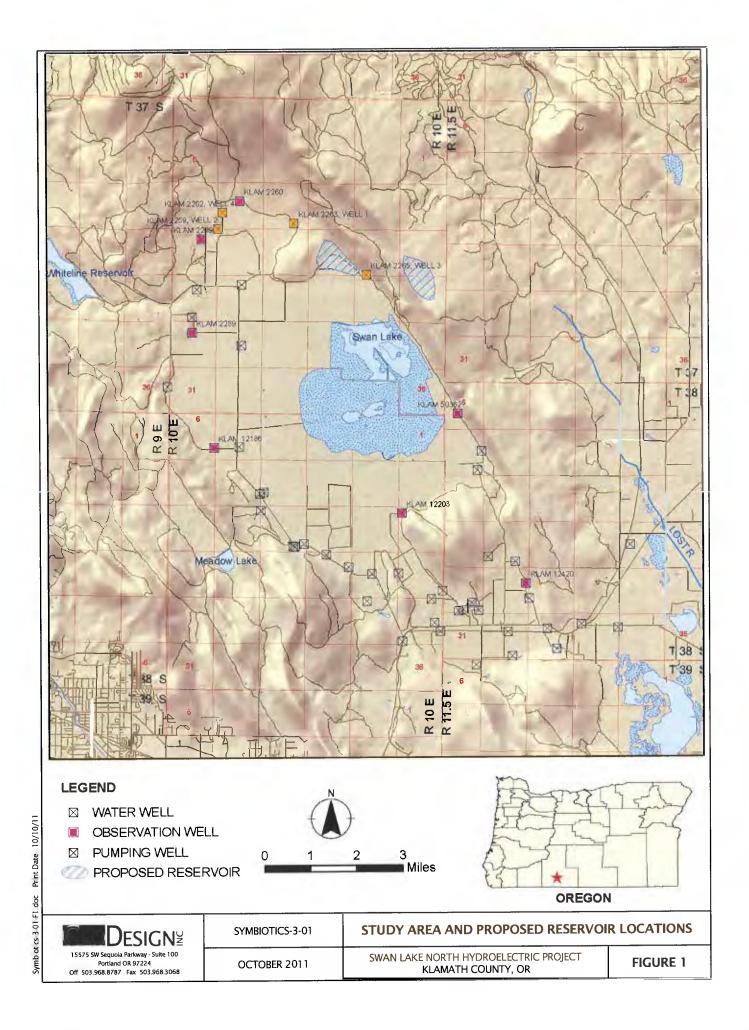
Illian, J.R., 1970. Interim report on the ground water in the Klamath Basin, Oregon: Salem, Oregon State Engineer, 110p.

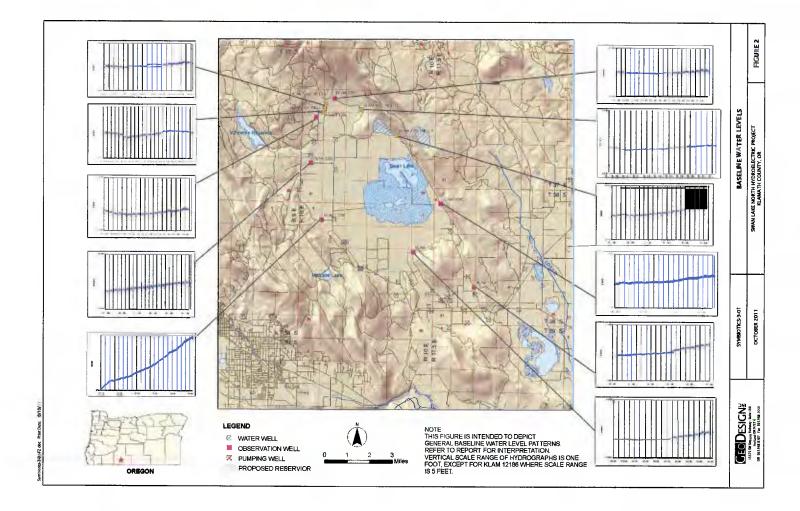
Kruseman, G.P. and N.A. de Ridder, 1994. *Analysis and Evaluation of Pumping Test Data (2nd ed.)*, Publication 47, Intern. Inst. for Land Reclamation and Improvement, Wageningen, The Netherlands, 370p.

Leonard, A.R, and Harri, A.B., 1974. Ground water in selected areas in the Klamath Basin, Oregon: Oregon State Engineer Ground Water Report No. 21, 104 p.

Newcomb, R.C., and Hart, D.H., 1958. Preliminary report on the ground water resources of the Klamath River Basin, Oregon: U.S. Geological Survey Open-File Report, 248 p.

Sherrod, D.R. and Pickthorn, L.B.G., 1992. Geologic map of the west half of the Klamath Falls 1° by 2° quadrangle, south-central Oregon: U.S. Geological Survey Miscellaneous Investigations Map I-21892, 1 sheet, scale 1:250,000.


Symbiotics, 2010. Swan Lake North Pumped Storage Hydroelectric Project, FERC No. 13318, Pre-Application Document, June 2010.


Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well sing ground water storage: American Geophysical Union Transactions, v. 16, p. 519-524.

Whitehead, R.L., 2004. Ground Water Atlas of the United States: Idaho, Oregon, Washington. United States Geological Survey. HA 730-H.

GEODESIGNE

FIGURES

APPENDIX A

APPENDIX A

STUDY AREA WELLS, WATER RIGHTS, AND PROJECTED PUMPING RATES

GEODESIGN

Table A-1

Summary of Water Wells and Water Rights Proposed Swan Lake North Pumped Storage Hydroelectric Project

									Pr	oposed Swa	Summary of V n Lake North I	TABLE A-1 Vells and Wate Pumped Storag I County, Oreg	e Hydroelectri	ic Project												
	E F	rom M 2260			Reported						Water Rights				400/0	priation							Well Log		Estimated	
County Well (KLAM)	(nort)	h end of artment)	Owner's I.D.	Dato Orilled	Ground Surface Elevation	Well Owner (log)	Township/ Range/Section/ Quarter/Quarter- Quarter				(non-cancelled	Ð			R	Rate		Casing Diameter (Inches)		Hydro Unit	First Water	Yield	Drawdown	Duration	Specific Capacity (opm/ft of	Pump
	miles	feet			(feet)		quinter	(Current) Holder	Application	Permit	Certificate	Priority Date	Total Acres	Annual Duty	cts	spm					(feet)	(gpm)	(feet)	(hours)	drawdown)	
	.			r	,						Propose	d Pumping We	lis			-					•				J	
2 263	1.28	6,762	Well 1	1951		Devincenze	375/10E/9DC	Devincenze	U 453	U 496	29530	12/24/1951	683	3	8.58	3,816	1.45			Basalt	1					
							0.4.04.550	Jesperson Edgewood	G 7873	G 7293	83121	3/3/1977	66		8.83	373	142	16	19	("cinders")		4,758		,	1,168	100-HP turbine
2259	0.75	3,951	Well 2	1952	-	Edgewood Ranch/Devincenze	375/10E/8CC	Devincenze	U 453	U 486	29530	12/24/1951	1,002.2	3	7.00	3,142	281	18	178	Basalt	98	3,000	2		1,500	100-HP turbine
				ļ		Kanchy Davincenze		Devincenze	G 7873	G 7293	\$3121	3/3/1977	476.3	1	5.50	2,469					70	3,000		,	1,500	TOO-HP CUYDINE
2262	0.45	2,355	Well 4	8/15/1979		Jesperson	375/18E/88C	jesperson Edgewood	G 1D135	G 10952	87006	6/28/1982	457.2	1	5.72	2,567	187	16	*	Basak	160	4,000			1.333	150-horse power
						Edgewood		Jesperson Edgewood	G 10340	G 9332	67564	\$/26/1981	252.2	3	3,15	1,414				("cinders")	160	4,000	,	,	1,333	turbine
2265	3,17	16,715	Well S	-	4220	Devincenze	375/10E/14CC	Jesperson Engrwood	G 10135	G 10952	87006	6/28/1982	631.4		7.09	3,541	123	10	-	Basak ("cinders")	10	4,000	-	-	-	75-HP turbine
_											Обни	rvation Weils						·					<u> </u>	L		
2260	8.00	0	Well 3	2/23/1977	-	Jesperson Edgewood	375/10E/88A	Jesperson Edgewood	G 7873	G 7293	83121	3/3/1977	576.7		7.21	3,236	200	18	20	Basak ("cinders")	118	3,200	2	4	1,600	-
2269	1.37	6,154	-	1954		Mario Narengo	375/10E/18A8	Mario Marcingo	U 501	U SBS	38572	5/28/1952	76.8		0.96	431	325	18		Basalt ("cinders")	-	2,500	88	1	28	-
5589	3.85	16,188	-	1949	4205	C Fred Coliman	375/10E/30BA	C. Fred Coliman	U 2 79	U 250	22847	8/2/1948	156	3	1.95	875	99	16	15	Basalt ("cinders")	-	2,008	17	-	118	-
12186	5.43	28,644	-	9/14/1957	-	Maude E. Liskey	385/10E/5CB	Maude Liskey	G 856	G 764	34519	2/18/1958	258.4		3.23	1,458	850	18	39	Basalt	78	2,150	90	4	24	-
50362	6.65	35,102	"Lone Rock"		4156	LM Hankins (Swan Lake Ranch)	385/11.5E/68C	Seperator Edgewood Nevin Cattle	U 319	U 343	58381	7/19/)949	478.4	3	5.98	2,684	224	18	1.00	Basalt	-	-	-	-	-	-
								jesperson Edgewood Nevin Cattle	U 319	U 343	50381	7/19/1949	304		3.80	1,706										
12203	7.67	40,497	No. 7 "Uskey")948	4192	LM & Loyd Hankins (Swan Lake Ranch)	385/10E/1386	Jesperson Edgewood Nevin Cattle	G 5390	G \$191		1/4/1971	410	-	4,83	2,168	221	16	40	Basah ("cintiers")	-	1,600	19	3	84	75-HP turbine
			_			-		Nevin Cattle	G 10510	G 10129	-	8/31/1962	7.2	1	0.09	40										1
12420	10.43	55,885	No. 13	1950	4206	LM. Bankins	385/11.5E/29AD	Lloyd Hankins	U 318	¥ 402	29619	7/19/1949	229.7	2	2.87	1,288				Basalt						<u> </u>
72460	10.43	53,663	"Thomas"	1930	4200	C.M. PSIZIKINS	385/11.5E/29AD	Nevin Cattle	G 4673	G 4401	38246	11/6/1968	60.8	5	0.76	341	135	16		("cinders")		2,660	07	4	3,800	-
									Other We	ils in Swan L	ake Valley (So	uthern Limit A	ssumed Hey.	78 at Pine Rat)							L				
2277	1.83	9,649	-	12/14/1987	-	Edgewood	375/10E/20AB				Exempted	Use (Domestic					330	8	28	"Clay and Sand"	5	45	13	1	3	-
10082	2.14	11,321	-	7/12/1989		jeid Wen	375/10E/19A	Jako Wen T and R	G 12228	G 11432	83328	9/13/1990	242.4	3	3.03	1,360	310	16	Also Perf 79-199	? Below besalt?	61	2,800	4.5	3	622	110 HP
50445	2.73	14,436	-	8/9/1996	4230	Jeld Wen	37\$/10E/19CD	jeid Wen Creig Dittman	C 14900	G 13725	~	1/7/1999	108	,	1.95	606	220	18 (16" kiner)	Perf 80-220	Basalt ("cinders")	+	1.800	53	4	34	-
2288	3.15	16,639	No. 3	1949	4185	E Ranch/Devincenze	375/10E/28D8	-		-	-	-	-	-	-	-	800	16	20	"chaik"	-	-	-	-		-
2256	4.35	22,946	-	1953	-	John & William Marshall	375/9E/36AD	John & William Marshail	U 457	U 465	29529	1/30/1952	161.6	3	2.02	907	1,600	16	600	"chalk and rock"			+	-		
10336	5.35	28,264	-	10/15/1991	-	Bar C-L	385/10E/5AC	Bar C-L Glenn Lorenz	G 14993	G 13832	-	6/1/1999	499.2	3	5.24	2,801	1,520	16	210	Basek &	-	2,600	79	1	25	-

SUMDESIGN

Table A-1 Page 1 of 3

Symbiotics-3-81:101111

									Pro	oposed Swan	Summary of W Lake North P	ABLE A-1 fells and Water umped Storage County, Orego	Hydroelectri	c Project												
Distance from Benorted									Water Dicket														Well Log	Estimated		
County Weli	KLAM	2260 end of	Owner's	Date Drilled	Reported Ground Surface	Well Owner	Township/ Range/Section/ Quarser/Quarter-			t.	Water Rights non-cancelled)	•				Appropriation Rate		Casing Diameter (inches)	Casing Depth (feet)	Hydro Unk	First Water	Yield	Drawdown	Duration	Specific Capacity (gpm/ft of	Pump Information
(KLAM)	miles	feet			Elevation (feet)	(log)	Quarter	(Current) Holder	Application	Permit	Certificate	Priority Date	Total Acres	Annual Duty ((t/acre)	cts	gpm					(feet)	(gpm)	(feet)	(hours)	drawdown)	
								Fcibert Rodgers	U 440	U 41)	24578	18/12/1951	338.4	3	4.23	1,899	214	16	66	Basak	-	2.300	43	2	53	-
12197	5.48	33,611	-	1949	4190	Rogers and Stacy	385/18E/9C8	Delbert & Sam Dehlinger	G 3428	G 3214	38085	3/23/1966	40	3	8.50	224				("cinders")						
11643	6.49	33,963	-	5/22/1979	-	Curtis Underwood	385/10E/9CC	Curtis Underwood	G 9339	C 8625	83040	6/2/1979	431.2		5.39	2,420	610	16	26	Sasalt	188	1,600	-	2	-	
							385/)85/1688	Maude Liskey	G 3316	G 3088	45487	12/9/1965	504	3	6.30	2,828	290	18	29	Basalt	146	2,850	83	4	343	
12209	6.76	35,786	No. 2	1965	-	Dave Liskey	3854) 81/1086	Meadow Lake	G 11495	G 10610	81384	3/17/1986	183.2	3	1.29	579										
12385	7.58	48,841	"Schmore"	3/21/1976	-	Biaggi and Venable	38\$/11.5€/7AD	Biaggi Veneble	C 7396	G 6835	66457	9/38/1976	274.3		3.43	1,548	186	16	Peri () 47) 145-180		118	2,500	4	4	625	-
								Maude Liskey	G 762	G 700	34518	9/20/1957	403.2	3	5.04	2,262								1		
12211	7.61	40,193	No. 1	1957	-	Maude E. Liskey	385/18E/16DC	Maude Elskey	G 3316	G 3088	45487	12/9/1965	76	3	0.95	426	225	18	39	Sanah	148	2,650	5	4	1,325	-
								Meadow Lake	C 11495	G 10610	81 394	3/17/1986	36	1	0.45	282			<u> </u>					ļ		l
12213	7.63	48,269	-	1962		Daniel House	385/18E/16DD	Daniel Hause	G 4804	G 4529	40198	3/6/1969	\$0.4	3	0.63	283	460	18	9	Basak ("cinders")	-	1,808	25	. 1	72	-
50493	7.64	40,345	No. 2	10/1/1996	-	Richard Czarapeta	385/16E/16DD	Janaikan Heldanay	G 17298	G 16883	-	1/15/2010	6.4	3	0.08	16	206	6	192	Basalt	63	75		,		
12386	7.83	41,333	No. 6 "Hamaker"	1.00	4200	LM & Loyd Hankins (Swan Lake Ranch)	385/11.5E/7DD	Jesperson E	0319	U 343	58381	7/19/1949	175.2	3	2.19	993	~250	36	-	Basak	-	-	-			100-HP Johnste turbine
12217	7.96	42,016	No. 9	<1957	-	Loyd Hankins (Mike Short)?	385/10£/228A	Mike & Bessle Short	G 5504	G 4966	48023	5/7/1871	444		5.55	2,491	460	18	100	Basak	~	1,275 2,000 2,350 2,550 2,750	60	2 2.5 3 3.5	518 444 427 425 367	-
12218	8.35	44,068	No. 1D	7/28/1955		Loyd Hankins	385/18E/22AD	Mike & Bessle Short	U 319	U 343	35151	7/19/1849	416.8	3	5.21	2,339	348	38	100	Basalt "rock"	-	3,800	,	4	1,000	100-HP johnstr turbine
+	8.63	44,068	"Swan Lake Junction"	Unknown <1949	-	Unknown	385/10€/23AD	Jesperson Engenanced Novin Catlin	U 319	U 343	56361	7/19/1949	280.8		3.51	1,576	-	-	- 14	BasaSt	-	-		-		-
12221	8.66	45,739	No. 11 "Carl"	<1957	-	Gene Carl Loyd Hankins	385/18E/23BD	Gene & Vera Carl	U 319	U 343	35150	7/19/1949	\$05.1	3	6.31	2,832	260	19	94	Basalt ("cinders")	-			-	-	100-HP Peeries turbine
12223	8.84	46,651	"Deer Ridge"	3/2/1982	-	Nevin Cattle Co.	385/10E/248C	Nevin Catlle	G 1DS10	G 10129	-	8/31/1982	65.6		0.82	368	443	15	39	BasaX	121	1,750	181	4,5	1D	- 10
12228	9.18	48,475	-	1949	4221	Maude E. Liskey	385/18E/26BA	Maude Liskey	U 323	U 298	22854	8/24/1848	157.6	3	1.97	884	592	16	15	Basak	198	2,165	2.5	-	366	-
12406	8.47	\$9,00Z	No 4	11/6/1967	-	David Moore Whispering Pines	385/11.5E/20CC	Mshin McCollum	G 4812	G 4552	425D2	3/11/1969	158.4	3	1.98	989	34)	16	150	Basak	-	2,000	10	4	200	
			No 12					Jesperson	U 319	U 343	\$0381	7/19/1949	290	1	3.50	1,571	276	16	-	Besalt	-	-		-	-	-
12421	9.61	50,754	"Rise Ear" Mitchell	<1951	4215	Loyd Hankins	385/11.5€/38C8	Nevin Cattle	G 4672	G 4400	5D382	11/6/1968	32.8	3	0.41	184				("cinders")	1					
								Nevin Cattle	G 1DS10	G 1D1 29	-	8/31/1982	5.6	3	0.07	- #1	-	14	329	Rasalt		2.046	2	5	293	-
12224	9.64	50,906	-	1949	4190	Garrison Mitchell	385/10E/25AA	MitcheS	U 333	U 307	26511	10/13/1949	152		1.90	853	524		-		-	1		-		
SD341	9.98	\$2,274	No. 117	6/20/1996	-	Swan Lake Ranch	385/11.5E/288C 77	Edgewood	G 14546	G 13929	-	5/11/1997	159.1	3	1.99	893	216	16	67	Sasak		2,500		1	313	
12425	16.16	53,641	50.9	10/21/1975	-	Mei Kendali	385/11.5E/30DC	Melvin Kencinii	G 7481	G 71 32	65411	8/17/1976	28.8	3	0.36	162	230	18	20	Basak		650	8	4	8	

DESIGN

Table A-1 Page 2 of 3

Symbiotics-3-61:101111

									Pro	oposed Swar	Lake North P	ABLE A-1 Wells and Wate County, Orego	Hydroelectri	ic Project												
	Distance From Reported								Water Rights														Well Log	il Log		
County Well (KLAN)	(north end of Owner's Date Surface Owner compartment) LD. Date Elevation (top)		Owner	Range/Section/ Quarter/Quarter- Quarter		(non-cancelled)									Casing Diameter (Inuiters)	Casing Depth (feet)	Hydro Unit	First	Yield	Drawdown	Duration	Estimated Specific Capacity (gpm/ft of	Pump			
	ntes	feet			(feet)		Quarter	(Current) Hoider	Application	Permit	Certificate	Priority Date	Total Acres	Annual Outy (ft/acre)	cts	gpm	(feet)				First Water (feat)	Yleid (gpm)	(feet)	(hours)	drawdawn)	
12226	10,19	53,793	-	8/17/1965	-	Vern Deyarmie	385/10E/25DA	Vem Deyarmie	G 3262	G 3060	36378	10/18/1965	23.2	1	0.28	130	834	8	138	Basait Shale	-	1,000	911	2	188	-
50446	10,19	53,793	-	9/5/1996	4158	john Venable	385/11.5E/30DC		Exempted Use (Domestic)								249	6	Perf 209-249	Basak ("cinders")	208	30	-		-	-
12424	19.36	54,705	No.1	1933	4190	W. Heli	385/11.5E/30DD	Melvis McCallum	G 4812	G 4552	42502	3/11/1969	12	3	0.15	67				Basak						1,000 gpm
	12.00				4130	(G. McCollum?)	36911.503000	Wilbert Hali									145	12		("cinders")	-	875	-	-	-	capacity
59337	10.13	53,489	No.3	<1948	4217	W. Hali (Moore?)	385/11.5E/39DD	Wilbert Hall	U 299	U 272	27302	4/14/1949	170.4	,	2.13	956	175	14	120	Besalt ("cinders")		950	-	-	-	1,100 gpm capacity
12419	10.72	\$6,605	No. 1	1948	4200	Guy Barton	385/11.5E/28C8	Guy Barton	U 300	U 275	26807	4/18/1949	168		2.10	343	136	16	60	Basalt	-	1,450	4	+	363	50 HP 1,400 gpm capacity
es. Lot reported o Ic and pumple			a wells as measured	by OWRD and USC!	i are lacityded in App	endix A of this report																			·····	

Table A-1 Page 3 of 3

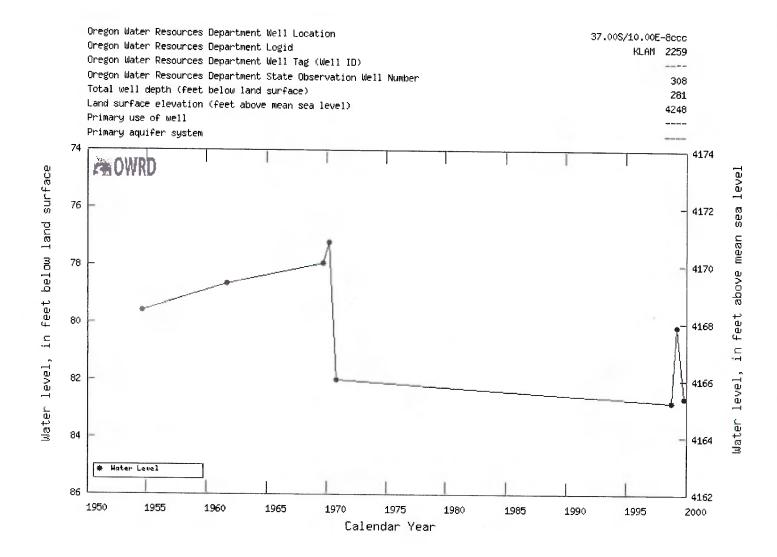
Symbiotics-3-01:101111

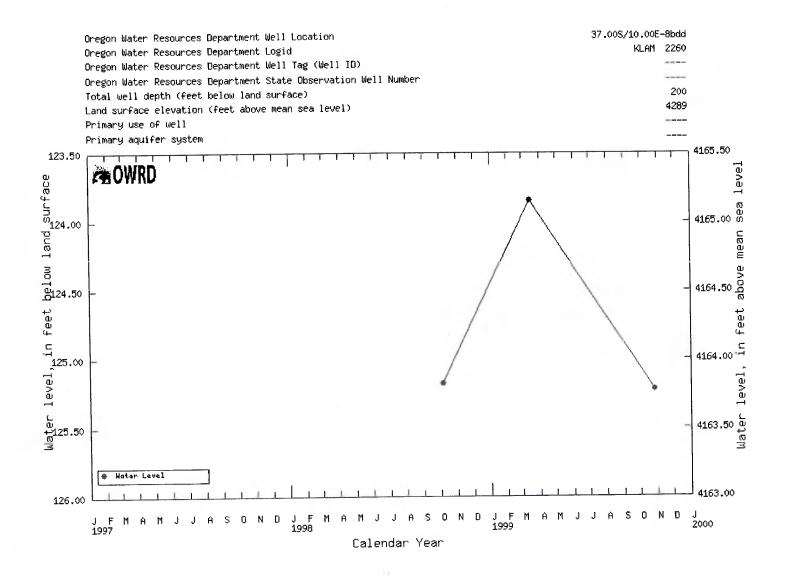
CONDESIGN)

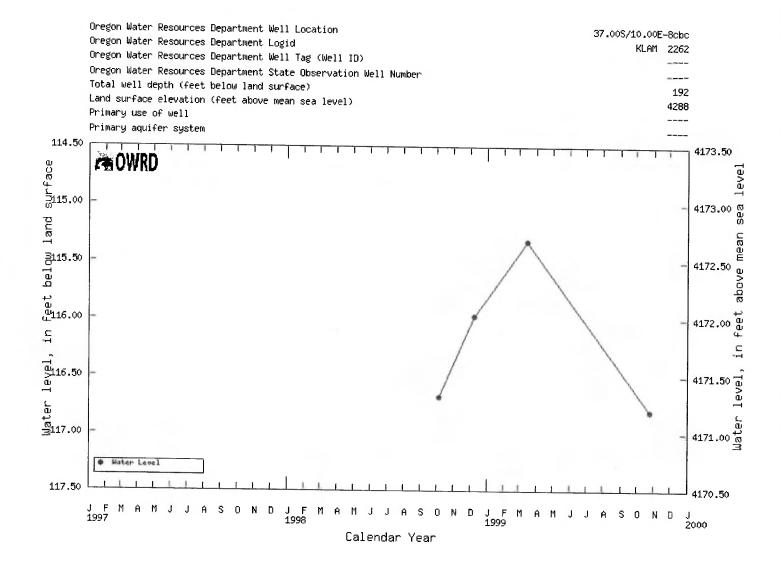
Table A-2

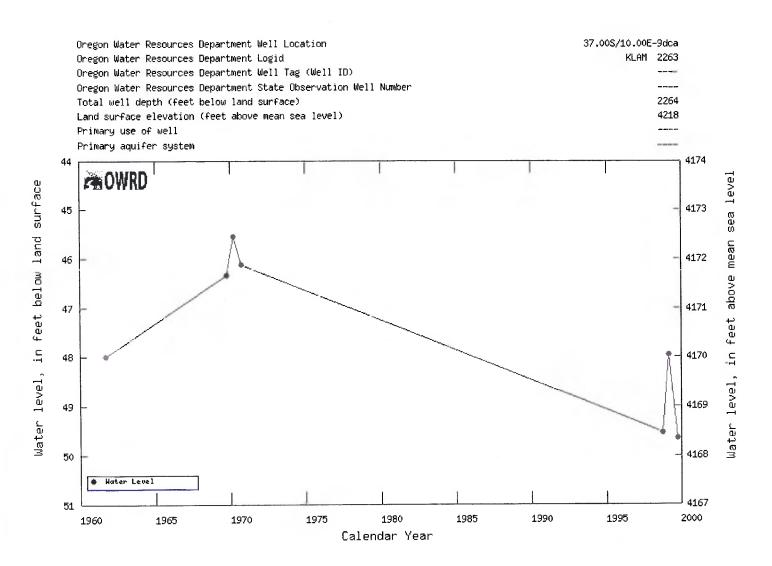
Pumping Rate Calculation for Proposed Supply Wells - Reservoir Filling and Maintenance, Proposed Swan Lake North Pumped Storage Hydroelectric Project

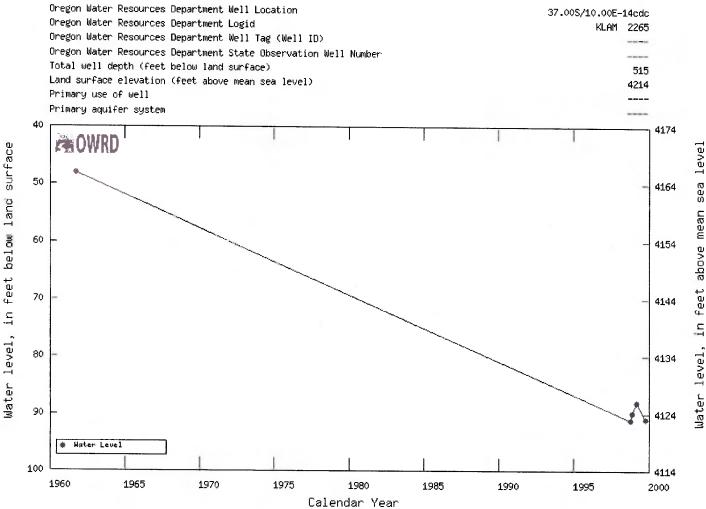
÷

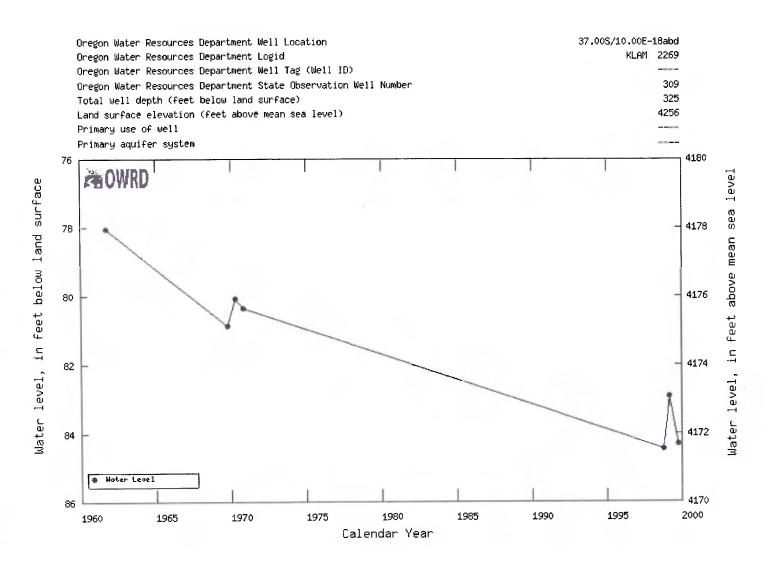

	Owner's 1.0.	Township/ Range/Section/ Quarter/Quarter Quarter						Maximum Allowed Instantaneous Appropriation Rate Under Relevant Transfer or Right				Caiculated Pumping Rates (gpm)									
County Well (KLAM)				Water i	lights					Acre-Feet Per Acre	Acres Irrigated			Total Acre-Feet Per Year			Totai Cubic Feet Per Year	Total Gallons Per Year	Calculated Pumping Rate 365 Oays per Yeat	acre-feet pe	
			(Current) Holder	Арр.	Permit	Cert.	Status	Priority Date	cfs	gpm		Primary	Supp.	Totai	Primary	Supp.	Total	i ci i car	.e. tea	(12 months)	year)
									Pr	roposed Pu	mping Wells										
2263	Well 1	375/10E/9DC	Devincenze	U 453	U 486	29530	NC	12/24/1951	6.24	2,800	3.0	501.1		501.1	1,503.3		1,503.3	6.55E+07	4.90E+08	932	
2259	Well 2	375/10E/8CC	Devincenze	U 453	U 486	29530	NC	12/24/1951	4.53	2,033	3.0	648	-	648	1,944	**	1,944.0	8.47E+07	6.33E+08	1,205	-
2262	Well 4	37S/10E/88C	Jesperson Edgewood	G 10135	G 10952	87006	NC	6/28/1982	5.72	2,567	3.0	457.2	-	457.2	1,372		1,371.6	5.97E+07	4.47E+08	850	-
2265	Well 5	375/10E/14CC	Jesperson Edgewood	G 10135	G 10952	87006	NC	6/28/1982	7.89	3,541	3.0	631.4	-	631.4	1,894	-	1,894.2	8.25E+07	6.17E+08	1,174	1,894.2
pp: application ert: certification CI non cance upp: supplem fater rights un	e led ental der Certificates	ible 8312 and 67564 (Table A röflcare 29530 will not be tr				s in filling th	ie reservor	is.		L		<u>_</u>			L	L	Total Vol	Totai F Totai Volum otal Volumes umes (acrefe ing Oays to Fi	(cubic feet) et per year)	4,162 2.19E+09 2.92E+08 6713.10 758	

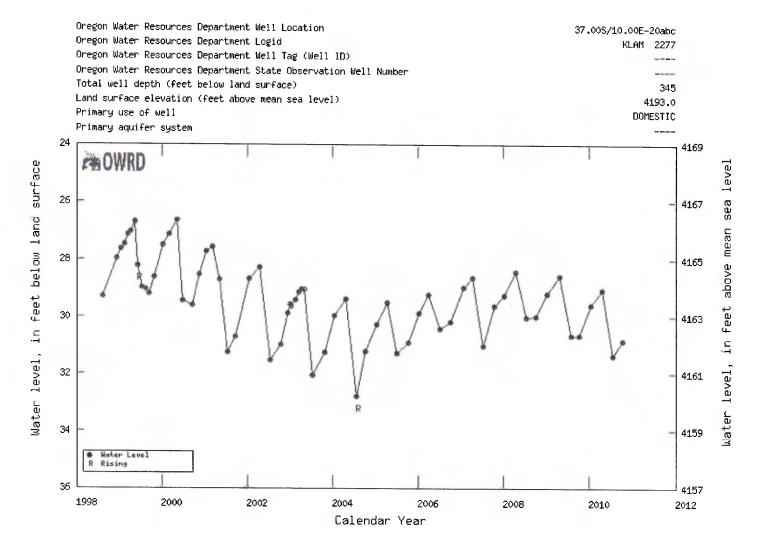

GEEDESIGN:

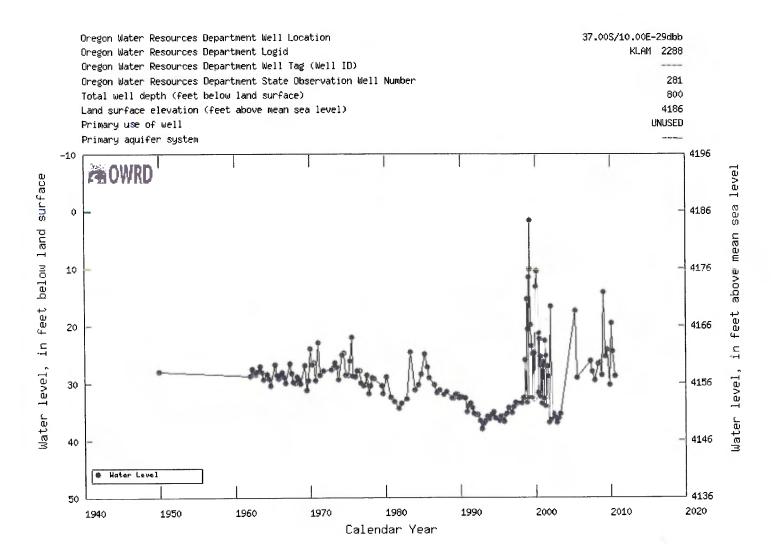

Table A-2

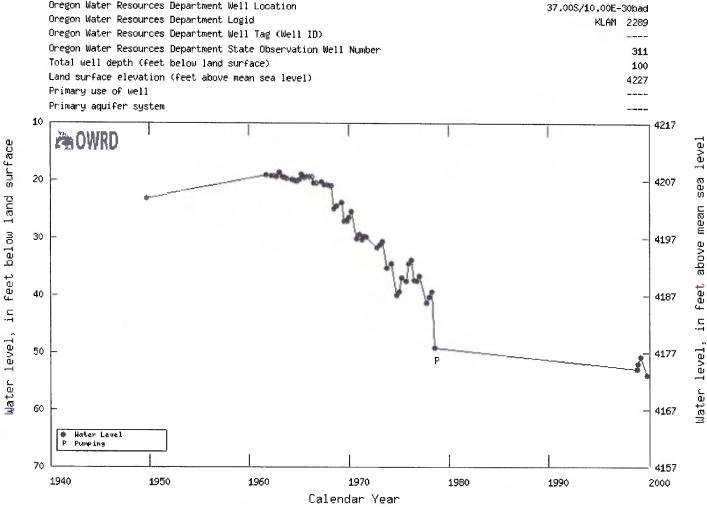

Symbiotics-3-01:18(1111

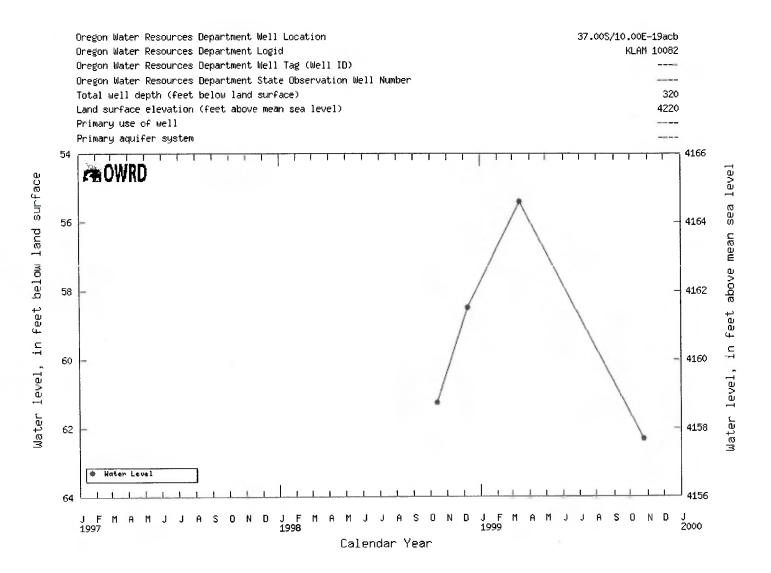

Historical Water Levels

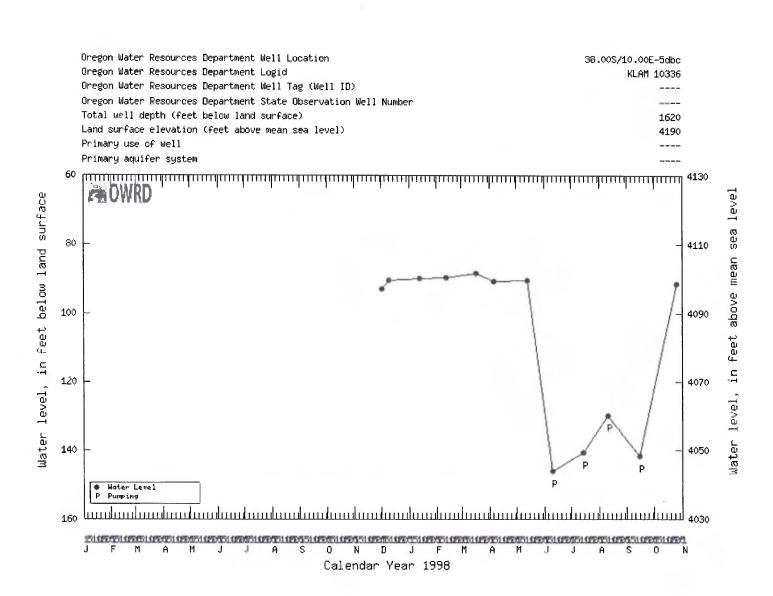


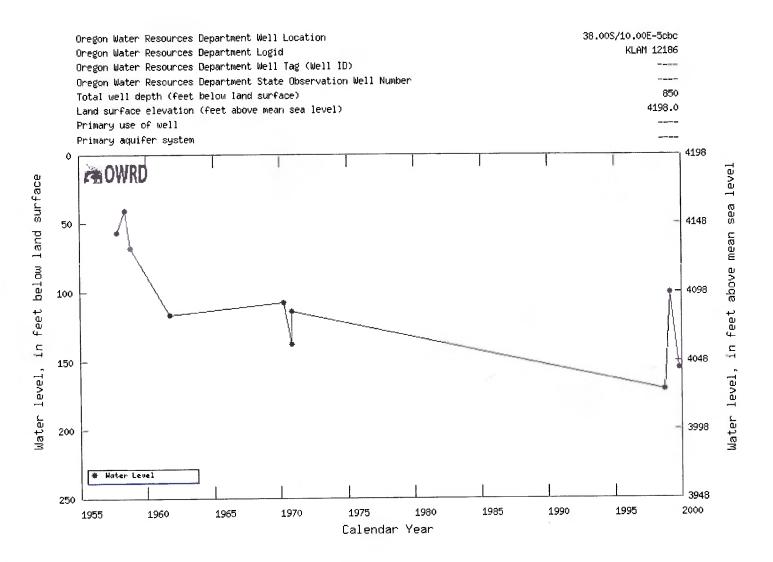


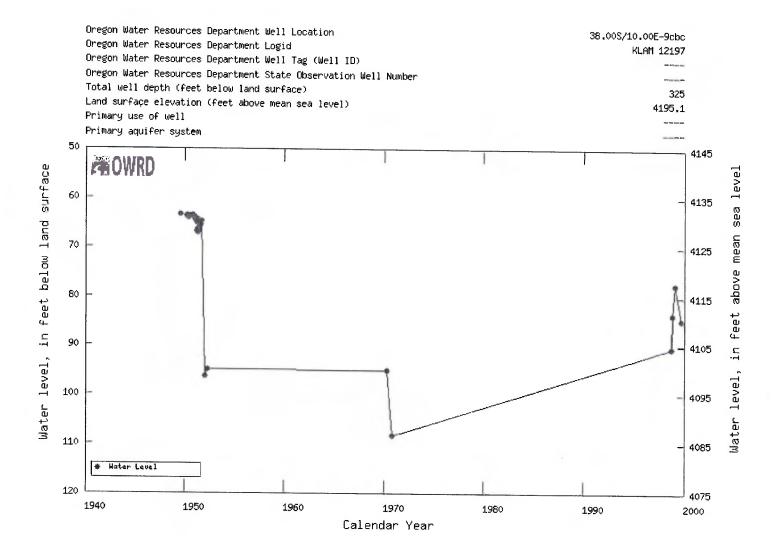


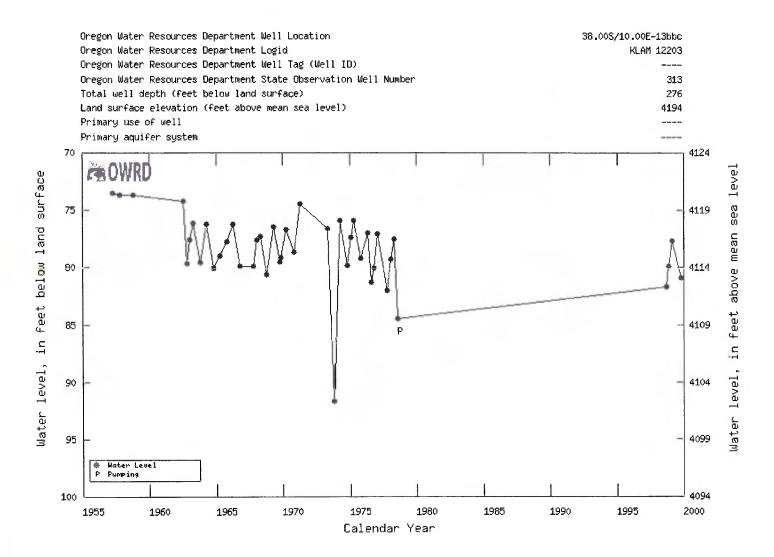


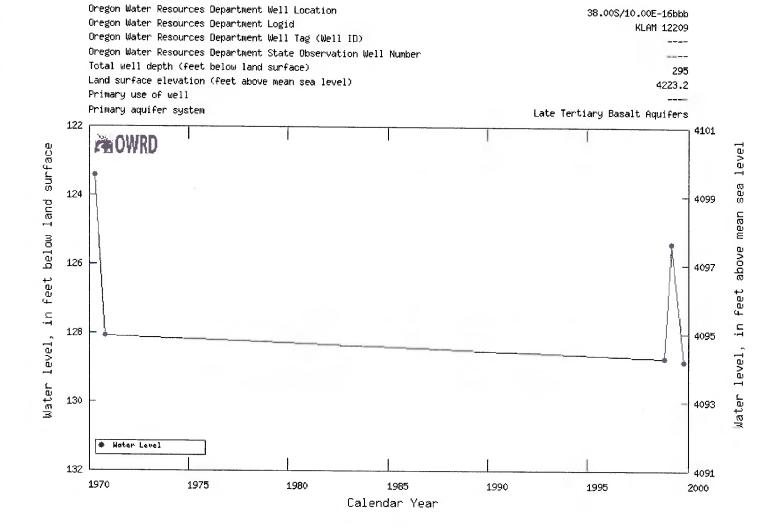


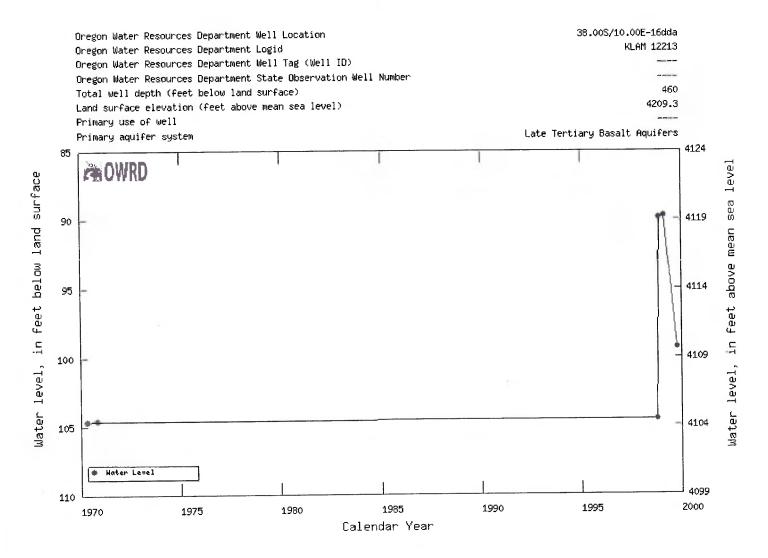


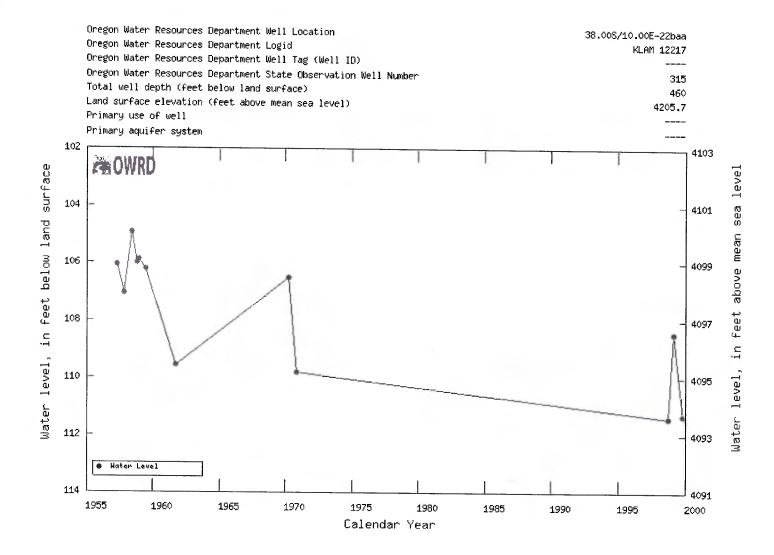


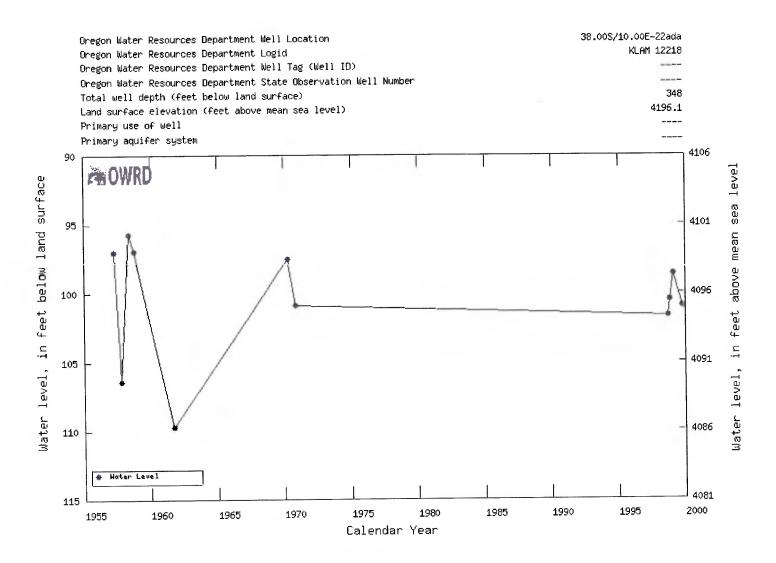


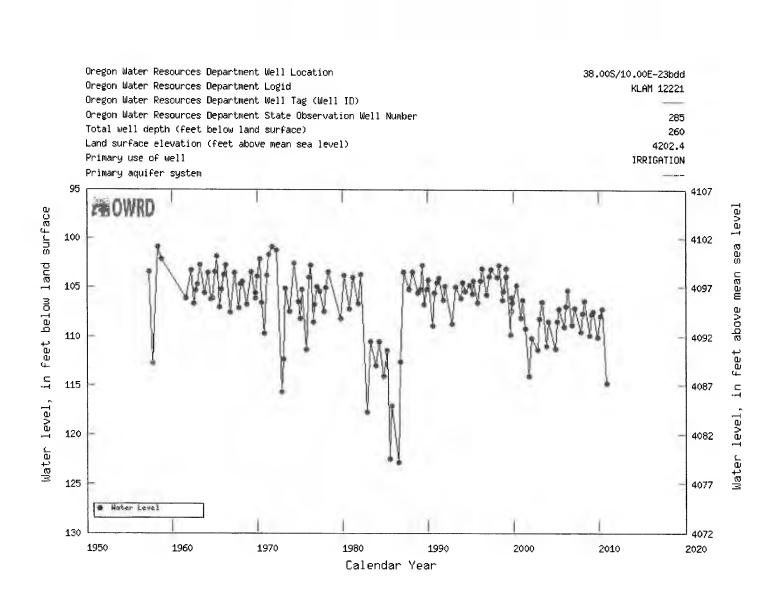

Oregon Water Resources Department Well Location

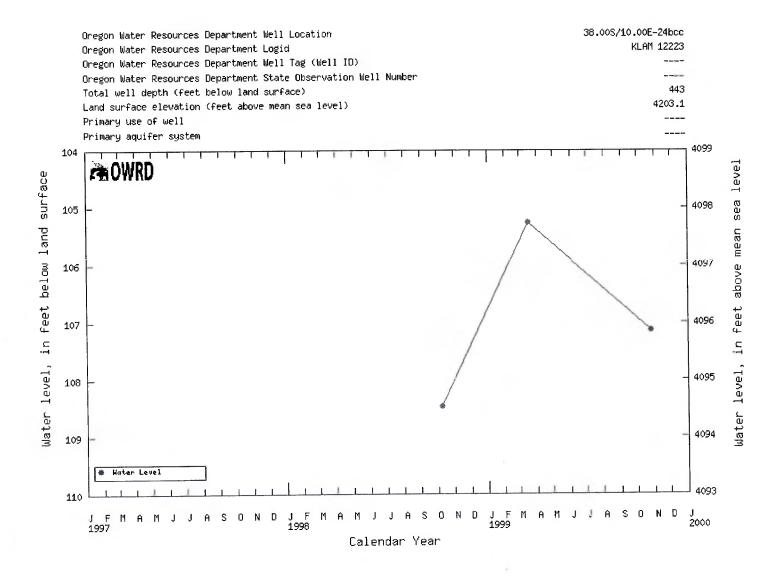


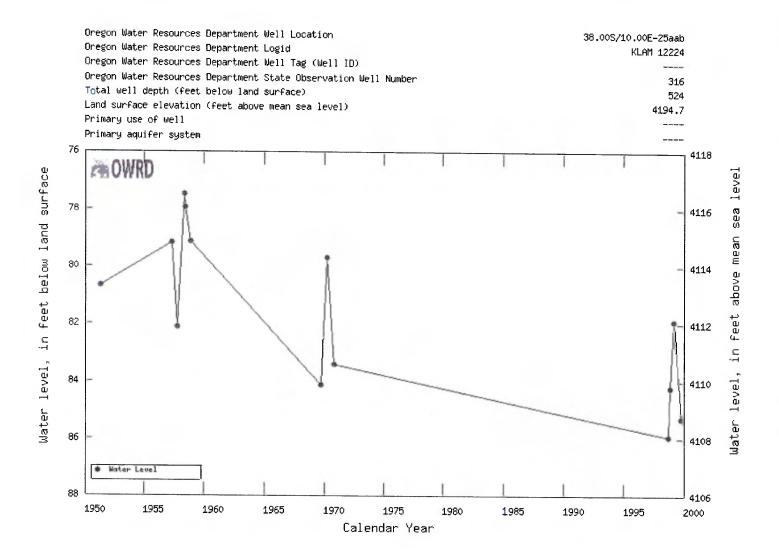


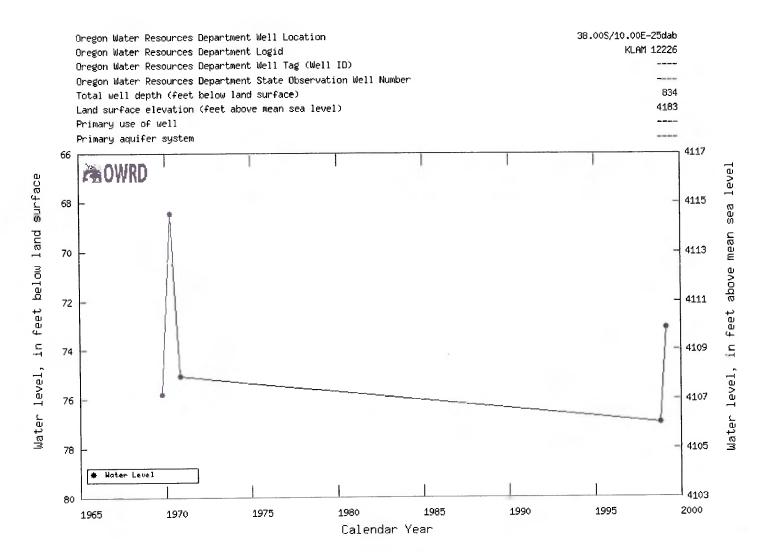


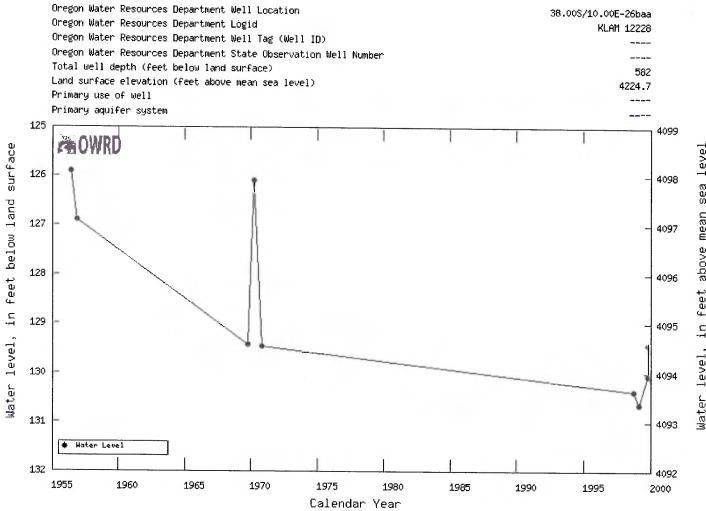


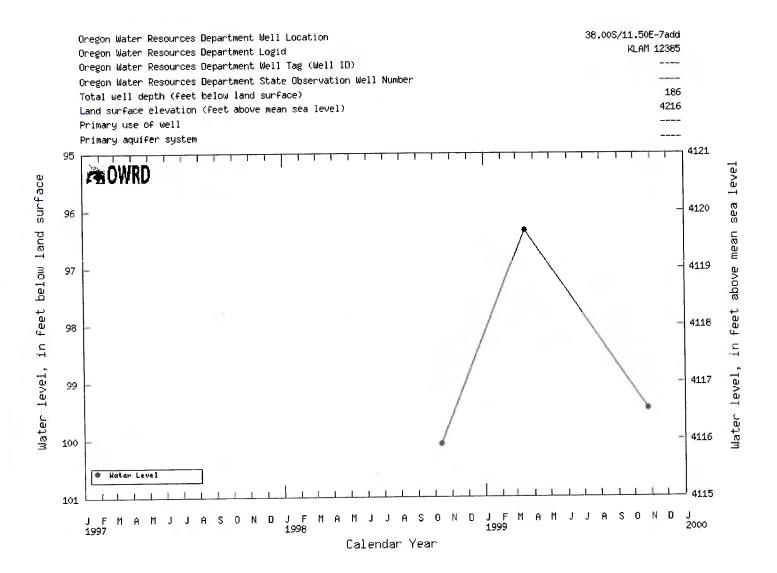


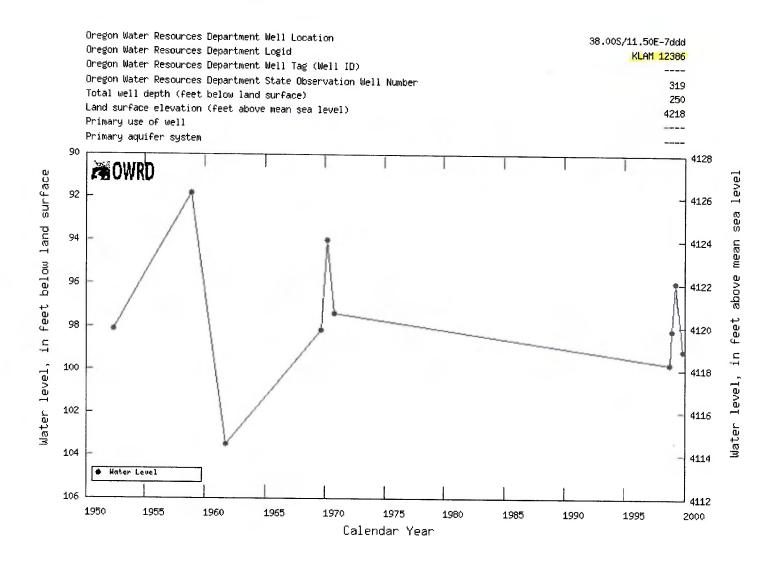

1

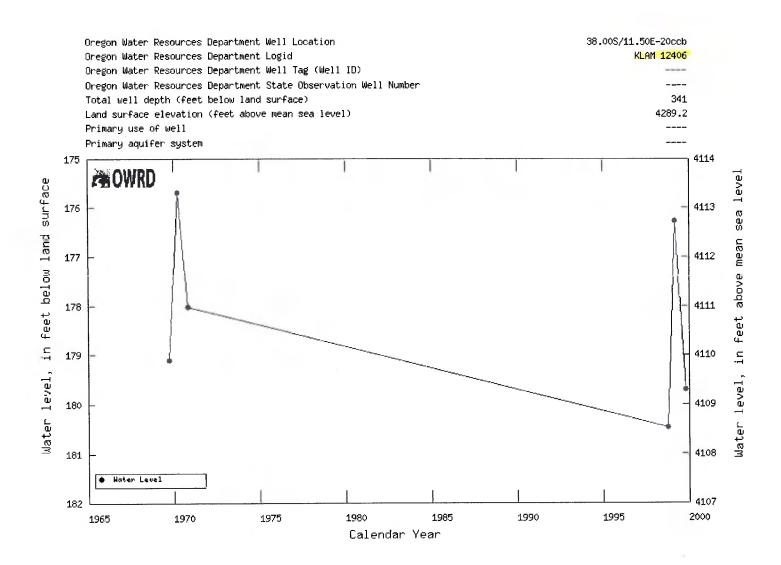

.

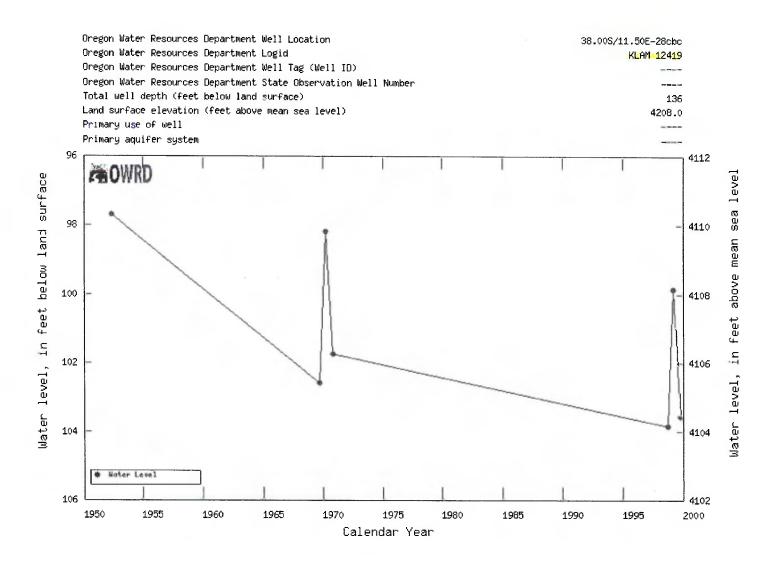


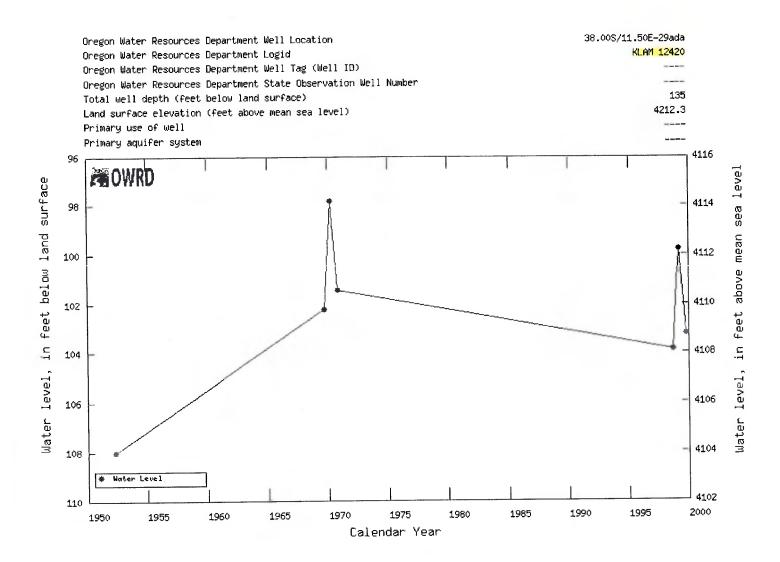


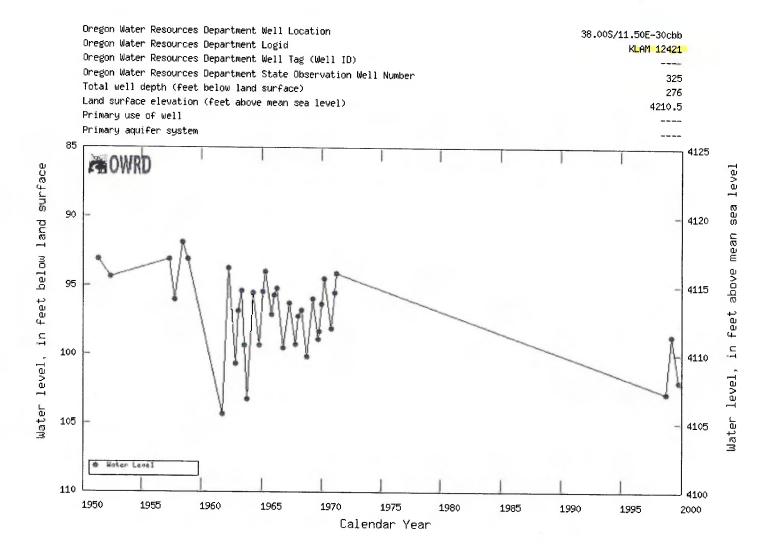


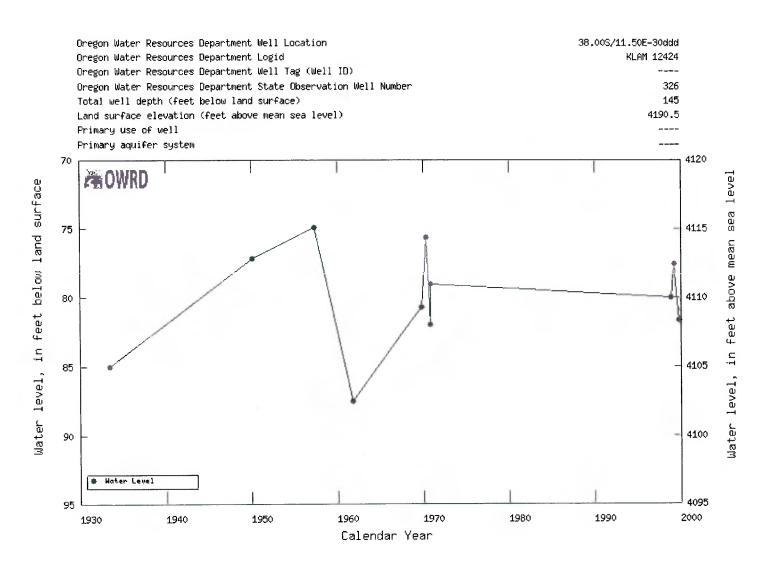


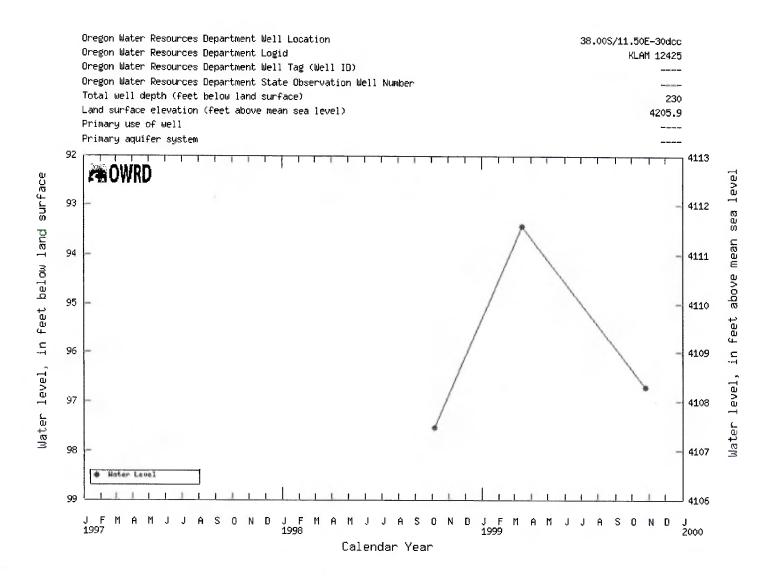


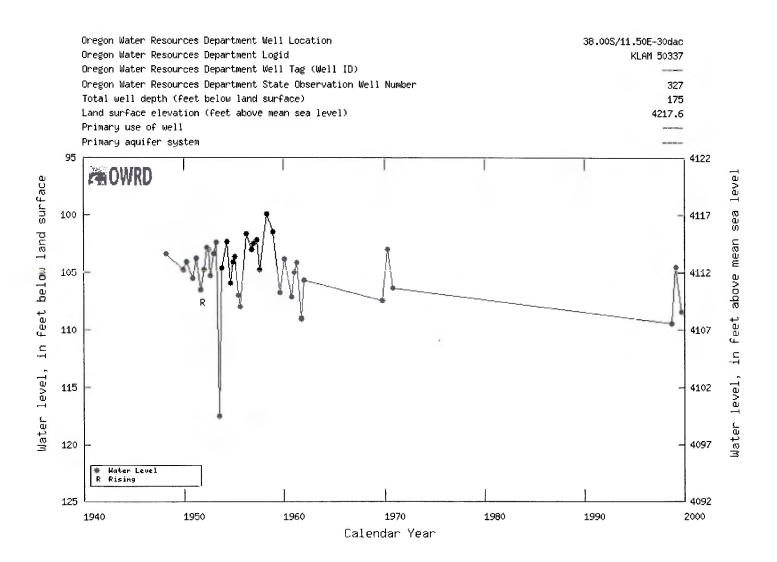


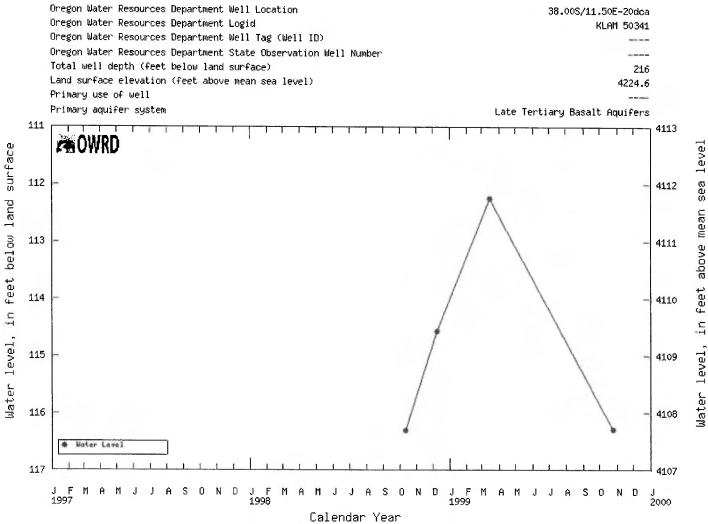

Water level, in feet above mean sea level

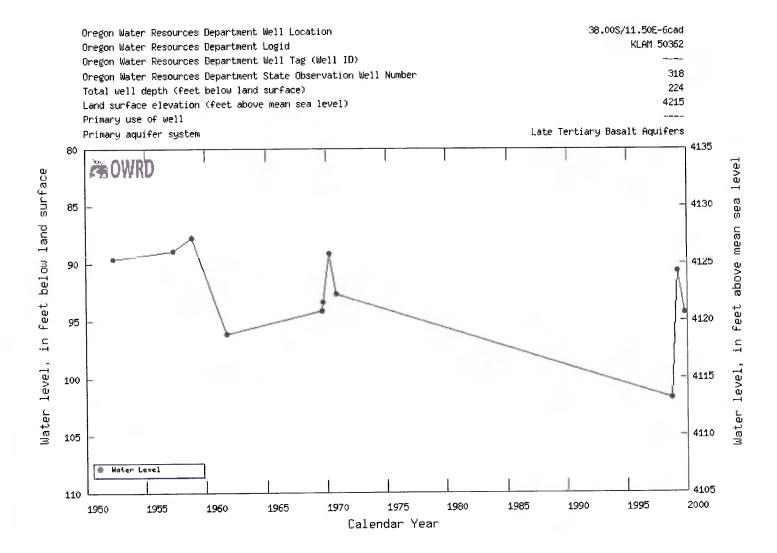


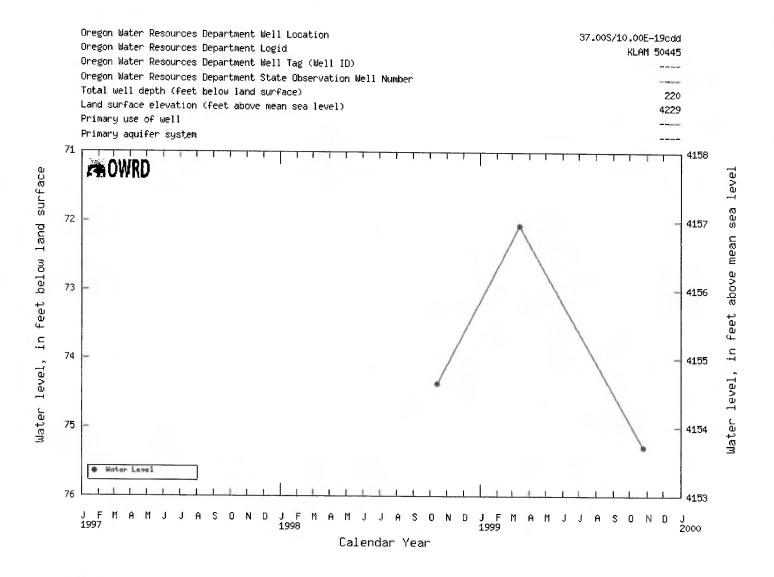


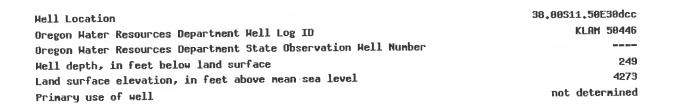


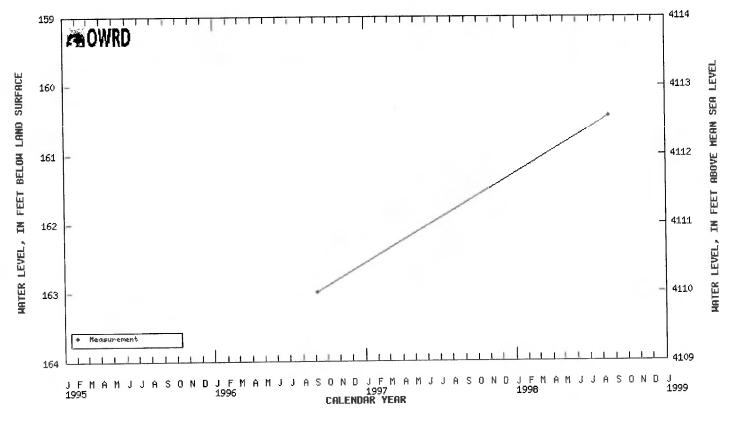


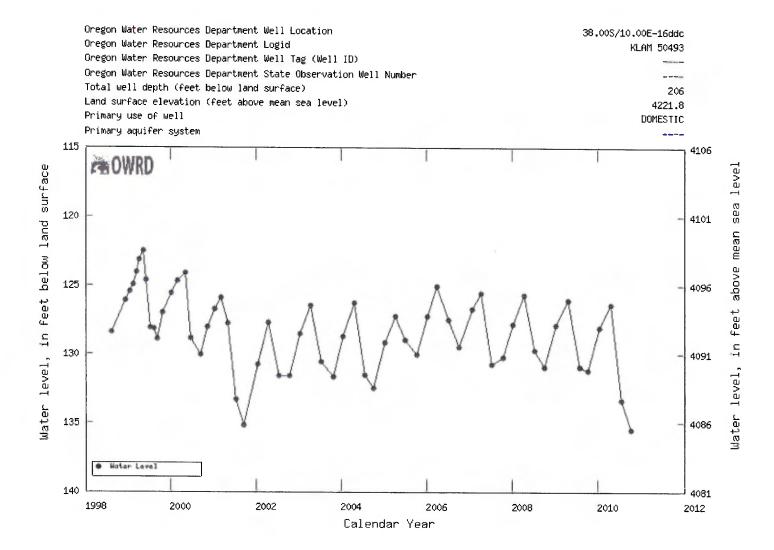




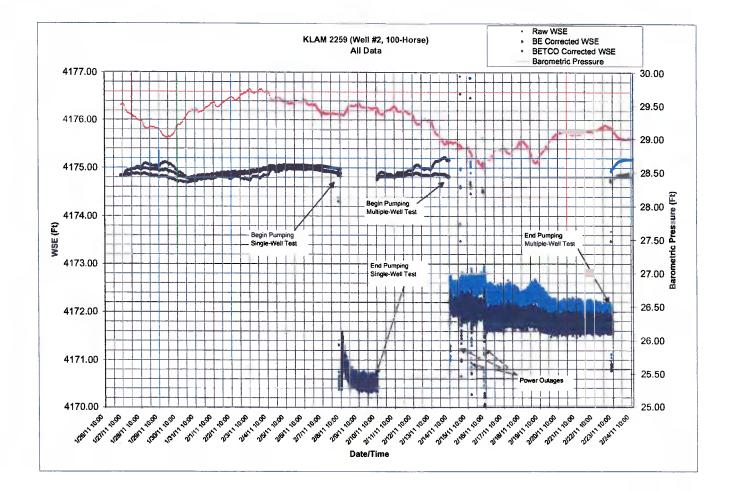


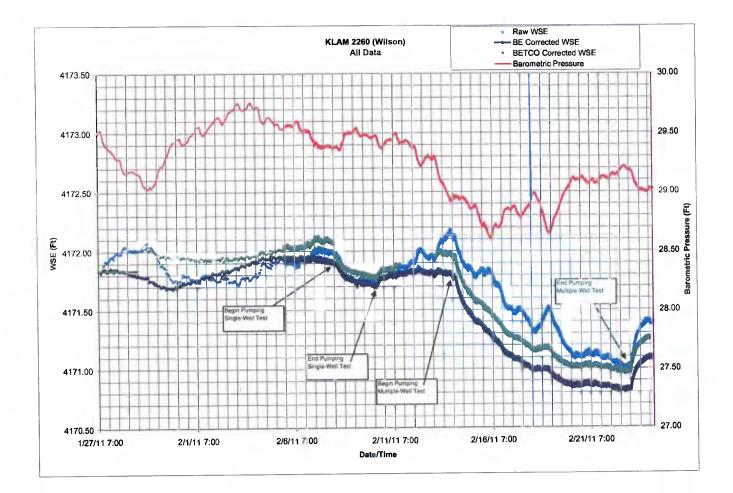


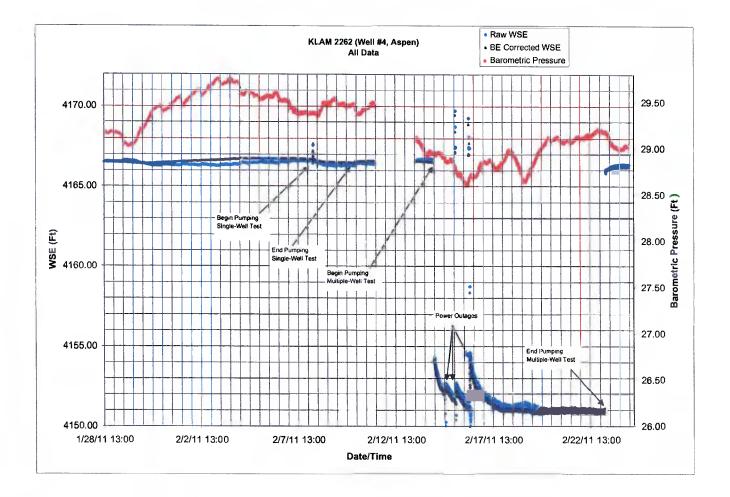


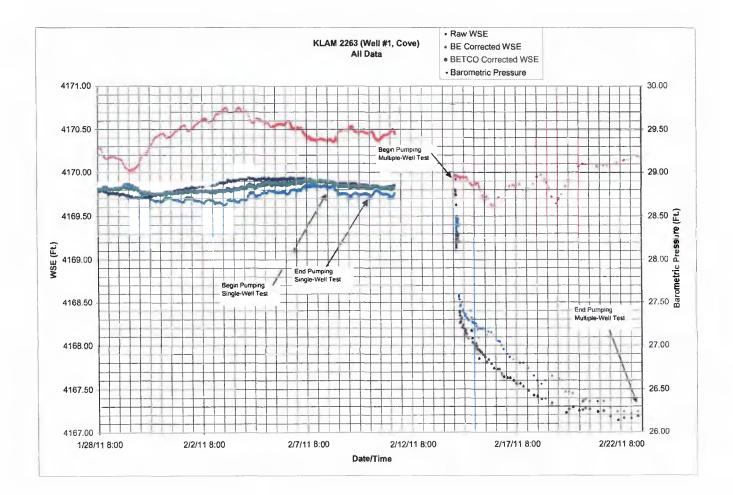


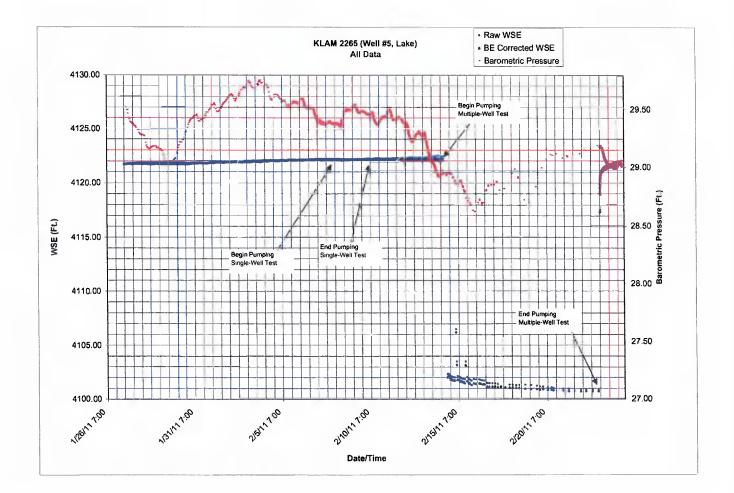
APPENDIX B

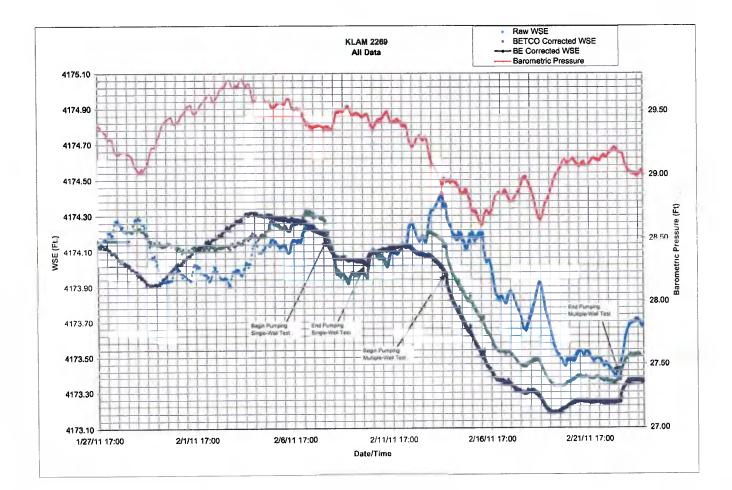

APPENDIX B

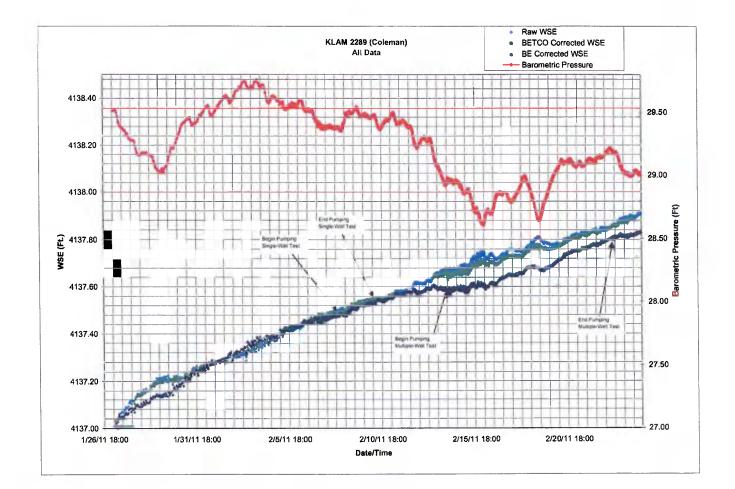

WATER LEVEL PLOTS

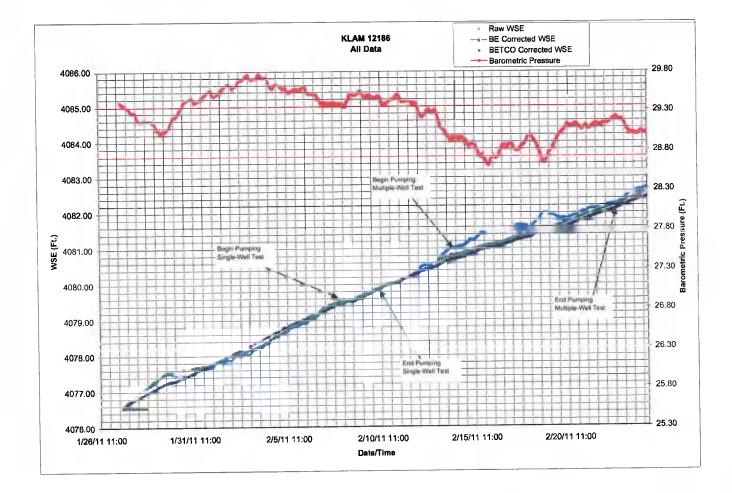


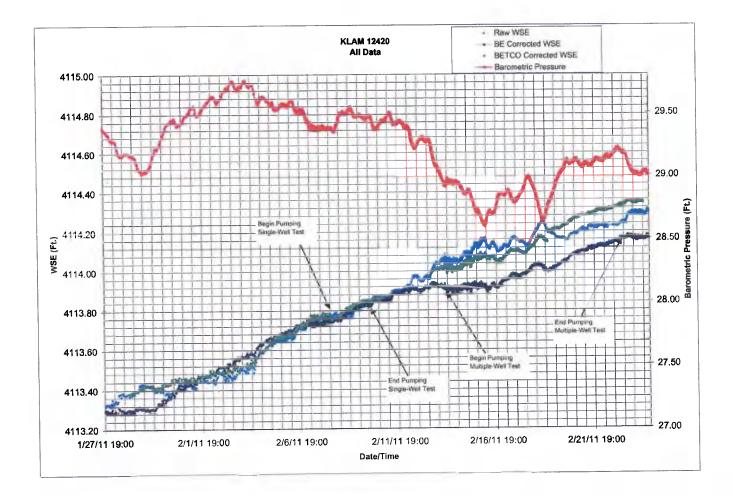

Symbiotics-3-01:101111

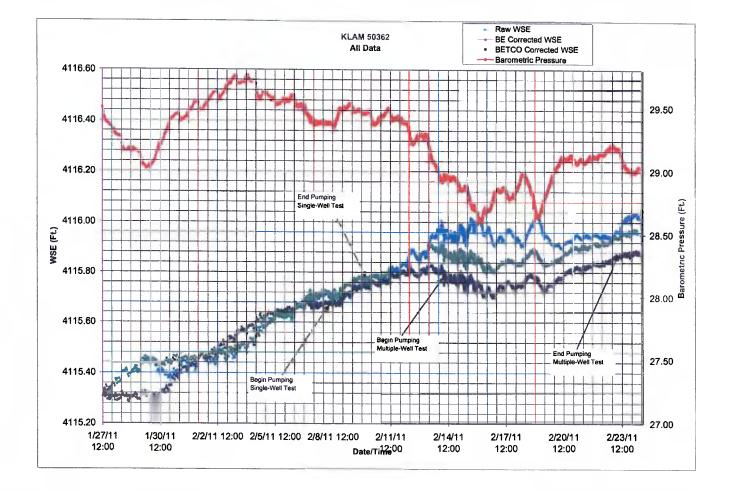

Water-Level Plots - All Testing Phases

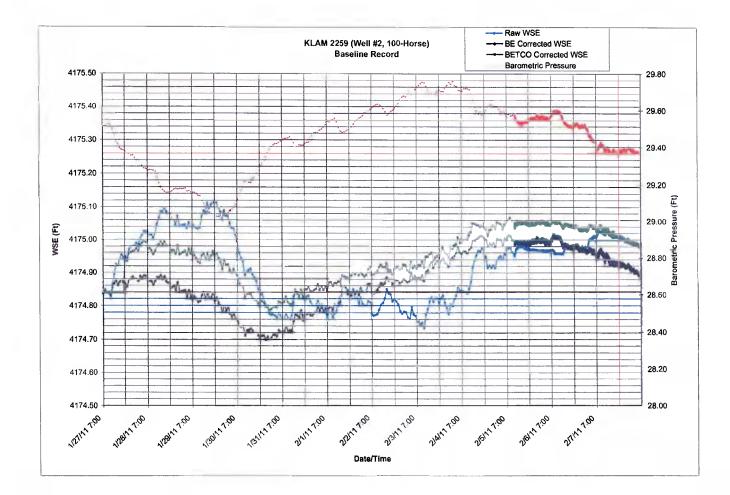


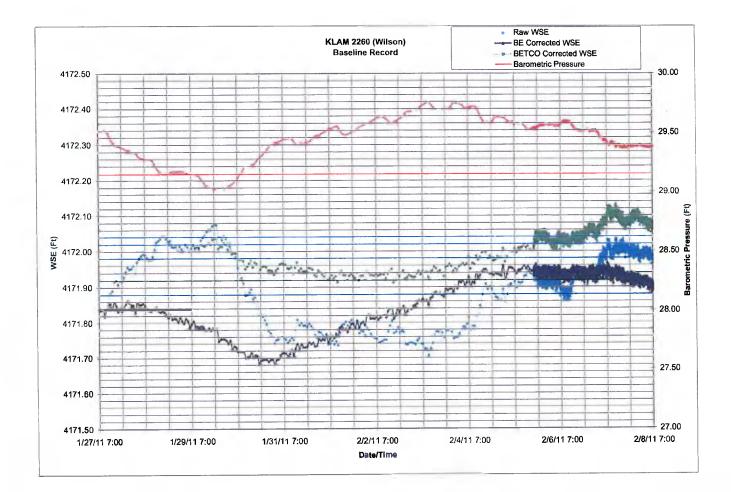


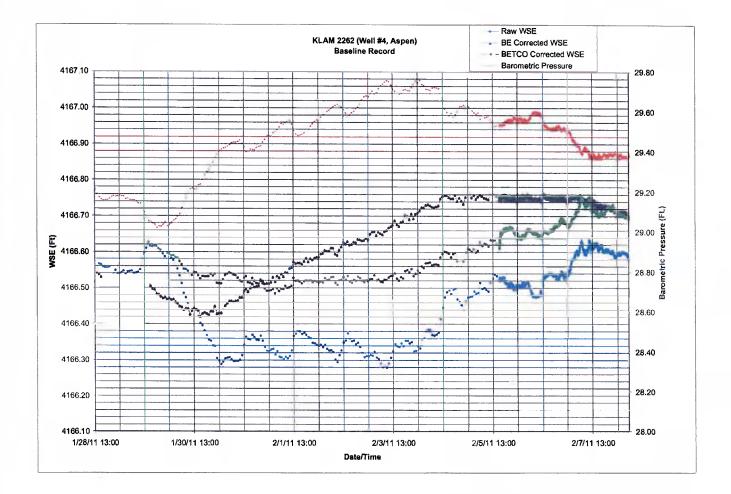


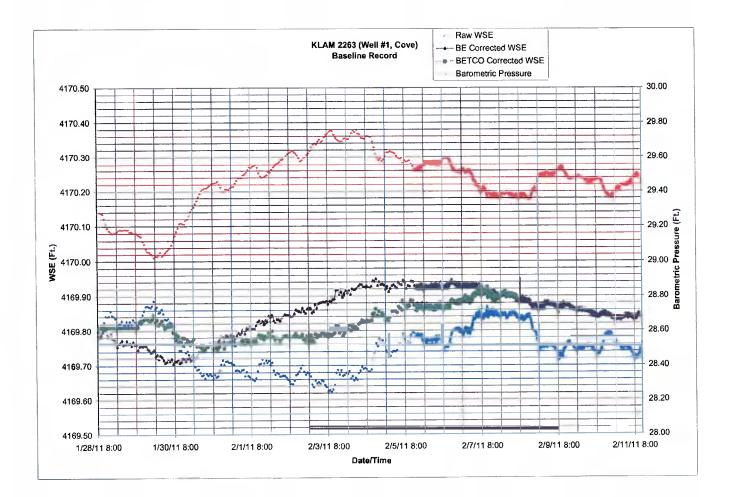


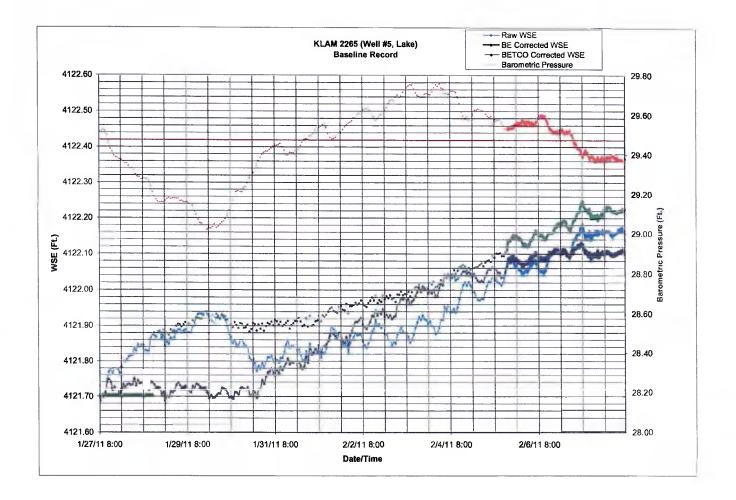


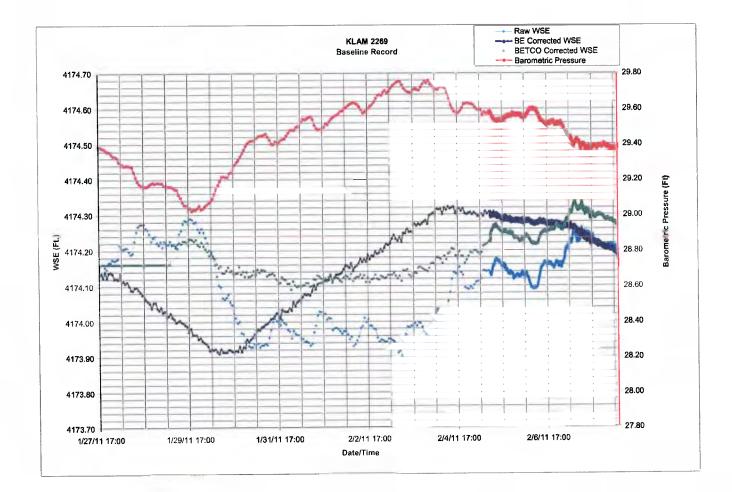


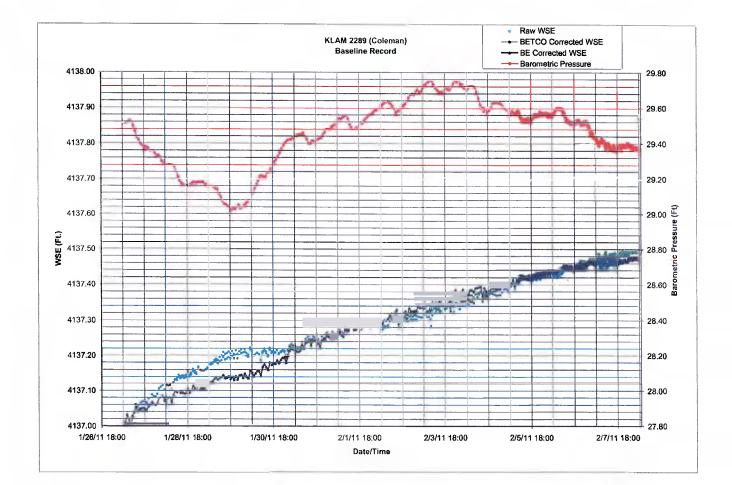


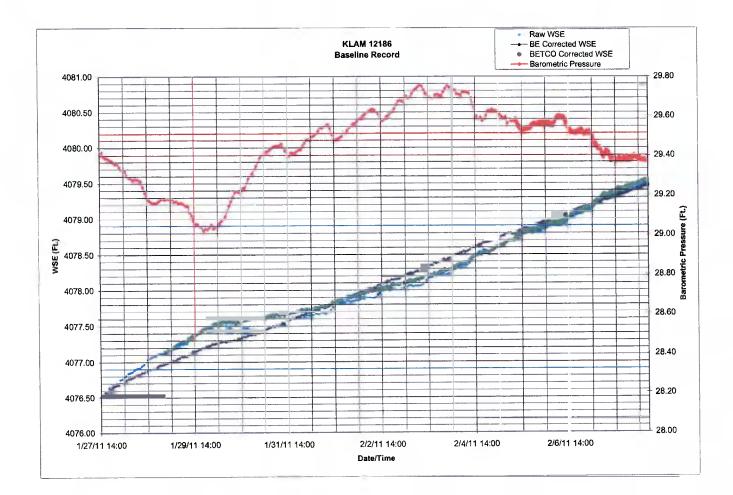

Water-Level Plots - Baseline Record

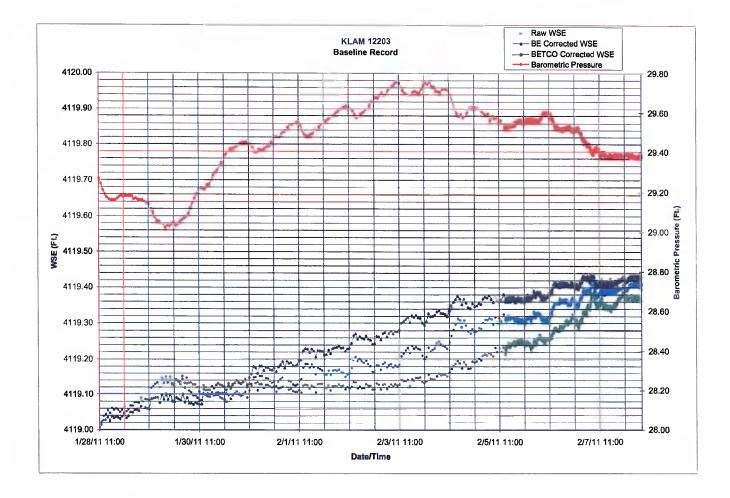

.

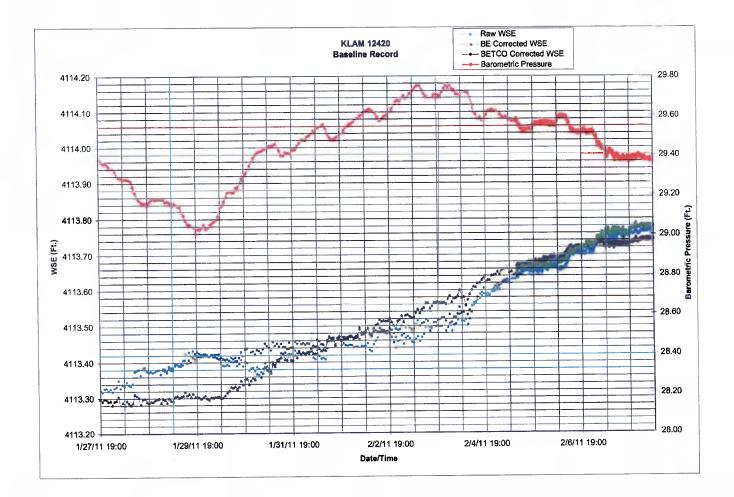

.

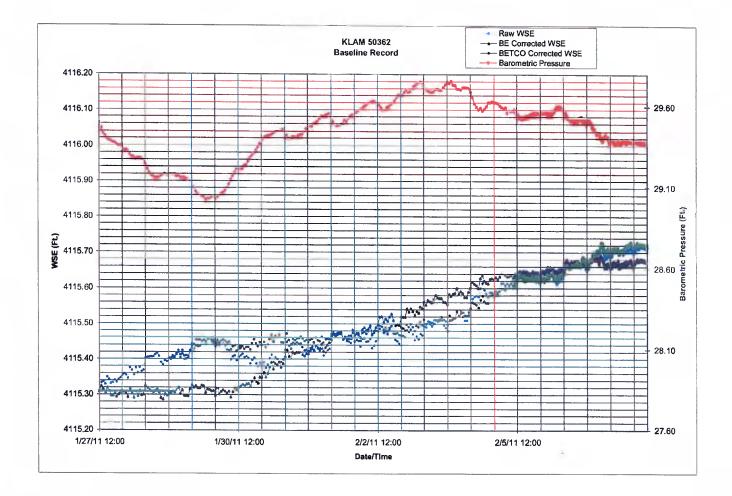


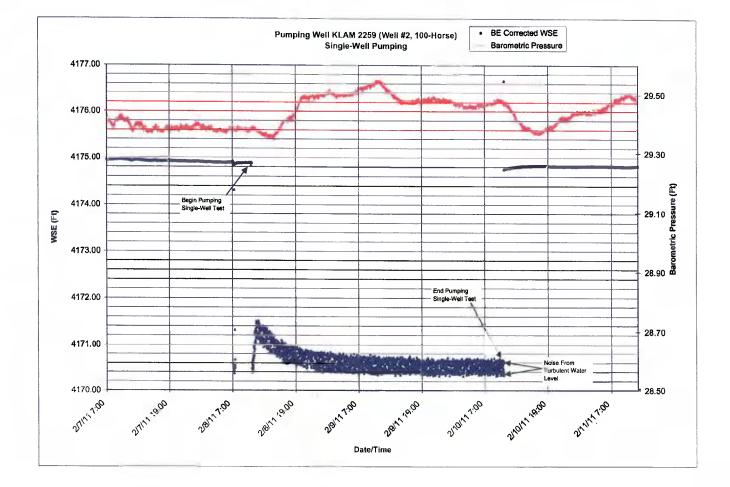


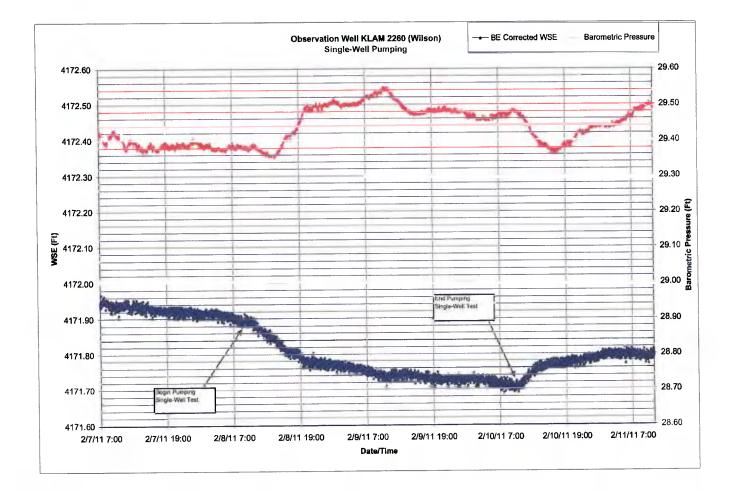


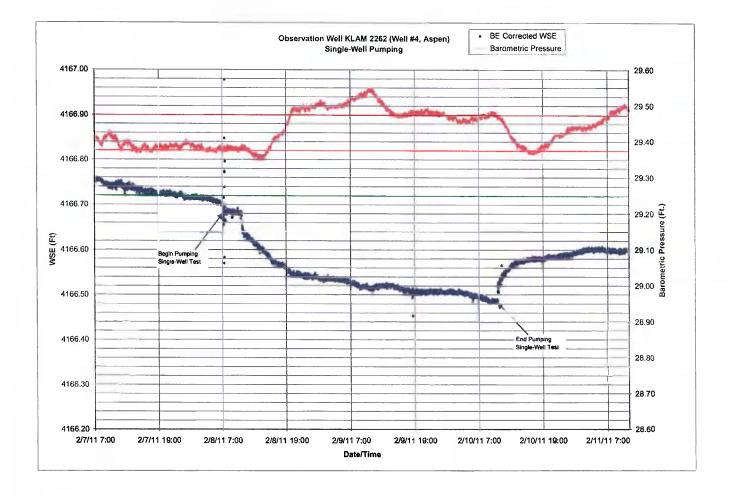


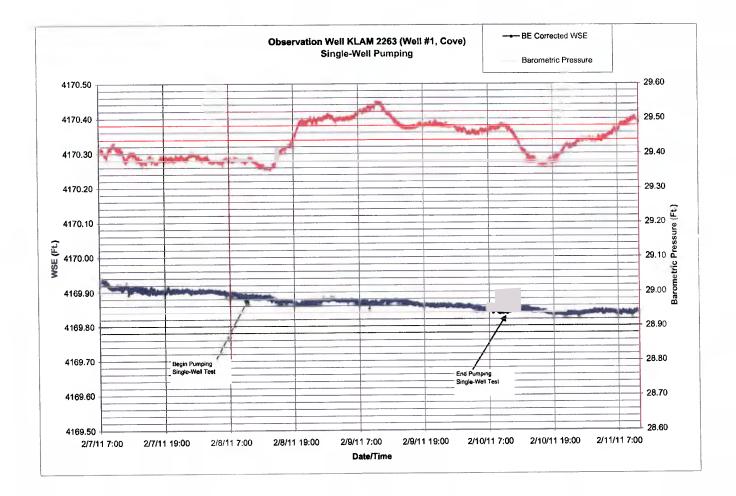


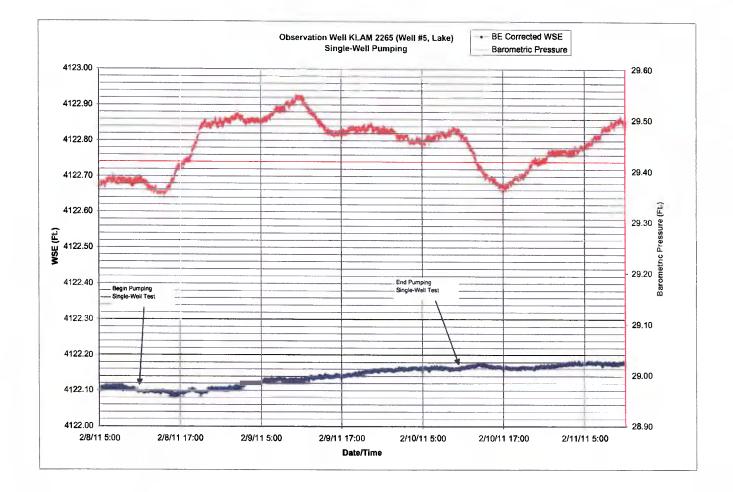


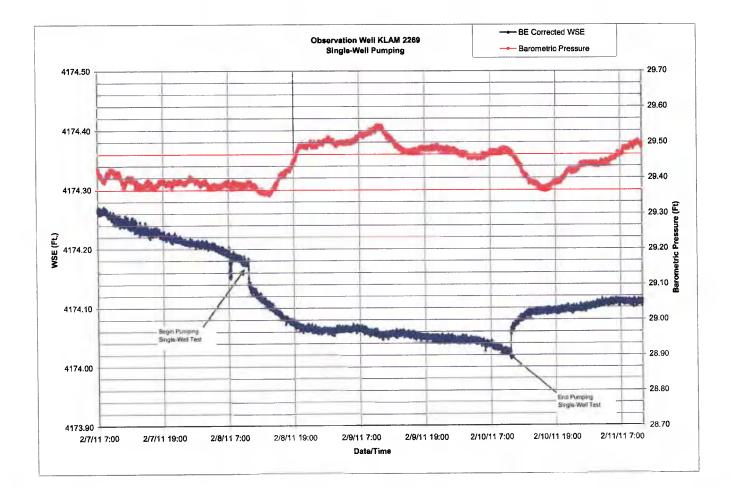


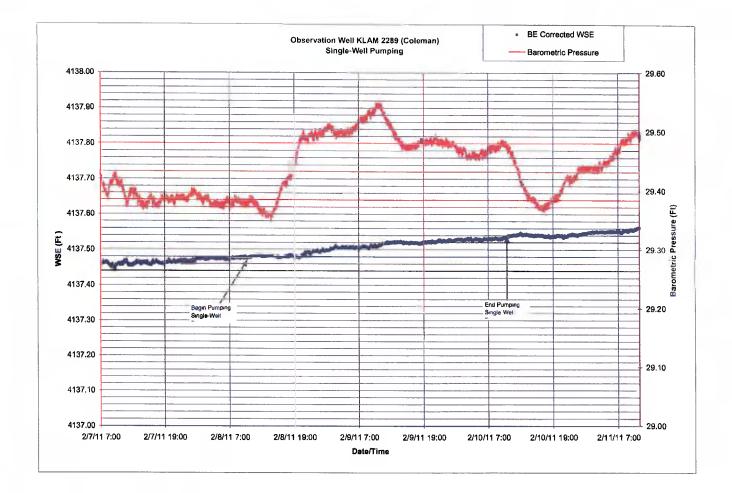


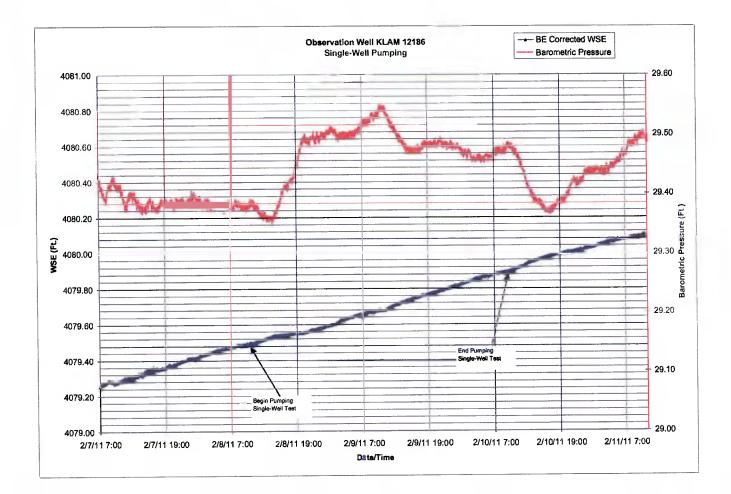


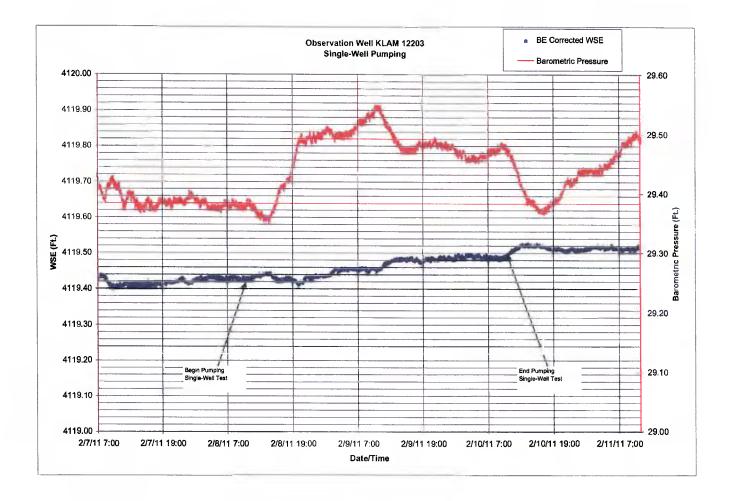

Water-Level Plots - Single-Well Pumping Test

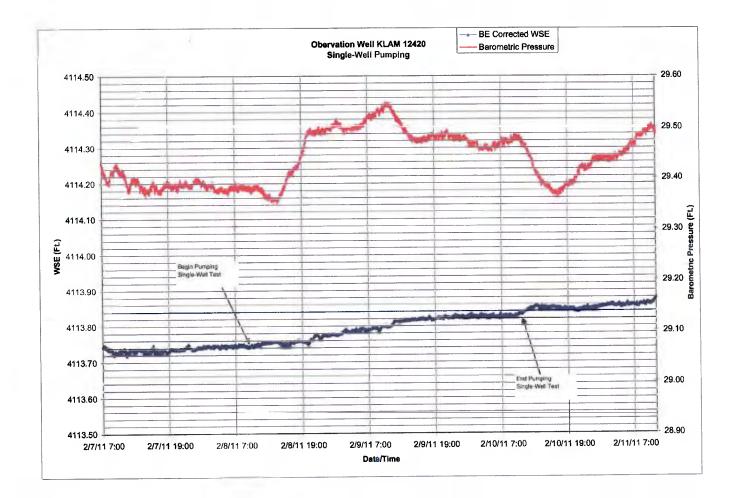

.

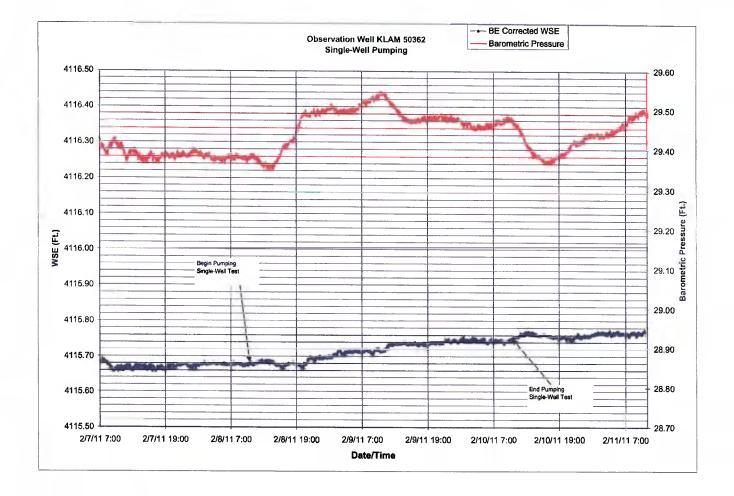


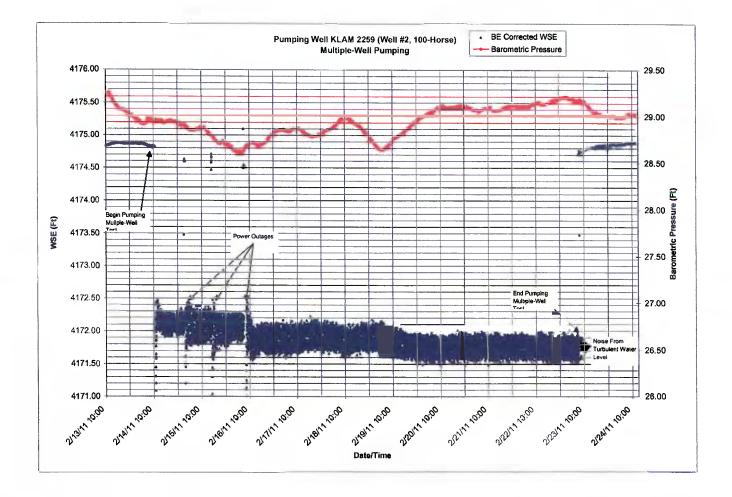


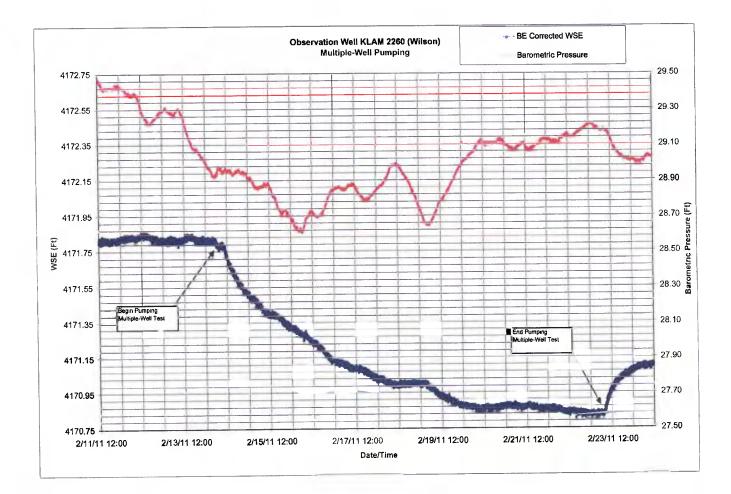


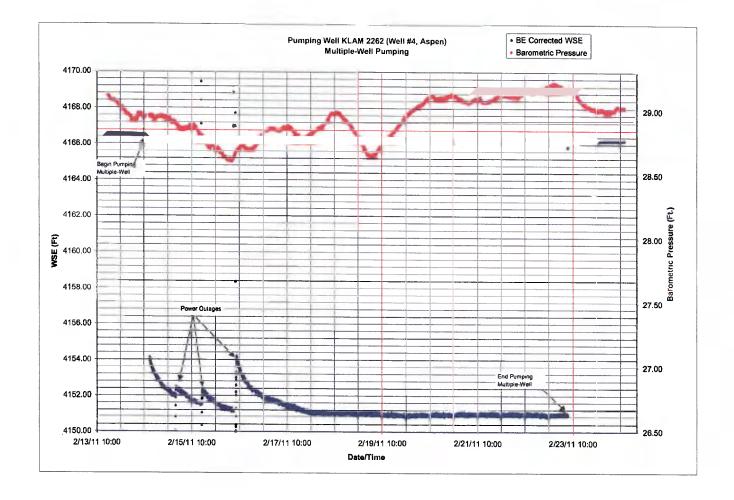


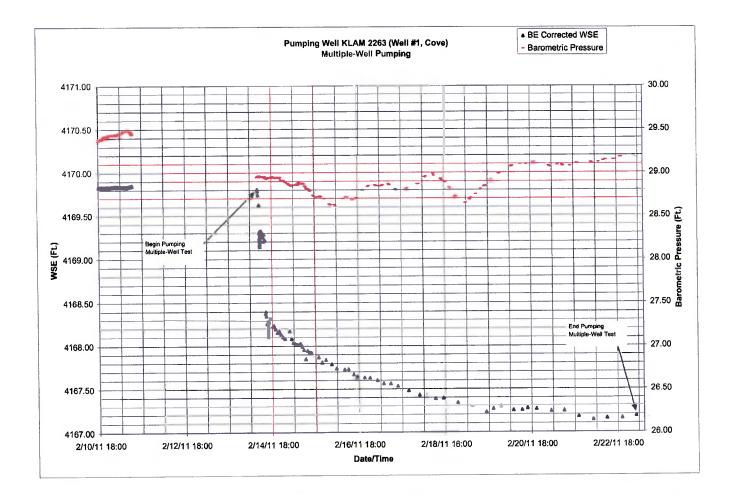


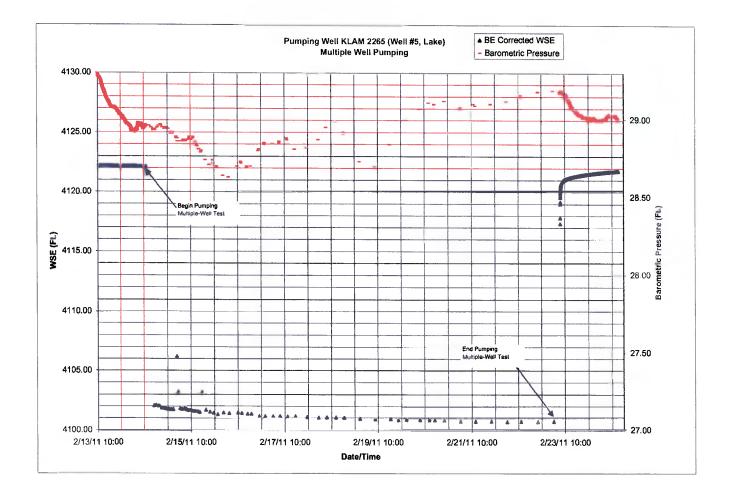


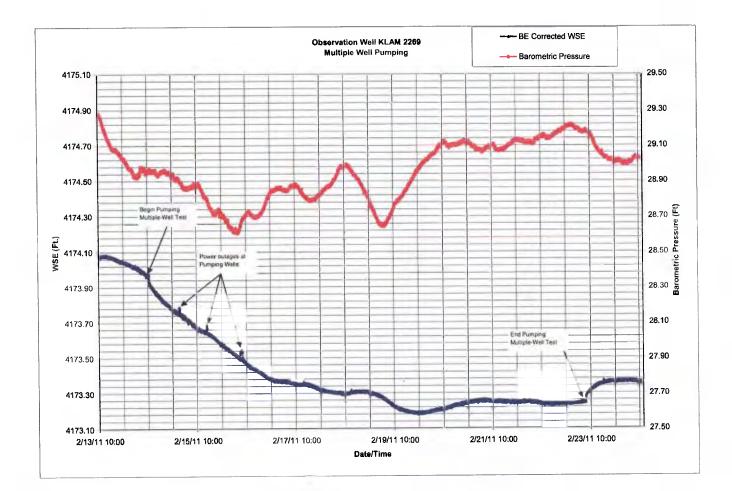


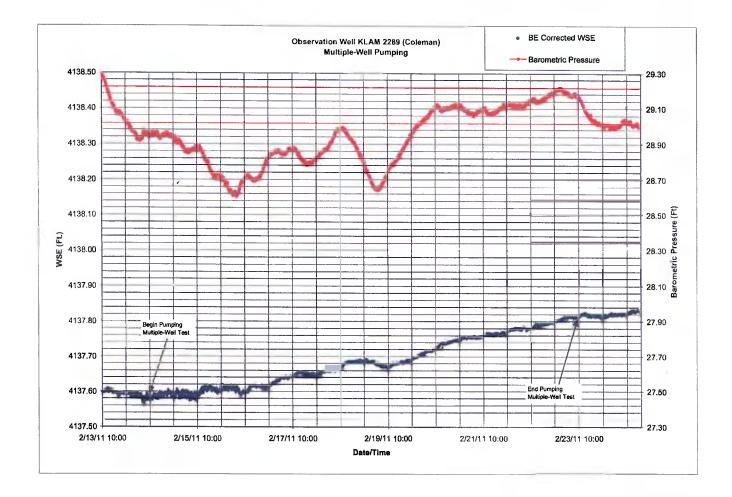


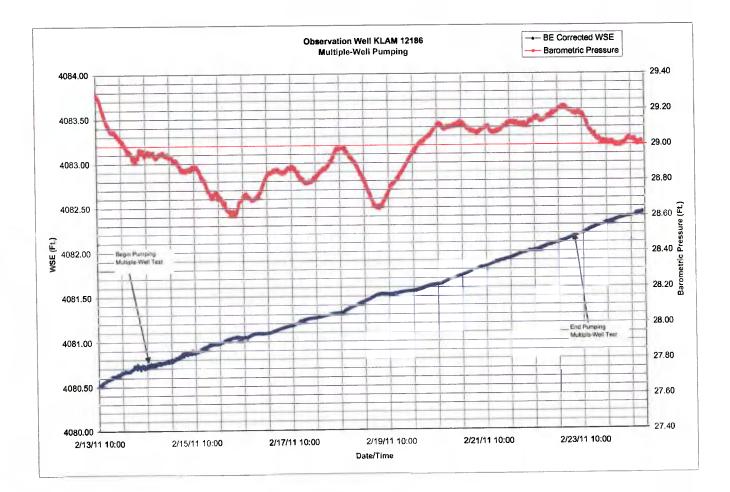


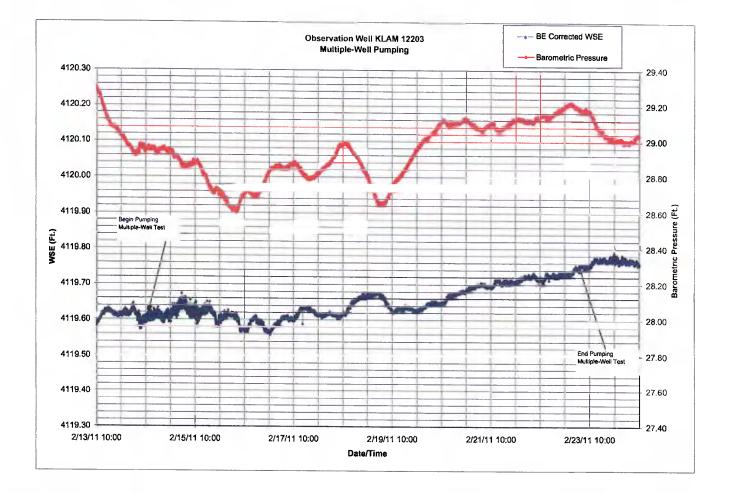


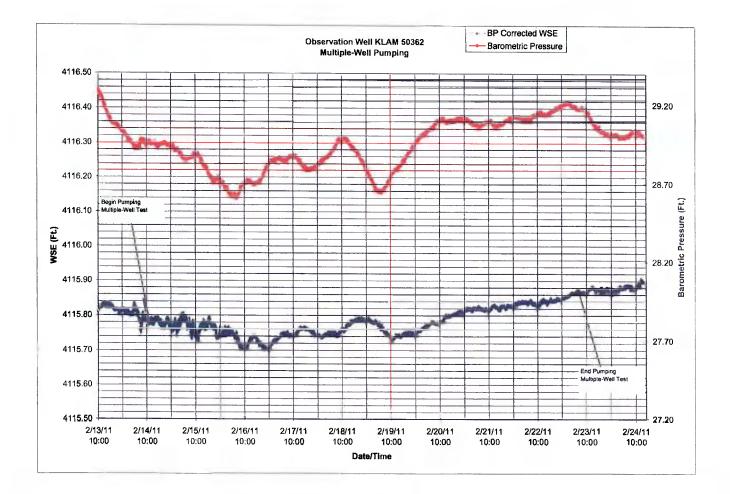

Water-Level Plots - Multiple-Well Interference Testing

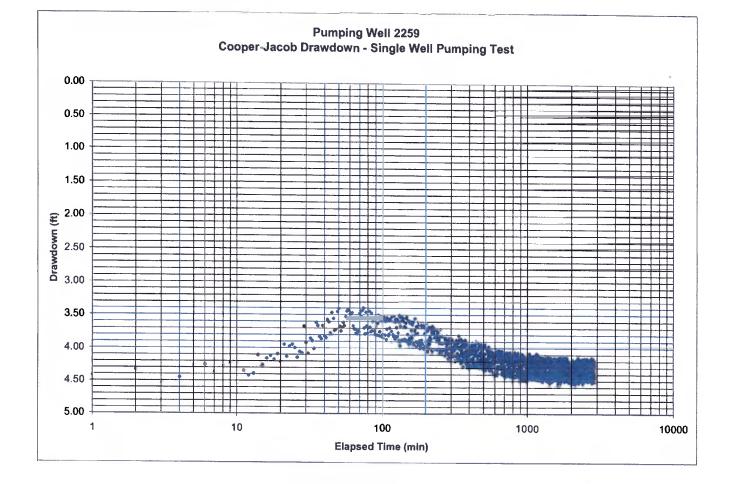


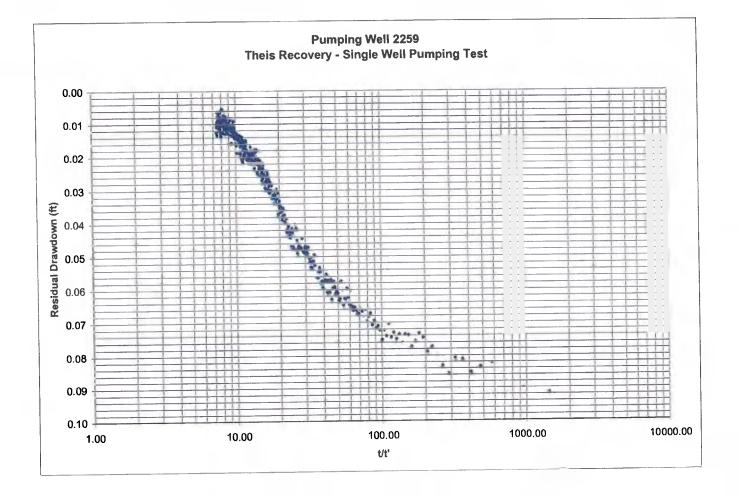


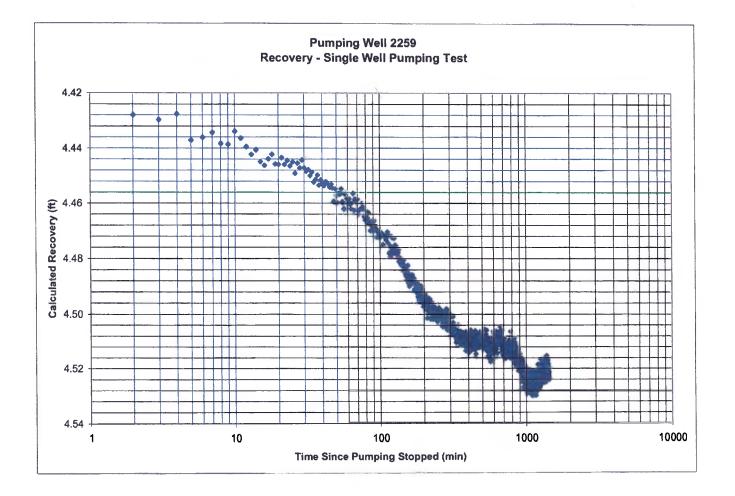


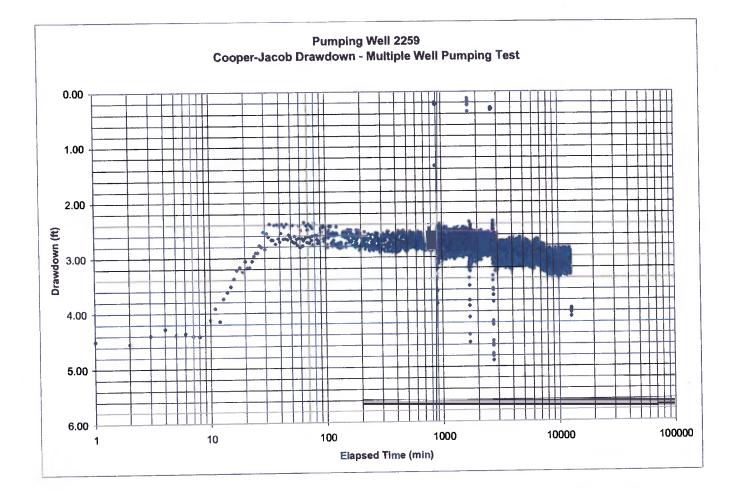


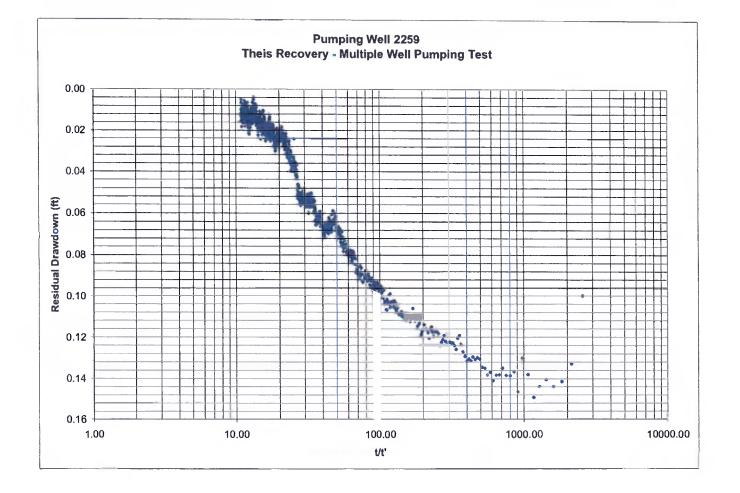


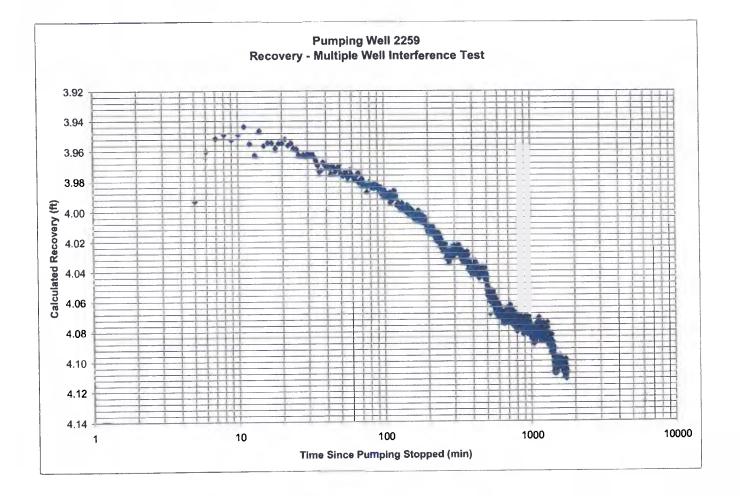

APPENDIX C

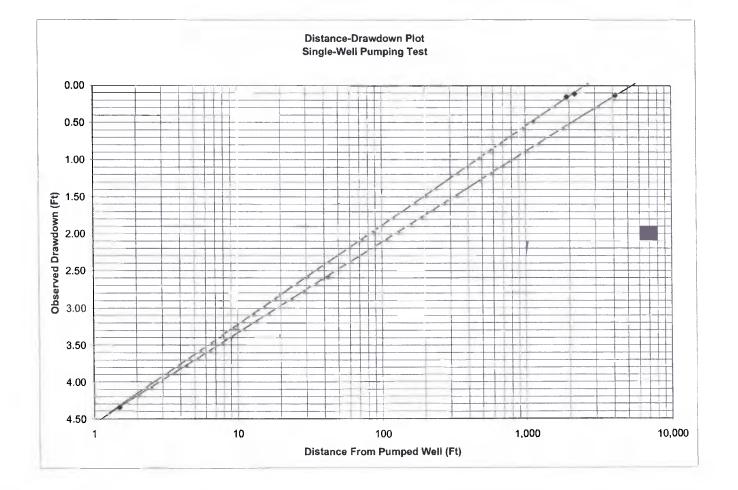

APPENDIX C

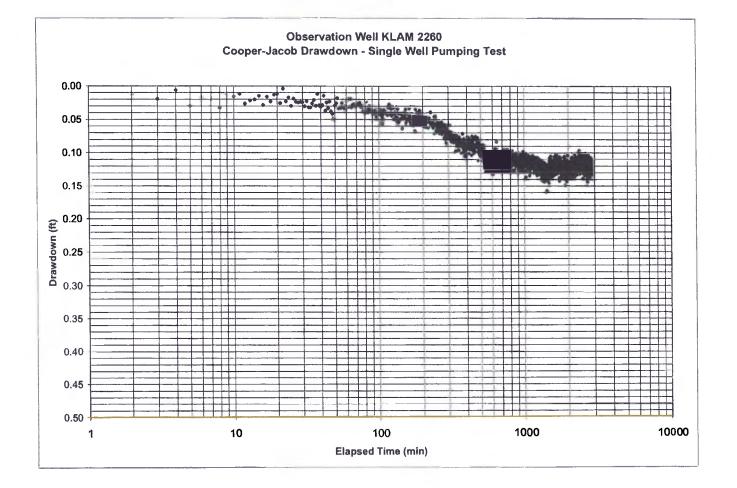

PUMPING TEST ANALYSIS PLOTS

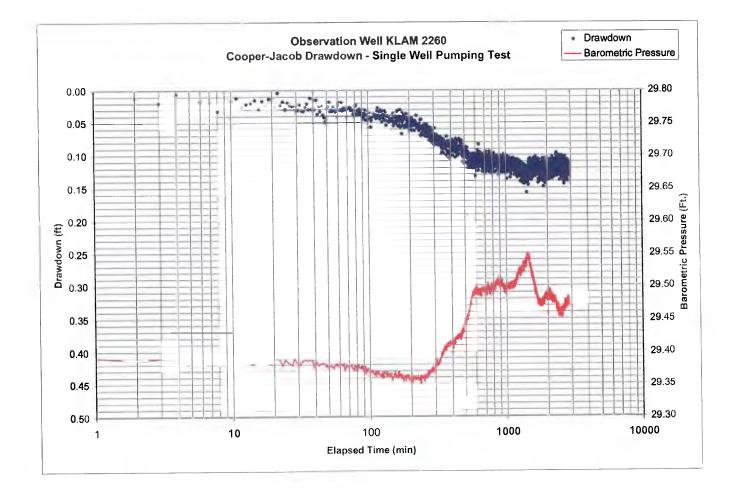


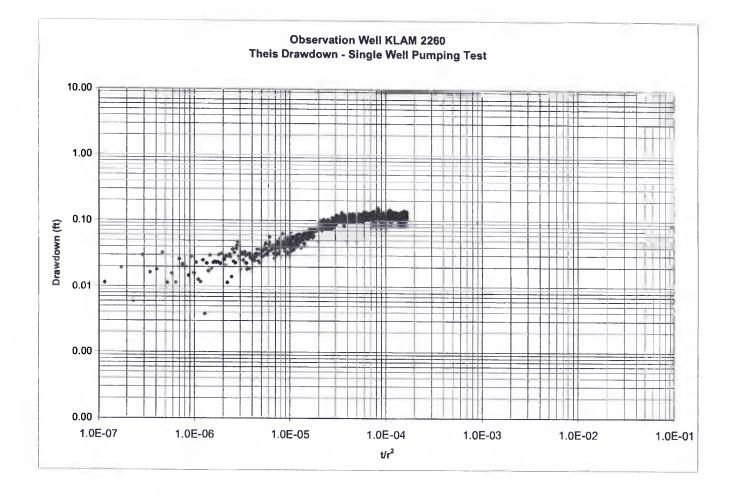

KLAM 2259

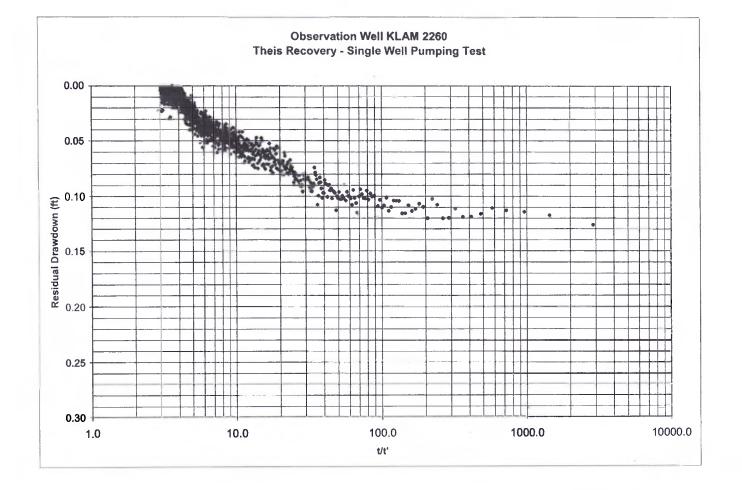


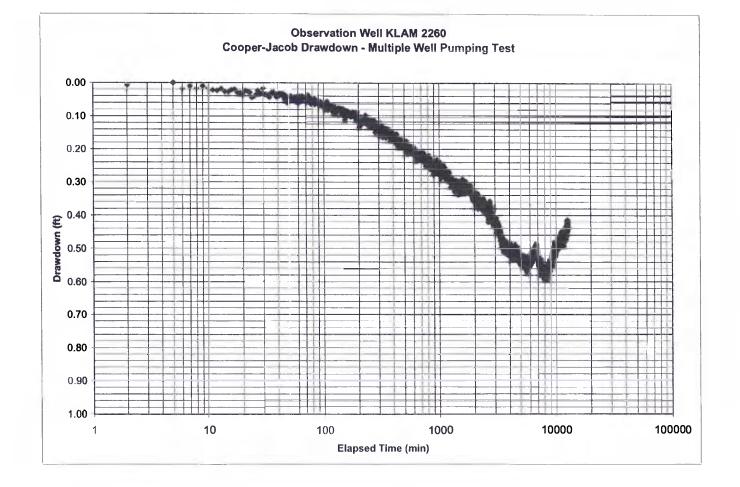


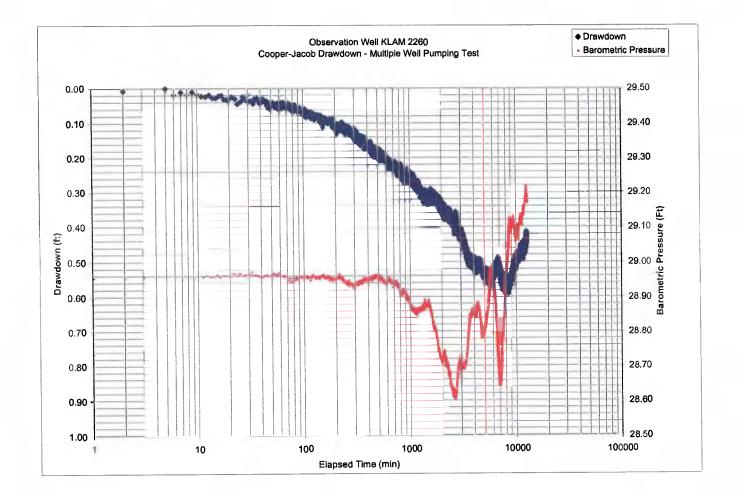


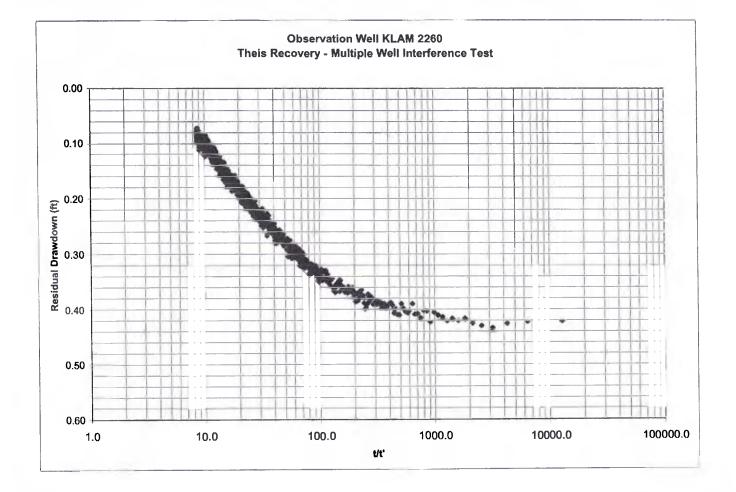


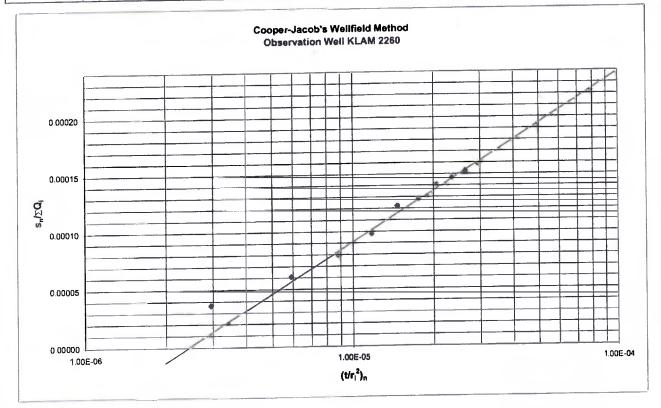




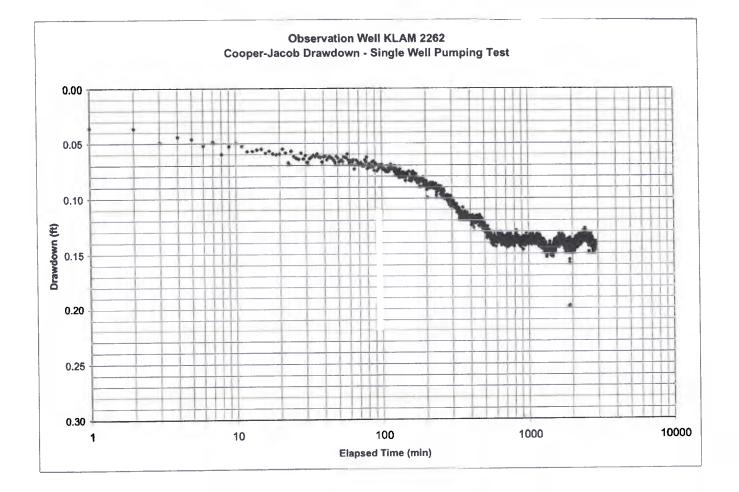

KLAM 2260

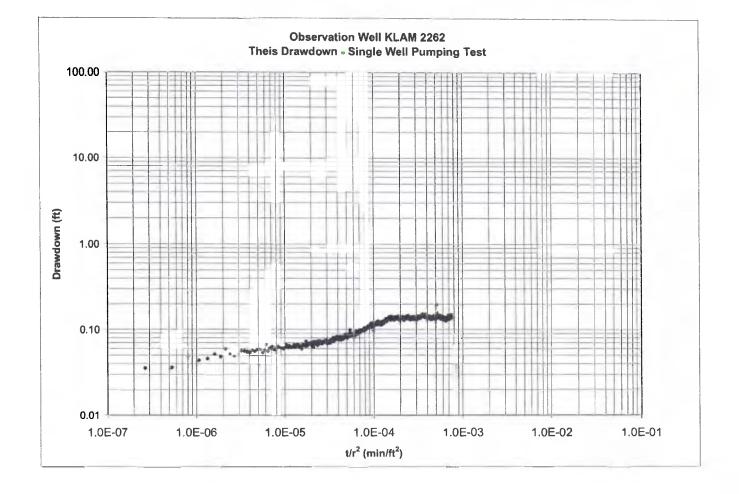


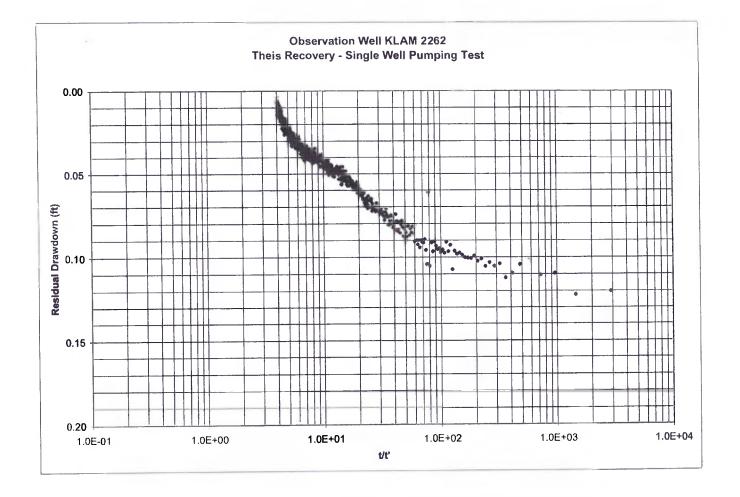


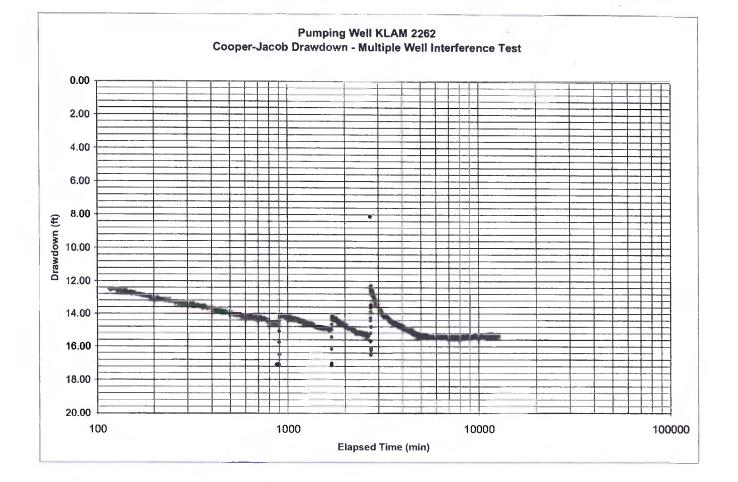


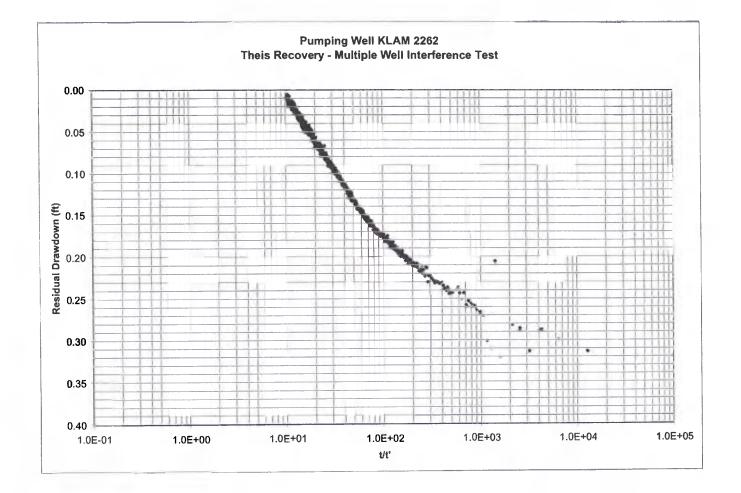
Cooper-Jacob's Well Field Method - Observation Well KLAM 2260 (Wilson) (Ref: Kruseman p. 189-191)

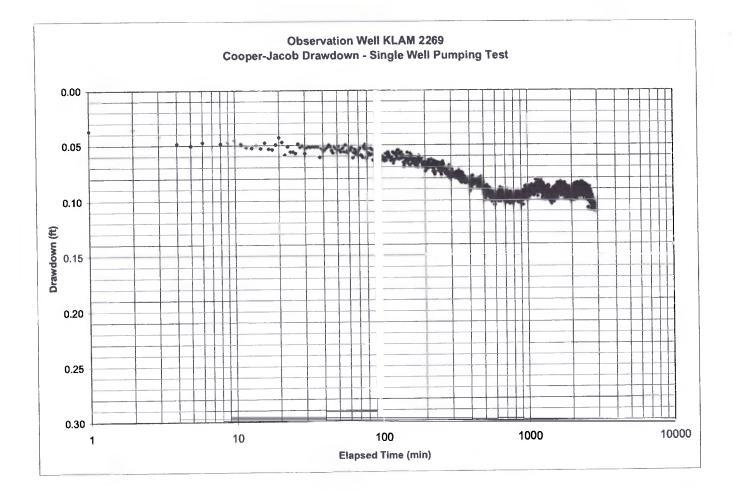

4 Pumping Wells

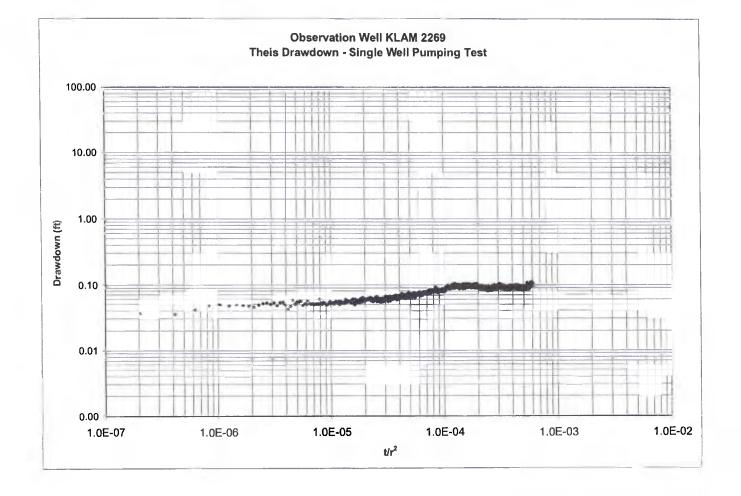

4 LAUININA AAAUA			1001	
Well 1 = 2263 (Cove)	Q ₁ (cfm)	314	r ₁ (ft)	6.615
Weil 2 = 2259 (100 Horse)	Q ₂ (cfm)	401	r ₂ (ft)	4,147
Well 3 = 2265 (Lake)	Q ₃ (cfm)	455	r ₃ (ft)	17,072
Well 4 = 2262 (Aspen)	Q ₄ (cfm)	468	r₄ (ft)	2,516

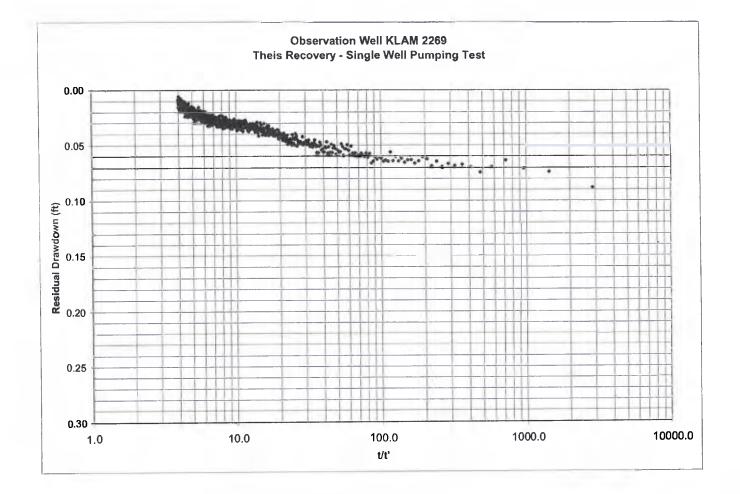

1		Run								
	1	2	3	4	5	6	7	8	9	10
s _n (ft)	0.06	0.10	0.13	0.16	0.20	0.21	0.23	0.24	0.25	0.26
$\Sigma \mathbf{Q}_{i} (\mathbf{ft}^{3}/\mathrm{min})$		1638	1638	1638	1638	1638	1638	1638	1638	1638
	3.66E-05	6.11E-05	7.94E-05	9.77E-05	1.22E-04	1.28E-04	1.40E-04	1.47E-04	1.53E-04	1.59E-04
s _n /∑Qi (min/ft²)	3.002-00	0.112-00	1.042.00							
t (min)	100	200	300	400	500	600	700	800	900	1000
t _n (min)	2.29E-06	4.57E-06	6.86E-06	9.14E-06	1.14E-05	1.37E-05	1.60E-05	1.83E-05	2.06E-05	2.29E-05
t _n /r ₁ ²	2.29E-08 5.81E-06	4.37E-00	1.74E-05	2.33E-05	2.91E-05	3.49E-05	4.07E-05	4.65E-05	5.23E-05	5.81 E- 05
t _n /r ₂ ²		6.86E-07	1.03E-06	1.37E-06	1.72E-06	2.06E-06	2.40E-06	2.74E-06	3.09E-06	3.43E-06
t _n /r ₃ ²	3.43E-07		4.74E-05	6.32E-05	7.90E-05	9.48E-05	1.11E-04	1.26E-04	1.42E-04	1.58E-04
t _n /r ₄ ²	1.58E-05	3.16E-05	4.74E-00	0.32E-03	7.500-00					
		1.005.00	-1,62E+03	-1,58E+03	-1.55E+03	-1.53E+03	-1.51E+03	-1.49E+03	-1.47E+03	-1.46E+03
Q ₁ log (t _n /r ₁ ²)		-1.68E+03		-1.86E+03	-1.82E+03	-1.79E+03	-1.76E+03	-1.74E+03	-1.72E+03	-1.70E+03
Q ₂ log (t _n /r ₂ ²)	-2.10E+03	-1.98E+03	-1.91E+03			-2.59E+03	-2.56E+03	-2.53E+03	-2.51E+03	-2.49E+03
Q ₃ log (t _n /r ₃ ²)	-2.94E+03	-2.80E+03	-2.72E+03	-2.67E+03	-2.62E+03			-1.82E+03	-1.80E+03	-1.78E+03
$Q_4 \log (t_n/r_4^2)$	-2.25E+03	-2.11E+03	-2.02E+03	-1.97E+03	-1.92E+03	-1.88E+03	-1.85E+03	-1.02ETU3	-1.00E.00	-1,704,100
						7 70 7 00	7.075.00	-7.58E+03	-7.50E+03	-7.42E+03
$\Sigma Q_i \log (t_n/r_i^2)$	-9.06E+03	-8.57E+03	-8.28E+03	-8.07E+03	-7.91E+03	-7.78E+03	-7.67E+03			-4.53E+00
$\Sigma \mathbf{Q}_i \log (\mathbf{t}_n / \mathbf{r}_i^2) / \Sigma \mathbf{Q}_i$		-5.23E+00	-5.05E+00	-4.93E+00	-4.83E+00	-4.75E+00	-4.69E+00	-4.63E+00	-4.58E+00	
(t/ri ²) (min/ft ²)		5.89E-06	8.84E-06	1.18E-05	1.47E-05	1.77E-05	2.06E-05	2.36E-05	2.65E-05	2.95E-05

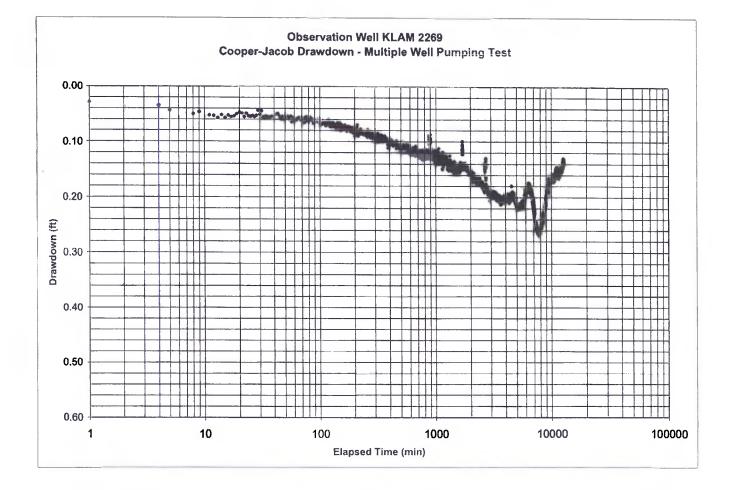


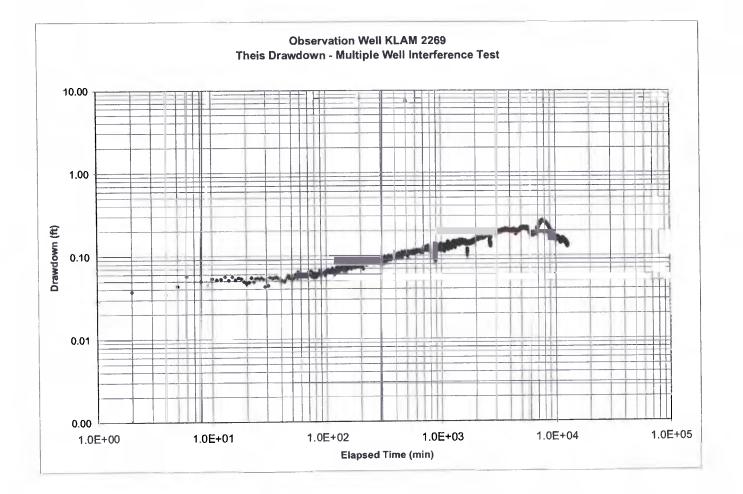

Transmissivity = 1,896,175 ft2/day Storage Coeff = 0.0074

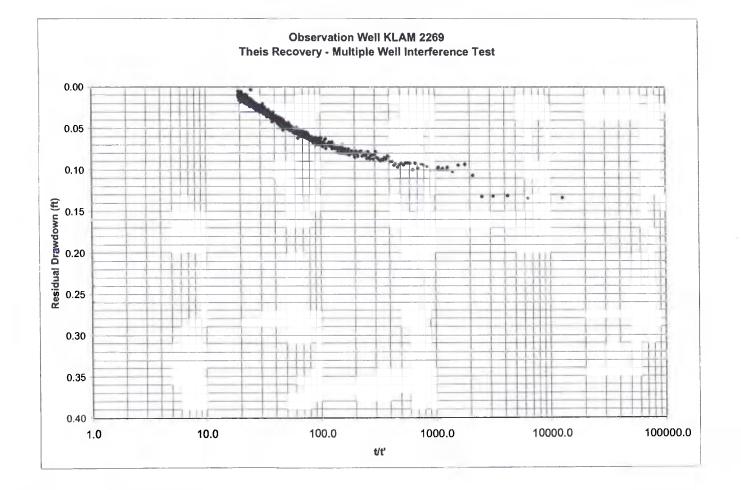


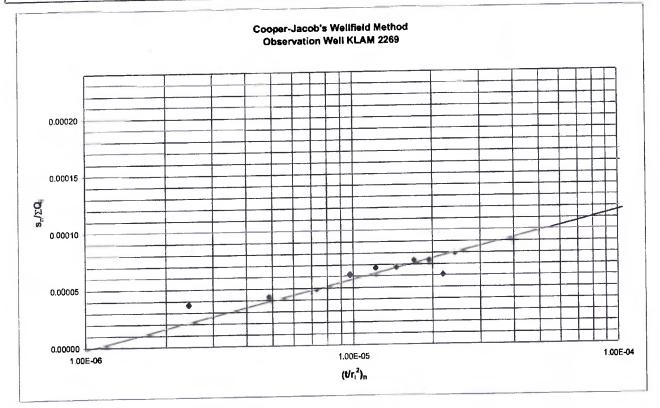




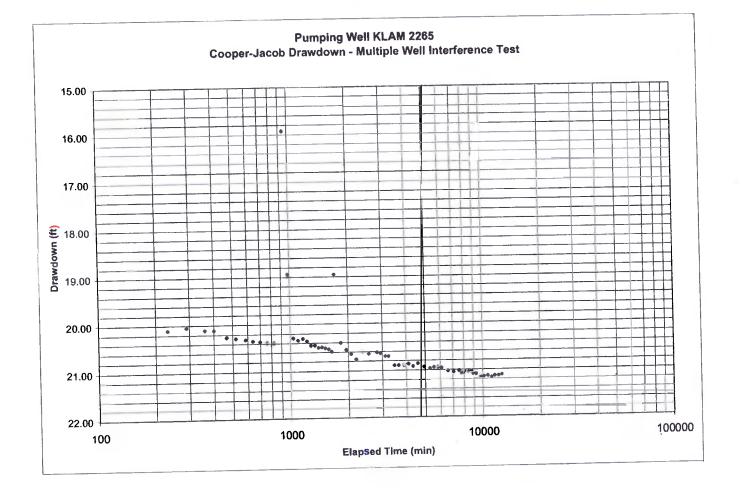


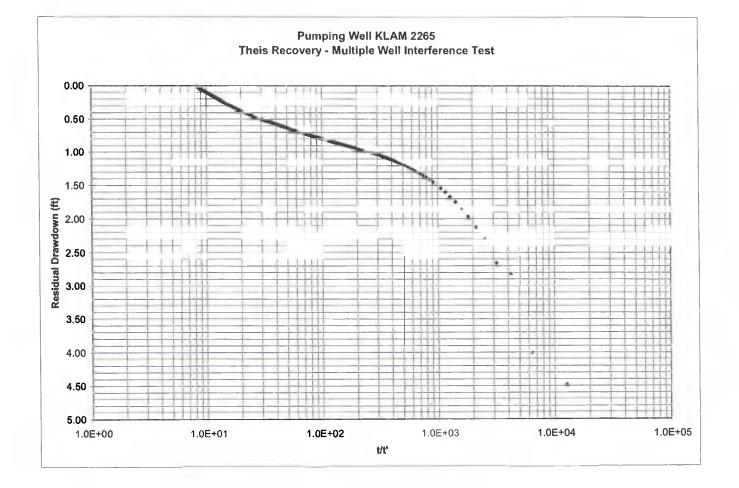

à.....

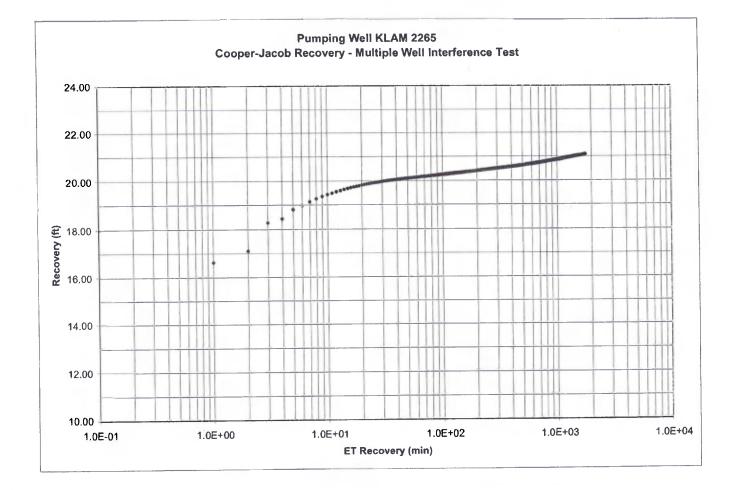


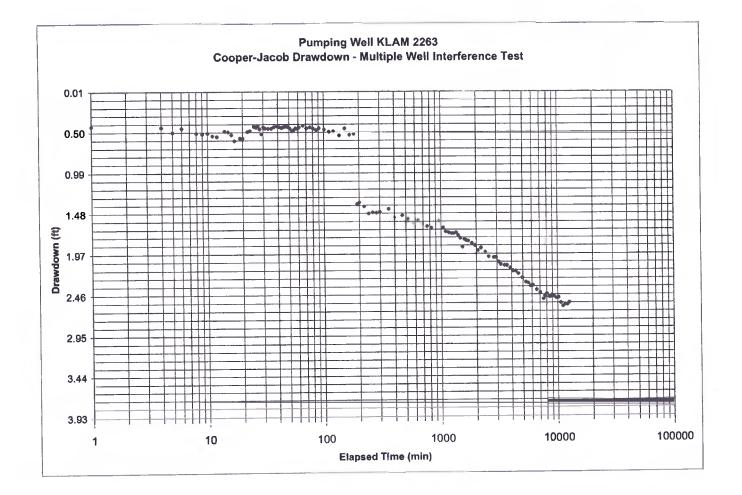


Cooper-Jacob's Well Field Method - Observation Well KLAM 2269 (Ref: Kruseman p. 189-191)


4 Pumping Weils


e Latthurs arous				
Well 1 = 2263 (Cove)	Q ₁ (cfm)	314	r ₁ (ft) 10),702
Well 2 = 2259 (100 Horse)	Q ₂ (cfm)	401	r ₂ (ft) 2	,192
Well 3 = 2265 (Lake)	Q ₃ (cfm)	455	r ₃ (ft) 19	,660
Well 4 = 2262 (Aspen)	Q4 (cfm)	468	r₄(ft) 3	,840

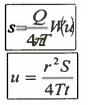

r					Ru	n				
	1	2	3	4	5	6	7	8	9	10
s _n (ft)	0.06	0.07	0.08	0.10	0.11	0.11	0.12	0.12	0.10	0.13
$\Sigma \mathbf{Q}_{i}$ (ft ³ /min)	1638	1638	1638	1638	1638	1638	1638	1638	1638	1638
		4.27E-05	4.88E-05	6.11E-05	6.72E-05	6.72E-05	7.33E-05	7.33E-05	6.11E-05	7.94E-05
s _n /ΣQi (min/ff²)	3.66E-05	4.21E-03	4,002-03	0.112.00						
	100	200	300	400	500	600	700	800	900	1000
t _n (min)		1.75E-06	2.62E-06	3.49E-06	4.37E-06	5.24E-06	6.11E-06	6.98E-06	7.86E-06	8.73E-06
t _n /r ₁ ²	8.73E-07		6.24E-05	8.32E-05	1.04E-04	1.25E-04	1.46E-04	1.66E-04	1.87E-04	2.08E-04
tnlr2	2.08E-05	4.16E-05	0.24E-05 7.76E-07	1.03E-06	1.29E-06	1.55E-06	1.81E-06	2.07E-06	2.33E-06	2.59E-06
t _n /r ₃ ²	2.59E-07	5.17E-07		2.71E-05	3.39E-05	4.07E-05	4.75E-05	5.43E-05	6.10E-05	6.78E-05
t _n /r ₄ ²	6.78E-06	1.36E-05	2.03E-05	2.712-03	3.382-05	4,012.00				
		1015.00	4 755 102	-1.71E+03	-1.68E+03	-1.66E+03	-1.64E+03	-1.62E+03	-1.60E+03	-1.59E+03
Q, log (t _r /r, ²)		-1.81E+03	-1.75E+03	-1.64E+03	-1.60E+03	-1.57E+03	-1.54E+03	-1.52E+03	-1.49E+03	-1.48E+03
$Q_2 \log \left(t_n / r_2^2 \right)$		-1.76E+03	-1.69E+03			-2.64E+03	-2.61E+03	-2.59E+03	-2.56E+03	-2.54E+03
Q3 log (t _n /r ₃ ²)	-3.00E+03	-2.86E+03	-2.78E+03	-2.72E+03	-2.68E+03		-2.02E+03	-2.00E+03	-1.97E+03	-1.95E+03
$Q_4 \log (t_n/r_4^2)$	-2.42E+03	-2.28E+03	-2.20E+03	-2.14E+03	-2.09E+03	-2.05E+03	·2,02E+03	-2.00L.100	-1.012.00	(1002.00
					0.055.00	-7.92E+03	-7.81E+03	-7,72E+03	-7.63E+03	-7.56E+03
$\Sigma Q_i \log (t_n/r_i^2)$	-9.20E+03	-8.70E+03	-8.41E+03	-8.21E+03			4 775+00			-4.61E+00
$\Sigma Q_i \log (t_n/r_i^2) / \Sigma Q_i$	-5.61E+00	-5.31E+00	-5.14E+00		-4.922-00	4.042.00				
(t/r, ²) (min/ft ²)	2.43E-06	4.86E-06	7.29E-06	9.73E-06		1.401-00				.



Transmissivity = 4,392,000 ft2/day Storage Coeff = 0.0069

APPENDIX D

APPENDIX D


DRAWDOWN ESTIMATIONS

GEODESIGN

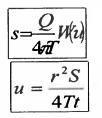
Symbiotics-3-01:101111

Theis Drawdown Approximation

CALIBRATION RUN

Where: rere: s = drawdown Q = pumping rate T = transmissivity W(u) = Well function using approximation by Srivastava (1995): r = distance from pumping well S = Storage coefficient t - time

For u<1 $\mathcal{W}(u) = \ln\left(\frac{C_u}{u}\right) + 0.9563 u - 0.169$	0 u ²
For $v>1$ $W(u) = \frac{1}{ue^*} \frac{u+0.3575}{u+1.280}$	


DO NOT EDIT HIGHLIGHTED CELLS Drawdewn al KLAM 2260 (Used T to match observed data)

(gpd/ft)	(Ft ² /day)	s	(gpm)	Q (Ft ³ /day)	Time (days)	Distance (feet)	u	W(u)	Drawdown At r (feet)	Remark
										Due to KLAM 2259
13,440,056	1,796,799	0.007	3000	577540.11	7	4,147	0.002392812		0.14	
3,440,056	1,796,799	0.007	3500	673796.79	7	2,516	0.000880769	6.458358	0.19	Due to KLAM 2262
13,440,056	1,796,799	0.007	2350	452406.42	7	6,615	0.006088359	4.529993	0.09	Due to KLAM 2263
13,440,056	1,796,799	0.007	3400	654545.45.	7	17.072	0.040551724	2.666479	0.06	Due to KLAM 2265
										NET Drawdown at KLAM 2260;
									0.50	matches observed value
rawdown at	KLAM 2269	Used T to	match obse	rved data						
Т				Q [Time	Distanco			Drawdown At r	
(gpd/ft)	(Ft ² /day)	S	(gpm)	(Ft'/day)	(days)	(foat)		W(u)	(feet)	Remark
28,913,758	3,885,476	0.007	3000	577540.11	7	2,192	0.000310755		0.09	Due to KLAM 2259
					7				0.09	Due to KLAM 2262
28,913,758	3,865,476	0.007	3500	673796.79		3.840	0.000953673			
28,913,758	3,885,476	0.007	2350	452408.42	7	10,702	0.00740742		0.04	Due to KLAM 2263
28,913,758	3,865,476	0.007	3400	654545.45	7	19,660	0.024997932	3.135562	0.04	Due to KLAM 2265
										NET Drawdown at KLAM 2269.
									0.26	matches observed value
rawdown al	KLAM 2289	(T value av	erage of CJ	Wallfield Met						
Ť				Q	Time	Distance			Drawdown At r	
(gpd/ft)	(Ft'/day)	s	(gpm)	(Ft ² /day)	(days)	(feet)	u	W(u)	(feet)	Remark
23,517,868	3,144,100	0.007	3000	577540.11	7	12,240	0.011912598		0.06	Due to KLAM 2259
					7					Due to KLAM 2262
23,517,868	3,144,100	0.007	3500	673796.79		14,175	0.0159788	3.574653	0.06	
23,517,866		0.007	2350	452406.42	7	16,959	0.02286884		0.04	Due to KLAM 2263
23,517.868	3,144,100	0.007	3400	654545.45	7	21,076	0.035319947	2.799673	0.05	Due to KLAM 2265
										NET Drawdown at KLAM 2289; do NOT match observed value (no
enudance el	MI AM 12184	T walke a	warran of C	J Walifield Me	thad				0.20	drawdown observed)
rawoown a	INLAIN 12100		Verage of C	Q I		I minter I				T
					Time	Distance			Drawdown At r	
(gpd/ft)	(Ft ^r /day)	S	(gpm)	(Ft'/day)	(days)	(foot)	u	W(u)	(foot)	Remark
23,517,868	3,144,100	0.007	3000	577540 11	7	25,336	0.051041069	2.446295	0.04	Due to KLAM 2259
23.517.868	3.144.100	0.007	3500	673796.79	7	27,218	0.058905531	2.310385	0.04	Due to KLAM 2262
939 517 959	3.144,100									
		0.007	2350	452406.42	7	27.452	0.059922737	2.294197	0.03	Due to KLAM 2263
		0.007	2350	452406.42	7	27,452 26,572	0.059922737		0.03	Due to KLAM 2263 Due to KLAM 2265
23,517,868		0.007	2350 3400	452408.42 654545.45	7 7	27,452 26,572	0.059922737 0.056142551		0.03 0.04 0.14	
23,517,868	3,144,100	0.007	3400		7				0.04	Due to KLAM 2265 NET Drawdown at KLAM 12186 do NOT match observed value (no
23,517,868	3,144,100	0.007	3400	654545.45	7				0.04	Due to KLAM 2265 NET Drawdown at KLAM 12186 do NOT match observed value (no
23,517,868 rewdown a	3,144,100	0.007 2 (T value a	3400 verage of C	654545.45 J Wellfield Me	7 athod) Time	26,572 Distance	0.056142551	2.355816	0.04 0.14 Drawdown At r	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed)
23,517,868 rawdown a T (gpd/ft)	3,144,100 KLAM 5036: (Ft ² /day)	0.007 2 (T value a S	3400 verage of C (gpm)	654545.45 J Wellfield Ma Q (Ft ³ /day)	7 sthod)	26,572 Distance (feet)	0.056142551	2.355816 ₩(u)	0.04 0.14 Drawdown At r (feot)	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observad) Romark
23,517,868 rewdown a T (gpd/ft) 23,517,868	3,144,100 KLAM 5036: (Ft ² /day) 3,144,100	0.007 2 (T value a S 0.007	3400 verage of C (gpm) 3000	654545.45 J Wellfield Mc Q (Ft ³ /day) 577540.11	7 Time (days) 7	26,572 Distance (feet) 34,941	0.056142551	2.355816 W(u) 1.846297	0.04 0.14 Drawdown At r (feot) 0.03	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed) Romark Due to KLAM 2259
rawdown a T (gpd/ft) 23,517,868 23,517,868 23,517,668	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100	0.007 2 (T value a 5 0.007 0.007	3400 verage of C (gpm) 3000 3500	654545.45 J Wellfield Me Q (Ft ³ /day) 577540.11 673796.79	7 Time (days) 7 7	26,572 Distance (feet) 34,941 35,734	0.056142551 u 0.097076547 0.101532931	2.355816 W(u) 1.846297 1.805526	0.04 0.14 Drawdown At r (feot) 0.03 0.03	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262
rawdown a rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 50362 (Fť/day) 3.144,100 3.144,100 3.144,100	0.007 2 (T value a 5 0.007 0.007 0.007	3400 verage of C (gpm) 3000 3500 2350	654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42	7 Time (days) 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981	0.056142551 0.097076547 0.101532931 0.066783687	2.355816 W(u) 1.846297 1.805526 2.192208	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03	Due to KLAM 2265 NET Drawdown at KLAM 12186 de NOT match observed value (no drawdown observed) Romark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263
rawdown a T (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 50362 (Fť/day) 3.144,100 3.144,100 3.144,100	0.007 2 (T value a 5 0.007 0.007	3400 verage of C (gpm) 3000 3500	654545.45 J Wellfield Me Q (Ft ³ /day) 577540.11 673796.79	7 Time (days) 7 7	26,572 Distance (feet) 34,941 35,734	0.056142551 0.097076547 0.101532931 0.066783687	2.355816 W(u) 1.846297 1.805526 2.192208	0.04 0.14 Drawdown At r (feot) 0.03 0.03	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262
23,517,868 rawdown a T (gpd/ft)	3.144,100 (KLAM 50362 (Fť/day) 3.144,100 3.144,100 3.144,100	0.007 2 (T value a 5 0.007 0.007 0.007	3400 verage of C (gpm) 3000 3500 2350	654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42	7 Time (days) 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981	0.056142551 u 0.097076547 0.101532931	2.355816 W(u) 1.846297 1.805526 2.192208	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.03 0.05	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dd NOT match observed value (no
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 50363 (Fť/day) 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007 0.007 0.007 0.007	3400 verage of C (gpm) 3000 3500 2350 3400	654545.45 J Wellfield Me Q (F ² /day) 577540.11 673796.79 452406.42 654545.45	7 Time (days) 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981	0.056142551 0.097076547 0.101532931 0.066783687	2.355816 W(u) 1.846297 1.805526 2.192208	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed) Romark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dd
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 50363 (Fť/day) 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007 0.007 0.007 0.007	3400 verage of C (gpm) 3000 3500 2350 3400	654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me	7 Time (days) 7 7 7 7 7 7 7 9	26,572 Distance (feet) 34,941 35,734 28,981 18,916	0.056142551 0.097076547 0.101532931 0.066783687	2.355816 W(u) 1.846297 1.805526 2.192208	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dd NOT match observed value (no
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036) (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007	3400 (gpm) 3000 3500 2350 3400	654545.45 J Wellfloid Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfloid Me Q	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance	0.056142551 0.097076547 0.101532931 0.066783687 0.02845131	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r	Due to KLAM 2265 NET Drawdown at KLAM 12186 dd NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dd NOT match observed value (no drawdown observed)
rawdown al T (gpd/ft) (23,517,868 (23,517,868 (23,517,868 (23,517,868 (23,517,868) (23,517,868) (23,517,868) (23,517,868) (23,517,868) (23,517,868) (23,517,868) (24,517) (25,517,868)(25,517,868) (25,517,868)(25,	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (KLAM 1220: (Ft ² /day)	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007 0.007 0.007 5 5	3460 (gpm) 3000 3500 2350 3400	654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfield Me Q (Ft ² /day)	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (feet)	0.056142551 u 0.097076547 0.097076547 0.086783887 0.02845131	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432 W(u)	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet)	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (KLAM 1220: (Ft ² /day)	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007	3400 (gpm) 3000 3500 2350 3400	654545.45 J Wellfloid Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfloid Me Q	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance	0.056142551 0.097076547 0.101532931 0.066783687 0.02845131	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432 W(u)	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2263 NET Drawdown at KLAM 50352 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259
23,517,868 rawdown al T (gpd/ft) 23,517,868 23,517,868 23,517,868 rawdown al T (gpd/ft) 23,517,888	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 (KLAM 1220) (Ft ² /day) 3,144,100	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007 0.007 8 (T value a 5 0.007	3400 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000	654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfield Me Q (Ft ² /day) 577540.11	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,915 Distance (feet) 38,966	0.056142551 0.097076547 0.097076547 0.01532931 0.066783687 0.02845131	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432 W(u) 1.649989	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark
rawdown aa (gpd/ft) (gpd/ft) 23,517,668 23,517,668 23,517,668 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 5036: (Ft ² /day) 3.144,100 3.144,100 3.144,100 3.144,100 (KLAM 1220: (Ft ² /day) 3.144,100	0.007 2 (T value a S 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	3460 (gpm) 3000 3500 2350 3400 (gpm) 3000 3500	654545.45 J Weilfineid Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfineid Me Q (Ft ² /day) 577540.11 6547540.11 577540.11 673796.79	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (feet) 38,986 40,294	0.056142551 0.097076547 0.097076547 0.066783687 0.02845131 0.02845131 0.120730031 0.129099459	2.355816 W(u) 1.846297 1.845206 2.192208 3.009432 W(u) 1.649699 1.590613 1.590613	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed value (no drawdown observed) Due to KLAM 2259 Due to KLAM 2265 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262
rawdown an (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 5036: (Fť ² /day) 3.144,100 3.144,100 3.144,100 3.144,100 (Fť ² /day) 3.144,00 3.144,00 3.144,00 3.144,00	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007 0.007 0.007	3460 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 3500 2350	654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 654545.45	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (foet) 38,966 40,294 35,560	0.056142551 u 0.097076547 0.097076547 0.066783687 0.02845131 0.22845131 0.12909459 0.100546548	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432 W(u) 1.649989 1.59081 1.59083	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02	Due to KLAM 2265 NET Drawdown at KLAM 12186 di NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2265 Due to KLAM 2265 NET Drawdown at KLAM 50362 di NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2253
rawdown an (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 5036: (Fť ² /day) 3.144,100 3.144,100 3.144,100 3.144,100 (Fť ² /day) 3.144,00 3.144,00 3.144,00 3.144,00	0.007 2 (T value a S 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	3460 (gpm) 3000 3500 2350 3400 (gpm) 3000 3500	654545.45 J Weilfineid Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfineid Me Q (Ft ² /day) 577540.11 6547540.11 577540.11 673796.79	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (feet) 38,986 40,294	0.056142551 0.097076547 0.097076547 0.066783687 0.02845131 0.02845131 0.120730031 0.129099459	2.355816 	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed value (no drawdown observed) Net Drawdown at KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2265 Due to KLAM 2265 Due to KLAM 2265 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr
23,517,868 rawdown al (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	3400 verage of C (gpm) 3000 3500 2350 3400 (gpm) 3000 3500 2350 2350 3400	654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.79 452406.79 4524545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 45245.45	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (foet) 38,966 40,294 35,560	0.056142551 u 0.097076547 0.097076547 0.066783687 0.02845131 0.22845131 0.12909459 0.100546548	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432 W(u) 1.649989 1.59081 1.59083	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2253
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	3400 verage of C (gpm) 3000 3500 2350 3400 (gpm) 3000 3500 2350 2350 3400	654545.45 J Weilfinid Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfinid Me Q (Ft ² /day) 577540.11 577540.11 673796.79 452406.42 654545.45 J Weilfinid Me	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distanco (foet) 38,966 40,294 35,580 27,506	0.056142551 u 0.097076547 0.097076547 0.066783687 0.02845131 0.22845131 0.12909459 0.100546548	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432 W(u) 1.649989 1.59081 1.59083	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04 0.11	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no
rawdown an (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 5036: (Ft ² /day) 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100 (Ft ² /day) 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100	0.007 2 (T value a 5 0.007	3400 verage of C (gpm) 3000 3500 2350 3400 (gpm) 3000 3500 2350 2350 3400	654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me Q J Weilfield Me Q	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (foet) 38,966 40,294 35,560	0.056142551 u 0.097076547 0.097076547 0.066783687 0.02845131 0.22845131 0.12909459 0.100546548	2.355816 W(u) 1.846297 1.805520 3.009432 W(u) 1.649989 1.590613 1.814379 2.290487	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04	Due to KLAM 2265 NET Drawdown at KLAM 12186 di NOT match observed value (no drawdown observad) Remark Due to KLAM 2259 Due to KLAM 2265 NET Drawdown at KLAM 50362 di NOT match observed value (no drawdown observed) Remark Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 di NOT match observed value (no drawdown observed)
rawdown an (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 5036: (Ft ² /day) 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100 (Ft ² /day) 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100	0.007 2 (T value a 5 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	3460 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 2350 2350 3400	654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me Q J Weilfield Me Q	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distanco (foet) 38,966 40,294 35,580 27,506	0.056142551 u 0.097076547 0.097076547 0.066783687 0.02845131 0.22845131 0.12909459 0.100546548	2.355816 W(u) 1.846297 1.805526 2.192208 3.009432 W(u) 1.649989 1.59081 1.59083	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04 0.11	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no
23,517,868 rawdown a (gpd/tt) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007	3400 (gpm) 3000 3500 2350 3400 (gpm) 3000 3500 2350 2350 3400 vorage of C	654545.45 J Wellfileid Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfileid Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfileid Me Q (Ft ² /day) J Wellfileid Me Q	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (feet) 38,966 40,294 35,560 27,506 Distance (feet)	u 0.056142551 0.097076547 0.097076547 0.066783887 0.02845131 0.220730031 0.120730031 0.120934554 0.060158713	2.355816 	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04 0.11 Drawdown At r (feet)	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2263 Due to KLAM 2265 INET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Romark
rawdown ai (gpd/ft) (3,517,668, 23,517,868, 24,517,858, 24,517,858, 24,517,858, 24,517,858, 24,517,858, 25,517,858,517,858,517,858,517,858,517,858,517,858,517,858	3,144,100 (KLAM 5036: (Fť/day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Fť/day) 3,144,100	0.007 2 (T value a 5 0.007	3460 (gpm) 3000 3500 2350 3400 (gpm) 3000 2350 3400 2350 3400 2350 3400	654545.45 J Weilfiald Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me Q (Ft ² /day) 577540.11	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (foet) 38,966 40,294 35,580 27,506 Distance (feet) 54,149	0.056142551 0.09070547 0.10152331 0.066783687 0.02845131 0.120730031 0.129099459 0.100548548 0.060158713 0.060158713	2.355816 	0.04 0.14 Drawdown At r (feot) 0.03 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.04 0.11 Drawdown At r (feet) 0.03 0.02	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observad) Romark Due to KLAM 2269 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Romark Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Romark Due to KLAM 2265 NET Drawdown at KLAM 50362 dr
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3.144,100 (KLAM 5036: (Fť/day) 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100 3.144,100 (Fť/day) 3.144,100	0.007 2 (T value a S 0.007	3460 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 2350 2350 3400 2350 2350 3500 2350 3500	654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 577540.15 577	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 26,981 18,916 Distance (feet) 38,986 40,294 35,560 27,506 Distance (feet) 54,149 55,257	0.056142551 0.037076547 0.101532331 0.066783687 0.02845131 0.1207309459 0.1207309459 0.1207309459 0.100546548 0.060158713 0.060158713 0.223144159 0.242782994	2.355816 W(u) 1.846297 1.846297 3.009432 3.009432 W(u) 1.649983 1.590613 1.590613 1.94379 2.290487 W(u) 1.09268 1.060599	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04 0.11 Drawdown At r (feet) 0.02 0.04	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observad) Remark Due to KLAM 2259 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2265 Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2269 Due to KLAM 2262
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007	3460 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 3500 2350 3400 2350 3400	654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 577540.11 673796.79 452406.42 673796.79	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (feet) 38,966 40,294 35,560 27,506 Distance (feet) 54,149 55,257 49,363	0.056142551 0.097076547 0.097076547 0.066783687 0.02845131 0.120730031 0.120730231 0.1207	2.355816 	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04 0.11 Drawdown At r (feet) 0.02 0.04	Due to KLAM 2265 NET Drawdown at KLAM 12186 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2259 Due to KLAM 2265 NET Drawdown at KLAM 50362 dr NOT match observed value (no drawdown observed) Remark Due to KLAM 2259 Due to KLAM 2259
rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 2 (T value a S 0.007	3460 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 2350 2350 3400 2350 2350 3500 2350 3500	654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Wellfield Me Q (Ft ² /day) 577540.11 577540.15 577	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 26,981 18,916 Distance (feet) 38,986 40,294 35,560 27,506 Distance (feet) 54,149 55,257	0.056142551 0.037076547 0.101532331 0.066783687 0.02845131 0.1207309459 0.1207309459 0.1207309459 0.100546548 0.060158713 0.060158713 0.223144159 0.242782994	2.355816 	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04 0.11 Drawdown At r (feet) 0.02 0.04	Due to KLAM 2265 NET Drawdown at KLAM 12186 d NOT match observed value (no drawdown observad) Remark Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2265 NET Drawdown at KLAM 50362 d NOT match observed value (no drawdown observed) Remark Due to KLAM 2253 Due to KLAM 2253 Due to KLAM 2253 Due to KLAM 2255 NET Drawdown at KLAM 50362 d NOT match observed value (no drawdown observed) Remark Due to KLAM 2255 Due to KLAM 2255 Due to KLAM 2265 NET Drawdown at KLAM 50362 d NOT match observed value (no drawdown observed) Romark Due to KLAM 2265 Due to KLAM 2265 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2263
rawdown a (gpd/ft) 23,517,668 23,517,668 23,517,668 23,517,668 23,517,668 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 (KLAM 5036: (Ft ² /day) 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 2 (T value a 5 0.007	3460 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 3500 2350 3400 verage of C (gpm) 3000 3500 2350 3400 2350 3400	654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 452406.42 654545.45 J Weilfield Me Q (Ft ² /day) 577540.11 673796.79 577540.11 673796.79 452406.42 673796.79	7 Time (days) 7 7 7 7 7 7 7 7 7 7 7 7 7	26,572 Distance (feet) 34,941 35,734 28,981 18,916 Distance (feet) 38,966 40,294 35,560 27,506 Distance (feet) 54,149 55,257 49,363	0.056142551 0.097076547 0.097076547 0.066783687 0.02845131 0.120730031 0.120730231 0.1207	2.355816 	0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.05 0.13 Drawdown At r (feet) 0.02 0.03 0.02 0.04 0.11 Drawdown At r (feet) 0.02 0.04	Due to KLAM 2265 NET Drawdown at KLAM 12186 d NOT match observed value (no drawdown observed) Remark Due to KLAM 2265 Due to KLAM 2262 Due to KLAM 2265 NET Drawdown at KLAM 50362 d NOT match observed value (no drawdown observed) Remark Due to KLAM 2265 Due to KLAM 2265 Due to KLAM 2265 Due to KLAM 2265 NET Drawdown at KLAM 50362 d NOT match observed value (no drawdown observed) Romark Due to KLAM 2265 Due to KLAM 2262 Due to KLAM 2263

Reference Srivastava, R., 1995, Implications of using approximate expressions for well function. J. Irrig. And Drain. Engineering, 121, no. 6: 459–462

Theis Drawdown Approximation

PROJECTION RUN - 3 YEARS PUMPING AT PRO-RATED RATES (PUMPING WELLS)

Where:	
s =	drawdown
Q =	pumping rate
Τ =	transmissivity
W(u) =	Well function using approximation by Srivastava (1995):
r=	distance from pumping well
S -	Storage coefficient

t = time

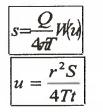
been und date from MINTY

For u<1
$$W(u) = \ln\left(\frac{C_1}{u}\right) + 0.9563 u - 0.1690 u^2$$

For
$$u>1$$

 $W(u) = \frac{1}{ue^*} \frac{u + 0.3575}{u + 1.280}$

DO NOT EDIT HIGHLIGHTED CELLS


т				a	Time	Distance			Drawdown At r	
(gpd/ft)	(Ft ² /day)	s	(gpm)	(Ft ¹ /day)	(days)	(foet)	u	W(u)	(feet)	Remark
3.087.403	412,754	0.007	1205	231978.61	1095	2	8.71194E-12	24.889127	1.11	Due to KLAM 2259
3,087,403	412,754	0.007	893	171914.44	1095	1,936	1 45125E-05	10.563313	0.35	Due to KLAM 2262
3,087,403	4 12,754	0.007	932	179422.46	1095	8,719	0.000294351	7.553819	0.26	Due to KLAM 2263
3.087.403	412,754	0.007	1190	229090.91	1095	18,167	0.001277905	6.086555	0.27	Due to KLAM 2265
									1.99	NET Projected Drawdown at KLA 2259
rawdown at	KLAM 2262	Used T to r	match obse	rved data from	n MWT)					
T				a	Time	Distance			Drawdown At r	
(gpd/ft)	(Ft ² /day)	S	(gpm)	(Ft ³ /day)	(days)	(feet)	u	W(u)	(feet)	Romark
571,226	76,367	0.007	1205	231978.61	1095	1,936	7.84383E-05	8.876073	2 15	Due to KLAM 2259
571,226	76,367	0.007	893	171914.44	1095	2	8.37101E-11	22.626462	4.05	Due to KLAM 2262
571,226	76.367	0.007	932	179422.48	1095	8,304	0.001443086	5.965151	1 12	Due to KLAM 2263
571,228	76.367	0.007	1190	229090.91	1095	18,362	0.007055985	4.383418	1.05	Due to KLAM 2265
										INCT Des la sta d Dansed sum at 1/1 A
									8.36	2262
rawdown at	KLAM 2263	(Used T to r	match obse	rved data from	n MWT)					
rawdown at T	KLAM 2263	(Used T to r		rved data from	n MWT) Time	Distance			8.36 Drawdown At r	2262
Ţ	·	(Used T to s				Distance (feet)	u	W(u)		2262 Romark
T (gpd/ft)	KLAM 2263 (Ft ² /day) 418,813			a	Time		u 0.000290093		Drawdown At r	2262 Remark Due to KLAM 2259
(gpd/ft) 3,132,725	(Ft ² /day)	s	(mqg)	Q (Ft ¹ /day)	Time (days)	(feet)		7.568388	Drawdown At r (feet)	2262 Ramark Due to KLAM 2259 Due to KLAM 2262
(gpd/ft) 3,132,725 3,132,725	(Ft²/day) 418,813 418,813	S 0.007	(gpm) 1205	Q (Ft ⁻ /day) 231978.61	Time (days) 1095	(feet) 8,719	0.000290093	7.568388 7.665897	Drawdown At r (feet) 0.33 0.25 0.85	2262 Romark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263
T (gpd/ft) 3,132,725 3,132,725 3,132,725	(Ft ² /day) 418,813 418,813 418,813 418,813	S 0.007 0.007	(gpm) 1205 893	Q (Ft ¹ /day) 231978.61 171914.44	Time (days) 1095 1095	(feet) 8,719 8,304	0.000290093	7.568388 7.665897 24.903700	Drawdown At r (feet) 0.33 0.25	2262 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265
T (gpd/ft) 3,132,725 3,132,725	(Ft ² /day) 418,813 418,813 418,813 418,813	S 0.007 0.007 0.007	(gpm) 1205 893 932	Q (F1 ⁻ /day) 231978.61 171914.44 179422.46	Time (days) 1095 1095 1095	(feet) 8,719 8,304 2	0.000290093 0.000263135 8.5859E-12	7.568388 7.665897 24.903700	Drawdown At r (feet) 0.33 0.25 0.85	Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263
T (gpd/ft) 3,132,725 3,132,725 3,132,725 3,132,725 3,132,725	(Ft ² /day) 418,813 418,813 418,813 418,813 418,813	S 0.007 0.007 0.007 0.007	(gpm) 1205 893 932 1190	Q (F1 ⁻ /day) 231978.61 171914.44 179422.46	Time (days) 1095 1095 1095 1095	(feet) 8,719 8,304 2	0.000290093 0.000263135 8.5859E-12	7.568388 7.665897 24.903700	Drawdown At r (feel) 0 33 0 25 0 85 0.31 1.75	2262 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Oue to KLAM 2265 NET Projected Drawdown at KLA
T (gpd/ft) 3,132,725 3,132,725 3,132,725 3,132,725 3,132,725	(Ft ² /day) 418,813 418,813 418,813 418,813 418,813	S 0.007 0.007 0.007 0.007	(gpm) 1205 893 932 1190	Q (F1 ⁷ /day) 231978.61 171914.44 179422.46 229090.91	Time (days) 1095 1095 1095 1095	(feet) 8,719 8,304 2	0.000290093 0.000263135 8.5859E-12	7.568388 7.665897 24.903700	Drawdown At r (feet) 0.33 0.25 0.85 0.31	2262 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Oue to KLAM 2265 NET Projected Drawdown at KLA
T (gpd/ft) 3,132,725 3,132,725 3,132,725 3,132,725 3,132,725 rawdown at	(Ft ² /day) 418,813 418,813 418,813 418,813 418,813	S 0.007 0.007 0.007 0.007	(gpm) 1205 893 932 1190	Q (F1 ⁷ /day) 231978.61 171914.44 179422.46 229090.91	Time (days) 1095 1095 1095 1095	(feet) 8,719 8,304 2 10,543	0.000290093 0.000263135 8.5859E-12 0.000424162	7.568388 7.665897 24.903700 7 188601	Drawdown At r (feet) 0 33 0 25 0 85 0 31 1.75 Drawdown At r (feet)	2262 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 2263
T (gpd/ft) 3,132,725 3,132,725 3,132,725 3,132,725 rawdown al T (gpd/ft)	(Ft ² /day) 418,813 418,813 418,813 418,813 418,813	S 0.007 0.007 0.007 0.007 Used T to n	(gpm) 1205 893 932 1190	Q (Ft ³ /day) 231978.61 171914.44 179422.46 229090.91 Ved data from Q	Time (days) 1095 1095 1095 1095 n MWT) Time	(feet) 8,719 8,304 2 10,543 Distance	0.000290093 0.000263135 8.5859E-12 0.000424162	7.568388 7.665897 24.903700 7 188601	Drawdown At r (feel) 0 33 0 25 0 85 0 31 1.75 Drawdown At r	2262 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 2263 Remark Due to KLAM 2259
T (gpd/ft) 3,132,725 3,132,725 3,132,725 3,132,725 rawdown at (gpd/ft) 332,592	(Ft ² /day) 418,813 418,813 418,813 418,813 418,813 KLAM 2265((Ft ² /day) 44,464	S 0.007 0.007 0.007 0.007 Used T to m S 0.007	(gpm) 1205 893 932 1190 match obser (gpm)	Q (F1 ³ /day) 231978.61 171914.44 179422.46 229090.91 ved data from Q (F1 ³ /day)	Time (days) 1095 1095 1095 1095 1095 n MWT) Time (days)	(feet) 8,719 8,304 2 10,543 Distance (feet)	0.000290093 0.000263135 8.5859E-12 0.000424162	7.568388 7.665897 24.903700 7 188601 W(u) 3.868483	Drawdown At r (feet) 0 33 0 25 0 85 0 31 1.75 Drawdown At r (feet)	2262 Ramark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 2263 Remark Due to KLAM 2259 Due to KLAM 2262
T (gpd/ft) 3,132,725 3,132,725 3,132,725 3,132,725 rawdown at (gpd/ft) 332,592 332,592	(Ft ² /day) 418,813 418,813 418,813 418,813 418,813 418,813 KLAM 2265((Ft ² /day) 44,464 44,464	S 0.007 0.007 0.007 0.007 Used T to m S 0.007 0.007	(gpm) 1205 893 932 1190 match obser (gpm) 1205	Q (F1 ⁷ /day) 231978.61 171914.44 179422.46 229090.91 ved data from Q (F1 ⁷ /day) 231978.61	Time (days) 1095 1095 1095 1095 1095 n MWT) Time (days) 1095	(feet) 8,719 8,304 2 10,543 Distance (feet) 18,167	0.000290093 0.000263135 8.5859E-12 0.000424162	7.568388 7.665897 24.903700 7.188601 <u>W(u)</u> 3.868483 3.847374	Drawdown At r (feet) 0.33 0.25 0.85 0.31 1.75 Drawdown At r (feet) 1.61	2262 Romark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 2263 Remark Due to KLAM 2259 Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263
T (gpd/ft) 3,132,725 3,132,725 3,132,725 3,132,725 rawdown at (gpd/ft) 332,592	(F ² /day) 418,813 418,813 418,813 418,813 418,813 418,813 (KLAM 2265((F ² /day) 44,464 44,464	S 0.007 0.007 0.007 0.007 Used T to m S 0.007	(gpm) 1205 893 932 1190 match obser (gpm) 1205 893	Q (F1 ⁷ /day) 231978.61 171914.44 179422.46 229090.91 ved data from Q (F1 ⁷ /day) 231978.61 171914.44	Time (days) 1095 1095 1095 1095 1095 Time (days) 1095 1095	(feet) 8,719 8,304 2 10,543 Distance (feet) 18,167 18,362	0.000290093 0.000263135 8.5859E-12 0.000424162 u 0.011862622 0.01211865	7.568388 7.665897 24.903700 7.188601 	Drawdown At r (feel) 0 33 0 25 0 85 0 31 1.75 Drawdown At r (feel) 1.61 1 18	2262 Ramark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 2263 Remark Due to KLAM 2259 Due to KLAM 2262

Reference

Srivastava, R., 1995, Implications of using approximate expressions for well function. J. Irrig. And Drain. Engineering. 121. no. 6: 459-462

Theis Drawdown Approximation

PROJECTION RUN - 3 YEARS PUMPING AT PRO-RATED RATES

Where:	
S =	drawdown
Q =	pumping rate
Τ=	transmissivity
W(u) =	Well function using approximation by Srivastava (1995)
r et	distance from pumping well
S =	Storage coefficient
	time

For u<1 $W(u) = \ln\left(\frac{C_1}{u}\right) + 0.9563 \, u - 0.1690 \, u^2$

For
$$u > 1$$

 $W(u) = \frac{1}{ue^{u}} \frac{u + 0.3575}{u + 1.280}$

DO NOT EDIT HIGHLIGHTED CELLS

number 0.37 2269 T Q Time Distance U Oracle Control V(L)	T																
3:3:40:058 7,467,799 0.007 1255 23197:6.61 1055 4,147 1253555.06 15.01700 0.11 Obe to RLAM 2259 3:4:40:056 7,789 0.007 9.21 179422.46 1095 6.615 3.80716:30 0.80 Due to RLAM 2253 3:4:40:056 7,789,43 0.007 9.21 179422.46 1095 6.615 3.80716:20 9.576413 0.80 Due to RLAM 2253 2:8:10:79.30 0.007 1902 2:000 1095 1.012 0.00079723 F680221 0.80 Due to RLAM 2259 2:8:13:758 3:656,76 0.007 1205 2:3197.86 1095 2:192 1:38656-06 12:31507 0.060 Due to RLAM 2259 2:8:13:758 3:656,77 0.007 1205 2:3197.86 1:055 1:36056-06 1:34096 0.000 Due to RLAM 2259 2:8:13:758 3:656,77 0.007 1205 2:3197.86 1:045 1:14016 0.000 Due to RLAM 2259 2:8:13:758 3:657,76																	
33.40.056 1,786,799 0.007 893 171914.44 1095 2,516 5,52048E.06 11,510/21 0.09 Due to KLAM 2263 33.40.056 1,786,799 0.007 1190 22000.91 1995 17.072 0.000259235 7680824 0.08 Due to KLAM 2263 revidown at KLAM 2265 (Used T to match observed data from MWT) 0.13 0.13 Deve to KLAM 2263 Deve to KLAM 2263 1000111 (E*/Yday) 5 (gmm) (E*/Yday) 10 Data MA Temedown at KLAM 2263 2813.758 3.865.476 0.007 193 17951.464 1055 3.840 6.05954.66 12.35169 0.045 Due to KLAM 2263 283.13.758 3.865.476 0.007 190 229609.51 19.05 13.660 0.02015984 3.1651.4 0.045 Due to KLAM 2263 283.13.758 3.864.470 0.007 190 229609.51 19.05 13.660 0.02015984 3.164.14 0.045 Due to KLAM 2263 283.13.688 3.441.00 0.007 <th></th>																	
3:440.056 1.796.799 0.007 932 179622.46 1095 6.615 3.8821E-05 9.57613 0.08 Due to KLAN 2265 3:440.056 1.796,799 0.007 1190 22909.91 1095 17.072 0.000259235 7.680824 0.08 Due to KLAN 2265 awdown at KLAM 2269 (Used 'T to match observed dial from MWT) 0.000259235 7.680824 0.08 Due to KLAN 2265 awdown at KLAM 2269 (Used 'T to match observed dial from MWT) 0.000 0.000 7.072 0.000259235 7.680824 0.000 0.000 Due to KLAN 2265 3813768 3.65476 0.007 532 17942.46 1995 10,762 4.73346-06 3.38076 0.000 Due to KLAN 2265 3.317.88 3.654.76 0.007 1190 226090-91 1095 19,660 0.00015804 8.14c14 0.047 Due to KLAN 2265 3.317.88 3.440.00 0.007 190 226092.91 1995 2.1076 0.240718 2.347688 1.4175 0.000178384 8.14c11 </td <td></td>																	
3:4:40.056 1,789,799 0.007 1190 22909.01 1095 17.072 0.000259235 7.680824 0.06 Due to KLAN 2265 wwdown at KLAM 2269 (Used T to match observed data from MWT) Time Distance 0 0/2 0/	3,440,056	1,796,799															
NET Projected Drawdown at KLA 2369 T O Time Distance 236 1 Q Time Distance V(u) Orawdown At KLA 23913763 3865476 0.007 993<77963	3,440,056	1,796,799			179422.46												
number 0.37 2269 T Q Time Distance U Oracle Control V(L)	13,440,056	1,796,799	0.007	1190	229090.91	1095	17,072	0.000259235	7.680824	0.08							
Cardown at KLM 2289 (Lead T to match Diserved date From NWT) T Q Time Q Time Distance W(u) Orandown At r Remark (apdit) (fr/day) S (gem) (fr/day)											NET Projected Drawdown at KLA						
T C Time (gent) Distance (str) U Would (rest) Organization (rest) Remark (rest) 28,117,86 3,665,476 0.007 1205 231978.61 1095 1,986,56,66 12,551907 0.06 Due to KLAM 2259 28,117,86 3,665,476 0.007 932 17942,246 1095 10,702 4,735,445,65 9,380718 0.03 Due to KLAM 2262 28,117,86 3,665,476 0.007 1190 228090.91 1095 10,702 4,735,445,65 9,380718 0.03 Due to KLAM 2263 28,017,86 3,465,476 0.007 1190 228090.91 1095 16,910 0.0011358 10,922 12849 rawdown at KLAM 2289 (T value average of CJ Weilffeld Method) 112,240 7,513,586 10,953 10,0014158 10,2511 0.017 2289 23,17,868 3,144,100 0.007 1190 228990.91 1095 10,954 0.000023259 7,513823 0.041 Due to KLAM 2285 23,17,868 3,144,100										0.35	2260						
Cingdiffy Cingdiffy <thcingdiffy< th=""> <thcingdiffy< th=""> <thc< td=""><td>rawdown al</td><td>KLAM 2269</td><td>(Used T to</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thcingdiffy<></thcingdiffy<>	rawdown al	KLAM 2269	(Used T to														
28) 11, 263 3, 465, 476 0, 007 1205 2137, 483 3, 465 0, 006 Due to KLAM 2259 28, 11, 253 3, 455 3, 465 0, 007 932 17942, 246 1095 10, 72 4, 7333, 465 0, 007 Due to KLAM 2262 28, 11, 253 3, 455, 476 0, 007 932 17942, 246 1095 10, 72 4, 733, 445, 056 0, 03 Due to KLAM 2262 28, 11, 258 3, 465, 476 0, 007 190 22909, 91 195, 680 0, 000153804 8, 164, 514 0, 04 Due to KLAM 2262 cmwdown et KLAM 2289 (Fr/day) S (gpart) Time Distance u W(u) Orawdown At T Remark 32,17, 688 3,144, 100 0,007 193 2179,482 14,175 0,0001671858 832519 0,40 Due to KLAM 2282 0,333 10,44 1009 10,17 2269 10,17 2269 10,17 2269 10,17 2269 10,17 2269 10,17 2269 10,17 10,17	1																
283 13 263 283 12 263 203 12 26	(gpd/ft)																
V O Type O	28,913,758	3,865,476	0.007	1205	231978.61	1095	2,192	1.98656E-06	12:551907								
23.31.768 3.869.476 0.007 1190 220990.91 1095 19.860 0.000159804 8.164514 0.04 Due to KLAM 2285 rewdown at KLAM 2289 (T value average of CJ Wellfield Method) Tmme Orandown at KLAM 2289 Twalle average of CJ Wellfield Method) Tmme Orandown at KLAM 2289 Remark 25.517.868 3.144.100 0.007 2503 2503 159.59 1000142135 8.05931 0.04 Due to KLAM 2289 25.517.868 3.144.100 0.007 159.20 7.615306-05 8.05931 0.04 Due to KLAM 2289 25.517.868 3.144.100 0.007 159.21 159.59 0.000122153 8.12115 0.04 Due to KLAM 2283 25.517.868 3.144.100 0.007 139 29090.91 1995 15.599 0.00022579 7.818923 0.04 Due to KLAM 2285 7.8337.7688 3.144.100 0.007 129 2399.62 7.459356 0.04 Due to KLAM 2285 7.8337.7688 3.144.100 0.007 132 17942.46 1065	28,913,758	3,865,476	0.007	893	171914.44	1095		6.09854E-06	11.430595								
NET Projected Drawdown at KLA Caradown at KLAM 2289 (T value average of CJ Weilfield Method) NET Projected Drawdown at KLA Control U With Projected Drawdown at KLA Control Distance U With Projected Drawdown at KLA Control Control U With Projected Drawdown at KLA Control Control U With Projected Drawdown at KLA Control Control Control Ethewark Control Control Control Control Control Control Control	28,913,758	3,865,476	0.007	932	179422.46	1095	10,702	4.73534E-05	9.380718	0.03							
NET Projected Drawdown at KLZ NET Projected Drawdown at KLZ arawdown at KLAM 2289 (T value average of CJ Wellfield Method) Time (ggd7ti) (F1/day) Sign 20 Sign 20 Nawdown at KLZ (ged7ti) (F1/day) Sign 20 Sign 20 NET Projected Drawdown at KLZ Sign 20 Sign 20 Nawdown at KLZ (Ged7ti) (F1/day) Sign 20 Net F1 Projected Drawdown at KLZ Sign 20 Net F1 Projected Drawdown at KLZ Net F1 Projected Drawdown at KLZ Sign 20 Net F1 Projected Drawdown at KLZ Sign 20 Net F1 Projected Drawdown at KLZ Sign 20 Net KLM 2283 Net F1 Projected Drawdown at KLZ Sign 20 Net F1 Projected Drawdown at KLZ Sign 20 Net F1 Projected Drawdown at KLZ Sign 20 Net KLM 2283	28,913,758	3,865,476	0.007	1190	229090.91	1095	19,660	0.000159804	8.164514	0.04	Due to KLAM 2265						
Crawdown at KLAM 2289 (Tr value average of CJ Weilfield Method) Umpath (feet) W(eet) W(eet) Provide average (feet)											NET Projected Drawdown at KLA						
T Q Time (ppHt) Distance (re) ¹ /(re) ² /(r										0.17	2269						
Circulation Circulation u W(u) Creation non-site Control 25/17.068 3:144.100 0.007 953 213978.61 10055 112.207 76.153.666 8.905631 0.055 Due to KLAM 2259 23.517.668 3:144.100 0.007 932 179422.46 1095 112.207 6.153.96 0.00012673 8.135115 0.04 Due to KLAM 2259 23.517.668 3:144.100 0.007 1190 229000.91 1095 12.207 6.137 7.813623 0.055 Due to KLAM 2259 rawdown at KLAM 12186 (T value average of CJ Welificial Method)	rawdown a	KLAM 2289	(T value av	verage of CJ	Wellfield Me	thod)											
23:57:688 3:44:100 0.007 12:25 1095 12:240 7.81336E-06 8.05811 0.05 Due to KLAM 2259 23:57:688 3:44:100 0.007 932 17941.44 1095 14:75 0.000146193 8.253519 0.04 Due to KLAM 2258 23:57:688 3:44:100 0.007 119 29909.91 1095 21:076 0.00012579 7.81923 0.05 Due to KLAM 2258 rawdown at KLAM 12186 (T value average of CJ Wellfield Method) 0.007 190 29909.91 1095 27:07 0.00025297 7.81923 0.03 Due to KLAM 2259 23:57:868 3:144:100 0.007 120 23:178.68 3:144:100 0.007 932 179422.45 1095 27:42 0.00033685 7.307680 0.04 Due to KLAM 2259 23:57:868 3:144:100 0.007 1190 22909.91 1095 27:42 0.00033685 7.307680 0.04 Due to KLAM 2259 23:57:868 3:144:100 0.007 1932 17942.46 1095 27:42 0.000336805 7.307680 0.04 Due to KLAM 2259	Ţ																
33.517.868 3.144.100 0.007 933 17.914.44 1095 14.175 0.000/02135 8.812115 0.044 Due to KLAM 2263 33.517.868 3.144.100 0.007 1930 229999.91 10955 21.076 0.00022579 7.618923 0.045 Due to KLAM 2263 rawdown at KLAM 12186 (T value average of CJ Weilfield Method) Time Distance w(u) Drawdown At r (feet) Remark 3.517.868 3.144.100 0.007 1205 23197.861 1095 25.36 0.00032629 7.450830 0.04 Due to KLAM 2259 3.517.868 3.144.100 0.007 933 17.942.44 1095 27.218 0.00032629 7.450830 0.04 Due to KLAM 2259 3.517.868 3.144.100 0.007 933 17.942.44 1095 25.728 0.000328068 7.29465 0.03 Due to KLAM 2259 0.04 Due to KLAM 2259 3.517.868 3.144.100 0.007 1393 7.942.246 1095 35.724 0.000328902 7.35560 </td <td>(gpd/it)</td> <td></td> <td></td> <td></td> <td>(Ft'/day)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(gpd/it)				(Ft'/day)												
23,517,868 3,144,100 0.007 933 171914.44 1095 14,175 0.000/02135 821715 0.04 Due to KLAM 2282 23,517,868 3,144,100 0.007 932 179422.46 1095 16,99 0.004193 823517 0.04 Due to KLAM 2285 NET Projected Drawdown at KLA rawdown at KLAM 12186 (T value average of CJ Weilfield Method) rawdown at KLAM 12186 (T value average of CJ Weilfield Method) (day 17) (ft*day) S (gpm) (ft*day) C3375 (ft*day) 0.007 1205 23758 0.00032629 7.450830 0.04 Due to KLAM 2259 23,517.866 3,144,100 0.007 933 177942.46 1095 27.218 0.00032659 7.450830 0.04 Due to KLAM 2259 23,517.866 3,144,100 0.007 933 177942.46 1095 26,572 0.00032659 7.450830 0.04 Due to KLAM 2259 23,517.866 3,144,100 0.007 1392 21978.61 1095 35,734 0.00032659 6.802420 0.03 Due to KLAM 2259		3,144,100	0.007		231978.61		12,240	7.61536E-05		0.05							
T Q Time Distance Due to KLM 2263 72,517,868 3,144,100 0.007 1190 22909.91 1095 21,076 0.0002579 7,618923 0.04 Due to KLM 2265 Rawdown at KLAM 12186 (T value average of CJ Wellfield Method) Drawdown At r Carewdown at KLAM 12186 (T value average of CJ Wellfield Method) Distance Urg(tot) Urg(tot) Urg(tot) Drawdown At r Remark (apdiff) (Ff'day) S (gpm) (ft'day) (ftot) Urg(tot) Ur	23,517,668	3,144,100	0.007	893	171914.44	1095	14,175			0.04	Due to KLAM 2282						
23.517.868 3.144.100 0.007 1190 22909.91 1095 21.076 0.00022579 7.618923 0.05 Due to KLAM 2265 NET Projected Drawdown at KLA rawdown at KLAM 12186 (T value average of CJ Weilfield Method) (qpdfri) (Ft ² /day) Time Distance U U(u) Drawdown At r (feet) Remark 35.17.868 3.144,100 0.007 1905 23197.61 1095 27.218 0.000328529 7.450836 0.04 Due to KLAM 2259 35.17.868 3.144,100 0.007 190 22909.91 1095 26.572 0.000328062 7.307580 0.03 Due to KLAM 2255 Time Distance U W(u) Drawdown At KLA 12186 (red)fild Time Distance U W(u) Drawdown At KLA 12186 Taytez At 100 0.007 1290 2309.91 1095 36.72 0.000358902 7.355604 0.04 Due to KLAM 2259 Cist add site average of CJ Weilffield Method) Time Distance <td></td> <td></td> <td>0.007</td> <td>932</td> <td>179422.46</td> <td>1095</td> <td>16,959</td> <td>0.000146193</td> <td>8.253519</td> <td>0.04</td> <td>Due to KLAM 2263</td>			0.007	932	179422.46	1095	16,959	0.000146193	8.253519	0.04	Due to KLAM 2263						
NET Projected Drawdown at KLA orawdown at KLA (apdrft) (Ft ⁷ day) O O Name of CJ Weilfield Method) (apdrft) (Ft ⁷ day) O Orawdown At KLA (apdrft) (Ft ⁷ day) O Orawdown At KLA (apgrft) (Ft ⁷ day) O Orawdown At KLA (apgrft) (Ft ⁷ day) O Orawdown At KLA 2 Drawdown At KLA 2 Orawdown At KLA 2 Orawdown At KLA Colspan="2">Orawdown At KLA Colspan="2">Orawdown At KLA 2 Orawdown At KLA 2 Orawdown At KLA Colspan="2">Orawdown At KLA Colspan="2" <			0.007	1190	229090.91	1095		0.00022579	7.618923	0.05	Due to KLAM 2265						
Tawdown at KLAM 12186 (T value average of CJ Weilfield Method) Distance Drawdown At r Remark (apdift) (Ft [*] Iday) S (gpm) (Ft [*] Iday) S (gpm) (Ft [*] Iday) S (gpm) (fted) W(u) (fted) Remark 32,517,868 3,144,100 0.007 1205 23,1978,64 1095 27,218 0.00032565 7,307580 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 192 179442,46 1095 27,452 0.000325690 7,355604 0.04 Due to KLAM 2255 23,517,868 3,144,100 0.007 1190 22990,91 1095 26,572 0.000356902 7,355604 0.04 Due to KLAM 2255 7asto ast (ft [*] Iday) (gpm) (ft [*] Iday) (days) (ft [*] Iday) (days) 12186 7asto ast (ft [*] Iday) (gpm) (ft [*] Iday) (days) 1794,44 1095 35,734 0.000642696 6,76392 0.03 Due to KLAM 2259 23,517,868 3,144,100											NET Projected Orawdown at KLA						
T Q Time Distance U Drawdown At r (test) Remark 23,517,868 3,144,100 0.007 1205 23,197,861 1095 27,218 0.00032629 7.450836 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 833 171914,44 1095 27,218 0.000335865 7.307580 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 1190 22909.91 1095 27,452 0.0003358967 7.30560 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 22909.91 1095 28,572 0.000358962 7.355604 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1390 231976.61 1095 34,941 0.000620581 6.08248 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 893 171914,44 1095 35,734 0.000620581 6.08248 0.04 Due to KLAM 2259 23,517,868 3,144,100										0.17	2289						
(updift) (Ft ¹ /day) S (upm) (Ft ¹ /day) (days) (feet) u W(u) (feet) Remark 23,517,868 3,144,100 0.007 1205 23197.861 0.0032629 7.450836 0.04 Due to KLAM 2259 23,517.868 3,144,100 0.007 932 179422.46 1095 27,218 0.00038569 7.390465 0.03 Due to KLAM 2259 23,517.868 3,144,100 0.007 932 179422.46 1095 26,672 0.000356902 7.35560 0.04 Due to KLAM 2259 23,517.868 3,144,100 0.007 1190 29909.91 1095 26,672 0.000358902 7.35560 0.04 Due to KLAM 2259 23,517.868 3,144,100 0.007 1205 23197.61 1095 34,941 0.000620581 6.808248 0.04 Due to KLAM 2259 23,517.868 3,144,100 0.007 32 17942.46 1095 34,941 0.000426928 7.632104 0.03 Due to KLAM 2259 <td< td=""><td>rawdown al</td><td>1 KLAM 1218</td><td>6 (T value a</td><td>average of C</td><td>J Wellfield M</td><td>ethod)</td><td></td><td></td><td></td><td></td><td></td></td<>	rawdown al	1 KLAM 1218	6 (T value a	average of C	J Wellfield M	ethod)											
23,517,868 3,144,100 0.007 1205 23,517,868 0,0032829 7,450836 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 932 17/914,44 1095 27,428 0,000328597 7,30580 0,043 Due to KLAM 2259 23,517,868 3,144,100 0.007 1932 17942,46 1095 27,452 0,000338067 7,30580 0,043 Due to KLAM 2265 23,517,868 3,144,100 0.007 1190 229090.91 1095 26,572 0,000358902 7,355604 0,04 Due to KLAM 2265 Carewdown at KLAM 50362 (T value average of CJ Wellfield Method) Time O Time Distanco u Wull Drawdown At r Remark (gpd/ft) (Ft ¹ /day) S 1095 34,941 0.000620581 6.68248 0.04 Due to KLAM 2259 Zistr X868 3,144,100 0.007 1932 17942,44 1095 34,941 0.00064269268 7,162104 0.03 Due to KLAM 2259 Zistr X868 3,144,100 0.007 193	T	Г		1	Q [Time	Distance			Drawdown At r							
23 57 268 3, 144, 100 0.007 1205 23 1978, 61 1095 27, 218 0.000376565 7.307580 0.04 Due to KLAM 2259 23, 57, 268 3, 144, 100 0.007 932 17942, 246 1095 27, 218 0.000376565 7.307580 0.03 Due to KLAM 2259 23, 57, 268 3, 144, 100 0.007 1932 17942, 246 1095 27, 452 0.000383068 7.307580 0.03 Due to KLAM 2263 23, 57, 268 3, 144, 100 0.007 1190 229090.91 1095 26, 572 0.000383062 7.355604 0.04 Due to KLAM 2263 rawdown at KLAM 50362 (T value average of CJ Weilffield Mothod) Time Oistance u W(u) Drawdown At r Remark (gpdftt) (Fil ⁷ day) S (gpm) (Fil ⁷ day) 34, 941 0.000620581 6.808248 0.04 Due to KLAM 2259 23, 517, 868 3, 144, 100 0.007 1321 17942, 246 1095 28, 941 0.000426928 7.162104 0.03 Due to KLAM 2259 23, 517, 868 3, 144, 100 0.007 132 17942, 246	(and/ft)	(Ft/day)	S	(qpm)	(Ft ³ /day)	(days)	(feet)	u	W(u)	(feet)	Remark						
23,517,888 3,144,100 0,007 933 171914.44 1095 27,218 0,000376565 7,307580 0.03 Due to KLAM 2262 23,517,886 3,144,100 0,007 932 179422.46 1095 27,452 0,0003638087 7,290465 0.03 Due to KLAM 2263 23,517,886 3,144,100 0,007 1190 22,3909.91 1095 27,452 0,0003638087 7,39560 0.03 Due to KLAM 2263 rawdown at KLAM 50362 (T value average of CJ Weil/field Mothod) T Q Q (fay) (fay) (ford) U W(u) Drawdown At r (ford) 0.05 (gaprit) (Ft ² /day) (gaprit) (fe ¹ /day) (ford) U W(u) Drawdown At r (ford) 0.05 23,517,868 3,144,100 0.007 832 179422.46 1095 28,981 0.000426528 7,82104 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090,91 1095 38,941 0.000255281 6,80324 0.05 Due to KLAM 2265 23,517,86			0.007					0.00032629									
23,57,866 3,144,100 0,007 932 179422,46 1095 27,452 0,000383068 7,290465 0,03 Due to KLAM 2265 23,57,868 3,144,100 0,007 1190 229090,91 1095 26,572 0,000383068 7,290465 0,03 Due to KLAM 2265 rawdown at KLAM 50362 (T value average of CJ Wellifield Mothod) T (gpdft) (Fi Tday) S (gpm) (Fi Tday) (days) (feet) u W(u) (feet) Remark 23,517,868 3,144,100 0,007 1205 231978,61 1095 34,941 0,00062598 6,763392 0,03 Due to KLAM 2262 23,517,868 3,144,100 0,007 1190 229090,91 1095 18,916 0,000426926 7,82104 0,03 Due to KLAM 2262 23,517,868 3,144,100 0,007 1190 229090,91 1095 18,916 0,000426926 7,82104 0,03 Due to KLAM 2262 23,517,868 3,144,100 0,007 1190 229090,91 1095 18,916 0,000426926 7,82104 0,03 Due to KLAM 2262 23,517,868 3,144,100 0,007 1190 229090,91 1095 18,916 0,000426926 7,82104 0,03 Due to KLAM 2265 rawdown at KLAM 12203 (T value average of CJ Wellifield Mothod) T Q T Time Distance U (u) Drawdown At r (gpdft) (Fi Tday) S (gpm) (Fi 2day) (days) (gps 38,566 0,00077179 6,590336 0,04 Due to KLAM 2259 23,517,868 3,144,100 0,007 1205 231978,61 1095 38,566 0,000632593 6,573319 0,03 Due to KLAM 2262 23,517,868 3,144,100 0,007 1205 231978,61 1095 38,566 0,000632593 6,573319 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1190 229090,91 1095 27,506 0,000632593 6,573319 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1190 229090,91 1095 27,506 0,000632593 6,573319 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1190 229090,91 1095 27,506 0,000632593 6,573319 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1190 229090,91 1095 27,506 0,000632593 6,573391 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1205 231978,61 1095 34,169 0,001632047 5,382381 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1190 229090,91 1095 27,506 0,000632593 6,573391 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1205 231978,61 1095 54,149 0,001632047 5,382323 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1205 231978,61 1095 54,149 0,00155037 5,882471 0,03 Due to KLAM 2263 23,517,868 3,144,100 0,007 1205 231978,61 1095																	
23,517,868 3,144,100 0.007 1190 229090.91 1095 26,572 0.000358902 7.355604 0.04 Due to KLAM 2265 rawdown at KLAM 50362 (T value average of CJ Wellfield Mothod) T Q Time Distance u W(u) Drawdown At r (gpdft) (Ft*/day) S (gpm) (Ft*/day) C 1095 34,941 0.000620581 6.808248 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 231978.61 1095 34,941 0.000620581 6.808248 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 231978.61 1095 34,941 0.000620581 6.808248 0.04 Due to KLAM 2262 23,517,868 3,144,100 0.007 1190 229090.91 1095 18,916 0.000426582 7.182104 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 18,916 0.000426582 7.182104 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231978.61 1095 38,966 0.00077179 6.590336 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231978.61 1095 40,294 0.00077179 6.590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 231978.61 1095 39,966 0.00077179 6.590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 231978.61 1095 39,966 0.000872473 6.593381 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 231978.61 1095 39,560 0.000872473 6.59336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1392 179422.46 1095 35,560 0.00087479 6.590336 0.04 Due to KLAM 2262 23,517,868 3,144,100 0.007 1392 23909.91 1095 27,506 0.000845767 7.286538 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231978.61 1095 35,560 0.00084576 7.286538 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231976.61 1095 35,560 0.00084576 7.286538 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM																	
T Q Time Olstance V(u) Drawdown At r Remark 32,517,868 3,144,100 0.007 932 1794,24 1095 35,734 0.000642692 7.162104 0.015 Due to KLAM 2259 23,517,868 3,144,100 0.007 932 1794,24 1095 35,734 0.0006426928 7.162104 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 932 1794,24.4 1095 28,981 0.000426928 7.162104 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 1190 225050.91 1095 18,916 0.000181681 8.035134 0.05 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 23197.861 1095 38,966 0.00071719 6.590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 23197.861 1095 38,966 0.00027199 6.590336 0.04 Due to KLAM 2259 23,517,868 3,											Due to KLAM 2265						
0.15 12186 Intra Q Time Olistance (gpd/ft) (Ft*/day) S (gpm) (Ft*/day) Classes Distance W(u) Officity Remark 23,517,868 3,144,100 0.007 1205 231978.61 1095 34,941 0.000620581 6.808248 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 932 179422.46 1095 28,734 0.0006426928 7.162104 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 18,916 0.000181681 8.035134 0.05 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 23197.861 1095 38,966 0.00071719 6.590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 231978.61 1095 35,560 0.00071719 6.590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 <td>ante este en é</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>INET Projected Drawdown at KLA</td>	ante este en é										INET Projected Drawdown at KLA						
Tawdown at KLAM 50362 (T valus average of CJ Weilfield Mothod) Time (gpd/ft) Distance (fe v) Drawdown At r (feet) Drawdown At r (feet) Remark 23,517,868 3,144,100 0.007 1205 23197.61 1095 34,941 0.000620581 6.60248 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 932 17942.46 1095 28,981 0.000426928 7.162104 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 190 229090.91 1095 18,916 0.000426928 7.162104 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 190 229090.91 1095 18,916 0.000181681 8.035134 0.05 Due to KLAM 2265 7awdown at KLAM 12203 (T value average of CJ Wollfield Method) Time Distance u W(u) Gravdown At r Remark 23,517,868 3,144,100 0.007 193 231978.61 1095 35,550 0.000825293 6.523381 0.03 Due to KLAM 2262 23,517,8										0.15							
T Q Time (gpd/ft) Oistance (fe/f/day) Distance (fe/f) Dist(LAM 2265 Dist(LAM 2265 Distan	rawdown a	1 KLAM 5036	2 (T value a	average of C	. Walifield M	athod)					1.0.100						
(apdrft) (Ft ¹ /day) S (apm) (Ft ¹ /day) (days) (feot) u W(u) (feet) Remark 23,517,868 3,144,100 0.007 1205 231978.61 1095 34,941 0.000649069 6,763392 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 893 171914.44 1095 35,734 0.000649069 6,763392 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 1932 179422.46 1095 18,916 0.000181681 8.035134 0.05 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 18,916 0.000181681 8.035134 0.05 Due to KLAM 2263 rawdown at KLAM 12203 (T value average of CJ Wollfield Method) Time Distance u W(u) Drawdown At r Remark 23,517,868 3,144,100 0.007 1932 171914.44 1095 35,560 0.000842563 0.04 Due to KLAM 2259 23,517,86	T	r I					Oistanca	1		Drawdown At r	1						
23,517,868 3,144,100 0.007 1205 23,197,861 1095 34,941 0.000649069 6,763392 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 932 17942.46 1095 35,734 0.000649069 6,763392 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 932 17942.46 1095 28,981 0.000426928 7,162104 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 18,916 0.000426928 7,162104 0.03 Due to KLAM 2263 rawdown at KLAM 12203 (T value average of CJ Wollfield Method) Time (gpd/lt) (Ft/day) G Time (days) (faet) W(u) Drawdown At r (feet) Remark 23,517,868 3,144,100 0.007 1305 23,1978.61 1095 35,560 0.00077179 6,590336 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1325 179422.46 1095 35,560 0.000242763 6,773149 0.03 Due to KLAM 2263		1							W/ut		Remark						
Z3.517.868 3.144,100 0.007 893 171914.44 1095 35,734 0.00049069 6.763392 0.03 Due to KLAM 2262 23.517.868 3.144,100 0.007 932 179422.46 1095 28,981 0.000426928 7.162104 0.03 Due to KLAM 2263 Value average of CJ Wolffield Method) T Q Time Distanco u W(u) Cfeat Remark 23.517.868 3.144,100 0.007 1205 23.992.61 1095 38,966 0.000181681 8.035134 0.05 Due to KLAM 2262 Value average of CJ Wolffield Method) T Q Time Distanco u W(u) (feat) Remark 23.517.868 3.144,100 0.007 893 171914.44 1095 35,560 0.000825293 6.523361 0.03 Due to KLAM 2263 23.517.868 3.144,100 0.007 893 171914.44 1095 35,560 0.000825293 6.523361 0.03 Due to KLAM 2263 23.517.868 3.144,100 0.007 1199	(and(th))		9	1 (aam)			J (IGON)										
23.517.868 3.144.100 0.007 932 179422.46 1095 28.981 0.000426928 7.162104 0.03 Due to KLAM 2263 23.517.868 3.144.100 0.007 1190 229090.91 1095 18.916 0.000181681 8.035134 0.05 Due to KLAM 2263 rawdown at KLAM 12203 (T value average of CJ Wollfield Method) T Q Time Distanco u W(u) Drawdown At r Remark (gpd/lt) (Ft ² /day) S (gpm) (ft ² /day) 1095 38.966 0.00077179 6.590336 0.04 Due to KLAM 2259 23.517.868 3.144.100 0.007 932 179422.46 1095 35.560 0.000677179 6.590336 0.04 Due to KLAM 2259 23.517.868 3.144.100 0.007 932 179422.46 1095 35.560 0.0008425293 6.523381 0.03 Due to KLAM 2263 23.517.868 3.144.100 0.007 1190 229090.91 1095 27.506 0.000384576 7.286536 0.04 Due to KLAM 2265 Ximudown at KLAM 12420 (T							24 041	0.000000601			Dua to KI 614 2259						
Z3,517,868 3,144,100 0.007 1190 229090.91 1095 18,916 0.000181681 8.035134 0.05 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 rawdown at KLAM 12203 (T value average of CJ Wollfleid Method) Time (gpd/lt) Distanco (ft/days) U W(u) Drawdown At r (feet) Remark 23,517,868 3,144,100 0.007 1205 231978.61 1095 38,966 0.0007179 6.590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 1205 231978.61 1095 35,560 0.000642763 6.773149 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 22909.91 1095 27,506 0.000384576 7.286536 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229099.91 1095 27,506 0.000384576 7.286536 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.93	23,517,868	3,144,100	0.007	1205	231978.61	1095											
T Q Time (gpd/ft) Distance (fact) U W(u) Drawdown At r (feet) Remark 23,517,868 3,144,100 0.007 293 17992.46 1095 35,560 0.00082593 6,57349 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 1933 171914.44 1095 35,560 0.00082593 6,273149 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 1932 179422.46 1095 35,560 0.00084576 7,286536 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 29090.91 1095 27,506 0.000384576 7,286536 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 29090.91 1095 27,506 0.000384576 7,286536 0.04 Due to KLAM 2263 23,517,668 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932471 0.03 Due to KLAM 2259	23,517,868 23,517,868	3,144,100 3,144,100	0.007	1205 893	231978.61 171914.44	1095 1095	35,734	0.000649069	6.763392	0.03	Due to KLAM 2262						
0.15 50362 rawdown at KLAM 12203 (T value average of CJ Wollfleid Method) T Q Time (last) Distance (last) Drawdown At r (feet) Remark 23,517,868 3,144,100 0.007 1205 231978,61 1095 38,966 0.00077179 6,590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 893 171914.44 1095 40,294 0.000825293 6,523361 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 932 179422.46 1095 35,560 0.00084576 7,286536 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7,286536 0.04 Due to KLAM 2265 NET Projacted Drawdown at KL/ (gpd/ti) (Ft ¹ /day) 3 (gpt/ti) (Ft ¹ /day) 4(gays) (deuys) U W(u) (foet) Remark (gpt/ti) (Ft ¹ /day)	23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100	0.007 0.007 0.007	1205 893 932	231978.61 171914.44 179422.46	1095 1095 1095	35,734 28,981	0.000649069	6.763392 7.162104	0.03	Due to KLAM 2262 Due to KLAM 2263						
T Q Time (gpd/ft) Distanco (F1/day) W(u) Drawdown At r (fedt) Remark 23,517,868 3,144,100 0.007 1205 231978,61 1095 36,966 0.00077179 6,590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 893 171914,44 1095 40,294 0.000825293 6,523361 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 932 179422,46 1095 35,560 0.000642763 6,773149 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7.286538 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1205 23,517 0.000384576 7.286538 0.04 Due to KLAM 2263 1 1095 22,517 (foet) W(u) Orawdown At r (foet) NET Projected Drawdown at KLA 1203 1 1095 54,149 0.001490419 5.932	23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100	0.007 0.007 0.007	1205 893 932	231978.61 171914.44 179422.46	1095 1095 1095	35,734 28,981	0.000649069	6.763392 7.162104	0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265						
T Q Time (lgpd/lt) Distance (filday) U Drawdown At r (feet) Remark 23,517,868 3,144,100 0.007 1205 23,197,868 1095 38,966 0.00077179 6,590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 932 179422.46 1095 35,560 0.000642763 6,773149 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 932 179422.46 1095 35,560 0.000642763 6,773149 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7,286536 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7,286536 0.04 Due to KLAM 2263 23,517,668 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2259 23,517,668	23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100	0.007 0.007 0.007	1205 893 932	231978.61 171914.44 179422.46	1095 1095 1095	35,734 28,981	0.000649069	6.763392 7.162104	0.03 0.03 0.05	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA						
(gpd/lt) (F1 /day) S (gpm) (F1 /day) (days) (tast) u W(u) (fet) Remark 23,517,868 3,144,100 0.007 1205 23,978,61 1095 38,966 0.00077179 6,590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 893 171914.44 1095 35,560 0.000825293 6,523361 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 1932 179422.46 1095 35,560 0.00084576 7,286536 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7,286536 0.04 Due to KLAM 2265 NET Projacted Drawdown at KLAM 12203 1095 27,506 0.001490419 5,93223 0.03 Due to KLAM 2259 23,517,668 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932471 0.03 Due to KLAM 2259	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 0.007 0.007 0.007	1205 893 932 1190	231978.61 171914.44 179422.46 229090.91	1095 1095 1095 1095	35,734 28,981	0.000649069	6.763392 7.162104	0.03 0.03 0.05	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA						
23,517,868 3,144,100 0.007 1205 23,197,861 1095 38,966 0.00077179 6,590336 0.04 Due to KLAM 2259 23,517,868 3,144,100 0.007 893 171914,44 1095 40,294 0.000825293 6,52381 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 932 17942,46 1095 35,560 0.0006425293 6,52381 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7,286538 0.04 Due to KLAM 2265 Remark (gpd/ft) (Ft //day) S (gpm) (Ft //day) G(gpm) (Ft //day) (fet) U W(u) U (fet) Remark 23,517,868 3,144,100 0.007 1205 54,149 0.001490419 5932923 0.03 Due to KLAM 2259 23,517,868 3,144,100 0.007 893 171914.44 1095 55,257 0.001490419 5.932923 0.03 Due to KLAM 2262 23,517,868 3,144,100	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 0.007 0.007 0.007	1205 893 932 1190 average of C	231978.61 171914.44 179422.46 229090.91	1095 1095 1095 1095	35,734 28,981 18,916	0.000649069	6.763392 7.162104	0.03 0.03 0.05 0.15	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA						
23,517,868 3,144,100 0.007 893 171914.44 1095 40,294 0.000825293 6.523361 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 932 179422.46 1095 35,560 0.000642763 6.773149 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7.286536 0.04 Due to KLAM 2265 rawdown at KLAM 12420 (T value average of CJ Wellfield Method) T Q Timo Distance U W(u) Drawdown At r (foet) Remark (gpd/ft) (F1 /day) S (gpm) (F1 /day) (days) (days) (doet) U W(u) Drawdown At r (foet) Remark 23,517,668 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2259 23,517,668 3,144,100 0.007 893 171914.44 1095 55,257 0.001552037 5.892471 0.03 Due to KLAM 2262 23,517,668 3,144,100 0.007 932 179422.46 1095 49,363 0.001238596 6.117759 0.03 Due to KLAM 2263 23,517,668 3,144,100 0.007 1190 22909.91 1095 39.772 0.000804049 6.549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KLAM 2265 NET Projected Drawdown at KLAM 2265 NET Projected Drawdown at KLAM 2265	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007	1205 893 932 1190	231978.61 171914.44 179422.46 229090.91	1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance	0.000649069 0.000426928 0.000181681	6.763392 7.162104 8.035134	0.03 0.03 0.05 0.15 Drawdown At r	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362						
Z3,517,868 3,144,100 0.007 932 179422.46 1095 35,560 0.000642763 6.773149 0.03 Due to KLAM 2263 Z3,517,868 3,144,100 0.007 1190 229090.91 1095 27,506 0.000384576 7.286536 0.04 Due to KLAM 2263 rawdown at KLAM 12420 (T value average of CJ Wellfield Method) T Q Time Distance u W(u) Drawdown At KL/M 12420 (gpd/ft) (F1/day) S (gpm) (F1/day) (days) (deet) u W(u) U (foet) Remark 23,517,668 3,144,100 0.007 893 171914.44 1095 55,257 0.001490419 5.932923 0.03 Due to KLAM 2262 23,517,668 3,144,100 0.007 932 179422.46 1095 55,257 0.001552037 5.892471 0.03 Due to KLAM 2263 23,517,668 3,144,100 0.007 932 179422.46 1095 49,363 0.001238599 6.117759 0.03 Due to KLAM 2263 <td>23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a</td> <td>3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 1 KLAM 1220 (Ft /day)</td> <td>0.007 0.007 0.007 0.007 3 (T value s</td> <td>1205 893 932 1190 average of C</td> <td>231978.61 171914.44 179422.46 229090.91 J Wollfield M Q (Ft³/day)</td> <td>1095 1095 1095 1095 1095 Iethod) Time (days)</td> <td>35,734 28,981 18,916 Distance (faet)</td> <td>0.000649069 0.000426928 0.000181681</td> <td>6.763392 7.162104 8.035134</td> <td>0.03 0.03 0.05 0.15 Drawdown At r (feet)</td> <td>Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark</td>	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 1 KLAM 1220 (Ft /day)	0.007 0.007 0.007 0.007 3 (T value s	1205 893 932 1190 average of C	231978.61 171914.44 179422.46 229090.91 J Wollfield M Q (Ft ³ /day)	1095 1095 1095 1095 1095 Iethod) Time (days)	35,734 28,981 18,916 Distance (faet)	0.000649069 0.000426928 0.000181681	6.763392 7.162104 8.035134	0.03 0.03 0.05 0.15 Drawdown At r (feet)	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark						
Vision Vision<	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a (gpd/ft) 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Ft 7day) 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value s S 0.007	1205 893 932 1190 average of C (gpm) 1205	231978.61 171914.44 179422.46 229090.91 J Woilfield M Q (Ft ² /day) 231978.61	1095 1095 1095 1095 1095 Idthod) Time (days) 1095	35,734 28,981 18,916 Distance (faet) 38,966	0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179	6.763392 7.162104 8.035134 W(u) 6.590336	0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259						
T Q Time Distance U W(u) Drawdown At r Remark (gpd/it) (Ft ² /day) S (gpm) (Ft ² /day) (days) (foet) U W(u) Drawdown At r (foet) Remark 23.517.668 3.144.100 0.007 1205 231976.61 1095 54.149 0.001490419 5.932923 0.03 Due to KLAM 2259 23.517.668 3.144.100 0.007 932 179422.46 1095 49.363 0.001238599 6.117759 0.03 Due to KLAM 2263 23.517.668 3.144.100 0.007 1190 229090 91 1095 39.772 0.000804049 6.549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KL/	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a (gpd/ft) 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 1 KLAM 1220 (Ft Iday) 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value s S 0.007 0.007	1205 893 932 1190 average of C (gpm) 1205 893	231978.61 171914.44 179422.46 229090.91 J Wollflold M Q (Ft ² /day) 231978.61 171914.44	1095 1095 1095 1095 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (faet) 38,966 40,294	0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293	6.763392 7.162104 8.035134 W(u) 6.590336 6.523361	0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2259						
0.14 12203 0.14 12203 0.14 12203 0.14 12203 CJ Wellfield Method) Well (F1/day) CJ Wellfield Method) CJ Wellfield Method) Well (F1/day) CJ Well (F1/day) <th <="" colspan="6" td=""><td>23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868</td><td>3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Ft 7day) 3,144,100 3,144,100</td><td>0.007 0.007 0.007 0.007 0.007 3 (T value a S 0.007 0.007 0.007</td><td>1205 893 932 1190 average of C (gpm) 1205 893 932</td><td>231978.61 171914.44 179422.46 229090.91 J Wollfield M Q (Ft²/day) 231978.61 171914.44 179422.46</td><td>1095 1095 1095 1095 1095 Time (days) 1095 1095 1095</td><td>35,734 28,981 18,916 Distanco (faet) 38,966 40,294 35,560</td><td>0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293 0.000642763</td><td>6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149</td><td>0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03</td><td>Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263</td></th>	<td>23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868</td> <td>3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Ft 7day) 3,144,100 3,144,100</td> <td>0.007 0.007 0.007 0.007 0.007 3 (T value a S 0.007 0.007 0.007</td> <td>1205 893 932 1190 average of C (gpm) 1205 893 932</td> <td>231978.61 171914.44 179422.46 229090.91 J Wollfield M Q (Ft²/day) 231978.61 171914.44 179422.46</td> <td>1095 1095 1095 1095 1095 Time (days) 1095 1095 1095</td> <td>35,734 28,981 18,916 Distanco (faet) 38,966 40,294 35,560</td> <td>0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293 0.000642763</td> <td>6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149</td> <td>0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03</td> <td>Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263</td>						23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Ft 7day) 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value a S 0.007 0.007 0.007	1205 893 932 1190 average of C (gpm) 1205 893 932	231978.61 171914.44 179422.46 229090.91 J Wollfield M Q (Ft ² /day) 231978.61 171914.44 179422.46	1095 1095 1095 1095 1095 Time (days) 1095 1095 1095	35,734 28,981 18,916 Distanco (faet) 38,966 40,294 35,560	0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293 0.000642763	6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149	0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263
rawdown at KLAM 12420 (T value average of CJ Wellfield Method) T Q Time Distance u W(u) Drawdown At r Remark (gpd/ft) (Fi /day) (gpm) (Ft/day) (days) (feet) u W(u) (feet) Remark 23,517,668 3,144,100 0.007 893 171914.44 1095 55,257 0.001490419 5.892471 0.03 Due to KLAM 2259 23,517,668 3,144,100 0.007 932 179422.46 1095 49,363 0.001238599 6.117759 0.03 Due to KLAM 2262 23,517,668 3,144,100 0.007 932 179422.46 1095 39,772 0.000804049 6.549419 0.04 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 39,772 0.000804049 6.549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KL/A NET	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Ft 7day) 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value a S 0.007 0.007 0.007	1205 893 932 1190 average of C (gpm) 1205 893 932	231978.61 171914.44 179422.46 229090.91 J Wollfield M Q (Ft ² /day) 231978.61 171914.44 179422.46	1095 1095 1095 1095 1095 Time (days) 1095 1095 1095	35,734 28,981 18,916 Distanco (faet) 38,966 40,294 35,560	0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293 0.000642763	6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149	0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2265						
T Q Time (gpd/it) [Fi'/day) G(pm) [Fi'/day) Olstance (days) Distance (loc) Drawdown At r (loc) Drawdown At r (fot) Remark 23,517,668 3,144,100 0.007 1205 231976 61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2259 23,517,668 3,144,100 0.007 893 171914.44 1095 55,257 0.00152037 5.892471 0.03 Due to KLAM 2262 23,517,668 3,144,100 0.007 932 179422.46 1095 49,363 0.001238599 6.117759 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 39.772 0.000804049 6.549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KL/A	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Ft 7day) 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value a S 0.007 0.007 0.007	1205 893 932 1190 average of C (gpm) 1205 893 932	231978.61 171914.44 179422.46 229090.91 J Wollfield M Q (Ft ² /day) 231978.61 171914.44 179422.46	1095 1095 1095 1095 1095 Time (days) 1095 1095 1095	35,734 28,981 18,916 Distanco (faet) 38,966 40,294 35,560	0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293 0.000642763	6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149	0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.03 0.04	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2263 NET Projected Drawdown at KLA						
(gpd/tt) (Ft /day) S (gpm) (Ft /day) (days) (loet) u W(u) (foet) Remark 23,517,668 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2259 23,517,668 3,144,100 0.007 893 171914.44 1095 55,257 0.001552037 5.892471 0.03 Due to KLAM 2262 23,517,668 3,144,100 0.007 932 179422.46 1095 49,363 0.001238599 6.117759 0.03 Due to KLAM 2263 23,517,668 3,144,100 0.007 1190 229090 91 1095 39.772 0.000804049 6,549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KL/ 1095 39.772 0.000804049 6,549419 0.04 NET Projected Drawdown at KL/	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 1(KLAM 1220 (Ft //day) 3,144,100 3,144,100 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value a S 0.007 0.007 0.007	1205 893 932 1190 average of C (gpm) 1205 893 932 1190	231978.61 171914.44 179422.46 229090.91 J Wolifield M Q (Ft ² /day) 231978.61 171914.44 179422.46 229090.91	1095 1095 1095 1095 1095 icthod) Time (days) 1095 1095 1095 1095	35,734 28,981 18,916 Distanco (faet) 38,966 40,294 35,560	0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293 0.000642763	6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149	0.03 0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.03 0.04	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2263 NET Projected Drawdown at KLA						
23,517,668 3,144,100 0.007 1205 231976.61 1095 54,149 0.001490419 5.932923 0.03 Due to KLAM 2259 23,517,668 3,144,100 0.007 893 171914.44 1095 55,257 0.001552037 5.892471 0.03 Due to KLAM 2262 23,517,668 3,144,100 0.007 932 179422.46 1095 49,363 0.001238599 6.117759 0.03 Due to KLAM 2263 23,517,668 3,144,100 0.007 1190 229090 91 1095 39.772 0.000804049 6.549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KL/ 1095 1095 1095 1095 1095 6.549419 0.04 Due to KLAM 2265	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a rawdown a (gpd/ft) 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 1(KLAM 1220 (Ft //day) 3,144,100 3,144,100 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value a S 0.007 0.007 0.007	1205 893 932 1190 (gpm) 1205 893 932 1190	231978.61 171914.44 179422.46 229090.91 J Wollfleid M Q (Ft ² /day) 231978.61 171914.64 179914.246 229090.91	1095 1095 1095 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (faet) 38,966 40,294 35,560 27,506	0.000649069 0.000426928 0.000181681 <u>u</u> 0.00077179 0.000825293 0.000642763	6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149	0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.03 0.04 0.14	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2263 Due to KLAM 2263 NET Projected Drawdown at KLA						
23,517,868 3,144,100 0.007 893 171914.44 1095 55,257 0.001552037 5.892471 0.03 Due to KLAM 2262 23,517,868 3,144,100 0.007 932 179422.46 1095 49,363 0.001238599 6.117759 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 39.772 0.000804049 6.549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KL/A 1095 10.772 10.001804049 6.549419 0.04 Due to KLAM 2265	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rawdown a (gpd/(t) 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 1 KLAM 1220 (F1 //day) 3,144,100 3,144,100 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value a \$ 0.007 0.007 0.007 0.007 0.007	1205 893 932 1190 average of C (gpm) 1205 893 932 1190 average of C	231978.61 171914.44 179942.46 229090.91 5J Wollfield M Q (Ft ² /day) 231978.61 171914.44 179422.46 229090.91	1095 1095 1095 1095 1095 Time (days) 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (faet) 38,966 40,294 35,560 27,506 Distance	0.000649069 0.000426928 0.000181681 0.00077179 0.000825293 0.000825293 0.000384576	6.763392 7.162104 8.035134 W(u) 6.590336 6.523361 6.773149 7.286536	0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.04 0.14 Drawdown At r	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA						
23,517,868 3,144,100 0.007 932 179422.46 1095 49,363 0.001238599 6.117759 0.03 Due to KLAM 2263 23,517,868 3,144,100 0.007 1190 229090.91 1095 39,772 0.000804049 6.549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KLA	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 1,144,100 1,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 1,144,100 1,144,100 1,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value a 5 0.007 0.007 0.007 0.007 0.007	1205 893 932 1190 (gpm) 1205 893 932 1190 average of C (gpm)	231978.61 171914.44 17942.44 229090.91 231978.61 231978.61 171914.44 17942.46 229090.91 23 Weilfield M Q (Ft ³ /day)	1095 1095 1095 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (faet) 38,966 40,294 35,560 27,506 Distance (foet)	0.000649069 0.000426928 0.000181681 0.00077179 0.000825293 0.000642763 0.000384576	6.763392 7.162104 8.035134 <u>W(u)</u> 6.590336 6.523361 6.773149 7.286538 W(u)	0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.03 0.04 0.14 Drawdown At r (feet)	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2263 NET Projected Drawdown at KLA 12203						
23,517,868 3,144,100 0.007 1190 229090.91 1095 39,772 0.000804049 6,549419 0.04 Due to KLAM 2265 NET Projected Drawdown at KLA	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 rewdown a rewdown a rewdown a rewdown a rewdown a rewdown a	3,144,100 3,144,100 3,144,100 3,144,100 1 KLAM 1220 (Ft /day) 3,144,100 3,144,100 3,144,100 3,144,100 1 KLAM 12422 (Ft /day) 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value s 5 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	1205 893 932 1190 (gpm) 1205 893 932 1190 average of C (gpm) 1205	231978.61 171914.44 179422.46 229090.91 J Wollflold M Q (Ft ² /day) 231978.61 171914.44 179422.46 229090.91	1095 1095 1095 1095 1095 Time (days) 1095 1095 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (faet) 38,966 40,294 35,560 27,506 Distance (foet) 54,149	0.000649069 0.000426928 0.000181681 0.000181681 0.000077179 0.000825293 0.000642763 0.000384576 0.000384576	6,763392 7,162104 8,035134 <u>W(u)</u> 6,590336 6,523361 6,773149 7,286538 <u>W(u)</u> 5,932923	0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.03 0.04 0.14 Drawdown At r (feet) 0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Projected Drawdown at KLA 12203 Remark Due to KLAM 2259						
NET Projected Drawdown at KL/	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 (Ft /day) 3,144,100 3,144,100 3,144,100 3,144,100 (Ft /day) (Ft /day) 3,144,100 3,144,100	0.007 0.007 0.007 0.007 0.007 3 (T value z S 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	1205 893 932 1190 average of C (gpm) 1205 893 932 1190 average of C (gpm) 1205 893 932 1190	231978.61 171914.44 17942.46 229090.91 J Wollflold M Q (Ft ² /day) 231978.61 171914.44 29090.91	1095 1095 1095 1095 1095 Time (days) 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (faet) 38,966 40,294 35,560 27,506 Distance (foet) 54,149 55,257	0.000649069 0.000426928 0.000181681 0.00077179 0.000825293 0.000842763 0.000384576	6.763392 7.162104 8.035134 W(u) 6.590336 6.523361 6.773149 7.286536 W(u) 5.932923 5.892471	0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.03 0.04 0.14 Drawdown At r (feet) 0.03 0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2265 NET Projected Drawdown at KLA 12203 Remark Due to KLAM 2259 Due to KLAM 2259						
	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 1,144,100 1,144,100 3,144,100 3,144,100	0.007 0.	1205 893 1190 (gpm) 1205 893 932 1190 average of C (gpm) 1205 893 932 1190	231978.61 171914.44 17942.46 229090.91 229090.91 231978.61 171914.44 179422.46 229090.91 5J Weilfield M Q (Ft ³ /day) 231976.61 171914.44 17942.46	1095 1095 1095 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (feet) 38,966 40,294 35,560 27,506 Distance (feet) 54,149 55,257 49,363	0.000649069 0.000426928 0.000181681 0.00077179 0.000825293 0.000825293 0.000842763 0.000384576 0.000384576	6.763392 7.162104 8.035134 w(u) 6.590336 6.523361 6.773149 7.286536 w(u) 5.932923 5.892471 6.117759	0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263 NET Projected Drawdown at KLA 12203 Remark Due to KLAM 2259 Due to KLAM 2262 Due to KLAM 2263						
0.13 12420	23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868 23,517,868	3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 3,144,100 1,144,100 1,144,100 3,144,100 3,144,100	0.007 0.	1205 893 1190 (gpm) 1205 893 932 1190 average of C (gpm) 1205 893 932 1190	231978.61 171914.44 17942.46 229090.91 229090.91 231978.61 171914.44 179422.46 229090.91 5J Weilfield M Q (Ft ³ /day) 231976.61 171914.44 17942.46	1095 1095 1095 1095 1095 1095 1095 1095	35,734 28,981 18,916 Distance (feet) 38,966 40,294 35,560 27,506 Distance (feet) 54,149 55,257 49,363	0.000649069 0.000426928 0.000181681 0.00077179 0.000825293 0.000825293 0.000842763 0.000384576 0.000384576	6.763392 7.162104 8.035134 w(u) 6.590336 6.523361 6.773149 7.286536 w(u) 5.932923 5.892471 6.117759	0.03 0.05 0.15 Drawdown At r (feet) 0.04 0.03 0.03 0.04 0.14 Drawdown At r (feet) 0.03 0.03 0.03 0.03	Due to KLAM 2262 Due to KLAM 2263 Due to KLAM 2265 NET Projected Drawdown at KLA 50362 Remark Due to KLAM 2259 Due to KLAM 2259 Due to KLAM 2263 Due to KLAM 2263 NET Projected Drawdown at KLA 12203 Remark Due to KLAM 2259 Due to KLAM 2259 Due to KLAM 2259 Due to KLAM 2253 Due to KLAM 2255						

Reference Srivastava, R.,1995, Implications of using approximate expressions for well function. J. Irrig. And Drain. Engineering. 121. no. 6: 459-462

APPENDIX E

APPENDIX E

TABULATED DATA (COMPACT DISK)

GEODESIGNE

Symbiotics-3-01:101111

APPENDIX F

APPENDIX F

OWRD PROPOSED ORDER, HYDROELECTRIC APPLICATION HE 592

GEODESIGNE

Symbiotics-3-01:101111

PROPOSED ORDER for PRELIMINARY PERMIT for HYDROELECTRIC APPLICATION HE 592 at SWAN LAKE NORTH

Proposed Action:

Approve Preliminary Permit for Hydroelectric Project HE 592.

NOTE:

This Proposed Order and Proposed Preliminary Permit do <u>NOT</u> convey the right to construct any project facilities for hydroelectric purposes. A preliminary permit will allow the applicant to gather streamflow or groundwater data; pursue the necessary use permits; assess environmental impacts of the proposed action, develop mitigation measures, complete detail design plans and associated cost estimates, and file draft and/or final water right applications. Issuance of a preliminary permit does not assure approval of any subsequent license application for hydroelectric use. The applicant must yet demonstrate that the proposed project will not impair or be detrimental to the public interest.

A. APPLICATION HISTORY

On May 12, 2010, Swan Lake North Hydro, LLC (Applicant) submitted an application for a preliminary permit for a major hydroelectric project to use up to 15,922 cubic feet per second (cfs) of stored water from groundwater wells in the Swan Lake basin of Klamath County. The Project would use up to 1304 feet of hydraulic head and four reversible pump-turbine units to generate up to 1380 megawatts of power for sale to an electrical utility.

Notice of open comment period and public hearing was included in OWRD's weekly public notice published on August 3, 10, 17, 24 and 31, 2010. An e-mail notice was sent to local, state and federal agencies, the local watershed group and interested citizens. Agencies notified included:

Oregon Department of Fish and Wildlife (ODFW) Oregon Department of Environmental Quality (ODEQ) Oregon Division of State Lands Klamath County Board of County Commissioners Oregon Department of Forestry Oregon Department of Agriculture Oregon State Historic Preservation Office Kyle Gorman, OWRD Regional Manager Legislative Commission on Indian Services

The notice of open comment period and public hearing were also published in the Klamath Falls

Proposed Order for Preliminary Permit for Hydroelectric Application HE 592

Herald and News on August 10, 17, 24 and 31, 2010.

A public hearing was held at the Klamath County Government Center, in Klamath Falls on August 31, 2010 at 6:30 p.m. The purpose of the meeting was to receive comments on the application for preliminary permit and whether the impacts of this project are such that they might be cumulative with other proposed or existing projects in the Klamath basin. Requests for additional studies related to project impacts could also be submitted.

About 34 members of the public attended the hearing (Attachment 1). A presentation about the project was given by Erik Steimle of Symbiotics LLC. Written comments were filed by several parties and are shown in Attachment 2.

Comments were also filed by several parties in response to the Federal Energy Regulatory Commission (FERC) request for comments in February 2009, on a preliminary permit application. The FERC docket number is p-13318.

Comments were considered by OWRD in making its findings of fact and recommendations for further studies.

B. PROJECT DESCRIPTION

The upper reservoir will be constructed with an east dam approximately 150 feet high and a west dam approximately 80 feet high. It will have a surface area of 242 acres and 12,655 acre feet of storage. The lower reservoir will be constructed with a dam approximately 130 feet high. It will have a surface area of 197 acres and storage of 13,935 acres-feet. Up to 15,922 cubic feet per second (cfs) of water would be released from the upper reservoir when all four turbines are generating. The maximum operating head between the two reservoirs is 1304 feet.

The points of appropriation for initial fill of the reservoirs would be located at existing wells: Well #1: 660 Feet North and 1690 Feet West from the SE Corner of Section 9, being within the SW¹/₄ SE¹/₄ Section 9, Township 37 South, Range 10 East, W.M.,

Well #2: 48 Feet North and 20 Feet East from the SW Corner of Section 8, being within the SW¹/₄ SW¹/₄ Section 8, Township 37 South, Range 10 East, W.M.,

Well #4: 2000 feet North and 800 Feet East from the SW Corner of Section 8, being within the NW¹/₄ SW¹/₄ Section 8, Township 37 South, Range 10 East, W.M.,

Well #5: 100 Feet North and 1400 Feet East from the SW Corner of Section 14, being within the SE¹/₄ SW¹/₄ Section 14, Township 37 South, Range 10 East, W.M.

Initial filling of the reservoir is proposed under a transfer or forbearance agreement of the rights under Water Rights Certificate No. 29530 (3446.4 acre-feet per year) and Water Rights Permit G-10952 (3360 acre-feet per year). Reservoir maintenance is proposed from Well #5 under a permanent transfer (1574 acre feet per year).

The location of the upper reservoir is proposed to be in Sections 13, 14, and 24: The location of the lower reservoir is proposed to be in the South half of Section 15. The location of the underground powerhouse is proposed in the SE ¹/₄ SW ¹/₄, Section 14, all being in Township 37 South, Range 10 East, W.M.

The upper reservoir will be located on Swan Lake Rim, approximately 1 mile west of Welsh Spring. The reservoir will have a maximum surface elevation of 5,500 feet above mean sea level (MSL). The lower reservoir site is located north of Swan Lake, between Grizzly Butte and Stiles Spring. The reservoir will have a maximum surface elevation of 4280 feet MSL.

Each of the three proposed dams will be more than 5,000 feet long. The dams will be constructed with an impervious clay core surrounded by zones of more pervious outer layers, referred to as shells. The dams will be designed and constructed in compliance with Uniform Building Code Seismic Zone 3 minimum requirements. The shell material is available locally from outcrops in the project area. Additional study will be required to identify a source for the core material (i.e. clay).

Water will be exchanged between the reservoirs via a concrete-lined 36.5-foot-diameter, 1,200foot vertical shaft which will connect to a concrete-lined penstock. The penstock will extend for 4,160 feet at a slope of three percent. The penstock will bifurcate into four 640-foot-long, 12.25foot-diameter steel penstocks, each of which will connect to a reversible pump-turbine. At the top of the shaft, in the upper reservoir, there will be an intake/discharge structure with a trash rack to exclude debris.

Four 150-foot-long, 17-foot-diameter steel tailrace tunnels will extend from the reversible pumpturbines and will combine into one 2,225-foot-long, 49-foot-diameter concrete-lined draft tube. The tailrace tunnel will discharge into the lower reservoir during generation mode and intake during pumping mode. At the end of the draft tube there will be an intake/discharge structure with a trash rack to exclude debris.

The proposed powerhouse will be located underground. It will be 125 feet wide and 555 feet long and contain four reversible pump-turbine units with a total installed capacity of 1,380 megawatts (MW). A 30-foot-diameter access tunnel would extend 1,000 feet to the powerhouse. The entrance to the access tunnel would be approximately 1,000 feet southeast of the lower dam. Other factors contributing to the selection of the powerhouse location include: (1) minimizing disturbance to the area, (2) the proximity to quality bedrock, and (3) the ability to place the tunnel to the powerhouse in bedrock.

Approximately 23 miles of 345 kilovolt transmission lines will be constructed to connect the project to the existing Bonneville Power Administration's Captain Jack Substation located southeast of the project site. The transmission corridor will be approximately 221 acres. One 6.5 acre surface switchyard/substation will be constructed near the power plant site.

Proposed Order for Preliminary Permit for Hydroelectric Application HE 592

Existing roads would provide access to the project.

C. RESOURCE STANDARDS

All proposed hydroelectric projects in Oregon must meet the resource protection standards contained in OAR 690-051-0170 to -0290.

Protection of Designated Resource Areas and Special Management Areas (OAR 690-051-0170)

The Project will be located on property owned by Jeld-Wen Inc., the U.S. Bureau of Land Management or Jespersen-Edgewood Inc. A final application must show that the project will not have effects on any designated resource areas listed in OAR 690-051-0030(1) or 690-051-0170(2).

Mitigation, No Net Loss (OAR 690-051-0180)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on mitigation and no net loss.

Water Resources (OAR 690-051-190)

In its preliminary permit application, Swan Lake North Hydro LLC proposes to initially fill the lower reservoir and to offset annual losses due to evaporation with groundwater from the wells identified above. Irrigation uses from these wells are expected to be halted while the reservoir is being filled. Filling of the reservoir will be conducted over a two to three year period to reduce impacts to the aquifer.

The Department shall require a groundwater study to include conducting a one-week to onemonth groundwater interference test. The test shall be conducted under controlled conditions and directed by a qualified hydrogeologist to determine the possible impacts of pumping the proposed well(s) on other wells in the vicinity of the project. The plan for the proposed groundwater interference test should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. Generally, such a test should be conducted during the months of January or February before groundwater pumping for irrigation begins for the season. OWRD can offer assistance in selecting other wells in the vicinity to be monitored during the drawdown and recovery periods of the test. It should be noted that a water level response to the test in the wells monitored in a given compartment and/or sub-area does imply a potential for interference, but a lack of response does not imply no interference will occur.

It was recommended in a comment from the Pine Flat District Improvement Company that surplus water that is now pumped from the Pine Flat area to the Lost River basin be considered as an alternate source of water for this project. The Applicant may pursue further investigation of this option. The water basin program that applies to the Klamath Basin is the Klamath River Basin Compact Oregon Revised Statute (ORS) 542.610 through 542.630. ORS 542.620 Article IV Hydroelectric Power states "It shall be the objective of each state, in the formulation and the execution and the granting of authority for the formulation and the execution of plans for the distribution and use of water of the Klamath River Basin, to provide for the most efficient use of available power head and its economic integration with the distribution of water for other beneficial uses in order to secure the most economical distribution and use of water and lowest power rates which may be reasonable for irrigation and drainage pumping, including pumping from wells."

Construction and operation of the proposed project shall comply with water quality standards established in OAR Chapter 340, Division 41. The applicant must comply with all water quality standards adopted by the Environmental Quality Commission pursuant to state and federal law, ORS 468B.048 and Section 303 of the Clean Water Act.

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards for water resources.

Fish Resources (OAR 690-051-0200)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on fish resources.

This project will consist of two man-made reservoirs working as a closed-loop system. The project is entirely off stream; therefore no fish will be directly impacted by the project. Every reasonable precaution should be taken to ensure that fish and aquatic species are not introduced in either reservoir.

• Wildlife (OAR 690-051-0210)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on wildlife resources.

The location, design, construction or operation of the proposed project shall not jeopardize the continued existence of animal species which have been designated, or officially proposed as threatened or endangered.

The location design, construction, or operation of the proposed project will minimize adverse impacts on wildlife habitat, nesting and wintering grounds, and wildlife migratory routes. Unavoidable adverse impacts on wildlife or wildlife habitat will be mitigated in the project vicinity.

The proposed project must be consistent with ODFW management programs.

Plant Life (OAR 690-051-0220)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on plant resources.

The location, design, construction or operation of the proposed project shall not jeopardize the continued existence of plant species which have been designated, or officially proposed as threatened or endangered.

Recreation (OAR 690-051-0230)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on recreation resources.

Project facilities will be designed, located and operated to substantially avoid visible or audible intrusion on the natural setting. The proposed project will not reduce the abundance or variety of recreational facilities or opportunities available in the vicinity.

Historic, Cultural, and Archaeological Resources (OAR 690-051-240)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on historic, cultural, and archaeological resources.

The project will not result in significant adverse impacts on any historic district, site, building, structure, or object included in or eligible for inclusion in the National Register of Historic Places.

The project will comply with state laws to protect Indian graves (ORS 97.740-97.760), historical materials (ORS 273.705-273.711, and archaeological objects and sites (ORS 358.905-358.955).

Land Resources (OAR 690-051-0250)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on land resources.

Adverse impacts on prime forest lands, high value or important farmlands or agricultural lands, or wetlands shall be avoided, minimized or offset by acceptable mitigation.

The location, design, construction or operation of the project will not disturb fragile or unstable soils, or cause soil erosion.

Project facilities shall be designed with appropriate safety standards with regards to geological hazards and naturally occurring conditions or hazards, such as flooding or ice formation.

Land Use (OAR 690-051-260)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards of Acknowledged Comprehensive Plans from the local county government.

Economics (OAR 690-051-270)

The applicant must show in a final hydroelectric application that the applicant, along with all coowners, possesses or has reasonable assurance of obtaining the funds necessary to cover estimated construction, maintenance, operating, mitigation and compensation costs.

Need for Power (OAR 690-051-280)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards of Need for Power.

Consolidated Review (OAR 690-051-290)

The Klamath Irrigation District has an approved preliminary permit for a project at the C-Drop on its existing canal in the Lost River subbasin. This Project in the Swan Lake basin will not cause any additional impacts with the KID project in the Lost River subbasin. There are no other proposed projects in the Klamath basin at this time.

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards of avoiding individual and cumulative impacts to natural resources when considered with other existing, approved, or proposed hydroelectric projects in the same river basin.

D. STUDY PLAN REQUIREMENTS

The Applicant shall conduct a short-term (seasonal) one-week to one-month groundwater interference test. The test shall be conducted under controlled conditions and directed by a qualified hydrogeologist to determine the possible impacts of pumping the proposed well(s) on other wells in the vicinity of the project. The plan for the proposed groundwater interference test should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. Generally, such a test should be conducted during the months of January or February before groundwater pumping for irrigation begins for the season. OWRD can offer assistance in selecting other wells in the vicinity to be monitored during the drawdown and recovery periods of the test. Results of the pump test shall be submitted to OWRD for its review. It should be noted that a water level response to the test in the wells monitored in a given compartment and/or sub-area does imply a potential for interference, but a lack of response does not imply no interference will occur.

A condition of the water right may include a requirement to monitor the long-term groundwater levels at wells within the north Swan Lake Valley compartment and within the main body of the Swan Lake to Poe Valley sub-area. The plan for the groundwater level monitoring should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. It should be prepared by a qualified hydrogeologist and should include installing water level recorders at 2 wells minimum (one well inside and one well outside the north Swan Lake Valley compartment). The monitoring may require construction of one or two wells if existing wells are not suitable.

E. FINDINGS OF FACT

The application for preliminary permit was complete and accepted for filing.

No competing applications have been filed with the Director within 180 days of the first notice published for this preliminary permit application.

The project is to be more than 25 MW of generating capacity.

F. ULTIMATE FINDINGS

ORS 543.225 (3)(a) requires consideration whether this project would conserve the highest use of water for all purposes, including irrigation, domestic use, municipal water supply, power development, public recreation, protection of commercial and game fishing and wildlife, fire protection, mining, industrial purposes, navigation, scenic attraction or any other beneficial use to which the water may be applied for which it may have a special value to the public. Because the water is used in a closed loop system, the annual water requirements are modest and are offset by transfer from an existing irrigation use. Water is conserved for other beneficial uses.

(3)(b) requires consideration of the maximum economic development of the water. This project increases the economic benefits of the waters.

(3)(c) requires consideration of the control of the waters of this state for all beneficial purposes, including drainage, sanitation and flood control. A pump test and groundwater monitoring will help to ensure that this project will have no effects on drainage, sanitation or flood control.

(3)(d) requires consideration of the amount of waters available for appropriation for beneficial use. Some existing irrigation use will be halted during the initial fill of the reservoir, so that water can be temporarily transferred to a new use. Groundwater records are available for wells in the Swan Lake Valley to provide information about past drawdown and recovery cycles. A groundwater interference test will be required to document the drawdown and recovery cycles in the vicinity of the project. Some existing irrigation uses will be permanently transferred to the project for water make-up needs.

(3)(e) requires consideration of the prevention of wasteful, uneconomic, impracticable or unreasonable use of the water involved. There is no evidence in the record that the proposed use represents a wasteful, uneconomic, impracticable or unreasonable use of the waters.

(3)(f) requires consideration of all vested and inchoate rights to the waters of this state or to the use thereof, and the means necessary to protect such rights. Because the annual water requirements are small and are being transferred from an existing use, it is not expected that any vested or inchoate water rights will be affected by the project.

(3)(g) requires consideration of the state water resources policy for the Klamath River Basin. The Klamath River Compact provides for the use of water for hydroelectric purposes.

G. PROPOSED CONCLUSIONS OF LAW

The project proposed by the applicant is eligible for a preliminary permit for hydroelectric development.

Upon a review of the application and the public hearing record, OWRD finds no evidence that the proposed project would not be in the public interest because of significant adverse impacts on natural resources or other uses of the water involved.

Approval of a preliminary permit application shall not convey the right to construct any project facilities. Issuance of a preliminary permit shall not constitute approval or assurance of approval for any subsequent application for hydroelectric license for the project.

A final application must show that the resource protection standards contained in ORS 543.017(1) and OAR 690-051-0170 to -0270, and -0290 will be met by the project.

The proposed preliminary permit will allow the applicant to gather streamflow and groundwater data; pursue the necessary use permits; assess environmental impacts of the proposed action, develop mitigation measures, complete detail design plans and associated cost estimates, and file draft and/or final water right applications within a two year period.

H. PRELIMINARY PERMIT CONDITIONS

The preliminary permit is subject to the following express conditions:

The priority date for the proposed preliminary permit is May 12, 2010.

The Applicant shall prepare a study plan to conduct a groundwater interference test under the direction of a qualified hydrogeologist. The applicant will collect data of groundwater levels during pumping and recovery of the wells over a one-week to one-month test period. The test shall be conducted under controlled conditions to determine the possible impacts of pumping the proposed well(s) on other wells in the vicinity of the project. The plan for the proposed groundwater interference test should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. Generally, such a test should be conducted during the months of January or February before groundwater pumping for irrigation begins for the season. OWRD can offer assistance in selecting other wells in the vicinity to be monitored during the drawdown and recovery periods of the test. It should be noted that a water level response to the test in the wells monitored in a given compartment and/or sub-area does imply a

potential for interference, but a lack of response does not imply no interference will occur. Data and analyses shall be provided to OWRD for review.

If the Applicant fails to file an application for hydroelectric water right within two years, the permit may be subject to termination by the OWRD.

Issuance of the permit does not absolve the Applicant from compliance with the requirements and enforcement of the requirements under other applicable local, state, and federal laws.

I. PROPOSED ORDER

OWRD proposes to issue a preliminary permit to Swan Lake North LLC to study and develop a pumped storage hydroelectric project near Swan Lake in Klamath County. The preliminary permit would allow the applicant to gather streamflow and groundwater data; pursue the necessary use permits; assess environmental impacts of the proposed action, develop mitigation measures, complete detail design plans and associated cost estimates, and file draft and/or final water right applications within a two year period. Issuance of a preliminary permit does not assure license approval if the applicant fails to demonstrate that the proposed project will not impair or be detrimental to the public interest.

Dated:

DWIGHT W. FRENCH, Administrator of Water Rights & Adjudications

J. PROCESS FOR COMMENTS, OBJECTIONS, PROTESTS, CONTESTED CASE, AND JUDICIAL REVIEW

Comments and Objections to the Proposed Order

This Proposed Order has been distributed to the Applicant and all individuals, including all governmental agencies, who have filed timely comments with the OWRD. Comments and objections to this Proposed Order must be received by the OWRD Director by 5:00 PM on Friday, January 21, 2011.

Comments or objections must state facts, which support the allegation that the proposed preliminary permit should not be approved as proposed by the technical report.

Judicial Review of Preliminary Permit

After all comments on the Proposed Order are finalized, a preliminary permit may be issued to the Applicant. The preliminary permit may be a final order in other than contested case, subject to judicial review under ORS 183.484. Any petition for judicial review of the preliminary permit must be filed within 60 days of the date of service of the preliminary permit.

STATE OF OREGON COUNTY OF KLAMATH PRELIMINARY PERMIT FOR A HYDROELECTRIC PROJECT

SWAN LAKE NORTH HYDRO, LLC 975 SOUTH STATE HIGHWAY LOGAN, UTAH 84321

is issued this preliminary permit to develop a pumped storage hydroelectric project in the Swan Lake basin for a project with a total installed capacity of 1,380 Megawatts (2,359,350 Theoretical Horsepower).

This preliminary permit is issued under application HE 592. The date of priority 18 MAY 12, 2010. The upper reservoir will be constructed with an east dam approximately 150 feet high and a west dam approximately 80 feet high. It will have a surface area of 242 acres and 12,655 acre feet of storage. The lower reservoir will be constructed with a dam approximately 130 feet high. It will have a surface area of 197 acres and storage of 13,935 acres-feet. Up to 15,922 cubic feet per second (cfs) of water would be released from the upper reservoir when all four turbines are generating. The maximum operating head between the two reservoirs is 1304 feet.

The points of appropriation for initial fill of the reservoirs would be located at existing wells: Well #1: 660 Feet North and 1690 Feet West from the SE Corner of Section 9, being within the SW¹/₄ SE¹/₄ Section 9, Township 37 South, Range 10 East, W.M.,

Well #2: 48 Feet North and 20 Feet East from the SW Corner of Section 8, being within the SW¹/₄ SW¹/₄ Section 8, Township 37 South, Range 10 East, W.M.,

Well #4: 2000 feet North and 800 Feet East from the SW Corner of Section 8, being within the NW¹/₄ SW¹/₄ Section 8, Township 37 South, Range 10 East, W.M.,

Well #5: 100 Feet North and 1400 Feet East from the SW Corner of Section 14, being within the SE¹/₄ SW¹/₄ Section 14, Township 37 South, Range 10 East, W.M.

Initial filling of the reservoir is proposed under a transfer or forbearance agreement of the rights under Water Rights Certificate No. 29530 (3446.4 acre-feet per year) and Water Rights Permit G-10952 (3360 acre-feet per year). Reservoir maintenance is proposed from Well #5 under a permanent transfer (1574 acre feet per year).

The location of the upper reservoir is proposed to be in Sections 13, 14, and 24: The location of the lower reservoir is proposed to be in the South half of Section 15. The location of the underground powerhouse is proposed in the SE ¼ SW ¼, Section 14, all being in Township 37 South, Range 10 East, W.M.

The upper reservoir will be located on Swan Lake Rim, approximately 1 mile west of Welsh Spring. The reservoir will have a maximum surface elevation of 5,500 feet above mean sea level (MSL). The lower reservoir site is located north of Swan Lake, between Grizzly Butte and Stiles Spring. The reservoir will have a maximum surface elevation of 4280 feet MSL.

Each of the three proposed dams will be more than 5,000 feet long. The dams will be constructed with an impervious clay core surrounded by zones of more pervious outer layers, referred to as shells. The dams will be designed and constructed in compliance with Uniform Building Code Seismic Zone 3 minimum requirements. The shell material is available locally from outcrops in the project area. Additional study will be required to identify a source for the core material (i.e. clay).

Water will be exchanged between the reservoirs via a concrete-lined 36.5-foot-diameter, 1,200-foot vertical shaft which will connect to a concrete-lined penstock. The penstock will extend for 4,160 feet at a slope of three percent. The penstock will bifurcate into four 640-foot-long, 12.25-foot-diameter steel penstocks, each of which will connect to a reversible pump-turbine. At the top of the shaft, in the upper reservoir, there will be an intake/discharge structure with a trash rack to exclude debris.

Four 150-foot-long, 17-foot-diameter steel tailrace tunnels will extend from the reversible pumpturbines and will combine into one 2,225-foot-long, 49-foot-diameter concrete-lined draft tube. The tailrace tunnel will discharge into the lower reservoir during generation mode and intake during pumping mode. At the end of the draft tube there will be an intake/discharge structure with a trash rack to exclude debris.

The proposed powerhouse will be located underground. It will be 125 feet wide and 555 feet long and contain four reversible pump-turbine units with a total installed capacity of 1,380 megawatts (MW). A 30-foot-diameter access tunnel would extend 1,000 feet to the powerhouse. The entrance to the access tunnel would be approximately 1,000 feet southeast of the lower dam. Other factors contributing to the selection of the powerhouse location include: (1) minimizing disturbance to the area, (2) the proximity to quality bedrock, and (3) the ability to place the tunnel to the powerhouse in bedrock.

Approximately 23 miles of 345 kilovolt transmission lines will be constructed to connect the project to the existing Bonneville Power Administration's Captain Jack Substation located southeast of the project site. The transmission corridor will be approximately 221 acres. One 6.5 acre surface switchyard/substation will be constructed near the power plant site.

RESOURCE STANDARDS

All proposed hydroelectric projects in Oregon must meet the resource protection standards contained in Oregon Administrative Rule (OAR) 690-051-0170 to -0290.

Protection of Designated Resource Areas and Special Management Areas (OAR 690-051-0170)

The Project will be located on property owned by Jeld-Wen Inc., the U.S. Bureau of Land Management or Jespersen-Edgewood Inc. A final application must show that the project will not have effects on any designated resource areas listed in OAR 690-051-0030(1) or 690-051-0170(2).

Mitigation, No Net Loss (OAR 690-051-0180)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on mitigation and no net loss.

Water Resources (OAR 690-051-190)

In its preliminary permit application, Swan Lake North Hydro LLC proposes to initially fill the lower reservoir and to offset annual losses due to evaporation with groundwater from the wells identified above. Irrigation uses from these wells are expected to be halted while the reservoir is being filled. Filling of the reservoir will be conducted over a two to three year period to reduce impacts to the aquifer.

The Applicant shall prepare a study plan to conduct a groundwater interference test under the direction of a qualified hydrogeologist. The applicant will collect data of groundwater levels during pumping and recovery of the wells over a one-week to one-month test period. The test shall be conducted under controlled conditions to determine the possible impacts of pumping the proposed well(s) on other wells in the vicinity of the project. The plan for the proposed groundwater interference test should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. Generally, such a test should be conducted during the months of January or February before groundwater pumping for irrigation begins for the season. OWRD can offer assistance in selecting other wells in the vicinity to be monitored during the drawdown and recovery periods of the test. It should be noted that a water level response to the test in the wells monitored in a given compartment and/or sub-area does imply a

Preliminary Permit Swan Lake Pump Storage Project HE 592

Page 3 of 7

potential for interference, but a lack of response does not imply no interference will occur. Data and analyses shall be provided to OWRD for review.

It was recommended in a comment from the Pine Flat District Improvement Company that surplus water that is now pumped from the Pine Flat area to the Lost River basin be considered as an alternate source of water for this project. The Applicant may pursue further investigation of this option.

The water basin program that applies to the Klamath Basin is the Klamath River Basin Compact Oregon Revised Statute (ORS) 542.610 through 542.630. ORS 542.620 Article IV Hydroelectric Power states "It shall be the objective of each state, in the formulation and the execution and the granting of authority for the formulation and the execution of plans for the distribution and use of water of the Klamath River Basin, to provide for the most efficient use of available power head and its economic integration with the distribution of water for other beneficial uses in order to secure the most economical distribution and use of water and lowest power rates which may be reasonable for irrigation and drainage pumping, including pumping from wells."

Construction and operation of the proposed project shall comply with water quality standards established in OAR Chapter 340, Division 41. The applicant must comply with all water quality standards adopted by the Environmental Quality Commission pursuant to state and federal law, ORS 468B.048 and Section 303 of the Clean Water Act.

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards for water resources.

Fish Resources (OAR 690-051-0200)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on fish resources.

This project will consist of two man-made reservoirs working as a closed-loop system. The project is entirely off stream, therefore no fish will be directly impacted by the project. Every reasonable precaution should be taken to ensure that fish and aquatic species are not introduced in either reservoir.

Wildlife (OAR 690-051-0210)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on wildlife resources.

Preliminary Permit Swan Lake Pump Storage Project HE 592

The location, design, construction or operation of the proposed project shall not jeopardize the continued existence of animal species which have been designated, or officially proposed as threatened or endangered.

The location design, construction, or operation of the proposed project will minimize adverse impacts on wildlife habitat, nesting and wintering grounds, and wildlife migratory routes. Unavoidable adverse impacts on wildlife or wildlife habitat will be mitigated in the project vicinity.

The proposed project must be consistent with ODFW management programs.

Plant Life (OAR 690-051-0220)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on plant resources.

The location, design, construction or operation of the proposed project shall not jeopardize the continued existence of plant species which have been designated, or officially proposed as threatened or endangered.

Recreation (OAR 690-051-0230)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on recreation resources.

Project facilities will be designed, located and operated to substantially avoid visible or audible intrusion on the natural setting. The proposed project will not reduce the abundance or variety of recreational facilities or opportunities available in the vicinity.

Historic, Cultural, and Archaeological Resources (OAR 690-051-240)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on historic, cultural, and archaeological resources.

The project will not result in significant adverse impacts on any historic district, site, building, structure, or object included in or eligible for inclusion in the National Register of Historic Places.

The project will comply with state laws to protect Indian graves (ORS 97.740-97.760), historical materials (ORS 273.705-273.711, and archaeological objects and sites (ORS 358.905-358.955).

Preliminary Permit Swan Lake Pump Storage Project HE 592

Page 5 of 7

Land Resources (OAR 690-051-0250)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards on land resources.

Adverse impacts on prime forest lands, high value or important farmlands or agricultural lands, or wetlands shall be avoided, minimized or offset by acceptable mitigation.

The location, design, construction or operation of the project will not disturb fragile or unstable soils, or cause soil erosion.

Project facilities shall be designed with appropriate safety standards with regards to geological hazards and naturally occurring conditions or hazards, such as flooding or ice formation.

Land Use (OAR 690-051-260)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards of Acknowledged Comprehensive Plans from the local county government.

Economics (OAR 690-051-270)

The applicant must show in a final hydroelectric application that the applicant, along with all coowners, possesses or has reasonable assurance of obtaining the funds necessary to cover estimated construction, maintenance, operating, mitigation and compensation costs.

• Need for Power (OAR 690-051-280)

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards of Need for Power.

Consolidated Review (OAR 690-051-290)

The Klamath Irrigation District has an approved preliminary permit for a project at the C-Drop on its existing canal in the Lost River subbasin. This Project in the Swan Lake basin will not cause any additional impacts with the KID project in the Lost River subbasin. There are no other proposed projects in the Klamath basin at this time.

The applicant must show in a final hydroelectric application that the proposed use will be consistent with the standards of avoiding individual and cumulative impacts to natural resources when considered with other existing, approved, or proposed hydroelectric projects in the same river basin.

Preliminary Permit Swan Lake Pump Storage Project HE 592

Page 6 of 7

PRELIMINARY PERMIT CONDITIONS

This Preliminary Permit does <u>NOT</u> convey the right to construct any project facilities for hydroelectric purposes. A preliminary permit will allow the applicant to gather streamflow and groundwater data; pursue the necessary use permits; assess environmental impacts of the proposed action, develop mitigation measures, complete detail design plans and associated cost estimates, and file draft and/or final water right applications. Issuance of a preliminary permit does not assure approval of any subsequent license application for hydroelectric use.

A final application must show that the resource protection standards contained in ORS 543.017(1) and OAR 690-051-0170 to -0270, and -0290 will be met by the project.

The Applicant shall prepare a study plan to conduct a groundwater interference test under the direction of a qualified hydrogeologist. The applicant will collect data of groundwater levels during pumping and recovery of the wells over a one-week to one-month test period. The test shall be conducted under controlled conditions to determine the possible impacts of pumping the proposed well(s) on other wells in the vicinity of the project. The plan for the proposed groundwater interference test should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. Generally, such a test should be conducted during the months of January or February before groundwater pumping for irrigation begins for the season. OWRD can offer assistance in selecting other wells in the vicinity to be monitored during the drawdown and recovery periods of the test. It should be noted that a water level response to the test in the wells monitored in a given compartment and/or sub-area does imply a potential for interference, but a lack of response does not imply no interference will occur. Data and analyses shall be provided to OWRD for review.

If the Applicant fails to file an application for hydroelectric water right within two years, the permit may be subject to termination by the OWRD.

Issuance of the permit does not absolve the Applicant from compliance with the requirements and enforcement of the requirements under other applicable local, state, and federal laws.

Dated:

DWIGHT W. FRENCH, Administrator of Water Rights & Adjudications {For} PHILLIP C. WARD, DIRECTOR Water Resources Department

Preliminary Permit Swan Lake Pump Storage Project HE 592

Page 7 of 7

rect	e-mail	ONTRY JI/ COMPLEY			
ATTENDANCE RECORD 8-31-2010 Date Date Date Pune Starage Project Meeting Name	Phone/Fax	2130 S. 154 142 142 143 20518	541 5-91 3 305-	10919 Yon a lay 541-281-2778	
ATTENDANCE RECORD <u>8 - 31 - 70</u> 10 Date hc's Suan Lake P Meeting Name	Address	3/30 S.6Th	21440 HWY140 E DAIRY DR97625-	10919 Yon adland	11 - 1 - 1
Symbio	Organization	as Shoughe			
		i'n		sal	(

HAVINA INA	approvers	2130 S. 672 -142 M.J. S 2130	1012-288-1/23	ONIEY JIL CUMPLEY
	ί			
Par GRAY		21440 HWY140 E 3 DAIRY 0297625-	541 5-91 3 305-	
•		*		
Greg. Jackson		10919 Yon rale 541-281-278	541-281-1978	
		BUNNAZA		*
\langle		S ((C) NOT	54/882,9600	70K 1711 541 882,9600 Trend Spearer wet
/ Rev Dur	KCPAA	KF 97661 541.882,7648	31.582,7648	3
		207 ZINTERIDE ST	1-8Bil 5193	CMASSIE C KLAMATH. ORG
CHARLES MASSIE	CHAMBURC	SUITEA KF 97601		
		2950 56 Stark St. Skilo		
EikSteinle	Symbiotics	Betterd OR, 97214 5	503-235-3424	
		2626 Swan		
Clehn TLORENZ			5ul-884.5938	
		767 4146611 20	5UT-1244	
John Veneste		Dery CI		

Name

e-mail	de monteith Q varior cour	D					BHASKINS @ CBKKells.com		Reger C. Smith @	State or us	Mar with Charles and the	Auguston Chun	Klothalmesponent. com		TMBrokeviexrawch (gqnai), com	
Phone/Fax	01/SL-LIS InS		541 772-3592		\$071-542-170\$			541-889-1343		2241-883-5732	E .	22×+28-14-5	541-850-9232		541-533-25-80	
Address	5059 Challe Bosson 541 887-85/10	Klamatu rails UC 97001	1929 TELLACO	KFulls of 97000.	7691 HANPOLCIRG	KIFPALLS 97603	3815 S 64-57716	K-fulls on 97600	1850 Willer Is. Pd	KF- 97603	papp quan S Heber	K.Falls, UK	13110Ewar LakeRd	Saal Providence	29163 Co com A SPNI 1455 POAD	BEA # 97621
Organizati o n								~								
Name	Chevi Nonterth	L'Halls OR 97601	Neil and Many	Hurlard	M: Ke Routvert		B. 11 HASKAN	STE 110 Falls, OR The	Roger Smith	North Fulls	Hanny + Malester	Plaparie	Kenny and Belhary	Holmes	I CON WALLAWAS	

ATTENDANCE RECORD <u>
S/S// /O</u> Date

Meeting Name

RECORD
CE
ANC
B
TE
AT

31/ 10 Date

Meeting Name

Name	Organization	Address	Phone/Fax	e-mail
Dave B.WRTH	MEADOW LAKE	3708 SUM LAVE R.	Phone 5-11-182-74.18	0
	Iou.	KLAMARI FALLS, OR	Fax sand	•
		"2 13 30 Amy 140 E	Phone	
WARRAN MCUN	ANC RANCH	DAIRY OR 97603	Fax	
		21330 Hay HO E	Phone Stir-1602	
Dave melin	3mc RANCh	941KV on 97603	Fax 545-1603	
1+2			Phone	
Var BIZ	7218		Fax	UL-LK. CON
1 1 11		826 MAIN	Phone	MAIT. Hunley a
11/1/1 11 11 11 12 12 12 12 12 12 12 12 12 12		Klawath Pulls	Fax	or Phasin Com
K . W . 7		5233 Ukrmann Rd 2	Phone	I mageed 0 7
the mall		K.Falls, OR 9760)	Fax	V cantaliak.ret
STAN GULLA	CHANDER	27-10 6-400-400	Phone	Bilburtakinnet
	Conneces	K.F. 77601	Fax	C.00.7400X
			Phone	
			Fax	
			Phone	
			Fax	

M:\route slip originals\attendance sheet.wpd

e-mail				2795 Andreson Auc. K-Falle, DR 97103 541-865-4100 d Holmstron C blm. gov	1944 Ewlid Ave 1941 885 4105 dhafthoins a bluigar	scott-senter p		
Phone/Fax	17525 Swartole 541-891-1238	241 221 2820	(24) B92-0063	541-865-4100	5014 588 145	01 S41 882-	HHUI 138 1125	241-545-6540
Address	17525 Swartole	KLANTIN FORLY	23921 Huy 1406	2795 Andreson Auc. K-Falls. DR 971.03 5.	1944 Ewid Ave	Klowelly CK 97601	17017 Huy 140 E	FSIMITCHELL Rd
Organization	*			BLMJ				
Name	Jacon Jagarson	Lewer Jesza	Steve Garden	Conpro Abrastican	Don Hoffheirs	Sattenter	Pete Nevin	Tim DAVIS

ATTENDANCE RECORD 8/3//20 Date

Meeting Name

Attachment 2

Responses to Comments on Swan Lake North Hydro LLC's Preliminary Permit State Application

Commenter: Del Fox

Organization: President of the Pine Flat District Improvement Company (PFDIC) (A Taxing District)

<u>Comment(s):</u> "Pine Flat District Iimprovement Company was formed to drain/pump excess water from the basin just west of Dairy Oregon and south of Swan Lake ridge. We have to get the excess water out of this basin because there is no natural drainage. Water collects in the basin from rain and snow melt, which in this country comes in the winter and spring. We are proposing a win-win solution for Symbiotic's refill from evaporation and partial filling of the reservoir that would not require use of precious well water. We pump approximately 1600 to 2000 acre feet of excess water in dryer years and up to 6000 acre feet in wet years over the west ridge and it runs in a ditch for about 6 miles; then thru KID's "e" Sump into the Lost River. We propose Symbiotics be required to take this "FREE" water instead of using already over allocated well water. We would not charge Symbiotics for the water and we would save on pumping costs. A WIN-WIN. Symbiotics would be responsible for getting the water from our ditch/reservoir to their reservoir, but Pine Flat personnel must maintain control of pumping since it is our responsibility to drain the basin. We will be happy to assist and prefer to be included in any infrastructure planning."

Response: The Applicant may pursue further investigation of this option as part of the project studies during the next two years.

Commenter: David R Mc Lin

Organization: 3MC Ranch Hay Sales

Comment(s): Mr. Mc Lin stated that his ranch is located on Pine Flats approximately 3-4 miles South of the proposed project. He has three irrigation wells producing approximately 5,400 gallons per minute. He states "Our concern is the huge amount of ground water proposed to be pumped year round for this project. The irrigation wells are drawn down in the late summer and generally recharge in the winter. My question is will our wells recharge with the large amount of water being drawn so close." He proposes that his wells be monitored starting this fall thru spring and summer months of 2011 to establish his "normal capacity." Then, if any fluctuation should occur once pumping is under way on the project and his watering operation is impacted, he proposes that: 1) that the project pumps be turned off or 2) actual damages to his farming operation be assessed and immediately be paid to his ranch at market values. He "proposes, as a condition of the permit, that Swan Lake North LLC be required to pay damages if damages occur."

Response: The plans for this project assume that irrigation on several hundred acres of land would cease while groundwater is being pumped in the initial fill of the lower reservoir. Available data indicates that most to all wells proposed for the project are within the north Swan Lake Valley compartment within the Swan Lake to Poe Valley sub-area as defined by Grondin (2004). The compartment is hydraulically connected to the main body of the sub-area that extends from south of Grizzly Butte in Swan Lake Valley to northern Poe Valley. However within an irrigation season, pumping in the compartment does not appear to show in the main body and vice versa. Their hydrographs appear different.

The Department shall require a groundwater study to include conducting a oneweek to one-month groundwater interference test. The test shall be conducted under controlled conditions and directed by a qualified hydrogeologist to determine the possible impacts of pumping the proposed well(s) on other wells in the vicinity of the project. The plan for the proposed groundwater interference test should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. Generally, such a test should be conducted during the months of January or February before groundwater pumping for irrigation begins for the season. OWRD can offer assistance in selecting other wells in the vicinity to be monitored during the drawdown and recovery periods of the test. It should be noted that a water level response to the test in the wells monitored in a given compartment and/or sub-area does imply a potential for interference, but a lack of response does not imply no interference will occur.

The long-term groundwater interference concern can be assessed by establishing long-term groundwater level monitoring at wells within the north Swan Lake Valley compartment and within the main body of the Swan Lake to Poe Valley sub-area. The plan for the groundwater level monitoring should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. It should be prepared by a qualified hydrogeologist and should include installing water level recorders at 2 wells minimum (one well inside and one well outside the north Swan Lake Valley compartment). The monitoring may require construction of one or two wells if existing wells are not suitable.

Commenter: L. H. "Trey" Senn

Organization: Klamath County Economic Development Association (KCEDA)

<u>Comment(s)</u>: Mr. Senn appreciated the opportunity to express his groups support for the proposed Swan Lake Pump Storage Project. The KCEDA, he states, "has added substantial power generation and as one of its "highest goals and objectives" to bring jobs and economic security to Klamath County." He adds "... Team Klamath also identified

substantial power generation through its recently completed Klamath 2020 Vision as vital to the health and stability of the county."

Response noted.

Commenter(s): Kimberly Priestly and Doug Heiken

Organization: WaterWatch of Oregon and Oregon Wild

Comment(s):

- "The temporary transfer of an irrigation groundwater right to a one time fill of a reservoir is not allowed by the temporary transfer statutes: Under Oregon law, temporary transfers are limited to "place of use and, if necessary to convey water to the new temporary place of use, temporarily change the point of diversion or point of appropriation...." ORS 540.523. A temporary transfer of "type" of use is not allowed under Oregon law. Thus, Symbiotics cannot legally achieve their plan of temporarily transferring the two irrigation rights for a "one time" fill of the reservoir.
- 2. "The transfer statutes don't allow change from a groundwater water right (G) to a reservoir right (R): ORS 540.520 allows for a transfer of a change in character of use, place of use, or point of diversion. The statutes do not contemplate a change in the method of appropriation. It appears from the preliminary application materials that Symbiotics is proposing to do just that-transfer a groundwater right to a reservoir right. Changing a groundwater water right to a storage rights does not fit within the construct of changing the character of use. As noted above, a ground water right and a storage right refer to the method of appropriation, not use. The G- and R- in the permit codes are not designations of use or place of use. The character of use has to be designated separately in either case: i.e. irrigation, mining, municipal, hydro, etc."

Reservoir rights are not the same as ground water rights and cannot be treated as interchangeable under the transfer statutes. A wholly separate section of the Water Code is dedicated to reservoir rights. See ORS 537.400 et al. To allow this transfer not only would be in violation of the transfer statutes, but by expanding the method of appropriation to also allow storage would result in an enlargement of the underlying ground water right, which is specifically prohibited by the transfer statutes. See ORS 540.510.

3. **"The transfer would result in injury to other water users:** The preliminary application materials indicate that Symbiotics believes it would be able to transfer 6800 AF per year form G-10952 and C 29530 for an initial fill the reservoir, and then use well #5 under G-10952 for refill purposes for water lost to evaporation (1,574 AF). To allow Symbiotics the full duty allowed under the underlying

rights might in fact appropriate the full duty of 6800 AF a year, irrigation practices do not consumptively use 100% of the water. In fact, based on the WRD's consumptive use factors for irrigation, it is likely that upwards of 50% of this water is not in fact consumed by the water right holder but instead is lost to evaporation and/or groundwater recharge/return flow. In the Klamath basin both surface water and groundwater are over appropriated. Given the very over appropriated state of the Klamath River Basin, any return flows/groundwater recharge is most certainly used by other water right holders. Thus, allowing full appropriation for a reservoir fill and/or evaporation replacement would injure other water rights. This is prohibited by the transfer statutes. ORS 540.510.

4. "The proposed project will impair water resources in the Klamath Basin: As the WRD is well aware, groundwater resources in the Klamath Basin, including the Lost River Basin, have undergone serious decline. This has been exacerbated by the 2001 and 2010 droughts. See Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California, Scientific Investigations Report 2007-5050, Version 1.1., April 2010 USGS, WRD; See also, The Oregonian, Klamath Basin's water worries extend to wells, August 28, 2010. Heavy well use is also reducing stream flows. Id. The amount of water sought for Symbiotics' project is significant (29.5 cfs). Both the initial filling of the reservoir and the annual replacement of evaporation will further deplete already declining groundwater, and likely surface water, resources of this basin." "Despite the significant amount of water being sought for this project, Symbiotics' application appears to discount the effects of its proposed project on water resources of this state because it plans to use existing permits and certificates. ORS 543.017 governing the development of hydroelectric projects applies whether or not the applicant is seeking a "new" water right or seeking to transfer an "old" water right. The statutes set forth strict standards that apply to all new hydroelectric projects. Regardless of the underlying water right, this is a new hydroelectric project which is subject to all provisions of ORS 543. To that end, in addition to conducting a full public interest review of this application under ORS 543,225, the state cannot approve the application unless it can ensure that the project will not result in a net loss of wild game fish, or in the mortality, injury, or loss of natural habitat of anadromous salmon or steelhead. Given the over appropriated state of groundwater resources of this basin, the documented connection to already over appropriated surface flows and the presence of endangered fish species in this basin (including the Lost River and Short-nosed Sucker), the use of water needed for this project will likely impair or be detrimental to the public interest."

Conclusion: For the aforementioned reasons, WaterWatch and Oregon Wild have concerns about the legality of this proposed project, and also about the probable effects on the groundwater and surface water resources of the Klamath River Basin. We also have concerns about the applications lack of adequate specificity to allow a thorough review of the project and its impacts, and thus reserve the right to submit further comments as more information becomes available.

Response: The right to use water under this application will be reviewed under the hydroelectric statutes of ORS 543. These statutes provide for the authorization of the entire project including project reservoirs. Therefore, there is no consideration of transferring a groundwater right to a right to construct a reservoir. The reservoirs will be considered under the hydroelectric authorization. The right to store water shall be reviewed as part of the hydroelectric right albeit with a 2010 priority date.

It is proposed that irrigation water use be foregone during the period of the initial fill. Because the wells currently provide irrigation uses and declines are not evident in the groundwater levels, this would seem to indicate that water would likely be available for the project.

The Department shall require a groundwater study to include conducting a oneweek to one-month groundwater interference test. The test shall be conducted under controlled conditions and directed by a qualified hydrogeologist to determine the possible impacts of pumping the proposed well(s) on other wells in the vicinity of the project. The plan for the proposed groundwater interference test should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. Generally, such a test should be conducted during the months of January or February before groundwater pumping for irrigation begins for the season. OWRD can offer assistance in selecting other wells in the vicinity to be monitored during the drawdown and recovery periods of the test. It should be noted that a water level response to the test in the wells monitored in a given compartment and/or sub-area does imply a potential for interference, but a lack of response does not imply no interference will occur.

The Department may also require the applicant to establish long-term groundwater level monitoring at wells within the north Swan Lake Valley compartment and within the main body of the Swan Lake to Poe Valley sub-area. The plan for the groundwater level monitoring should be discussed with, reviewed by, and approved by OWRD Groundwater Section staff before beginning. It should be prepared by a qualified hydrogeologist and should include installing water level recorders at 2 wells minimum (one well inside and one well outside the north Swan Lake Valley compartment). The monitoring may require construction of one or two wells if existing wells are not suitable.

The Department may require the schedule for filling of the reservoirs to be modified to provide for groundwater levels to recover, if necessary. The Applicant expects that most of the irrigation uses would resume after initial fill of the reservoir is completed. All of these issues can be considered during the application phase of the project. Therefore, the project should be eligible for further study and development of application information.

ACRONYMS

ACRONYMS

BETCO	Barometric and Earth Tide Correction
BGS	below ground surface
cfs	cubic feet per second
FERC	Federal Energy Regulation Commission
ft/acre	feet per acre
ft²/day	square feet per day (measure of transmissivity)
gpm	gallons per minute
gpm/ft	gallons per minute per foot of drawdown
I.D.	identification
OWRD	Oregon Water Resources Department\
psi	pounds per square inch
USGS	U.S. Geological Survey

GEODESIGN[¥]