Groundwater Application Review Summary Form

Application # G- 18891
GW Reviewer <u>Aurora C Bouchier</u> Date Review Completed: <u>May 13, 2020</u>
Summary of GW Availability and Injury Review:
☐ Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.
Summary of Potential for Substantial Interference Review:
\square There is the potential for substantial interference per Section C of the attached review form.
Summary of Well Construction Assessment:
☐ The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.
This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

Version: 03/36/2020

WATER RESOURCES DEPARTMENT

0

0

0.00%

0.00% | 0.00% | 0.00%

MEM	O						Ma	ny 13		, 20 <u>20</u>	<u>)</u>
TO:		Applica	ation G	18891							
FRON	1 :		<u>Aurora</u> (Reviewer'		nier						
SUBJ	ECT: S	Scenic W	aterway	Interfe	erence E	Evaluati	on				
	YES NO		source of			is hydra	ulically	connect	ed to a S	State Sce	enic
	YES NO	Use	the Scen	nic Wate	rway Co	ondition	(Condit	ion 7J)			
	interfe	RS 390. rence with rence is contact.	th surface	e water t	hat cont				_		
	interfe Depar propo	RS 390.8 rence wittment is sed use ain the fi	th surface unable t will me	e water t to find t asurabl	that cont that the y redu	ributes tre is a p	to a scen reponde surface	ic water erance (water	way; th of evide	erefore, nce that	the the
Calculo per crit	ite the pe eria in 39		f consumpt not fill in t	tive use by the table l	month ar but check	the "unab	le" optior				e calculated r Rights tha
Water	way by	is permit the follo flow is r	wing am			-				otive use	_ Scenic by which
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

0.00%

0.00%

0.01%

0.02%

Version: 03/36/2020

0.03%

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO: FROM: SUBJE		Groui	Rights Secondwater Secondcation G- 18	tion			ver's Nam	ie	Date ew of na		May 13,			
											D	ate of Revi	ew(s)	
OAR 69 welfare, to determent the press	one of the safety and safety and mine whe sumption of the safety and safety a	60 (1) 7 d heali ther the	T PRESUM The Department as describe the presumption This review	ent shall pre ed in ORS 5 n is establis v is based u	esume that 37.525. De hed. OAR pon availa	a proposed epartment s 690-310-14 ble inforn	d ground taff revi 40 allow nation a	iew g vs the nd a	roundwater proposed us gency polic	applic se be i ies in	eations und modified of place at t	der OAR or conditi	690-310 oned to r	-140 meet
A. <u>GE</u>	NERAL	INFO	RMATION	<u>¶</u> : App	olicant's Na	ame: J	ohn C.	May	field		Co	ounty: 1	Vasco	
A1.	Applicar	nt(s) se	ek(s) <u>0.05*</u>	cfs from	1	well(s)) in the	I	Deschutes					Basin,
	V	Vhite R	iver			subbas	sin							
A2.	Proposed	d use _	Irriga	tion (7.42 a	cres)	Seaso	nality:	Apr	il 15 – Octo	ber 15				
A3.	Well and	l aquif	er data (attac	h and num	ber logs fo	or existing	wells; 1	mark	proposed v	vells a	s such ur	nder logi	d):	
Well	Logi	d	Applicant's Well #	Propose	d Aquifer*	Propo Rate(c		(Location T/R-S QQ-Q)		, metes an		
1	propos	ed	KM1	Tygh V	alley Fm**	22.4			S/13E-4 NE-N		48' N, 18'	W fr SE co	or NE-NE c	or S 4
2 * Alluviu	ım, CRB, 1	Bedrock	-											
-					T							T	ı	,
Well	Well Elev	Firs Wate	sr SWL	SWL	Well Depth	Seal Interval	Casir Interv	_	Liner Intervals		orations Screens	Well Yield	Draw Down	Test
WCII	ft msl	ft bl	I II bis I	Date	(ft)	(ft)	(ft)		(ft)	Oi	(ft)	(gpm)	(ft)	Type
1	1140				TBD	TBD	TBE)	TBD	1	TBD	41.5		
Use data	from appli	cation	for proposed w	rells										
A4.			Section 3 of t		on discuss	es the High	ıline Di	tch aı	nd Diversion	Elim	ination pr	oject (wh	ich inclu	<u>des</u>
			nverting/usin											
			OA for the re											
			is one of the lote: Mr. Cul											
			d is also part											
			ghts involved											
			tions but fail	_	_		rious ar	<u>plica</u>	ations. Cons	seque	ntially, it	<u>is not cle</u>	ear what	<u>the</u>
			was intende								~			
			cation states											
			n the maps for 33 and 5491											under
			cates that 7.4							_				water

The application states that Mr. Martin's land is authorized for use under surface water right Certificates 3733, 5491 and 8545. Based on the maps for these certificates it appears that the proposed POU for this application is partially covered under Certificates 3733 and 5491 but not Certificate 8545 (see OWRD Water Rights Mapping Tool images below). This application indicates that 7.42 acres from Certificate 3733, 5491, or 8545 could be used as mitigation for a new groundwater right. It appears that 8 out of 16.2 acres from Certificate 3733 are intended to be transferred under T-13304, and 8.1 out of 16.2 acres from Certificate 3733 could be used as mitigation under application G-18888 and 4 acres out of 4 acres from Certificate 5491 could be used as mitigation under application G-18889. Assuming that the relevant portion of transfer T-13304 is approved, and applications G-18888 and G-18889 are approved, than this new groundwater right may be requesting more water than is available for mitigation by Certificates 3733, 5491, or 8545 (1.93 acres, not apparently intended for mitigation of other applications currently under review).

**The application states the source aquifer as the Tygh Valley Formation. However, at the proposed location it appears likely that the well would actually be constructed into water-bearing zones within the Dalles Formation (Waters, 1968). The application states that the well inspector will be consulted on all aspects of well completion.

Version: 03/36/2020

A5. Provisions of the Deschutes

Basin rules relative to the development, classification and/or management of groundwater hydraulically connected to surface water are, or are not, activated by this application. (Not all basin rules contain such provisions.)

Comments: Outside the USGS Groundwater Study Area.

A6. Well(s) # _____, ____, ____, ____, tap(s) an aquifer limited by an administrative restriction. Name of administrative area: ______Comments: _____

Application G-18891

Version: 05/07/2018

Page

Date: May 13, 2020

Application G-18891 Date: May 13, 2020

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

Bas	ed upon available data, I have determined that groundwater* for the proposed use:
a.	□ is over appropriated, □ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
b.	\square will not or \square will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
d.	 i.
	ii. The permit should be conditioned as indicated in item 2 below.
	iii. The permit should contain special condition(s) as indicated in item 3 below;
a.	☐ Condition to allow groundwater production from no deeper than ft. below land surface;
b.	☐ Condition to allow groundwater production from no shallower than ft. below land surface;
c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
d.	☐ Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.
	Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):
	oundwater availability remarks:
	re are a number of nearby wells completed in the Dalles Formation. WASC 3630 (located on the south edge of Tygh ley) has been monitored since the 1960's and shows no decline and a water-level coincident with nearby reaches of Tygh
Cre	ek. Two nearby wells (WASC 51079, located to the northwest along the north flank of Tygh Valley and WASC 51079
	tted on the hillsides to the northeast) have water-level permit conditions. Water-level measurements from WASC 51079 relatively erratic, likely a response to pumping and restricted to a small locality. Aside from WASC 51079, the
	regraph for nearby wells indicates overall stable conditions at the current use.
The	estimated yield listed on the nearby well logs range from 20 to 500 gpm. It appears likely that a well completed in the
	te formation should be capable of producing 22.4 or 45 gpm.
_	

5

Page

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Tygh Valley Formation*	\boxtimes	

Basis for aquifer confinement evaluation: *Based on the location it appears that the well will be constructed into interbedded sandstones/claystones and lava flows of the Dalles Formation. The nearby well logs list the SWL above the first water-bearing zone, but not by a large amount. It may be more accurate to describe the aquifer as semiconfined.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)		Hydraulically Connected? YES NO ASSUMED		Potentia Subst. Int Assum YES	erfer.
1	1	Tygh Creek	~1100	~1080-	1930	\boxtimes				\boxtimes
			- 1120	1130						
1	2	White River	~1100	~1060	7420	\boxtimes				\boxtimes
			- 1120							

Basis for aquifer hydraulic connection evaluation: The geologic maps suggest that a well at the proposed location will be completed into the Dalles Formation. Wells completed in Dalles Formation located within Tygh Valley or along the southern flank of the valley have water-levels which are coincident in elevation with nearby reaches of the surface waters. Wells completed in the Dalles Formation located on the hill slope to the north of the valley are generally located a larger distance above the valley floor and display water-levels ranging from approximately 10 to 60 feet in elevation above the surface water sources. The proposed POA is located right at the northern edge of the valley floor and will likely have an elevation slightly above to coincident with nearby surface waters.

Water Availability Basin the well(s) are located within: 70088: WHITE R > DESCHTUES R – AT MOUTH

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked \boxtimes box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¹ / ₄ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			IS 70088	60		148		<<25 <i>%</i>	

C3b. **690-09-040 (4):** Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells.** Otherwise same evaluation and limitations apply as in C3a above.

	SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
ſ									
ſ									

Comments: Interference at 30 days between the well and the surface water sources was estimated using the Hunt 2003 model. The low permeability layers below the stream bed result in an inefficient connection between the aquifer and the stream, therefore interference at 30 days should be less than 25%.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

	istributed												
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0.01 %	0.02 %	0.03 %	0.04 %
Well (Q as CFS	0	0	0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0	0
Interfer	ence CFS	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	outed Well		. .	3.6		3.6	-			~			_
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
	Q as CFS												
Interfer	rence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS												
	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS	70	70			,,,	,,,	,,,	,,,	,,,	,,,	,,,	,,,
	rence CFS												
111101101		%	%	%	%	%	%	%	%	%	%	%	%
Well (Q as CFS	70	/0	70	70	70	70	/0	/0	70	70	70	70
	rence CFS												
Interier	Chec Cr 5	%	%	%	%	%	%	%	%	%	%	%	%
Wall	Q as CFS	70	70	70	70	70	70	70	70	70	70	70	%
	ence CFS												
merier	ence Cr3							<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
(A) = To	otal Interf.	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$(\mathbf{B}) = 80$	% Nat. Q	250	366	376	452	477	290	192	159	148	149	151	211
(C) = 1	% Nat. Q	2.50	3.66	3.76	4.52	4.77	2.90	1.92	1.59	1.48	1.49	1.51	2.11
(D) =	(A) > (C)	X	X	X	X	X	X	X	X	X	X	X	X
(E) = (A	/B) x 100	%	%	%	%	%	%	%	%	%	%	%	%
- (A	, D) A 100	/0	/0	/6	/6	70	70	/0	/0	/0	/6	/0	/0

Version: 05/07/2018

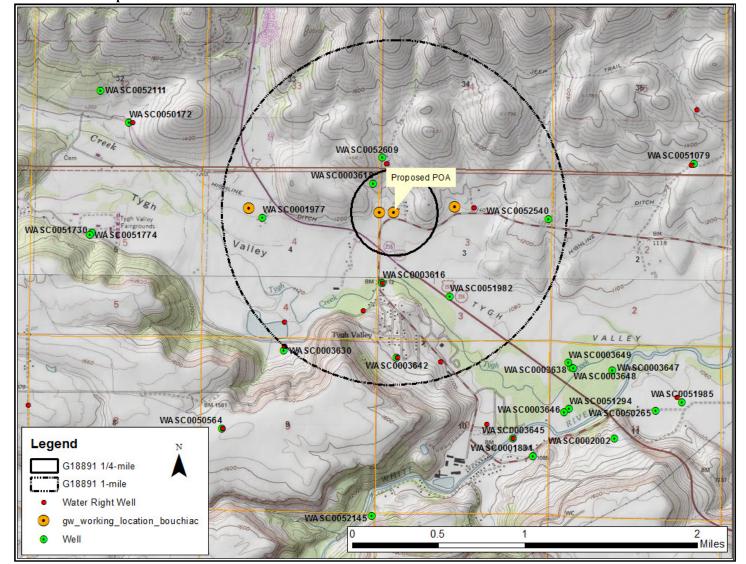
	al interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as
	D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage. Basis for impact evaluation: Interference at 30 days between the well and the surface water sources was estimated using the
	Junt 2003 model.
_	
_	
_	
_	
_	
_	
_	
_	
_	
C4b.	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
	Rights Section.
C5. 🛛	If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use
	under this permit can be regulated if it is found to substantially interfere with surface water:
	i. The permit should contain condition #(s) 7J
	ii. The permit should contain special condition(s) as indicated in "Remarks" below;
G (GTT	VAND 1 10 10
C6. SW	// GW Remarks and Conditions:
The	e White River is likely a regional sink.
-	
Ref	ferences Used:
	olication files: G-18888 and groundwater reviews for nearby applications G-16891 G-16956, G-17852 and G-18295.
<u>OW</u>	/RD well log database, in particular: WASC 51079, WASC 52540 and WASC 52609.
Cha	prod D. D. and Scott W. E. 1005. Proliminary man of the Mount Hood 20, by 60 minute guadrangle. Cascada Danca, north
	errod, D. R., and Scott, W. E., 1995, Preliminary map of the Mount Hood 30- by 60-minute quadrangle, Cascade Range, north- tral Oregon: Reston, Va., U.S. Geological Survey, Open File Report 95-219, map scale 100,000.
<u>cen</u>	an oregon reston, in, old Geological out to 1, open the report 15 217, http soule 100,000.
	ters, A.C., 1968, Reconnaissance geologic map of the Dufur quadrangle, Hood River, Sherman, and Wasco Counties, Oregon:
<u>U.S</u>	G. Geological Survey, Miscellaneous Geologic Investigations Map I-556, scale 1:125,000.

Date: May 13, 2020

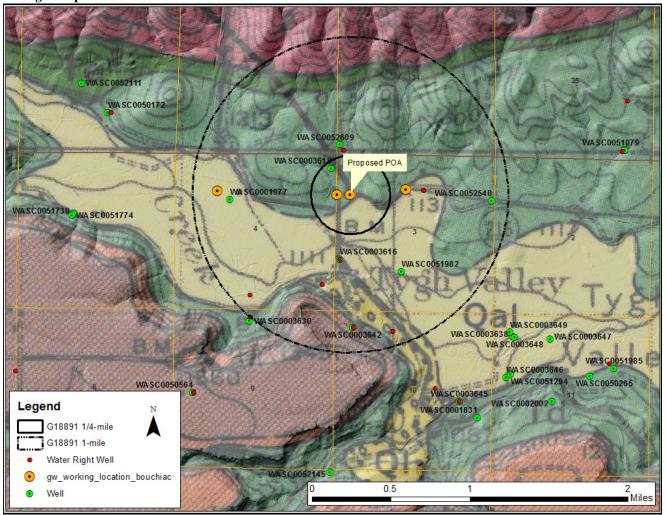
Page

Application G-18891

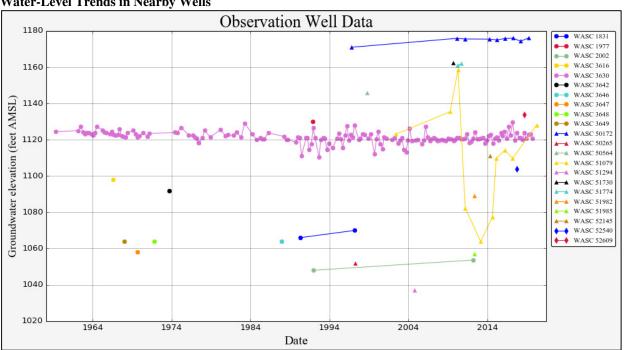
D. WELL CONSTRUCTION, OAR 690-200

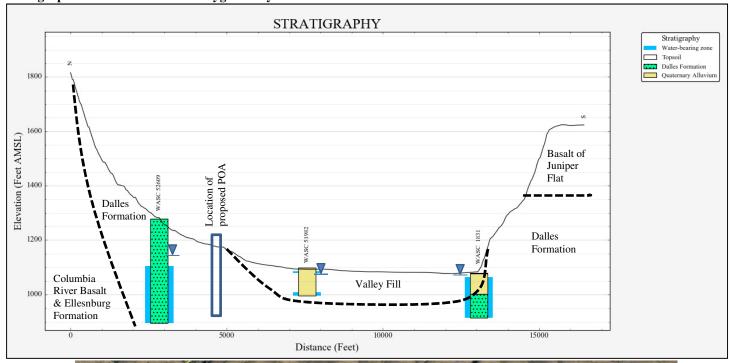

D1.	Well #:		Logid:	
D2.	THE WEI	LL does not appe	ar to meet current well construction sta	andards based upon:
	a. \square re	view of the well l	og;	
	b. \square fie	eld inspection by		;
				;
D3.	THE WEI	LL construction	leficiency or other comment is described	ed as follows:
D4.	Route to	the Well Constru	action and Compliance Section for a rev	view of existing well construction.
Water A	Availability	Tables		
			WATER AVAILABILITY TABL	3LE
	ned ID #: 5:08 PM	70088	WHITE R > DESCHUTES R - AT Basin: DESCHUTES	Exceedance Level: 80 Date: 04/27/2020
	tershed Number St			AN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC STOR

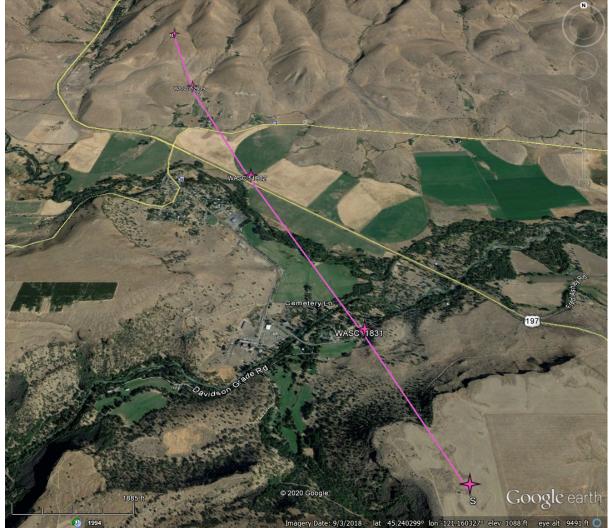
		DETAILED REPORT	ON THE WATER AVAILA	ABILITY CALCULATION	N	
watershed ID #: Fime: 6:08 PM	70088	WHITE	E R > DESCHUTES R - Basin: DESCHUT			dance Level: 80 ate: 04/27/2020
4onth	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is 1	Monthly values a the annual amount at	are in cfs. : 50% exceedance i	n ac-ft.	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	250.00 366.00 376.00 452.00 477.00 290.00 192.00 159.00 148.00 149.00 151.00	15.70 24.80 31.30 52.70 113.00 121.00 89.60 72.40 64.50 52.00 5.82 8.59	234.00 341.00 345.00 399.00 364.00 169.00 102.00 86.60 83.50 97.00 145.00 202.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	60.00 100.00 145.00 145.00 145.00 100.00 60.00 60.00 60.00 60.00 60.00	174.00 241.00 200.00 254.00 219.00 69.00 42.40 26.60 23.50 37.00 85.20


70087 DESCHUTES R > COLUMBIA R - AB MOUTH AT GAGE 14103000 NO NO YES YES YES NO NO NO NO NO NO NO NO YES 70088 WHITE R > DESCHUTES R - AT MOUTH NO NO YES

DETAILED REPORT OF INSTREAM REQUIREMENTS														
Watershed ID Time: 12:09		WHITE R > DESCHUTES R - AT MOUTH										Basin: DESCHUTES Date: 05/13/2020		
Application Number	Status	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	
		Monthly values are in cfs.												
MF201A MF202A IS70088A	CERTIFICATE CERTIFICATE CERTIFICATE	60.0 60.0 60.0	95.0 100.0 100.0	95.0 145.0 145.0	95.0 145.0 145.0	95.0 145.0 145.0	95.0 100.0 100.0	60.0 60.0 60.0	60.0 60.0 60.0	60.0 60.0 60.0	60.0 60.0 60.0	60.00 60.00 60.00	60.0 60.0 60.0	
MAXIMUM		60.0	100.0	145.0	145.0	145.0	100.0	60.0	60.0	60.0	60.0	60.0	60.0	


Well Location Map


Geologic Map



Water-Level Trends in Nearby Wells

Stratigraphic Cross Section across Tygh Valley

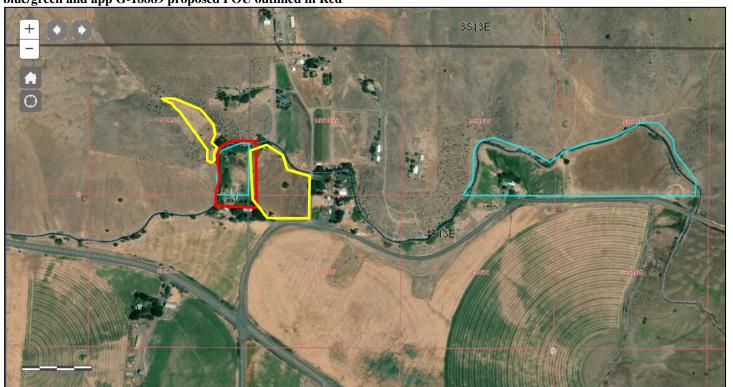
Application G-18891 Date: May 13, 2020

Analytical Model for Stream Depletion of Tygh Creek

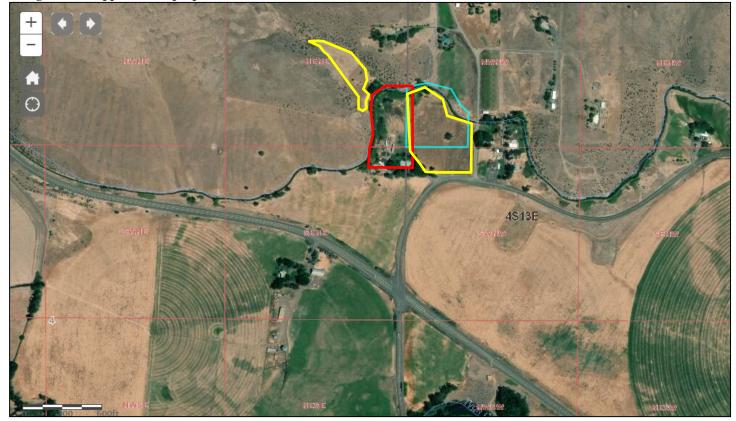
Transient Stream Depletion (Jenkins, 1970; Hunt, 1999, 2003) G-18891 POA to Tygh Creek														
	0.070	1					-10091	POA to	rygn Cre	ek			_	
Stream depletion (fraction of well discharge)														
	0.080													
	0.000										****			
												77	41	
	0.050										-		-	
										20				
	0.040	_		-			-					+	_	
호등										1				
들	0.030								1					
Stre	0.030				1			1					l	
act					/ /			1					l —	
£	0.020			200								+	-	
			100	₹~/			- "						l —	
	0.010		1									+	-	
		200											<u> </u>	
	0.000	سيشت												
	0.000		30 6	30 8	0 12	20 15	0 18	0 21	0 240	270	300	330	360	
					Tir	ne since	start of p	umping (days)					
			-·-· H	unt 2003	s1	_	Hunt	2003 s2		H	unt 2003 s3		-	
	_												┛—	
Outpu	t for S	tream F	epletion	n Scane	ario 2 (e	21.	Time n	ump or	/pump	ing duration	n) - 240	dave		
Days	IL IOI 3	30	60	90	120	150	180					330	360	
J SD	$\overline{}$	86.0%	90.1%	91.9%	93.0%	93.7%	94.3%					3.9%	3.0%	
H SD 1	999	46.3%	57.5%	63.5%	67.5%	70.4%	72.6%					15.6%	12.4%	
H SD 2	$\overline{}$	0.41%	0.96%	1.62%	2.35%	3.10%	3.86%					5.88%	5.83%	
Qw, c	$\overline{}$	0.050	0.050	0.050	0.050	0.050	0.050					0.050	0.050	
H SD 9		0.023	0.029	0.032	0.034	0.035	0.036					0.008	0.006	
		0.0002	0.0005	0.0008	0.0012	0.0016						0.0029		
	-,													
Paran	neters	:				Sce	nario 1	Sc	enario 2	2 S	enario 3		Units	
Net ste	eady pu	mping ra	te of we		Qw		0.05		0.05		0.05		cfs	
Time pump on (pumping duration)					tpon		240		240)	240		days	
Perpendicular from well to stream					a		1930		1930		1930		ft	
Well de					d		250		250)	250	ft		
Aquife	r hydra	ulic cond	ductivity		K		10	25		50		ft/day		
Aquifer saturated thickness					b		80							
Aquifer transmissivity					Т	800		2000		4000		ft*ft/day		
			pecific y		S	0.001		0.001		0.001				
			aulic cond	ductivity	Kva		1	1			1		ft/day	
		rated thic			ba	90		90		90		ft		
Aquita	rd thick	ness bel	ow strea	ım	babs	80		80		80		ft		
	rd poro				n	0.2		0.2		0.2				
Stream	n width				WS	40		40		40				
			ce (lambo	da)	sbc	0.500000		0.500000						
		ion facto	Γ		sdf		.656125			0.931225		days		
	nbed fa				sbf		.206250	0.482500		0.241250				
			4 function		ť		.214771		0.536927		1.073854			
_			4 function		K'		.734722		20.693889		10.346944			
			4 function		epsilon'		.005000		0.005000		0.005000			
input #	4 for H	unt's Q_4	4 function	n	lamda'	1	.206250		0.482500)	0.241250			

Version: 05/07/2018

Page


13

Date: May 13, 2020


Analytical Model for Stream Depletion of White River

			Trans	sient S	tream [•	•				nt, 1999, 2	2003)		
	0.018					G	5-18891	POA to	White I	Rive	er 		-,	
	0.016									T		_	1	
Stream depletion (fraction of well discharge)	0.014									\perp				
														-
	0.012									T				T —
	0.010	-	-							+				-
	0.008									┖				
of v	0.000													
Stre	0.006									+				
(frac	0.004	-	_											
	0.000									1.				
	0.002													
	0.000		20 6	,		20 15	:n 46	30 21		,,,	270	200	220	200
	-0.002	Ŭ .	310 6	b (D 12	20 18)U 18	30 21	0 2	240	270	300	330 :	360
					Tin	ne since	start of r	umnina	(dave)					
						ne since			(days)					\neg
			н	unt 2003	s1	_	Hun	t 2003 s2			Hu	nt 2003 s3		
	t for S	tream D									ng duratio			
Days		30	60	90	120	150				40	270	300	330	360
J SD		49.8%	63.2%	69.6%	73.5%	76.2%				\rightarrow	32.3%	19.8%	14.2%	11.0%
H SD 1		23.5%	37.3%	45.4%	51.0%	55.2%				\rightarrow	41.5%	29.3%	22.5%	18.2%
H SD 2	_	0.00%	0.00%	0.00%	0.00%	0.00%				\rightarrow	0.05%		0.11%	0.15%
Qw, c		0.050	0.050	0.050	0.050	0.050				$\overline{}$	0.050	0.050	0.050	0.050
	3, cfs	_	0.0000	0.0000	0.0000	0.0000	_			\rightarrow	0.000025	0.0000	0.0001	0.0001
	,				0.000	0.000		0.000				0.000	0.000	0.0001
Paran	neters	:				Sce	enario 1	So	enario	2	Sce	enario 3		Units
Net ste	eady pu	imping ra	te of we	I	Qw		0.05	5	0.05		0.05		cfs	
Time p	ump on	(pumping	g duratio	n)	tpon		240)	240		240		days	
Perper	ndicular	from we	ll to stre	am	а		7420	_		20	7420		ft	
Well de	•				d		250		250		250		ft	
Aquifer hydraulic conductivity					K	10		_	25		50		ft/day	
Aquifer saturated thickness					b	80								
Aquifer transmissivity Aquifer storativity or specific yield					T S	800				4000 0.001		ft*ft/day		
		cal hydra			Kva	0.001		0.001		0.001		ft/day		
				activity	ba	90			90		90		TVday f	
Aquitard saturated thickness Aquitard thickness below stream					babs	80			80		80		f	
Aquitard porosity					n	0.2			0.2		0.2			
Stream width					ws	40			40		40		ft	
Streambed conductance (lambda)				sbc	0.500000)	0.500000		0.500000		ft/day		
Stream depletion factor					sdf	68.820500			27.528200		13.764100			
Streambed factor					sbf		1.637500		1.855000		0.927500			
input #1 for Hunt's Q_4 function					ť		0.014531		0.036326			.072653		
input #2 for Hunt's Q_4 function					K'		1.672222		305.868889		152.934444			
input #3 for Hunt's Q_4 function					epsilon'	0.005000			0.005000		0.005000			
input #	4 for H	unt's Q_4	function	1	lamda'	4	1.637500)	1.8550	00	(.927500		


OWRD Water Rights Mapping Tool for Cert 3733 – proposed POU outlined in yellow over certificate POU outlined in blue/green and app G-18889 proposed POU outlined in Red

OWRD Water Rights Mapping Tool for Cert 5491 – proposed POU outlined in yellow over certificate POU outlined in blue/green and app G-18889 proposed POU outlined in Red

 $OWRD\ Water\ Rights\ Mapping\ Tool\ for\ Cert\ 8545-proposed\ POU\ outlined\ in\ yellow\ over\ certificate\ POU\ outlined\ in\ blue/green\ and\ app\ G-18889\ proposed\ POU\ outlined\ in\ Red$

