Approved by:

MEMO

To: Kristopher Byrd, Well Construction and Compliance Section Manager

From: Travis Kelly, Well Construction Program Coordinator

Subject: Review of Water Right Application G-18931

Date: July 28, 2020

The attached application was forwarded to the Well Construction and Compliance Section by the Groundwater Section. Joe Kemper reviewed the application. Please see Joe's Groundwater Review and the Well Report.

Applicant's Well #1 (JACK 63759): Based on a review of the Well Report, Applicant's Well #1 seems to protect the groundwater resource.

The construction of Applicant's Well #1 may not satisfy hydraulic connection issues.

STATE OF OREGON
WATER SUPPLY WELL REPORT
(as required by ORS 537 765 & OAR 690-205-0210)

JACK 63759

WELL I.D. LABEL# L | 133121 START CARD # | 1042310 ORIGINAL LOG # Page 1 of 2

WATER SUPPLY WELL REPORT	4/0//	3010	START CA		1042310		
(as required by ORS 537.765 & OAR 690-205-0210)	4/9/2	2019	ORIGINAL I	LOG#			
1) LAND OWNER Owner Well I.D.							
First Name Last Name		(9) LOCATI	ON OF WELL (legal de	escription	1)	
Company MEDFORD SCHOOL DISTRICT 549C		County JACKSOI	Twp 38.00	S N/S	S Range	3.00	W E/W WM
Address 500 MONROE ST			NE 1/4 of the S				
City MEDFORD State OR Zip 97501		Tax Map Numbe	er —		Lot		
	version	Lat	" or 42.2	23480600			DMS or DD
Alteration (complete 2a & 10) Abandonment(c	complete 5a)	Long	" or -12:	3.0449820	00		DMS or DD
2a) PRE-ALTERATION Dia + From To Gauge Stl Plstc Wld Thrd		Stro	eet address of well	○ Nea	rest address		_
Casing:			PLEGATE RD. JACK				
Material From To Amt sacks/lbs							
Seal:							
3) DRILL METHOD		(10) STATIC	C WATER LEVE				
X Rotary Air Rotary Mud Cable Auger Cable Mud		D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 / D A1: 2	Date	SWL(ps	i) +	SWL(ft)
Reverse Rotary Other		Completed V	ell / Pre-Alteration Well 4/	1/2010		-	
		Completed	Flowing Artesia	1/2019	Derry Hole	ୢ୷୷	23
4) PROPOSED USE Domestic Irrigation Community	У						
Industrial/ Commericial Livestock Dewatering		WATER BEARI	NG ZONES I	Depth wat	ter was first	found _	91.00
Thermal Injection Other		SWL Date	From To	Est l	Flow SWL	(psi)	+ SWL(ft)
5) BORE HOLE CONSTRUCTION Special Standard	(Attach copy)	4/1/2019	91 94		3		23
Depth of Completed Well 240.00 ft.	. 137	4/1/2019	128 134		5		23
BORE HOLE SEAL	sacks/	4/1/2019	183 185		3		23
Dia From To Material From To	Amt lbs	4/1/2019	209 212		9		23
10 0 60 Bentonite Chips 0 60	35 S	1/1/2019	20) 212				23
6 60 240 Calculated	27.38			I			
Calculated		(11) WELL I	.0G1	E14:			
		l' '	Ground	Elevation			
	LLE.		Material & SMALL GRAVEI		Froi	m 0	To 23
X Other <u>DRY POURED</u> Backfill placed from ft. to ft. Material		I -	SM GRAVEL (CONC			23	51
			BASALT MEDIUM			51	74
		GREY BASALT				74	149
Explosives used: Yes Type Amount		DARK GREY B			1	49	161
5a) ABANDONMENT USING UNHYDRATED BENTONI	ITE	GREY BASALT	Γ MEDIUM		1	61	240
Proposed Amount Actual Amount							
6) CASING/LINER							
Casing Liner Dia + From To Gauge Stl Plstc	Wld Thrd						
6X2.577.5.250●	<u> </u>						
Q							
	ІШ Ш						
Shoe Inside Outside Other Location of shoe(s) 7	7.5						
Temp casing Yes Dia From + To							
7) PERFORATIONS/SCREENS							
Perforations Method LAZER CUT/SAWCUT							
Screens Type Material		Date Started4	/1/2019	_Comp	leted <u>4/1/2</u>	2019	
Perf/ Casing/ Screen Scrn/slot Slot # of		(unbonded) We	nter Well Constructo	n Contific	otion		
Screen Liner Dia From To width length slots		(e work I performed o			laanani	na alteration or
Perf Liner 4 207 227 32 1 311 Perf Liner 4 227 240 .188 4 51			f this well is in co				
1 CH Line			ndards. Materials use				
			nowledge and belief.		•		
		License Number	r	Dat	te		
8) WELL TESTS: Minimum testing time is 1 hour			-				
,	Artesian	Signed					
		(bonded) Wet	· Well Constructor C	ortificati	on		
Yield gal/min Drawdown Drill stem/Pump depth Duration of 20 240 1	(nr)	` ′					1 1
20 240 1			sibility for the constru on this well during the		1 0		
			ng this time is in co				
Temperature 53 °F Lab analysis Yes By			dards. This report is				
	nnm	License Number	=		-		<u> </u>
Water quality concerns?	<u>ppm</u> Units	License Muniber	1835	Dat	te 4/9/2019		
		Signed KEVI	N GILL (E-filed)				
			tional) CLOUSER D	RILLING	INC.		
		<u> </u>					

JACK 63759

WELL I.D. LABEL# L 133121

START CARD # 1042310

ORIGINAL LOG #

continuation page	4/9/2019	ORIGINAL LOG#	2310
2a) PRE-ALTERATION	Water Qualit		
Dia + From To Gauge Stl Plstc Wld Thrd	From To		Amount Units
Material From To Amt sacks/lbs			
Figure 10 Film Sacks/105			
	— (10) STATIC	WATER LEVEL	
5) BORE HOLE CONSTRUCTION	SWL Date		SWL(psi) + SWL(fr
BORE HOLE SEAL Dia From To Material From To Amt	sacks/		
Dia From To Material From To Amt	lbs		
Calculated			
Calculated			
FILTER PACK From To Material Size	(11) WELL I	OG	
140m 10 National Size		Material	From To
6) CASING/LINER			
	Thud		
Casing Liner Dia + From To Gauge Stl Plstc Wld	Thiu		
7) DEDEOD ATIONS/SCREENS			
7) PERFORATIONS/SCREENS			
Perf/ Casing/ Screen Scrn/slot Slot # of Screen Liner Dia From To width length slots	Tele/ pipe size		
Ziner zin Trom 10 widin length 3550			
	 		
	Comments/F		
(8) WELL TESTS: Minimum testing time is 1 hour			
Yield gal/min Drawdown Drill stem/Pump depth Duration (hr)		
Zien Steiner ump deput Duration (
	-		
	⊣ I I		

Groundwater Application Review Summary Form

Application # G- <u>18931</u>
GW Reviewer <u>Joe Kemper</u> Date Review Completed: <u>7/24/2020</u>
Summary of GW Availability and Injury Review:
Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.
Summary of Potential for Substantial Interference Review:
oximes There is the potential for substantial interference per Section C of the attached review form.
Summary of Well Construction Assessment:
☐ The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.
This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

Version: 03/26/2020

WATER RESOURCES DEPARTMENT

MEMO)						<u>J</u>	uly 24th		, 20) <u>20</u>	
то:	1	Applica	tion G-	18931	<u>l</u>							
FROM	[: (GW:	Joe Ker Reviewer									
SUBJE	ECT: Sc	enic Wa	aterway	Interf	erence l	Evaluat	ion					
	YES NO		source o		priation utaries	is hydr	aulically	y connec	cted to a	a State S	Scenic	
	YES Use the Scenic Waterway Condition (Condition 7J) NO											
<u></u>	Per OR interfere	ence with	h surfac	e water	that con					-		
	Per OR interfere Departi propose maintai	ence with ment is ed use	h surfac unable will me	e water to find easurab	that cor that the ly redu	ntributes ere is a p ace the	to a sce prepone surface	enic wat derance e water	erway; e of evic	therefo	re, the nat the	
Calculat per crite	IBUTIC e the perc ria in 390 urtment is	entage of 0.835, do 1	consump not fill in	tive use b the table	y month o but check	k the "una	ble" opti					
Waterv	se of this way by the water fi	he follo	wing an			•					cenic use by v	which
Jan 0.083	Feb 0.083	Mar 0.083	Apr 0.083	May 0.083	Jun 0.083	Jul 0.083	Aug 0.083	Sep 0.083	Oct 0.083	Nov 0.083	Dec 0.083	-

Version: 03/26/2020

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	\mathcal{E}					1 17		Da	te	7/24/20	20		
FROM	:	Groun	uwater Sec	uon		Joe Ken	nper wer's Name						
SUBJE	CT:	Applic	cation G- 18	3931				review of n	a				
SCEUL	.01.	тррпс	<u>11</u>	,,,,,,		Sup	crocaes i		<u>u</u>	Γ	Date of Revi	ew(s)	
PUBLI	IC INTE	REST	PRESUM	PTION: 0	GROUND	WATER	.						
OAR 69	90-310-13	0(1) T	he Departme	ent shall pro	esume that	a proposed	<u>-</u> d ground	vater use will	ensure i	he presei	vation of	the publi	ic
welfare,	safety and	d healti	h as describ <mark>e</mark>	ed in ORS 5	37.525. De	partment s	staff revie	ew groundwat	er applic	cations un	der OAR	690-310	-140
								the proposed					
the pres	umption c	riteria.	This review	v is based u	pon availa	ble inforn	nation ar	nd agency po	licies in	place at t	the time	of evalua	tion.
A. <u>GE</u>	NERAL :	INFO	RMATION	<u>N</u> : Ap	plicant's N	ame: <u>F</u>	Ruch Ele	mentary Sch	ool	C	ounty:	<u>losephin</u>	<u>e</u>
A1.								Rogue					Basin,
	Applegate					subbas	sin						
A2.	Proposed	Luse	Irriga	tion (2 acre	s)	Seaso	nality.	3/1 to 10/31					
112.	торовес		111154	11011 (2 4010	<u> </u>			5/1 to 10/51					
A3.	Well and	aquife	r data (attac	ch and num	ber logs fo	or existing	wells; n	ark propose	d wells a	ıs such u	nder logi	d):	
Well	Logic	Applicant's			d Aquifer*	Propo		Locatio	n	Location, metes and bounds,			
1	Logid Well # JACK 63759 1		•	Bedrock		Rate(cfs) 0.045		(T/R-S QQ-Q) 38S/3W-27 NE-SW		2250' N, 1200' E fr NW cor S 36 484' S & 515' W FR C1/4 COR, S27			
2	JACK 03	139	1	Di	eurock	0.04	0.043 363/3W-27 NE-3W		464 5 6	(313 W F)	X C1/4 CO1	X, 327	
3 4													
5										+			
* Alluvii	um, CRB, E	Bedrock											
	Well	First			Well	Seal	Casing	g Liner	Per	forations	Well	Draw	
Well		Wate	1 ×w1 1	SWL Date	Depth	Interval	Interva	_		Screens	Yield	Down	Test Type
1	ft msl 1536	ft bls	23	4/1/2019	(ft) 240	(ft) 0-60	(ft) 0-77.5	(ft) 0-207	20	(ft) 07-240	(gpm) 20	(ft) 217	Air
1	1330	91	23	4/1/2019	240	0-00	0-77.3	0-207	21	J7-240	20	217	All
Use data	from appli	cation fo	or proposed w	ells.									
A4.	Commer	ıts:											
11													
A5. ⊠								rules relative					
	_		-	•	•	ted to surfa	ace water	\square are, or [⊠ are n	ot, activa	ted by thi	s applicat	tion.
		(Not all basin rules contain such provisions.) Comments: The Rogue basin rules contain no such provisions.											
	Commen	us: <u>1116</u>	e Rogue basi	in rules con	tain no suc	n provisioi	ns.						
A6. 🗆	Well(s) #	<i></i>			,		,	tap(s) an aqui	fer limite	ed by an a	administra	ative rest	riction.
	Name of	admini	strative area	ı:									
	Commen	ts:											
	-												
	•												

Version: 03/26/2020

Application G-18931 Date: 7/24/2020

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

Bas	sed upon available data, I have determined that groundwater* for the proposed use:	
a.	□ is over appropriated, □ is not over appropriated, or □ cannot be determined to be over appropriated of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;	luring any
b.	\square will not or \square will likely be available in the amounts requested without injury to prior water rights. * This is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;	is finding
c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or	
d.	will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. The permit should contain condition #(s) 7C; 7J; Medium water-use reporting	;
	 ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below; 	
a.	☐ Condition to allow groundwater production from no deeper than ft. below land surfa	ace;
b.	☐ Condition to allow groundwater production from no shallower than ft. below land surface.	ace;
c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and land surface;	ft. below
d.	 □ Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that a to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend we issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section. Describe injury —as related to water availability—that is likely to occur without well reconstruction (interfer 	ithholding he
	senior water rights, not within the capacity of the resource, etc):	
Hay sour beyo OW vari	oundwater availability remarks: The applicant's well accesses groundwater hosted in fractured bedrock of the yfork terrane. Bedrock at this site is overlain by ~50 feet of unconsolidated terrace sediments, which do not appear of water. Well yields in TRS 38S/3W-S27 are low (median = 10 gpm), and yields typically decrease with decond 200-300 feet, both of which are typical for the fractured bedrock aquifers in the area. Water level trends in y/RD observation wells indicate that aquifer levels respond to both seasonal precipitation and year-to-year precipitation. Water level records do not span a long enough time period to conclude that the resource is or is not over propriated.	ear to be a epths adjacent
This	s area has relatively high groundwater development; there are ~150 well logs filed in section 27 and 11 groundw	ater
POA	As within a mile of the applicant's well. The Theis equation (1935) is used to estimate maximum well-to-well exference from the proposed use (5 AF total at 20 gpm for 56.6 days to the nearest tax lot, ~300 feet). The resulting wdown is expected to be less than 10-15 feet. Water use, static water level, and interference conditions should be	<u>ng</u>

Page

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Fractured Bedrock of Western Hayfork Terrane		⊠

Basis for aquifer confinement evaluation: In fractured-bedrock aquifer systems, water is stored and transmitted primarily by discrete but connected fracture sets. These fractures generally extend to near the surface, so water within these fractures is likely under atmospheric pressure (unconfined) despite an overall low storage coefficient for the aquifer system as a whole and static water levels often reported above water-bearing zones on driller's logs. Terrace sediments do overlie the bedrock system here, but available well logs and water level data suggest that they are saturated only seasonally and likely act as an extension of the underlying bedrock aquifer system as opposed to a confining unit.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¼ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	Hydraulically Connected? YES NO ASSUMED		Potentia Subst. Int Assum YES	terfer.	
1	1	Forest Creek	1513	1478	615			\boxtimes	X	
1	2	Applegate River	1513	1400	5900	X				\boxtimes

Basis for aquifer hydraulic connection evaluation: Groundwater elevations are higher than adjacent surface water sources, indicating that groundwater is flowing towards and discharging to streams. Additionally, there are multiple mapped and permitted springs in the vicinity indicating that groundwater is discharging to the surface. Deeper groundwater flow paths also likely discharge to the Applegate River.

Water Availability Basin the well(s) are located within: FOREST CR > APPLEGATE R - AT MOUTH; impacts also considered for APPLEGATE R > ROGUE R - AB JOE G

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked \boxtimes box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1	\boxtimes		IS71614A	0.1	×	0.01	\boxtimes	>50	⊠

	n and limitat	ions apply a	s in C3a abo			only if Q is		_		
	SW #	Qw 2 5 cfs			Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interfere @ 30 da (%)	nce nys fo	otenti or Sub nterfe ssume
						`				
percentage	of the propo	osed pumpin	ng rate. Limi	nulically conne	he effects t	hat will occu	ır up to one y	ear after pun	nping beg	
additional on-Distribu	sheets if calculated Wells	culated flow	s from more	than one WAB	are require	ed.				
Vell SW		Feb		Apr May	Jun		Aug Sep	Oct	Nov	D
1 1	, ,	%	%	% %	%	%	%	% %	%	
Well Q as CF										
terference C	F5									
) = Total Inte	erf.									
) = 80 % Nat	. Q									
C) = 1 % Nat.	Q									
$\mathbf{D}) = (\mathbf{A}) > (\mathbf{C})$	c) 🗸	√	✓	√	√	√	√	√	√	
$= (A/B) \times 1$	00 %	%	%	% %	%	%	% %	6 %	%	
(D) = highl	ight the check impact eval	mark for each	h month when	tural flow at 80% re (A) is greater to the completer (1% of 38.4 cf	han (C); (E)	= total interference = total i	erence divided l	by 80% flow a	as percenta	ge.

Date: 7/24/2020

Page

6

Application G-18931

Application G-18931	Date: 7/24/2020	Page
C6. SW / GW Remarks and Conditions: The applicant's POA would prohydraulically connected to Forest Creek and to the Applegate River. Beclocated within ¼ mile of Forest Creek, it is automatically assumed to be Potential for Substantial Interference (PSI) as per OAR 690-009.	ause the well accesses an unconfined	d aquifer and is
Additionally, the proposed rate (0.045 cfs or 20 gpm) is greater than 1% 0.0001 cfs) and is greater than 1% of the adjacent instream water right (1 indicate that stream depletion would be greater than 25% after 30 days or PSI as per OAR 690-009. Because the well is within ¼ mile of Forest C finding.	% of 0.10 cfs). The results of stream f pumping. These metrics also result	n depletion modeling t in the assumption o
References Used: Donato, M.M., 1995, Preliminary geologic map of part of the Ruch quad Survey, Open-File Report OF-95-640, scale 1:24,000	rangle, Jackson County, Oregon: U.S	S. Geological
Hunt, B. 1999. Unsteady Stream Depletion from Ground Water Pumping	g. Journal of Hydrologic Engineering	g, Vol 8(1), pp12-19
Jenks, M.D., Mertzman, S.A., Wiley, T.J., Staub, P.E., Drazba, Marina, In Preliminary geologic compilation map of the southwest portion of Oregon Industries, Open-File Report O-07-16, scale 1:100,000		
OWRD Groundwater Information System Database – Accessed 7/23/202	20.	
Theis, C.V., 1935. The relation between the lowering of the piezometric using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519		discharge of a well

D. WELL CONSTRUCTION, OAR 690-200

D1.	Well #:	Logid:	
D2.	THE WELL d	loes not appear to meet current well construction standards based upon:	
	a. review	v of the well log;	
	b. \square field in	nspection by	;
		of CWRE	
		(specify)	
D3.		construction deficiency or other comment is described as follows:	
D4.	Route to the V	Well Construction and Compliance Section for a review of existing well construction.	

Water Availability Tables

Water Availability Analysis

Detailed Reports

FOREST CR > APPLEGATE R - AT MOUTH ROGUE BASIN

Water Availability as of 7/23/2020

Watershed ID #: 71614 (Map)

Date: 7/23/2020

Exceedance Level: 80% ▼
Time: 6:12 AM

Water Availability Calculation Consumptive Uses and Storages Instream Flow Requirements Reservations

Water Rights Watershed Characteristics

Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	3.47	0.03	3.44	0.00	9.39	-5.95
FEB	6.24	0.11	6.13	0.00	12.00	-5.87
MAR	7.45	0.05	7.40	0.00	12.00	-4.60
APR	7.02	0.33	6.69	0.00	11.30	-4.61
MAY	5.73	0.53	5.20	0.00	8.19	-2.99
JUN	2.04	0.74	1.30	0.00	5.40	-4.10
JUL	0.13	0.98	-0.85	0.00	0.92	-1.77
AUG	0.25	0.81	-0.56	0.00	0.12	-0.68
SEP	0.01	0.54	-0.53	0.00	0.10	-0.63
OCT	0.09	0.18	-0.09	0.00	0.82	-0.91
NOV	1.25	0.02	1.23	0.00	2.63	-1.40
DEC	2.46	0.02	2.44	0.00	5.66	-3.22
ANN	4,720.00	263.00	4,520.00	0.00	4,110.00	597.00

Version: 06/26/2020

Water Availability Analysis Detailed Reports

APPLEGATE R > ROGUE R - AB JOE G ROGUE BASIN

Water Availability as of 7/23/2020

Watershed ID #: 250 (Map) Date: 7/23/2020

Water Availability Calculation

Time: 6:12 AM

Exceedance Level: 80% •

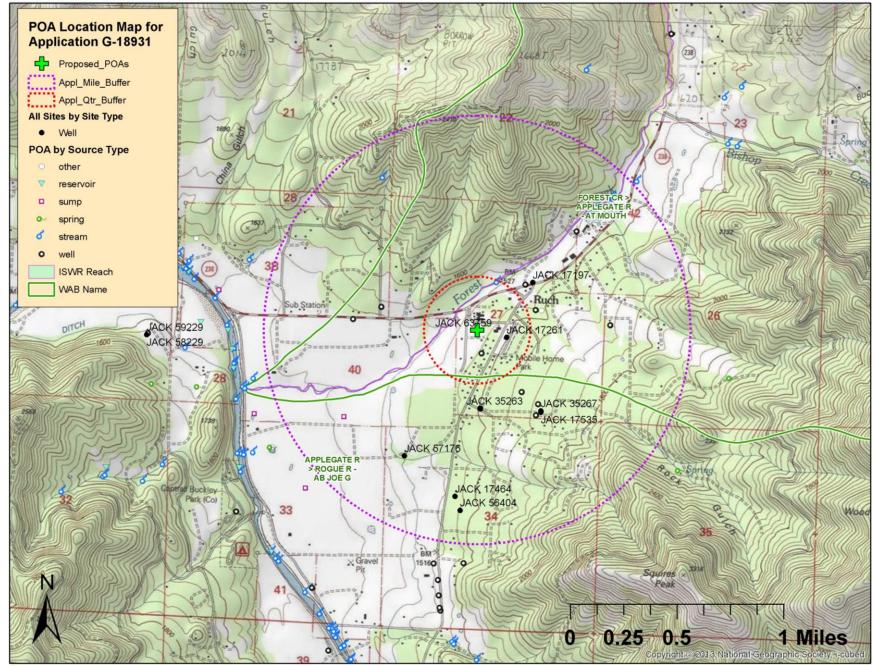
Consumptive Uses and Storages

Instream Flow Requirements

Reservations

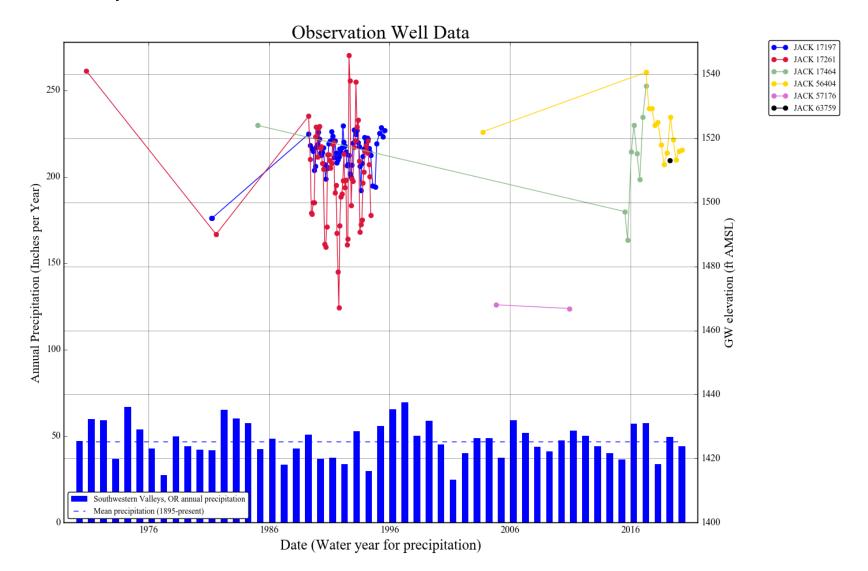
Water Rights

Watershed Characteristics


Water Availability Calculation

Monthly Streamflow in Cubic Feet per Second Annual Volume at 50% Exceedance in Acre-Feet

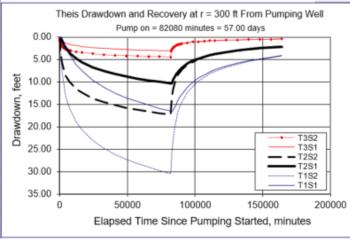
Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	204.00	2.39	202.00	0.00	200.00	1.61
FEB	378.00	436.00	-57.60	0.00	200.00	-258.00
MAR	463.00	435.00	28.00	0.00	265.00	-237.00
APR	481.00	450.00	30.50	0.00	265.00	-234.00
MAY	469.00	28.10	441.00	0.00	265.00	176.00
JUN	183.00	38.70	144.00	0.00	265.00	-121.00
JUL	70.90	51.40	19.50	0.00	230.00	-211.00
AUG	47.60	42.60	4.98	0.00	200.00	-195.00
SEP	38.40	28.30	10.10	0.00	200.00	-190.00
OCT	41.00	10.10	30.90	0.00	240.00	-209.00
NOV	85.80	1.82	84.00	0.00	240.00	-156.00
DEC	153.00	2.12	151.00	0.00	200.00	-49.10
ANN	279,000.00	90,500.00	188,000.00	0.00	167,000.00	69,500.00

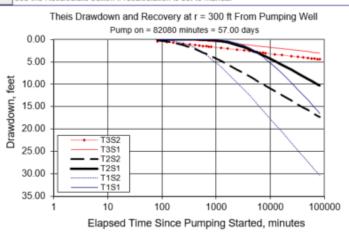

Version: 06/26/2020

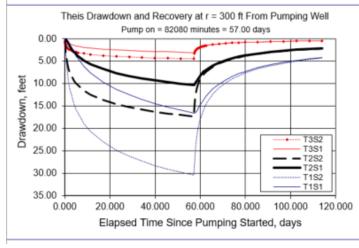
Well Location Map

Version: 06/26/2020

Water-Level Trends in Nearby Wells




Theis (1935) Distance Drawdown Modeling Parameters and Results


Written by Karl C. Wozniak September 1992. Last modified December 30, 2014

Var Name	Scenario 1	Scenario 2	Scenario 3	Units	
t		57		d	
r		300.00		ft	Q conversions
Q		20.000		gpm	20.00 gpm
K	0.500	1.000	5.000	ft/day	0.04 cfs
b		100		ft	2.67 cfm
S_1		0.00500			3,850.27 cfd
S_2		0.00050			0.09 af/d
T_f2pd	50	100	500	ft2/day	
T_ft2pm	0.0347	0.0694	0.3472	ft2/min	
T_gpdpft	374	748	3,740	gpd/ft	
	t r Q K b 5 1 S 2 T_f2pd T_ft2pm	t r Q S S_1 S_2 T_f2pd 50 T_ft2pm 0.0347	t 57 r 300.00 Q 20.000 K 0.500 1.000 b 100 S_1 0.00500 S_2 0.00050 T_f2pd 50 100 T_ft2pm 0.0347 0.0694	t 57 r 300.00 Q 20.000 K 0.500 1.000 5.000 b 100 S_1 0.00500 S_2 0.00050 T_f2pd 50 100 500 T_ft2pm 0.0347 0.0694 0.3472	t 57 d r 300.00 ft Q 20.000 gpm K 0.500 1.000 5.000 ft/day b 100 ft S_1 0.00500 S_2 0.00050 T_f2pd 50 100 500 ft2/day T_ft2pm 0.0347 0.0694 0.3472 ft2/min

Recalculate | Use the Recalculate button if recalculation is set to manual

Hunt (1999) Stream Depletion Model Parameters and Results

Application type: Application number: Well number: Stream Number: Pumping rate (cfs): Pumping duration (c	days):	r (3=March)	G 18931 1 1 0.045 244.0 3.0			
Parameter Distance from well to stream Aquifer transmissivity Aquifer storativity Aquitard vertical hydraulic conductivity Not used Aquitard thickness below stream Not used Stream width	a T S Kva babs	Scenario 1 615 500 0.01 0.01 0 5 0	Scenario 2 615 100 0.001 0.05 0 4 0	Scenario 3 615 50 0.0001 0.1 0 3 0 30	Units ft ft2/day - ft/day ft	
Days 10 330 360 30 6	n depletio i0 90 i9 74	n for Scena 120 78	rio 2: 150 180 80 81	210 240 83 84	270 300 29 17	
·	0.0	3 0.03	0.04 0.04	0.04 0.04	0.01 0.01 0.045 0.040	
0.000 0 30 60 90 120 150 180 210 240 270 300 330 Time since start of pumping (days)						