Groundwater Application Review Summary Form

Application # G- <u>18889</u>
GW Reviewer <u>Aurora C Bouchier</u> Date Review Completed: <u>January 15, 2021</u>
Summary of GW Availability and Injury Review:
Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.
Summary of Potential for Substantial Interference Review:
\Box There is the potential for substantial interference per Section C of the attached review form.
Summary of Well Construction Assessment:
☐ The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.
This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

Version: 03/36/2020

WATER RESOURCES DEPARTMENT

MEM	O						<u>Jar</u>	nuary 15	<u>5, 2021</u>			
то:		Applica	tion G	18889								
FRON	A :	GW:	Aurora Reviewer'		<u>nier</u>							
SUBJ	ECT: S	cenic Wa	aterway	Interfe	erence E	Evaluatio	0 n					
	YES NO		source o		-	is hydra	ulically	connect	ed to a S	State Sce	enic	
	YES NO	Use	the Scen	ic Wate	erway Co	ondition	(Condit	ion 7J)				
	interfer	RS 390.8 rence with rence is d	h surface	e water t	hat cont				_			
\boxtimes	interfer Depart propos	as 390.8 ence with the second use in the fr	h surface unable t will me	e water t to find t asurabl	that cont t hat the t ly reduc	ributes tre is a p	to a scen repondo surface	ic water erance (water 1	way; th of evide	erefore, nce that	the the	
Calculo per crit the Dep Exerci	tte the per eria in 39 partment is	ON OF I centage of 0.835, do to s unable to	consumpt not fill in to make a H	tive use by the table i Preponder lated to	y month an but check cance of E reduce 1	the "unab vidence fi monthly	ole" option inding. flows in	above, ti	hus inforn	ning Wate	er Rights ti	ha
		the follo	_	iounts e.	apressec	i as a pr	οροιμομ	or me	onsum	guve ust	Juy Will	CI.
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	

Version: 03/36/2020

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Rights Sec					Date		January	15, 2021				
FROM		Groun	dwater Sec	ction										
SUBJE	CT·	Annlic	cation G- 1	8889			wer's Name ersedes	-	iew of May	, 13 20	020			
БСВЛ	C1.	тррпс	<u>1</u>	0007		Бир	cracaca	1011	10 W 01	, 13, 2	D	ate of Revi	ew(s)	
DI IDI 1	C INTE	DECT	DDECIM	IPTION; (~DALIND	XX/A TED	•							
								wate	er use will er	sure th	he preser	vation of	the publi	c
									groundwater					
to deteri	mine whet	her the	presumptio	n is establis	hed. OAR	690-310-1	40 allow	s the	e proposed u	se be n	nodified o	or conditi	oned to n	neet
the pres	umption c	riteria.	This review	v is based u	pon availa	ble inforn	nation a	nd a	gency polic	ies in p	place at t	he time (of evalua	tion.
A. <u>GE</u> I	NERAL 1	INFO]	RMATIO	<u>N</u> : Ap	plicant's Na	ame: <mark>F</mark>	Rodney (<mark>Cub</mark> i	<mark>ic</mark>		Co	ounty: V	Vasco	
A1.	Applican	t(s) see	ek(s) <u>0.05</u>	cfs from	_1	well(s) in the _		Deschutes					Basin,
	W	hite Ri	ver			subba	sin							
A2.	Proposed	use	Irriga	ation (4 acre	es)	Seaso	nality: _	Apı	ril 15 – Octo	ber 15				
A3.	Well and	aquife	r data (atta	ch and num	ber logs fo	or existing	wells; n	narl	k proposed v	wells a	s such ur	nder logi	d):	
Well	Logic	l	Applicant'	s Propose	ed Aquifer*	Propo			Location	,		, metes an		
1	propose		Well # RC1		Valley Fm*	Rate((T/R-S QQ-Q 4S/13E-4 NE-N			1200' E fi W fr SE co		
2	ann 1													
* Alluvıı	ım, CRB, E	sedrock												
	Well	First	SWI I	SWL	Well	Seal	Casin		Liner		orations	Well	Draw	Test
Well	Elev ft msl	Wate:	r ft bls	Date	Depth (ft)	Interval (ft)	Interva (ft)	als	Intervals (ft)		Screens (ft)	Yield (gpm)	Down (ft)	Type
1	1140	11 018)		TBD	TBD	TBD)	TBD		ГBD	22.4	(11)	
	6 1:			11										
Use data	irom appn	cation 10	or proposed v	vens.										
A4.									y Formation					
									ing zones wi				n (Waters	<u>s,</u>
	1968). T	he app	lication stat	es that the w	vell inspect	or will be o	consulted	d on	all aspects o	f well	completion	on.		
	Section 3	of the	application	discusses th	ne Highline	Ditch and	Diversi	on E	limination p	roiect (which in	cludes		
	transferri	ng/con	verting/usin	ig as mitigat	ion surface	water righ	hts [in w	hole	or in part] in	ito gro	undwater	rights, a		
									o remove a 9					
									nat Mr. Cubi					_
									for these cer 5491 but not					
									res from Cer					
	used as n	nitigatio	on for a new	y groundwat	er right. It	appears th	at 8 out	of 1	6.2 acres fro	m Cert	ificate 37	'33 are in	tended to	<u>be</u>
									3 could be u					
			ate 5491aut water appli		ation for 4	acres, peri	naps thes	e 4 a	acres are inte	ended a	is a possi	ble mitiga	ation sou	rce for
	tills new	ground	water appro	cation.										
A5. 🗵	Provision	ns of th	ne Deschute	es			Basin	rule	es relative to	the de	velopmer	nt, classif	ication ar	nd/or
									are, or 🗵					
	_		-	such provis	•	to surr	acc water	_	ure , or <u></u>	u	re, activat	ou oy um	пррпси	
	•			GS Ground		y Area.								
A6. 🗆	Well(s) #	ŧ						tap(s) an aquifer	limite	d by an a	dministra	tive restr	iction.
· _									s) un uquitor					
	Commen							_			_			·

Version: 03/36/2020

Application G-18889 Date: January 15, 2021

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

Bas	ed upon available data, I have determined that groundwater* for the proposed use:
a.	□ is over appropriated, □ is not over appropriated, or □ cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
b.	\square will not or \square will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or
d.	 ■ will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource: i. ■ The permit should contain condition #(s) 7J, 7N, 7T ;
	 ii. The permit should be conditioned as indicated in item 2 below. iii. The permit should contain special condition(s) as indicated in item 3 below;
a.	☐ Condition to allow groundwater production from no deeper than ft. below land surface;
b.	☐ Condition to allow groundwater production from no shallower than ft. below land surface;
c.	Condition to allow groundwater production only from the groundwater reservoir between approximately ft. and ft. below land surface;
d.	☐ Well reconstruction is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.
	Describe injury —as related to water availability— that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):
The Vall Cree on to relate	re are a number of nearby wells completed in the Dalles Formation. WASC 3630 (located on the south edge of Tygh ley) has been monitored since the 1960's and shows no decline and a water-level coincident with nearby reaches of Tygh lek. Two nearby wells (WASC 51079, located to the west along the north flank of Tygh Valley and WASC 51079 located he hillsides to the northeast) have water-level permit conditions. Water-level measurements from WASC 51079 are tively erratic, likely a response to pumping and restricted to a small locality. Aside from WASC 51079, the hydrograph nearby wells indicates overall stable conditions at the current use.
	estimated yield listed on the nearby well logs range from 20 to 500 gpm. It appears likely that a well completed in the
sam	e formation should be capable of producing 22.4 or 45 gpm.

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

	Well	Aquifer or Proposed Aquifer	Confined	Unconfined
	1	Tygh Valley Formation*	\boxtimes	
ĺ				

Basis for aquifer confinement evaluation: *Based on the location it appears that the well will be constructed into interbedded sandstones/claystones and lava flows of the Dalles Formation. The nearby well logs list the SWL above the first water-bearing zone, but not by a large amount. It may be more accurate to describe the aquifer as semiconfined.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)		Conne	lically ected? ASSUMED	Potentia Subst. Int Assum YES	erfer.
1	1	Tygh Creek	~1100	~1080-	1880	×				⊠
			- 1120	1140						
1	2	White River	~1100	~1060	7730	×				\boxtimes
			- 1120							

Basis for aquifer hydraulic connection evaluation: The geologic maps suggest that a well at the proposed location will be completed into the Dalles Formation. Wells completed in Dalles Formation located within Tygh Valley or along the southern flank of the valley have water-levels which are coincident in elevation with nearby reaches of the surface waters. Wells completed in the Dalles Formation located on the hill slope to the north of the valley are generally located a larger distance above the valley floor and display water-levels ranging from approximately 10 to 60 feet in elevation above the surface water sources. The proposed POA is located right at the northern edge of the valley floor and will likely have an elevation slightly above to coincident with nearby surface waters.

Water Availability Basin the well(s) are located within: 70088: WHITE R > DESCHTUES R - AT MOUTH

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked \boxtimes box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ½ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			IS 70088	60		148		<<25%	

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells.** Otherwise same evaluation and limitations apply as in C3a above.

	SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: Interference at 30 days between the well and the surface water sources was estimated using the Hunt 2003 model. The low permeability layers below the stream bed result in an inefficient connection between the aquifer and the stream, therefore interference at 30 days should be less than 25%.

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Well Q as CFS 0 0 0 0.05 0.00 0.000 0.0000<	0 0.14 %
1 2 Image: color black of the c	0 0 0.0000 Dec % %
Interference CFS 0 0 0 0.0000 <t< th=""><th>Dec %</th></t<>	Dec %
Distributed Wells Well SW# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Novel Novel Sep Oct Sep	Dec %
Well SW# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Novel Well Q as CFS Interference CFS <	% %
Well SW# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Novel Well Q as CFS Interference CFS <	% %
Well Q as CFS % <	% %
Well Q as CFS Interference CFS Well Q as CFS % % % % % % % % % Well Q as CFS Interference CFS Interfere	
Interference CFS %	/0 %
Well Q as CFS % <	/ ₀ %
Well Q as CFS Interference CFS	% %
Interference CFS	
	% %
Well Q as CFS	
Interference CFS	
% % % % % % % % % %	% %
Well Q as CFS	
Interference CFS	
% %	%
Well Q as CFS	
Interference CFS	
% %	% %
Well Q as CFS	
Interference CFS	
(A) = Total Interf. 0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000
(B) = 80 % Nat. Q 250 366 376 452 477 290 192 159 148 149 151	211
(C) = 1 % Nat. Q 2.50 3.66 3.76 4.52 4.77 2.90 1.92 1.59 1.48 1.49 1.5	2.11
$(D) = (A) > (C) \qquad X \qquad $	
$(E) = (A / B) \times 100$ % % % % % % % % % %	X

Version: 05/07/2018

	(D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage. Basis for impact evaluation: Interference at 30 days between the well and the surface water sources was estimated using the Hunt 2003 model.
	Traine 2003 Model.
C4b.	690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.
C5. 🛭	If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:
	 i. The permit should contain condition #(s) 7J ii. The permit should contain special condition(s) as indicated in "Remarks" below;
	ii. — The perime should contain special condition(s) as indicated in Technarks octow,
C6 SI	W / GW Remarks and Conditions:
_	
<u>11</u>	ne White River is likely a regional sink.
_	
_	
_	
_	
_	
_	
_	
	eferences Used: pplication files: G-18888 and groundwater reviews for nearby applications G-16891 G-16956, G-17852 and G-18295.
<u>A</u>	
<u>A</u> <u>O</u> <u>S1</u>	pplication files: G-18888 and groundwater reviews for nearby applications G-16891 G-16956, G-17852 and G-18295. WRD well log database, in particular: WASC 51079, WASC 52540 and WASC 52609. merrod, D. R., and Scott, W. E., 1995, Preliminary map of the Mount Hood 30- by 60-minute quadrangle, Cascade Range, north-
<u>A</u> <u>O</u> <u>S1</u>	pplication files: G-18888 and groundwater reviews for nearby applications G-16891 G-16956, G-17852 and G-18295.

Date: January 15, 2021

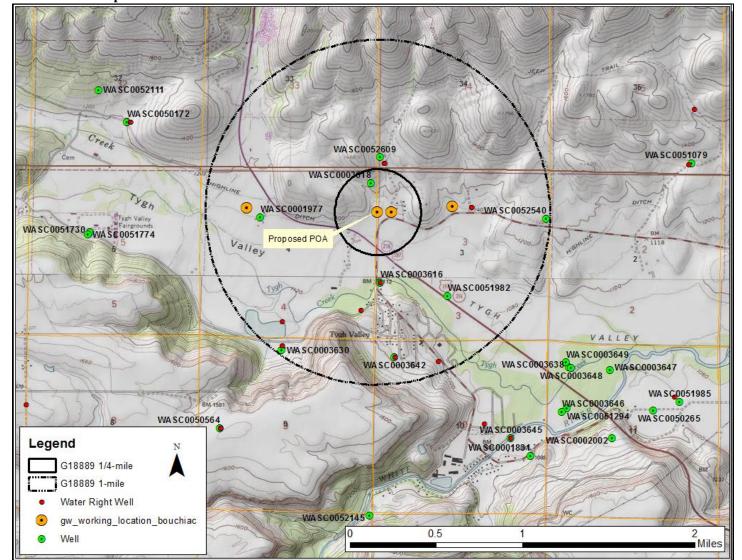
Page

7

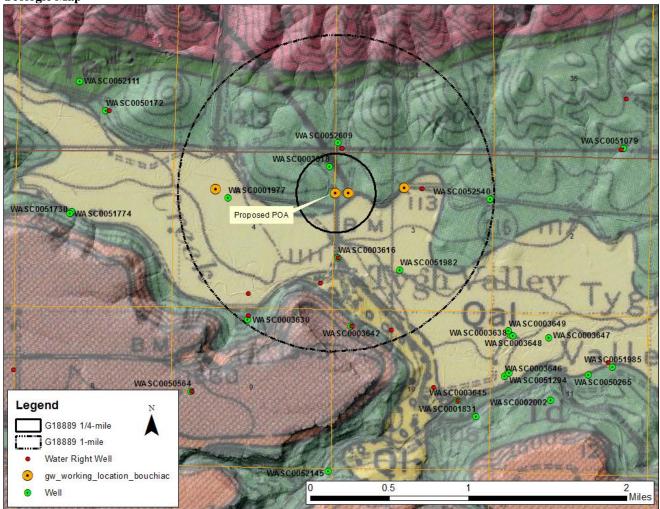
Application G-18889

D. WELL CONSTRUCTION, OAR 690-200

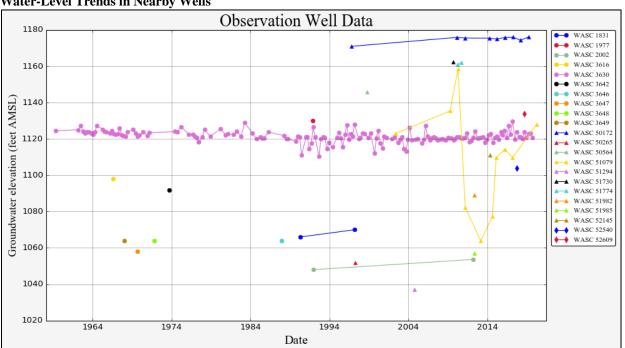
Nest ID Number Stream Name

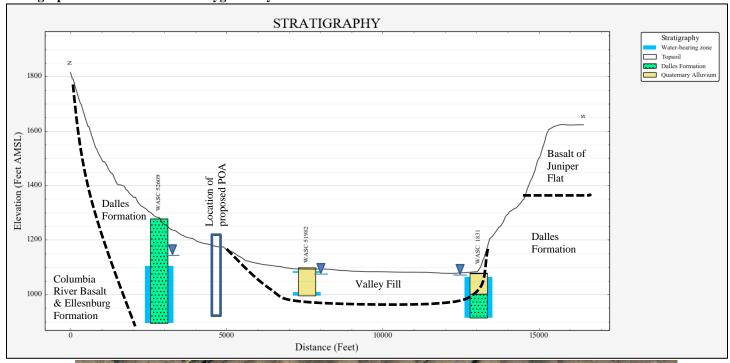

D1.	Well #:		Logid:	
D2.	THE WE	LL does not appear	to meet current well construction standards ba	sed upon:
	a. \square r	eview of the well log		
	b.	ield inspection by		;
	c. \square r	eport of CWRE		•
D3.	THE WE	LL construction def	iciency or other comment is described as follow	s:
D4.	Route to	the Well Construct	on and Compliance Section for a review of exis	ting well construction.
Water	Availabilit	y Tables		
			WATER AVAILABILITY TABLE	
	hed ID #: 6:08 PM	70088	WHITE R > DESCHUTES R - AT MOUTH Basin: DESCHUTES	Exceedance Level: 80 Date: 04/27/2020
# W	atershed			

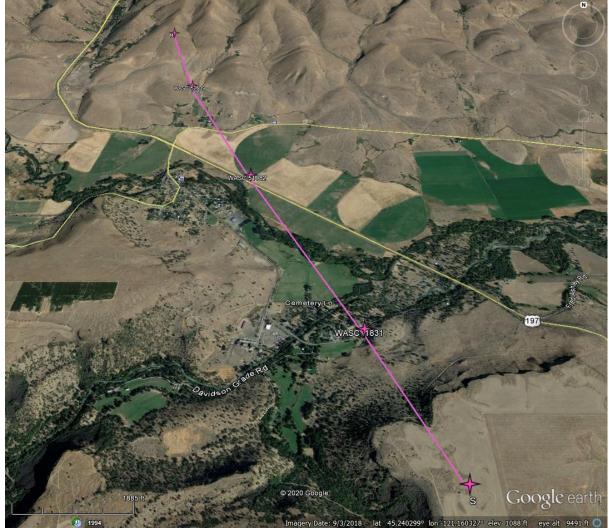
1 2		R > COLUMBIA R - AB DESCHUTES R - AT MOU	MOUTH AT GAGE 14103000 TH	NO NO	NO YES YES		NO NO			NO NO	NO NO	NO NO	YES YES
		DETAILED REP	ORT ON THE WATER AVAIL	ABILI	TY CALCULAT	ION							
Watershe Time: 6:	70088	W	HITE R > DESCHUTES R - Basin: DESCHU		OUTH				EXC				: 80 '2020
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow		Reserved Stream Flow	R	In: equir	strea ement			A		Net ater able
		Storage	Monthly values is the annual amount a	are i	n cfs. exceedance	in ac	-ft.						
JAN	 250.00	15.70	234.00		0.00			60.0	0			17	4.00
FEB	366.00	24.80	341.00		0.00			100.0	0			24	1.00
MAR	376.00	31.30	345.00		0.00			145.0	0			20	0.00
APR	452.00	52.70	399.00		0.00			145.0	0			25	4.00
MAY	477.00	113.00	364.00		0.00			145.0	0			21	9.00
JUN	290.00	121.00	169.00		0.00			100.0	0			6	9.00
JUL	192.00	89.60	102.00		0.00			60.0	0			4	2.40
AUG	159.00	72.40	86.60		0.00			60.0	0			2	6.60
SEP	148.00	64.50	83.50		0.00			60.0	0			2	23.50
OCT	149.00	52.00	97.00		0.00			60.0	0			3	7.00
NOV	151.00	5.82	145.00		0.00			60.0					5.20
DEC	211.00	8.59	202.00		0.00			60.0	0			14	2.00
ANN	 276,000	39,400	237,000		0			63,60	0			173	,000


			DE.	TAILED R	EPORT OF	INSTREAM	4 REQUIRE	MENTS					
Watershed ID Time: 12:09				WHITE	R > DESC	CHUTES R	- AT MOL	JTH				asin: DES ate: 05/1	
Application Number	Status	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
						Monthly	/ values	are in c	fs.				
MF201A MF202A IS70088A	CERTIFICATE CERTIFICATE CERTIFICATE	60.0 60.0 60.0	95.0 100.0 100.0	95.0 145.0 145.0	95.0 145.0 145.0	95.0 145.0 145.0	95.0 100.0 100.0	60.0 60.0 60.0	60.0 60.0 60.0	60.0 60.0 60.0	60.0 60.0 60.0	60.00 60.00 60.00	60.0 60.0 60.0
MAXIMUM		60.0	100.0	145.0	145.0	145.0	100.0	60.0	60.0	60.0	60.0	60.0	60.0

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC STOR


Well Location Map


Geologic Map



Water-Level Trends in Nearby Wells

Stratigraphic Cross Section across Tygh Valley

12

Analytical Model for Stream Depletion of Tygh Creek

			Trans	sient S	tream [-	•		970; Hu Tygh Cre	ınt, 1999 ek	9, 200)3)			
	0.070	1	Ι				1		70				Т	1 —	
	0.080												_		
														-	
<u>@</u>														·	
Stream depletion (fraction of well discharge)	0.050										/			I —	
Stream depletion tion of well discha							and the same				.			_	
를	0.040					100								 	
e e									1					l —	
of	0.030				1				./"					-	
Stre					1			1000						_	
rac	0.000			1				,						. —	
£	0.020					,								Ī —	
			1											_	
	0.010									-+			+	_	
		-			1										
	0.000			1										_	
		0	30 6	30 9	90 <u>12</u>	20 15 ne since :	0 18	0 21	0 240	270	30	0 3	330 3	80	
						ne since			uaysj					<u> </u>	
			—·—· н	unt 2003	s1	_	Hunt	2003 s2			Hunt 2	003 s3			
	_														
Outpu	t for S	tream D	epletio	n, Scene	erio 2 (s	2):	Time p	ump on	(pump	ing dura	tion) =	= 240 c	lays		
Days		30	60	90	120	150	180				270	300	330	360	
J SD		86.4%	90.3%	92.1%	93.2%	93.9%	94.4%	94.8%	95.2%	9.	1%	5.3%	3.8%	2.9%	
H SD 1	999	46.5%	57.7%	63.7%	67.7%	70.6%	72.8%	74.6%	76.0%	30.	7% 2	0.6%	15.5%	12.4%	
H SD 2	2003	0.45%	1.03%	1.73%	2.48%	3.26%	4.04%	4.81%	5.57%	5.8	6% 6	.00%	6.01%	5.95%	
Qw, c	fs	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.0	050	0.050	0.050	0.050	
H SD 9	9, cfs	0.023	0.029	0.032	0.034	0.035	0.036	0.037	0.038	0.0	015	0.010	0.008	0.006	
H SD 0	3, cfs	0.0002	0.0005	0.0009	0.0012	0.0016	0.0020	0.0024	0.0028	0.0029	931 0	.0030	0.0030	0.0030	
	neters					Sce	nario 1	Sc	enario 2	2	Scena	$\overline{}$		Units	
		mping ra			Qw		0.05		0.05		0.05			cfs	
		(pumpin		,	tpon		240		240		240			days	
_	Perpendicular from well to stream				а	1880			1880		1880			ft	
	Well depth				d	250			250		250			ft	
	Aquifer hydraulic conductivity				K	10		_	25 80		50 80			ft/day	
	Aquifer saturated thickness Aquifer transmissivity				b T	80 800									
		missivity tivity or s	nacific	iald	S			0.001		0.001		_	π·παay		
		cal hydra			Kva	0.001		0.001		0.001			ft/day		
		rated thic		delivity	ba	90		90			90				
_		ness bel		m	babs	80		80			80				
	rd poro		J 11 31100		n	0.2		0.2		_	0.2			- 11	
	n width				ws	40		40		_	40				
		nductan	ce (lambe	da)	sbc	0.500000		0.500000			0.500000				
		ion facto		-,	sdf	4.418000		1.767200			0.883600		-		
	bed fa		-		sbf	1.175000		0.470000						,0	
		unt's Q_4	4 function	,	ť		.226347	0.565867			1.131734				
_		unt's Q_4			K'		.088889	19.635556			9.817778				
		unt's Q_4			epsilon'	0.005000		0.005000			0.005000				
		unt's Q_4			lamda'		.175000		0.005000		0.235000				
aiput #	2 101 11	o u_	. 10.1000		amou			,		1	0.20	.5000			

Analytical Model for Stream Depletion of White River

0.014 0.012 0.010 0.008 0.008 0.000 0.000 0.000 0.000 0.000 0.000 Time since start of pumping (days)	330 360	
0.012 0.010 0.008 0.008 0.004 0.002 0.000 0 30 e0 80 120 150 180 2 0 240 270 300 0 30 e0 80 120 150 180 2 0 240 270 300 0 30 e0 80 120 150 180 2 0 240 270 300 0 30 e0 80 120 150 180 2 0 240 270 300		
0.012 0.010 0.008 0.008 0.004 0.002 0.000 0 30 e0 80 120 150 180 2 0 240 270 300 0 30 e0 80 120 150 180 2 0 240 270 300 0 30 e0 80 120 150 180 2 0 240 270 300 0 30 e0 80 120 150 180 2 0 240 270 300		
0.000		
0.000 0.000		
0.002 Time since start of pumping (days) Time since start of pumping (days) Time since start of pumping (days)		
0.002 Time since start of pumping (days) Time since start of pumping (days) Time since start of pumping (days)		
0.002 Time since start of pumping (days) Time since start of pumping (days) Time since start of pumping (days)		
0.002 Time since start of pumping (days) Time since start of pumping (days) Time since start of pumping (days)		
0.002 Time since start of pumping (days) Time since start of pumping (days) Time since start of pumping (days)		
0.002 Time since start of pumping (days) Time since start of pumping (days) Time since start of pumping (days)		
0.002 Time since start of pumping (days) Time since start of pumping (days) Time since start of pumping (days)		
0.000 30 60 90 120 150 180 2 0 240 270 300 Time since start of pumping (days) Hunt 2003 s1 Hunt 2003 s2 Hunt 2003 Output for Stream Depletion, Scenerio 2 (s2): Time pump on (pumping duration) = 24 Days 30 60 90 120 150 180 210 240 270 300		
Time since start of pumping (days) -0.002 Time since start of pumping (days)		
Time since start of pumping (days) -0.002 Time since start of pumping (days)		
Time since start of pumping (days) ————————————————————————————————————	s3	
Output for Stream Depletion, Scenerio 2 (s2): Time pump on (pumping duration) = 24 Days 30 60 90 120 150 180 210 240 270 300	s3	
Output for Stream Depletion, Scenerio 2 (s2): Time pump on (pumping duration) = 24 Days 30 60 90 120 150 180 210 240 270 300	s3 -	
Output for Stream Depletion, Scenerio 2 (s2): Time pump on (pumping duration) = 24 Days 30 60 90 120 150 180 210 240 270 300	s3 =	
Days 30 60 90 120 150 180 210 240 270 300		
Days 30 60 90 120 150 180 210 240 270 300		
	40 days	
	330 360	
J SD 48.0% 61.8% 68.4% 72.4% 75.2% 77.3% 79.0% 80.3% 33.4% 20.6%	14.8% 11.4%	
H SD 1999 22.5% 36.3% 44.5% 50.2% 54.4% 57.6% 60.3% 62.5% 41.8% 29.7%	22.9% 18.5%	
H SD 2003 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.02% 0.04% 0.06%	0.09% 0.13%	
Qw, cfs 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050	
H SD 99, cfs 0.011 0.018 0.022 0.025 0.027 0.029 0.030 0.031 0.021 0.015 H SD 03, cfs 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.011 0.009 0.0000 0.0001	
11 35 03, C18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001	
Parameters: Scenario 1 Scenario 2 Scenario 3	Units	
Net steady pumping rate of well Qw 0.05 0.05 0.05	cfs	
Time pump on (pumping duration) tpon 240 240 240	days	
Perpendicular from well to stream a 7730 7730 7730		
Well depth d 250 250 250		
Aquifer hydraulic conductivity K 10 25 50		
Aquifer saturated thickness b 80 80 80		
Aquifer transmissivity T 800 2000 4000		
Aquifer storativity or specific yield S 0.001 0.001 0.001		
Aquitard vertical hydraulic conductivity Kva 1 1 1	,	
Aquitard saturated thickness ba 90 90 90 Aquitard thickness below stream babs 80 80 80		
Aquitard porosity n 0.2 0.2 0.2 Stream width ws 40 40 40		
Streambed conductance (lambda) sbc 0.500000 0.500000 0.500000	ft/day	
Stream depletion factor sdf 74.691125 29.876450 14.938225		
Streambed factor sbf 4.831250 1.932500 0.966250		
input #1 for Hunt's Q_4 function t' 0.013388 0.033471 0.066942		
input #2 for Hunt's Q_4 function K' 829.901389 331.960556 165.980278		
input #3 for Hunt's Q_4 function epsilon' 0.005000 0.005000 0.005000		
input #4 for Hunt's Q_4 function lamda' 4.831250 1.932500 0.966250		

OWRD Water Rights Mapping Tool for Cert 3733 – proposed POU outlined in red over certificate POU outlined in blue/green

OWRD Water Rights Mapping Tool for Cert 5491 – proposed POU outlined in red over certificate POU outlined in blue/green

OWRD Water Rights Mapping Tool for Cert 8545 – proposed POU outlined in red over certificate POU outlined in blue/green

