Groundwater Application Review Summary Form

Application # G- 19014 - REREVIEW

GW Reviewer <u>M. Thoma</u>

Date Review Completed: 01/22/2021 Supersedes Review of: 11/12/2020

Summary of GW Availability and Injury Review:

Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.

Summary of Potential for Substantial Interference Review:

□ There is the potential for substantial interference per Section C of the attached review form.

Summary of Well Construction Assessment:

The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.

This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEMO

01/22/2021

TO: Application G-<u>19014 - REREVIEW</u>

FROM: GW: <u>M. Thoma</u> (Reviewer's Name)

SUBJECT: Scenic Waterway Interference Evaluation

- □ YES The source of appropriation is hydraulically connected to a State Scenic Waterway or its tributaries
- □ YES
 □ Use the Scenic Waterway Condition (Condition 7J)
 □ NO
- Per ORS 390.835, the Groundwater Section is **able** to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below
- □ Per ORS 390.835, the Groundwater Section is unable to calculate ground water interference with surface water that contributes to a scenic waterway; therefore, the Department is unable to find that there is a preponderance of evidence that the proposed use will measurably reduce the surface water flows necessary to maintain the free-flowing character of a scenic waterway

DISTRIBUTION OF INTERFERENCE

Calculate the percentage of consumptive use by month and fill in the table below. If interference cannot be calculated, per criteria in 390.835, do not fill in the table but check the "unable" option above, thus informing Water Rights that the Department is unable to make a Preponderance of Evidence finding.

Exercise of this permit is calculated to reduce monthly flows in <u>[Enter]</u> Scenic Waterway by the following amounts expressed as a proportion of the consumptive use by which surface water flow is reduced.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:	Water Rights Section		Date	01/22/2021
FROM:	Groundwater Section	M. Thoma		
		Reviewer's Name		
SUBJECT:	Application G19014 -	<u>RR</u> Supersedes review of <u></u>	<u>11/12/2020</u>	

Date of Review(s)

COMMENTS ON REREVIEW:

Following the initial groundwater review the applicant's consultant submitted an updated map of surveyed locations of the wells along with surveyed distances from the wells to Amazon Creek. The updated distances put Well #1 at 1344 ft from Amazon Creek compared to the distance of 1300 ft calculated on the original review and based on topographic maps. The updated distance will not change the hydraulic connection finding nor significantly change the impact to Amazon Creek from pumping but does remove the automatic assumption of PSI for Well #1. The applicant has also requested a reduced rate of 0.321 cfs (original requested rate: 1.0 cfs) and has removed Well #3 from the application. See attached letter from William E. McGill.

PUBLIC INTEREST PRESUMPTION; GROUNDWATER

OAR 690-310-130 (1) The Department shall presume that a proposed groundwater use will ensure the preservation of the public welfare, safety and health as described in ORS 537.525. Department staff review groundwater applications under OAR 690-310-140 to determine whether the presumption is established. OAR 690-310-140 allows the proposed use be modified or conditioned to meet the presumption criteria. This review is based upon available information and agency policies in place at the time of evaluation.

A. GENERAL INFORMATION:

Applica	nt's Name:	Fred	rick Dav	vid Haase; Linda Re	ed Haase	County: Lane	
A1.	Applicant(s) seek(s) <u>0.3</u>	21 cfs from	2	well(s) in the	Willamette		_Basin,
	Long Tom			subbasin			

A2. Proposed use <u>Irrigation</u>, Fish Culture Seasonality: Mar-Oct (Irrigation); Year-Round (Fish Culture)

Well and aquifer data (attach and number logs for existing wells; mark proposed wells as such under logid): A3.

Well	Logid	Applicant's Well #	Proposed Aquifer*	Proposed Rate(cfs)	Location (T/R-S QQ-Q)	Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36
1	LANE 76593	1	Alluvium	1	17S-04W-19 NENE	85 ft S, 380 ft W of NE cor S 19
2	LANE 76667	2	Alluvium	1	17S-04W-19 NENE	285 ft S, 115 ft W of NE cor S 19
4						

* Alluvium, CRB, Bedrock

Well	Well Elev ft msl	First Water ft bls	SWL ft bls	SWL Date	Well Depth (ft)	Seal Interval (ft)	Casing Intervals (ft)	Liner Intervals (ft)	Perforations Or Screens (ft)	Well Yield (gpm)	Draw Down (ft)	Test Type
1	375	24	8	5/08/19	38	0-18	+2-38	-		28		Α
2	375	21	11	5/30/19	37	0-18	+1-37	-		30		Α

Use data from application for proposed wells.

A4. **Comments:** The consultant included updated metes and bounds correcting the direction error noted on the original review

management of groundwater hydraulically connected to surface water \Box are, or \boxtimes are not, activated by this application. (Not all basin rules contain such provisions.)

Comments: Well #1 is not withing 1/4 mile of Amazon Creek based on surveyed distances and Well #3 has been removed from the application so Willamette Basin Rules are not activated.

____, ____, ____, ____, tap(s) an aquifer limited by an administrative restriction. A6. U Well(s) # _____ Name of administrative area: Comments:

4

Page

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

- B1. **Based upon available data**, I have determined that <u>groundwater</u>* for the proposed use:
 - a. is over appropriated, is not over appropriated, *or* is cannot be determined to be over appropriated during any period of the proposed use. * This finding is limited to the groundwater portion of the over-appropriation determination as prescribed in OAR 690-310-130;
 - b. **will not** *or* **will** likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;
 - c. \Box will not or \Box will likely to be available within the capacity of the groundwater resource; or
 - d. 🛛 will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:
 - i. The permit should contain condition #(s) 7C (7-yr SWL); Medium Water-Use Reporting
 - ii. \Box The permit should be conditioned as indicated in item 2 below.
 - iii. \Box The permit should contain special condition(s) as indicated in item 3 below;
- B2. a. Condition to allow groundwater production from no deeper than ______ ft. below land surface;
 - b. Condition to allow groundwater production from no shallower than ______ ft. below land surface;
 - c. Condition to allow groundwater production only from the ______ groundwater reservoir between approximately______ ft. and ______ ft. below land surface;
 - d. **Well reconstruction** is necessary to accomplish one or more of the above conditions. The problems that are likely to occur with this use and without reconstructing are cited below. Without reconstruction, I recommend withholding issuance of the permit until evidence of well reconstruction is filed with the Department and approved by the Groundwater Section.

Describe injury –as related to water availability– that is likely to occur without well reconstruction (interference w/ senior water rights, not within the capacity of the resource, etc):

B3. **Groundwater availability remarks:** <u>Groundwater levels in the area (reflected in data from well LANE0013051) show a</u> <u>stable long-term trend suggesting that groundwater for the proposed use would likely be within the Capacity of the Resource.</u> <u>However, a full calculation of water balance for the area has not been performed so Over-Appropriation, and thus Capacity of the Resource, cannot be definitively determined and so conditions listed in B1(d) are recommended.</u> C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Alluvium (Middle Sedimentary Unit)		\boxtimes
2	Alluvium (Middle Sedimentary Unit)		\boxtimes

Basis for aquifer confinement evaluation: Despite well reports showing static water levels being above the identified waterbearing zones, a composite review of well log data for the area shows that water levels are similar among most wells regardless of completed depth. This suggests that there are not specific aquifer zones within 100 ft depth and instead the shallow alluvial material makes up a single, continuous aquifer.

C2. **690-09-040** (2) (3): Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ¹/₄ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)	H YES	Iydrau Conne NO	ilically ected? ASSUMED	Potentia Subst. In Assum YES	l for terfer. ed? NO
1	1	Amazon Cr	365	360-670	1344	X				Ø
2	1	Amazon Cr	365	360-370	1514	\boxtimes				Ø

Basis for aquifer hydraulic connection evaluation: <u>GW elevations are similar to SW elevations and the wells are producing</u> from a shallow alluvial aquifer. Distances are taken from recent survey conducted by Will McGill Surveying LLC on 01/08/21.

Water Availability Basin the well(s) are located within: <u>LONG TOM R > WILLAMETTE R – AB MOUTH (ID# 114)</u>

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically** connected and less than 1 mile from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked 🖾 box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < ¼ mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			None			32.1		< 15%	
2	1			None			32.1		< 15%	

Comments: <u>Stream-depletion was estimated using the Hunt-1999 model and a range of aquifer parameters taken from the references below and representing a range of possible values. Based on the results of this modelling, estimated stream-depletion at 30 days is likely to be less than 15% for both proposed PODs</u>

5

C3b. **690-09-040** (**4**): Evaluation of stream impacts <u>by total appropriation</u> for all wells determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water source. **Complete only if Q is distributed among wells**. Otherwise same evaluation and limitations apply as in C3a above.

SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

Comments: ____

C4a. 690-09-040 (5): Estimated impacts on hydraulically connected surface water sources greater than one mile as a

percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

Non-D	istributed	Wells											
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	Q as CFS												
Interfer	ence CFS												
		-	-			-			-	-			-
Distrib	outed Well	ls					Ŧ			a	0		
Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	Q as CFS												
Interfer	ence CFS												
		%	%	%	%	%	%	%	%	%	%	%	%
Well Q	Q as CFS												
Interfer	ence CFS												
		-									-	-	-
$(\mathbf{A}) = \mathbf{T}\mathbf{c}$	otal Interf.												
(B) = 80	% Nat. Q												
(C) = 1	% Nat. Q												
											-		
(D) = ((A) > (C)	\checkmark											
(E) = (A	/ B) x 100	%	%	%	%	%	%	%	%	%	%	%	%

(A) = total interference as CFS; (B) = WAB calculated natural flow at 80% exceed. as CFS; (C) = 1% of calculated natural flow at 80% exceed. as CFS; (D) = highlight the checkmark for each month where (A) is greater than (C); (E) = total interference divided by 80% flow as percentage.

Basis for impact evaluation:

C4b. 690-09-040 (5) (b) The potential to impair or detrimentally affect the public interest is to be determined by the Water Rights Section.

C5. If properly conditioned, the surface water source(s) can be adequately protected from interference, and/or groundwater use under this permit can be regulated if it is found to substantially interfere with surface water:

i. \Box The permit should contain condition #(s)

ii. \Box The permit should contain special condition(s) as indicated in "Remarks" below;

7

C6. SW / GW Remarks and Conditions: The applicant's proposed PODs have been found to be producing from an aquifer that is hydraulically-connected to surface water – specifically to Amazon Creek – at a distance of less than one mile. A recent survey of the well locations and Amazon Creek showed that both wells where beyond ¼ mile of Amazon Creek. Additionally, the new requested rate of 0.321 cfs is less than 1% of the 80%-exceedance flow for the encompassing WAB and estimated stream-depletion is less than 25% @ 30 days. Based on these findings the wells are assumed to NOT have the Potential for Substantial Interference per OAR 690-009.

References Used:

Gannett, M. W. and R. R. Caldwell. 1998. *Geologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington*. USGS Professional Paper 1424-A.

Herrera, N. B., Burns, E. R., and T. D. Conlon. 2014. *Simulation of Groundwater Flow and the Interaction of Groundwater and Surface Water in the Willamette Basin and Central Willamette Subbasin*, Oregon. USGS Scientific Investigations Report 2014-5136.

Hunt, B. 1999. Unsteady Stream Depletion from Ground Water Pumping. Journal of Hydrologic Engineering, Vol 8(1), pp 12-19

McClaughry, J. D., T. J. Wiley, M. L. Ferns, and I. P Madin. 2010. *Digital Geologic Map of the Southern Willamette Valley*, *Benton, Lane, Linn, Marion, and Polk Counties, Oregon.* Oregon Dept. of Geology and Mineral Industries. Open File Report O-10-13.

O'Conner, J. E., A. Sarna-Wojcicki, K. C. Wozniak, D. J. Polette, and R. J. Fleck. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon. USGS Professional Paper 1620

OWRD Well Log Database - Accessed 11/12/2020

Woodward, D. G., M. W. Gannett, and J. J. Vaccaro. 1998. *Hydrogeologic Framework of the Willamette Lowland Aquifer System, Oregon and Washington*. USGS Professional Paper 1424-B.

D. WELL CONSTRUCTION, OAR 690-200

 D1.
 Well #: ______
 Logid: ______

 D2.
 THE WELL does not appear to meet current well construction standards based upon:

- a. \Box review of the well log;
- b.
 i field inspection by _____
- c. Creport of CWRE
- d. 🗌 other: (specify)

D3. THE WELL construction deficiency or other comment is described as follows:

D4. 🗌 Route to the Well Construction and Compliance Section for a review of existing well construction.

Page

8

Water Availability Tables

		Water	Availabilit Detailed Rep	y Analysis		
		LONG T	OM R > WILLAMETT WILLAMETTE BA	E R - AB MOUTH ASIN		
		W	ater Availability as of	11/13/2020		
Waters	shed ID #: 114 (Map)		,		Exceeda	nce Level: 80% 🗸
Date: 1	11/13/2020					Time: 9:35 AM
Wa	ter Availability Calculat	tion Consumptive Uses a	and Storages	nstream Flow Requireme	nts Reser	vations
		Water Rights		Wat	ershed Characteristics	
		_				
		Moto		Coloulation		
		vvale	Availability	alculation		
		Monthly	Streamflow in Cubic	Feet per Second		
		Annual V	olume at 50% Exceed	ance in Acre-Feet		
Month	Natural Stream Flow	Consumptive Uses and Storages	Expected Stream Flow	Reserved Stream Flow	Instream Flow Requirement	Net Water Available
JAN	568.00	149.00	419.00	0.00	0.00	419.00
FEB	697.00	389.00	308.00	0.00	0.00	308.00
MAR	596.00	555.00	41.00	0.00	0.00	41.00
APR	373.00	250.00	123.00	0.00	0.00	123.00
MAY	215.00	63.80	151.00	0.00	0.00	151.00
JUN	105.00	29.50	75.50	0.00	0.00	75.50
JUL	50.60	47.80	2.83	0.00	0.00	2.83
AUG	35.40	38.80	-3.36	0.00	0.00	-3.36
SEP	32.10	21.40	10.70	0.00	0.00	10.70
OCT	35.30	5.69	29.60	0.00	0.00	29.60
NOV	82.50	5.45	77.00	0.00	0.00	77.00
DEC	364.00	106.00	258.00	0.00	0.00	258.00
ANN	362,000.00	99,300.00	262,000.00	0.00	0.00	262,000.00

Well Location Map

9

Water-Level Measurements in Nearby Wells

Well Log Statistics from Nearby Wells

Stream-Depletion Model Results

			Appl	icatio	on typ	oe:				G			
			Appl	icatio	on nu	mber:				19014			
			Well	num	ber:					1			
			Strea	m Nu	umbe	er:				1			
			Pum	ping	rate ((cfs):				0.321			
			Pum	ping	durat	tion (d	ays):			244.0			
			Pum	ping	start	month	n number	(3=March)		3.0			
Dis Aq Aq No Aq	stance fr quifer tra quifer sto quitard vo ot used quitard th	Para om wel nsmissi rrativity ertical h nicknes	imeter Il to str ivity iydraul s belov	eam lic co v stre	nduc	tivity	Symbol a T S Kva babs	Scenario 1 1344 5000 5e-3 5e-4 20 5	S(cenario 2 1344 1000 1e-3 1e-3 20	Sce 13- 500 5e- 20 5	nario 3 14 0 -4 -3	Units ft ft2/day - ft/day ft
No	ot used							0.2	_ [).20	0.2		_
Str	ream wid	lth					WS	50	5	50	50		ft
ays epletion epletion	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4)1 0	60 .01	30 2 0.01	Stream 60 4 1 0.	depletio) 90 5 01 0.0	n for Scenar 120 5 1 0.02	io 2: 150 6 0.02	180 7 0.02	210 7 0.02	240 8 0.02	270 300 6 5 0.02 0.0
ays epletion epletion	10 (%) 1 (cfs) 0.0	33 4 0 0.0 Hur	0 3 4)1 0 1 t (1	60 .01 999	30 2 0.01	Stream 60 4 1 0. rans	i depletio 90 5 01 0.0 ient s	n for Scenari 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02	240 8 0.02 el	270 300 6 5 0.02 0.0
ays epletion (epletion (1.0 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 1t (1	60 .01 999	30 2 0.01	Stream 60 4 1 0. r ans	i depletio 90 5 01 0.0 ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02 Ietion	210 7 0.02 mod	240 8 0.02 el	270 300 6 5 0.02 0.0
ays epletion (epletion (1.0 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 nt (1	.01 9999	30 2 0.01	Stream 60 4 1 0. r ans	i depletio 90 5 01 0.0 ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02 letion	210 7 0.02 mod	240 8 0.02 el	270 300 6 5 0.02 0.0
ays epletion epletion 1.0 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0	60 .01 999	30 2 0.01	Stream 60 4 1 0. rans	i depletio) 90 5 01 0.0	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 mod Sco	240 8 0.02 el enario enario	270 300 6 5 0.02 0.0 3 2 1
ays epletion epletion 1.0 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0	60 0.01 999	30 2 0.01	Stream 60 1 0. rans	i depletio) 90 5 01 0.0 ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 mod Sco Sco	240 8 0.02 el enario enario enario	270 300 6 5 0.02 0.0 3 2 1
ays epletion (epletion) 1.0 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 nt (1	9999	30 2 0.01	Stream 60 4 1 0.	i depletio 90 5 01 0.0 ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 mod Sco Sco	240 8 0.02 el enario enario	270 300 6 5 0.02 0.0 3 2 1 - 0.30 1 - 0.25
ays epletion f epletion f 1.0 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 nt (1	60 .01 999	30 2 0.01	Stream 60 4 1 0.	i depletio 90 5 01 0.0 ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 mod Sco Sco	240 8 0.02 el enario enario	270 300 6 5 0.02 0.00 1 0.30 1 0.25 0.25 0.25 0.20 0.00 0.25 0.20 0.00
ays epletion f epletion f 1.0 - 0.8 - 0.8 - 0.8 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 nt (1	9999	30 2 0.0 ⁻¹	Stream 60 4 1 0. rans	i depletio 90 5 01 0.0 ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 • Scc • Scc	240 8 0.02 el enario enario	270 300 6 5 0.02 0.0 3 2 1 - 0.30 1 - 0.25 - 0.20
ays epletion (epletion (1.0 - 1.0 - 0.8 - 0.8 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 nt (1	9999	30 2 0.01	Stream 60 4 1 0. rans	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 • Sco • Sco	240 8 0.02 enario enario	$\begin{array}{cccc} 270 & 300 \\ 6 & 5 \\ 0.02 & 0.0 \end{array}$ $\begin{array}{c} 3 \\ 2 \\ 1 \\ - & 0.25 \\ - & 0.20 \end{array}$
ays epletion of epletion 1.0 - 1.0 - 0.8 - 0.8 - 0.6 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 nt (1	60 .01 9999	30 2 0.0 ⁻¹	Stream 60 4 1 0. rans	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 • Sco • Sco	240 8 0.02 enario enario	270 300 6 5 0.02 0.00 1 0.30 1 0.25 - 0.20 - 0.15
ays epletion of epletion of 1.0 - 1.0 - 0.8 - 0.6 - 0.6 - 0.6 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 4 01 0 nt (1	9999	30 2 0.0 ⁻¹	Stream 60 4 1 0. rans	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 • Sco • Sco	240 8 0.02 enario enario	$\begin{array}{cccc} 270 & 300 \\ 6 & 5 \\ 0.02 & 0.0 \end{array}$ $\begin{array}{c} 3 \\ 2 \\ 1 \\ - & 0.25 \\ - & 0.20 \\ - & 0.15 \end{array}$
ays epletion of epletion 1.0 - 1.0 - 0.8 - 0.0 - 0.4 - 0.4 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 401 0 nt (1	9999	30 2 0.0 ⁻¹	Stream 60 4 1 0. rans	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 • Sco • Sco	240 8 0.02 enario enario	$\begin{array}{cccc} 270 & 300 \\ 6 & 5 \\ 0.02 & 0.0 \\ \end{array}$ $\begin{array}{c} 3 \\ 2 \\ 1 \\ - 0.30 \\ - 0.25 \\ - 0.20 \\ - 0.15 \\ \end{array}$
ays epletion (1.0 - 1.0 - 0.8 - 0.8 - 0.4 - 0.4 - 0.4 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 401 0 nt (1	60 0.01 9999	30 2 0.0 ⁻¹	Stream 60 4 1 0. rans	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 mod Scc	240 8 0.02 el enario enario	$\begin{array}{c} 270 & 300 \\ 6 & 5 \\ 0.02 & 0.0 \end{array}$ $\begin{array}{c} 3 \\ 2 \\ 1 \end{array} - 0.30 \\ - 0.25 \\ - 0.20 \\ - 0.15 \\ - 0.10 \end{array}$
ays epletion (1.0 - 1.0 - 0.6 - 0.0 - 0.0 - 0.4 - 0.2 - 0.2 - 0.2 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 401 0 nt (1	9999	30 2 0.0 ⁻¹	Stream 60 4 1 0.	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 mod Sco	240 8 0.02 el enario enario	$\begin{array}{cccc} 270 & 300 \\ 6 & 5 \\ 0.02 & 0.0 \\ \end{array}$ $\begin{array}{c} 3 \\ 2 \\ 1 \\ - 0.25 \\ - 0.25 \\ - 0.15 \\ - 0.10 \\ - 0.05 \\ \end{array}$
ays epletion of well discussed 1.0 - 0.0 4 - 0.0 4 - 0.2 - 0.2 - 0.2 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 401 0 nt (1	9999	30 2 0.0 ⁻¹	Stream 60 4 1 0.	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 • Sco • Sco	240 8 0.02 enario enario	$\begin{array}{cccc} 270 & 300 \\ 6 & 5 \\ 0.02 & 0.0 \end{array}$ $\begin{array}{c} 3 \\ 2 \\ 1 \\ \end{array} - 0.30 \\ 1 \\ - 0.25 \\ - 0.25 \\ - 0.15 \\ - 0.10 \\ - 0.05 \end{array}$
ays epletion of epletion 1.0 - 1.0 - 0.8 - 0.0 - 0.4 - 0.2 - 0.2 -	10 (%) 1 (cfs) 0.0	33 4 0 0.0	0 3 401 0 nt (1	9999	30 2 0.0 ⁻¹	Stream 60 4 1 0. rans	ient s	n for Scenar 120 5 1 0.02 tream d	io 2: 150 6 0.02	180 7 0.02	210 7 0.02 mod Scc	240 8 0.02 enario enario	$\begin{array}{cccc} 270 & 300 \\ 6 & 5 \\ 0.02 & 0.0 \end{array}$ $\begin{array}{c} 3 \\ 2 \\ 1 \\ \end{array} + 0.30 \\ 1 \\ - 0.25 \\ - 0.20 \\ - 0.15 \\ - 0.10 \\ - 0.05 \\ \end{array}$

Page

12

15333 Pletzer Rd. SE Turner, OR 97392 503-510-3026 503-931-0210 willmcgill.surveying@gmail.com

Attn: Elisabeth Graham Oregon Water Resources Department 725 Summer St. NE, Suite A Salem, OR 97301

Subject: Application G-19014 Revisions

Based on the findings in the Groundwater Review completed by Mike Thoma on November 12, 2020, we are requesting some amendments to application G-19014 as agent for Fredrick David Haase and Linda Reed Haase.

The original requested rate was found to have potential for substantial interference. We have revised the necessary application pages to reflect the new requested rate of 0.321 cfs combined for all uses (1% of 80% natural flow per Mike Thoma's groundwater review). Livestock use has been removed from the application.

Well 1 was evaluated at 1300' from the nearest surface water, Amazon Creek, in the groundwater review. A site visit and survey were conducted by Will McGill Surveying LLC on January 8, 2021 to locate the actual location of Wells 1, 2, and 3 as well as the edge of the surface water at Amazon Creek. Well 1 was found to be 1344' and Well 2 was found to be 1514' at the closest points respectively on Amazon Creek. Well 3 is significantly inside 1/4-mile of the surface water and has been removed from the application. The survey was completed during a high-water event. Points outside Haase property were collected from the most recent aerial photo to complete the data and confirm the >1/4-mile distance to Wells 1 and 2. See the attached map.

Please also find the revised application pages attached and let us know if anything else is needed to proceed on G-19014.

William E. M. Sill

William E. McGill, CWRE

Cc: Mike Thoma

Wells inside 1320' buffer - remove from app.

WILL MCGILL SURVEYING LLC

Tax Lot

- Pts surveyed by aerial photo 3/5/2020 off Haase property
 - 1320' Buffer from edge of surface water

Version: 07/28/2020

13