Approved: Zust

MEMO

To: Kristopher Byrd, Well Construction and Compliance Section Manager

From: Travis Kelly, Well Construction Compliance Coordinator

Subject: Review of Water Right Application G-19194

Date: February 3, 2022

The attached application was forwarded to the Well Construction and Compliance Section by the Groundwater Section. Darrick Boschmann reviewed the application. Please see Darrick's Groundwater Review and the Well Report.

Applicant's Well #1 (LAKE 52007): Based on a review of the Well Report, Applicant's Well #1 seems to protect the groundwater resource.

The construction of Applicant's Well #1 may not satisfy hydraulic connection issues.

STATE OF OREGON WATER SUPPLY WELL REPORT

Instructions for completing this report are on the last page of this form.

WELL I.D. # L

(as required by ORS 537.765)

	Name L	DOWNEI	Fili	001	We	ll Numb	er					
	radioss	Po. Bu	7 7 + 7		ate \	NA	Zi	980	50			
	(2) TYP	E OF WO	RK		v Well	•	bandonn					
	(3) DRILL METHOD Rotary Air Rotary Mud Cable Auger Cable Mud Other											
,	(4) PROPOSED USE Domestic Community Industrial Irrigation Thermal Injection Livestock Other											
	(5) BORE HOLE CONSTRUCTION Special Construction: Yes No Depth of Completed Well 175 ft. Explosives used: Yes No Type Amount											
	Diameter	10	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mate	rial	From	SEAL To (Sacks r	Pounds			
	_ _	18'	175'					_				
4	Other _	seal placed:	ed	dr	4			_ D _				
		laced from _ ced from _						el				
*		ING/LINE		Т-	C	Stool	Dlasti	- Walded 7	Chrondod.			
	Casing:	Diameter 1	- Z 1	75'	Gauge 9,25		Plastic	c Welded 7	nreaded			
	-							Ä				
	Liner:											
		e used I I										
	Pe:	FORATIOns reens	NS/SCF	REENS Method Type _	4	unh	h ole p Mat	erial	ator			
	From	To	Slot Size	Number	Dian	eter '	Γele/plp size	e Casing	Liner			
	501	\$751	1	1504	\ S		3120	一餐				
h	140'	175'	3	COM	5							
	(8) WEL	L TESTS	: Minim Bailer	um test				g Artesian				
	Yield —36	gal/min	Drawd	lown	Dr	ill stem	at	Tim	e 			
	Temperatu	ure of water	53°	F	Depth A	Artesian	FRE	<u>GEIVI</u>	ED_			
,		ter analysis of trata contain	. ~						Odiale			
	☐ Salty		RE(EIV	ED	Other	FFR	0 Г 7	900			

(9) LOCATION OF WELL (legal description) County Tax Lot Cactified Pat 2025-B-71 pacce Z Township 39 No SRange 19 For W WM										
Tax Lot Cactit	on Plat 20	43t-12-1	parc	<u>e</u> 2						
Township 39	N or (\$)	Range	<u> </u>	€ or W WM						
Section	`	5 <i>E</i> 1/-	4	1/4						
Lat ° Long °	'" or _'" or		(degr (degr	ees or decimal)						
Street Address of We	ell (or nearest addres	ss)								
(10) STATIC WA	TER LEVEL ft. below land surfa	ce. Da	ite							
	ft. below land surfa	ce. Da	te							
Artesian pressure			te							
(11) WATER BEARING ZONES Depth at which water was first found										
From	To	•	Flow Rate	SWL						
138'	150'	36	O gem	24.5'						
			•							
(12) WELL LOG	Grour	nd Elevation _								
Mate		From	To	SWL						
Mate	.	FIOIII								
Top soi		0'	10'							
brown Sa	ndy clay	(0'	30'							
gray	u 4	30'	1251							
green	k n	1251	1501	24.5						
gray	11 <u>11</u>	1501	1731							
green	clay	173'	175'							
	/									
Date Started	0 19/070	ompleted	10/22	107						
(unbonded) Water	Well Constructor C	Certification	•							
l certify that the abandonment of this construction standard the best of my know	ds. Materials used a	ce with Orego	n water supply	y well						
WWC Number		Date								
Signed										
(bonded) Water We	ell Constructor Cer	tification								
I accept responsi abandonment work p above. All work per supply well construct and belief.	bility for the constru- performed on this we formed during this t	ell during the company in the compan	construction d pliance with C	ates reported Pregon water						
WWC Number	17/6	Date	11/2	0/07						

START CARD# 1974

WATER RESOURCES DEPT

APK 1 7 2008

Depth of strata:

Groundwater Application Review Summary Form

Application # G- <u>19194</u>
GW Reviewer <u>Darrick E. Boschmann</u> Date Review Completed: <u>11/29/2021</u>
Summary of GW Availability and Injury Review:
Summary of GW Availability and mjury keview.
Groundwater for the proposed use is either over appropriated, will not likely be available in the amounts requested without injury to prior water rights, OR will not likely be available within the capacity of the groundwater resource per Section B of the attached review form.
Summary of Potential for Substantial Interference Review:
$oxed{\boxtimes}$ There is the potential for substantial interference per Section C of the attached review form.
Summary of Well Construction Assessment:
☐ The well does not appear to meet current well construction standards per Section D of the attached review form. Route through Well Construction and Compliance Section.
This is only a summary. Documentation is attached and should be read thoroughly to understand the basis for determinations and for conditions that may be necessary for a permit (if one is issued).

WATER RESOURCES DEPARTMENT

MEM	O				11/29/2021_								
TO:		Applica	tion G-	19194	-								
FRON	1 :	GW:	Jarrick E. Reviewer										
SUBJ	ECT: S	cenic Wa	aterway	Interf	erence l	Evaluat	ion						
	YES NO		source o		priation outaries	is hydr	aulically	y connec	eted to a	a State S	Scenic		
	YES Use the Scenic Waterway Condition (Condition 7J) NO												
	Per ORS 390.835, the Groundwater Section is able to calculate ground water interference with surface water that contributes to a Scenic Waterway. The calculated interference is distributed below												
	interfer Depart propos	RS 390.8 rence wit tment is sed use hin the fr	h surfac unable will me	e water to find easurab	that cor that the ly redu	ntributes ere is a p ace the	to a sce prepone surface	enic wate derance water	erway; e of evic	therefor	re, the at the		
Calcula per crit	te the per eria in 39	ON OF I reentage of 90.835, do i s unable to	consump not fill in	tive use b the table	y month c but check	k the "una	ble" opti						
Water	way by	is permit the follow flow is re	wing an			•		-			ise by v	vhich	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

PUBLIC INTEREST REVIEW FOR GROUNDWATER APPLICATIONS

TO:		Water	Rights Se	ection					Date		11/29/2	021		
FROM	:	Groun	dwater Se	ction										
~ T T T	~		. ~				wer's Nam							
SUBJE	CT:	Applic	cation G	<u> 19194 </u>	5	Supersede	s reviev	v of	NA		Г	Date of Rev	iaw(c)	
											L	ate of Kev	iew(s)	
OAR 69 welfare, to deter	90-310-13 safety an mine whe	(1) The definition of the de	he Departn h as describ presumptio	MPTION; Onent shall prebed in ORS 5.	esume that (37.525. De hed. OAR (a proposed epartment s 690-310-1	d ground staff revi 40 allow	ew g	groundwater e proposed u	applica se be n	ations un nodified	der OAR or condit	k 690-310 ioned to 1	140 meet
-	-		TIIIS FEVIE RMATIO	w is based up N: App	_				tson	_				
A1.	Applica	nt(s) see	ek(s) <u>0.12</u>	4 cfs from	_1	well(s) in the _		Goose & Sur	nmer I	Lakes			Basin,
		Applicant(s) seek(s) <u>0.124</u> cfs from <u>1</u> well(s) in the <u>Goose & Summer Lakes</u> Basin, Goose Lake subbasin												
A2.	Proposed	l use	10 a	cres primary	irrigation	Seaso	nality:	Ma	rch 1 to Octo	ober 31				
112.	Tropose		10 a	cres primary	IIIIgution	Seaso	manty.	IVIG	ien i to oett	<u> </u>				
A3.	Well and	l aquife	r data (att a	ch and num	ber logs fo	or existing	wells; 1	narl	k proposed v	vells a	s such u	nder logi	id):	
Well	Logi	d	Applicant	's Propose	d Aquifer*	Propo			Location		Location, metes and bounds, e.g. 2250' N, 1200' E fr NW cor S 36			
1		Well # AKE 52007 1			sin Fill	Rate(39.0	(T/R-S QQ-Q 0S-19.00E-15-1				fr NW cor ND 2183 F	
											WEST FROM SE CORNER, SECTION 15			
2														
3 4														
* Alluvii	um, CRB, I	Bedrock		•			•				•			
	Well	First	GYY II	CITH	Well	Seal	Casir	ng	Liner	Perfo	orations	Well	Draw	
Well	Elev	Wate	I tt ble	SWL Date	Depth	Interval	Interv	als	Intervals		Screens	Yield	Down	Test Type
1	ft msl 4854	ft bls	24.5	10/22/2007	(ft) 175	(ft) 0-18	(ft) 0-17:		(ft) None		(ft))-175	(gpm) 360	(ft) NA	Air
	1031	130	21.5	10/22/2007	173	0 10	0 17.		TYONG	50	, 1,3	300	11/21	7111
							1						-	
Use data	from appl	cation for	or proposed	wells.										
A4.	Comme Lakevievincludin sand, sil	nts: The w. The ag lacust	ne proposed area immed rine, fluvia ravel). Mor well HARN	I well is locat liately underl tile, and aeol gan (1988) n N 52007 prod unit of Morg	ying the prian sedimental this luces ground	oposed we ntary rock area as Q	ell was n s, interst lo (older	napp ratif allu	ed by Walke ied tuff, ashy ivium - fluvi	er (1963 7 diator al terra	3) as QT nite, and ce and la	s (sedime unconso custrine	entary der blidated cl deposits).	oosits lay,

Date: 11/29/2021

Page

Application G-19194

B. GROUNDWATER AVAILABILITY CONSIDERATIONS, OAR 690-310-130, 400-010, 410-0070

bas	Based upon available data, I have determined that groundwater for the proposed use:									
a.	is over appropriated, \square is not over appropriated, $or \boxtimes$ cannot be determined period of the proposed use. * This finding is limited to the groundwater portion determination as prescribed in OAR 690-310-130;									
b.	\square will not or \boxtimes will likely be available in the amounts requested without injury to prior water rights. * This finding is limited to the groundwater portion of the injury determination as prescribed in OAR 690-310-130;									
c.	\square will not or \square will likely to be available within the capacity of the groundwater resource; or									
d.	d. will, if properly conditioned, avoid injury to existing groundwater rights or to the groundwater resource:									
	i. The permit should contain condition #(s) 7N; medium water use rep	porting								
	ii. \square The permit should be conditioned as indicated in item 2 below.									
	iii. The permit should contain special condition(s) as indicated in item 3 b	pelow;								
a.	☐ Condition to allow groundwater production from no deeper than	ft. below land surface;								
b.	☐ Condition to allow groundwater production from no shallower than	ft. below land surface;								
c.	☐ Condition to allow groundwater production only from the									
	groundwater reservoir between approximately ft. and	ft. below								
	land surface;									
	Describe injury —as related to water availability— that is likely to occur without version water rights, not within the capacity of the resource, etc):									
Cne	oundwater availability remarks:									
	·									
	nundwater for the proposed use cannot be determined to be over-appropriated due to a rage annual rates of recharge.	a lack of sufficient data regarding								
Tho	e nearest current state observation well LAKE 2320 is located over 2.5 miles to the so	authorst of the proposed well. This								
	l is 110 feet, completed in basin fill, and has a water level record from 1962 to 2021.									
	cation of a long term year-to-year decline trend over the period of record. Other state									
reco	basin (LAKE 1979, LAKE 2424) similarly show no indication of long term year-to-yord.	year decline trend over the period of								
	e nearest authorized POD to the proposed well is POD 1 under certificate 60743 (a su theast. The potential increase in seasonal interference was calculated using the Theis									
	smissivity used in the calculation (1340 ft²/day) is the mean transmissivity of model									
	storage coefficient used (0.1) is the value used by Morgan (1988) for model layer 1 apping rate (0.124 cfs) the results indicate an increase in seasonal drawdown of \sim 1.6 ft									
Pull	iping rule (0.12 / 0.5) the results indicate an increase in seasonal drawdown of \$1.0 h									

C. GROUNDWATER/SURFACE WATER CONSIDERATIONS, OAR 690-09-040

C1. **690-09-040** (1): Evaluation of aquifer confinement:

Well	Aquifer or Proposed Aquifer	Confined	Unconfined
1	Basin fill sediments		\boxtimes

Racic	for	aquifar	confinament	evaluation:
Dasis	101	aduner	commenieme	l evaluation:

The system is identified as generally unconfined with discontinuous low permeability layers causing local (discontinuous, limited) confinement.

Morgan (1988) describes unconfined conditions in the shallow basin fill, with confined groundwater increasing with depth. The confined-like conditions at depth appear to be due to the considerable anisotropy resulting from the layered heterogeneity of the deposits – with vertical anisotropy ratios from 2:1 to 170:1. There is no indication of shallower groundwater being separated from deeper groundwater by a continuous regional confining layer.

Regional hydraulic gradients are from the upland recharge areas toward the axis of the basin and principal discharge area underlying and adjacent to Goose Lake where groundwater moves upward and is discharged via evapotranspiration, seepage to Goose Lake, streams and wells. This regional pattern describes groundwater movement in both the shallow and deeper parts of the groundwater flow system, with upward vertical gradients at the discharge area underlying and surrounding Goose Lake. Local subsystems also discharge to lakes, reservoirs, meadows and streams.

C2. **690-09-040 (2) (3):** Evaluation of distance to, and hydraulic connection with, surface water sources. All wells located a horizontal distance less than ½ mile from a surface water source that produce water from an unconfined aquifer shall be assumed to be hydraulically connected to the surface water source. Include in this table any streams located beyond one mile that are evaluated for PSI.

Well	SW #	Surface Water Name	GW Elev ft msl	SW Elev ft msl	Distance (ft)		Conne	dically ected?	Potential for Subst. Interfer. Assumed?	
									YES	NO
1	1	perennial stream 82750975*	4829.5	4822	2100	X				\boxtimes
1	2	Cottonwood Creek	4829.5	4831	4025	X				\boxtimes

Basis	for	aquifer	hv	draulic	connection	evaluation:

The USGS National Hydrography Dataset (NHD) dataset was used to identify surface water features. Morgan (1988) reports that flow in perennial streams is sustained during summer and fall by groundwater discharge. Two perennial streams are located within one mile of the proposed well. SW 1 is located a distance of 2100 feet from the proposed well and slightly down gradient. SW 2 is located a distance of 4025 feet from the proposed well and the elevation of SW is likely within error of the GW elevation at the well.

Note there is an unnamed intermittent stream (82750841*) located within ¼ mile of the proposed well, but the reach where this
stream becomes perennial is located ~1.8 miles to the east. The intermittent reach is not evaluated for PSI.
*Unnamed NHD features denoted by the Permanent_Identifier field in the NHDFlowline feature class.

Water Availability Basin the well(s) are located within: THOMAS CR > GOOSE L - AT MOUTH

Application G-19194

Comments:

Page

C3a. **690-09-040** (4): Evaluation of stream impacts for <u>each well</u> that has been determined or assumed to be **hydraulically connected and less than 1 mile** from a surface water (SW) source. Limit evaluation to instream rights and minimum stream flows that are pertinent to that SW source, not lower SW sources to which the stream under evaluation is tributary. Compare the requested rate against the 1% of 80% *natural* flow for the pertinent Water Availability Basin (WAB). If Q is not distributed by well, use full rate for each well. Any checked ⋈ box indicates the well is assumed to have the potential to cause PSI.

Well	SW #	Well < 1/4 mile?	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?
1	1			NA	NA		8.24	\boxtimes	0.02	\boxtimes
1	2			NA	NA		2.83	×	0.00	\boxtimes

C3b. **690-09-040 (4):** Evaluation of stream impacts by total appropriation for all wells determined or assumed to be hydraulically connected and less than 1 mile from a surface water source. **Complete only if Q is distributed among wells.** Otherwise same evaluation and limitations apply as in C3a above.

	SW #	Qw > 5 cfs?	Instream Water Right ID	Instream Water Right Q (cfs)	Qw > 1% ISWR?	80% Natural Flow (cfs)	Qw > 1% of 80% Natural Flow?	Interference @ 30 days (%)	Potential for Subst. Interfer. Assumed?

C3a. Hunt (1999) was used to calculate the interference between well 1 with SW1 and SW2. The values used for the calculation
are conservative and appropriate until better values become available. The calculations used a transmissivity of 1340 ft²/day,
the mean transmissivity of model layer 1 (basin fill) of Morgan, 1988. The storage coefficient used (0.1) is the value used by
Morgan (1988) for model layer 1 (basin fill). The hydraulic conductivity assigned to the streambed is 0.023 feet/day. See
reports attached.
WABS evaluated: THOMAS CR > GOOSE L - AT MOUTH; COTTONWOOD CR > THOMAS CR - AT MOUTH
*Qw is greater than 1% of 80% natural flow for both SW 1 and SW2.
C3b. No distributed rate requested.

Date: 11/29/2021

C4a. **690-09-040 (5):** Estimated impacts on **hydraulically connected surface water sources greater than one mile** as a percentage of the proposed pumping rate. Limit evaluation to the effects that will occur up to one year after pumping begins. This table encompasses the considerations required by 09-040 (5)(a), (b), (c) and (d), which are not included on this form. Use additional sheets if calculated flows from more than one WAB are required.

	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		%	%	%	%	%	%	%	%	%	%	%	
	Q as CFS												
nterfer	ence CFS												
\	outed Wells												
Vistrio Well	SW#	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De
VVCII	5 ** **	%	%	%	Apr %	%	%	%	Aug %	<u>зер</u> %	%	%	DC
Well (as CFS	70	70	70	70	70	70	70	70	70	70	70	
	ence CFS												
	010	%	%	%	%	%	%	%	%	%	%	%	
Well (Q as CFS	/0	/0	/0	/0	70	/0	/0	/0	/0	/0	/0	
	ence CFS												
пспс	chec er b												
A) = T o	otal Interf.												
$\mathbf{B}) = 80$	% Nat. Q												
(C) = 1	% Nat. Q												
` _				<u>.</u>									
$(\mathbf{D}) = ($	$(\mathbf{A}) > (\mathbf{C})$	\checkmark	√	√	\checkmark	√	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\
E) = (A	/B) x 100	%	%	%	%	%	%	%	%	%	%	%	
= total i ; (D) : Bas	interference = highlight the sis for imparts analysis he	ne checkm act evalua	ark for eacation:	ch month w	here (A) is	greater tha							
= total i ; (D) : Bas	= highlight tl sis for impa	ne checkm act evalua	ark for eacation:	ch month w	here (A) is	greater tha							
= total i ; (D) : Bas	= highlight tl sis for impa	ne checkm act evalua	ark for eacation:	ch month w	here (A) is	greater tha							
= total i ; (D) : Bas	= highlight tl sis for impa	re. PSI is	ark for eac ation: _ already t	riggered u	where (A) is	r criteria.	an (C); (E)	= total int	erference d	ivided by 8	30% flow a	s percentaş	ge.

C1. 690-09-040 (1) It is determined that all wells will produce water from an unconfined aquifer. C2. 690-09-040 (2) (3) It is determined that all wells are hydraulically connected with perennial stream 82750975 and Cottonwood Creek. C3a./C3b. 690-09-040 (4) PSI is assumed for Well 1 to SW #1 and Well 1 to SW #2. C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058. OWRD Well Log Database
It is determined that all wells will produce water from an unconfined aquifer. C2. 690-09-040 (2) (3) It is determined that all wells are hydraulically connected with perennial stream 82750975 and Cottonwood Creek. C3a./C3b. 690-09-040 (4) PSI is assumed for Well 1 to SW #1 and Well 1 to SW #2. C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
C2. 690-09-040 (2) (3) It is determined that all wells are hydraulically connected with perennial stream 82750975 and Cottonwood Creek. C3a./C3b. 690-09-040 (4) PSI is assumed for Well 1 to SW #1 and Well 1 to SW #2. C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
It is determined that all wells are hydraulically connected with perennial stream 82750975 and Cottonwood Creek. C3a./C3b. 690-09-040 (4) PSI is assumed for Well 1 to SW #1 and Well 1 to SW #2. C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
It is determined that all wells are hydraulically connected with perennial stream 82750975 and Cottonwood Creek. C3a./C3b. 690-09-040 (4) PSI is assumed for Well 1 to SW #1 and Well 1 to SW #2. C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
C3a./C3b. 690-09-040 (4) PSI is assumed for Well 1 to SW #1 and Well 1 to SW #2. C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
PSI is assumed for Well I to SW #1 and Well 1 to SW #2. C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
C4a. 690-09-040 (5) No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
No analysis here. PSI is already triggered under other criteria. If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
If a permit is issued, the following conditions are recommended: 7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
7N: Annual Measurement and Decline Condition Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
Flow meter condition: Use the "medium" water use reporting permit condition. References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
References Used: Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
Hunt, B., 1999, Unsteady stream depletion from ground water pumping: Ground Water, v. 37, no. 1, p. 98-102. Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
Morgan, D.S., 1988. Geohydrology and numerical model analysis of ground-water flow in the Goose Lake Basin, Oregon and California. USGS Water Resources Investigations Report 87-4058.
California. USGS Water Resources Investigations Report 87-4058.
California. USGS Water Resources Investigations Report 87-4058.
OWRD Well Log Database
OWRD Groundwater Information System Database
Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well
using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.
Walker, G.W., 1963. Reconnaissance geologic map of the eastern half of the Klamath Falls (AMS) quadrangle, Lake and Klamath Counties, Oregon. USGS Miscellaneous Field Studies Map 260, scale 1:250,000.
Klamatii Countes, Oregon. USOS Miscenancous i icia Studies Map 200, scare 1.250,000.
. WELL CONSTRUCTION, OAR 690-200
1
1. Well #: Logid:
2. THE WELL does not appear to meet current well construction standards based upon:
a. \square review of the well log;
b. field inspection by
d. U other: (specify)
3. THE WELL construction deficiency or other comment is described as follows:
4. Route to the Well Construction and Compliance Section for a review of existing well construction.

Application G-19194

Page

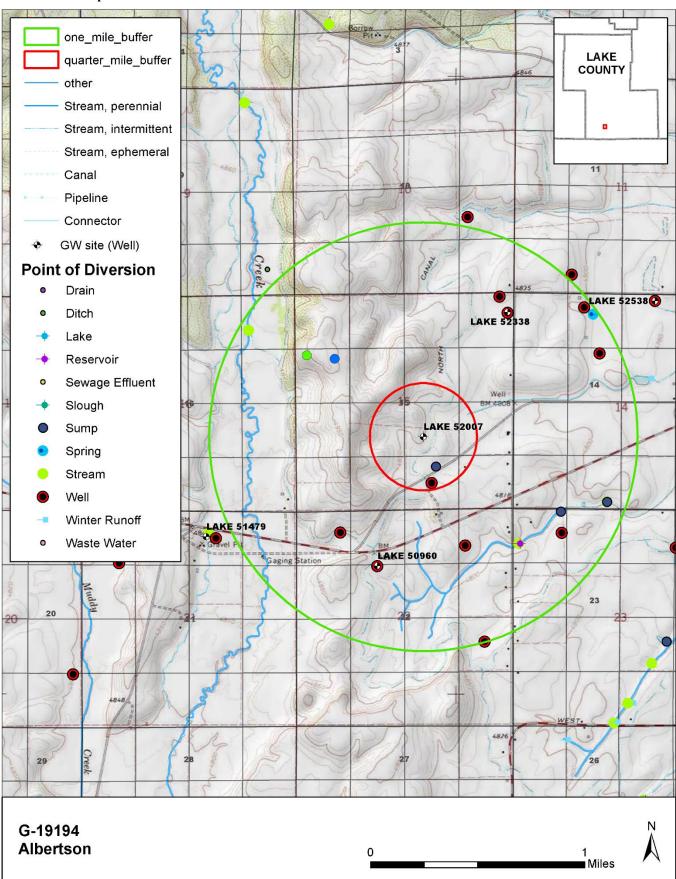
Date: 11/29/2021

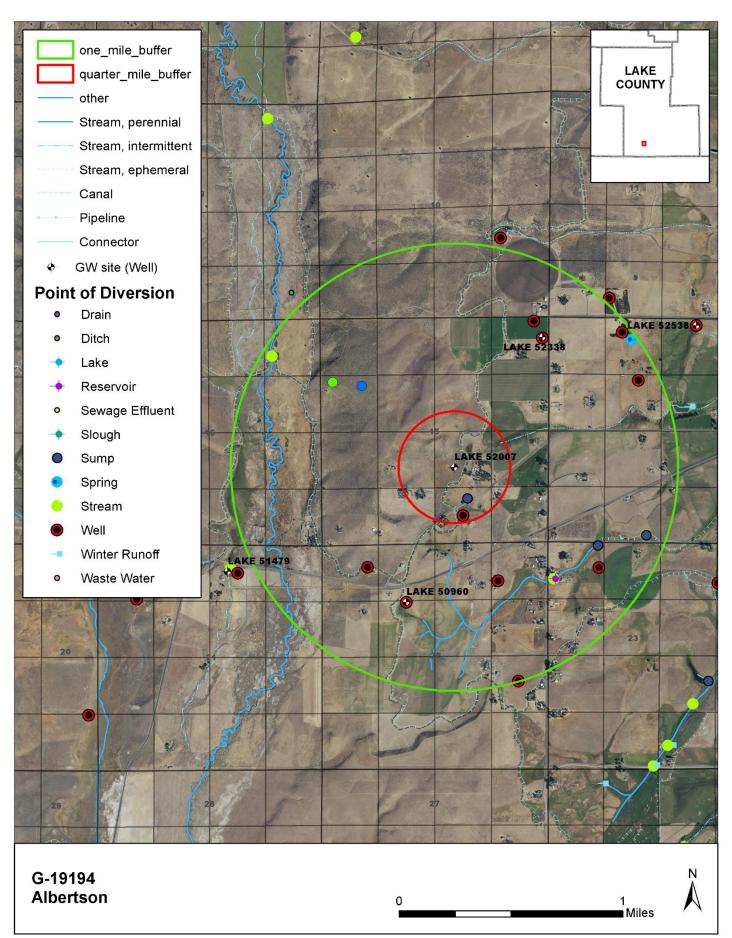
Water Availability Tables

DETAILED REPORT ON THE WATER AVAILABILITY CALCULATION

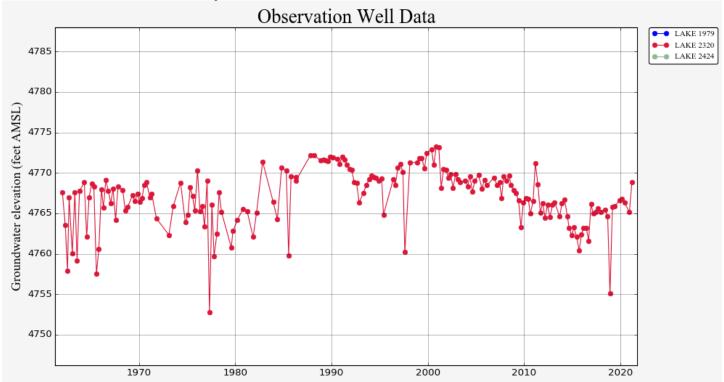
THOMAS CR > GOOSE L - AT MOUTH Basin: GOOSE & SUMMER LAKE Watershed ID #: 31300102 Time: 11:44 AM Exceedance Level: 80 Date: 11/29/2021

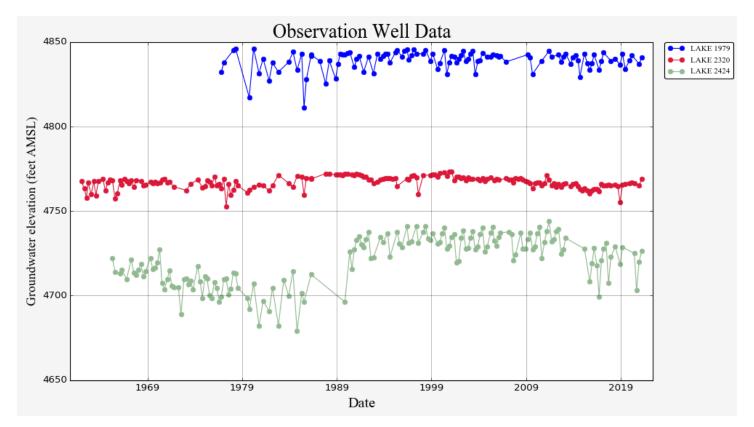
1 IIIIe. 11.44	A ^N					Date: 11/29/2021
Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
		Storage is t	Monthly values ar he annual amount at	re in cfs. 50% exceedance i	n ac-ft.	
JAN FEB MAR APR JUN JUL AUG SEP OCT NOV DEC ANN	16.70 38.70 76.60 151.00 111.00 41.70 13.10 8.24 8.98 10.40 14.50 19.10 62,400	16.70 26.90 47.30 108.00 191.00 143.00 44.60 24.70 21.80 13.60 5.86 13.80 39,700	0.04 11.80 29.30 43.30 -80.20 -102.00 -31.50 -16.50 -12.80 -3.21 8.64 5.28 28,900	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 11.80 29.30 43.30 -80.20 -102.00 -31.50 -16.50 -12.80 -3.21 8.64 5.28


DETAILED REPORT ON THE WATER AVAILABILITY CALCULATION


COTTONWOOD CR > THOMAS CR - AT MOUTH Basin: GOOSE & SUMMER LAKE

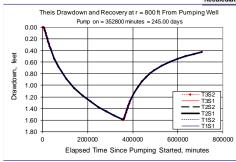
watershed ID #: 31300103 Time: 11:44 AM Exceedance Level: 80 Date: 11/29/2021

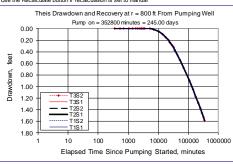

Month	Natural Stream Flow	Consumptive Use and Storage	Expected Stream Flow	Reserved Stream Flow	Instream Requirements	Net Water Available
			Monthly values a he annual amount at	re in cfs. 50% exceedance i	n ac-ft.	
JAN	6, 63	14.00	-7.41	0.00	0.00	 -7.41
FEB	9.62	22.50	-12.80	0.00	0.00	-12.80
MAR	17.10	31.20	-14.10	0.00	0.00	-14.10
APR	38.80	63.00	-24.20	0.00	0.00	-24.20
MAY	40.30	102.00	-61.80	0.00	0.00	-61.80
JUN	15.10	75.00	-59.90	0.00	0.00	-59.90
JUL	4.78	21.60	-16.90	0.00	0.00	-16.90
AUG	2.99	11.30	-8.32	0.00	0.00	-8.32
SEP	2.83 3.22	10.20 6.59	-7.35 -3.37	0.00	0.00	-7.35 -3.37
OCT	4.31	4.12	-3.37 0.19	0.00 0.00	0.00 0.00	0.19
NOV DEC	4.31 5.60	11.60	-5.96	0.00	0.00	-5.96
ANN	17,500	22,500	1,170	0.00	0.00	1,170

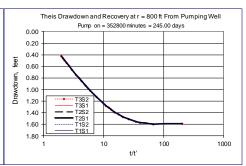

Well Location Maps

Water-Level Measurements in Nearby Wells

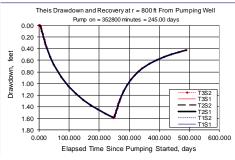
Theis Time-Drawdown Worksheet

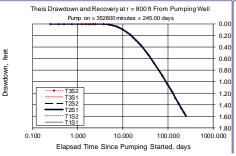

v.3.0

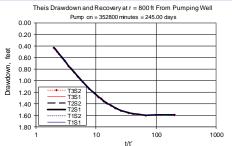

Calculates Theis nonequilibrium drawdown and recovery at any arbitrary radial distance, r, from a pumping well for 3 different T values and radial distance, r, from a pumping well for 3 different T values and 2 different S values.

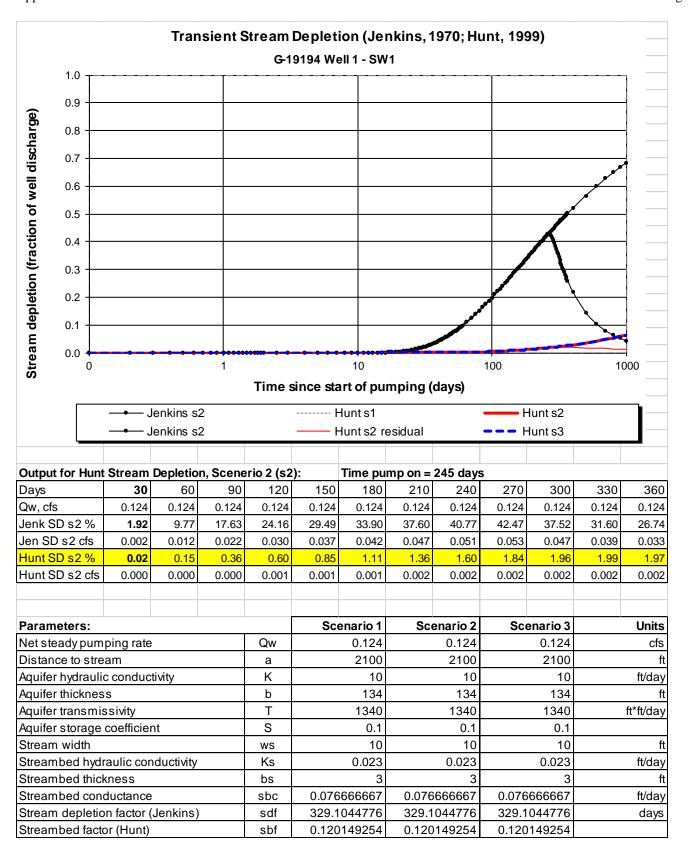

Written by Karl C. Wozniak September 1992. Last modified December 30, 2014

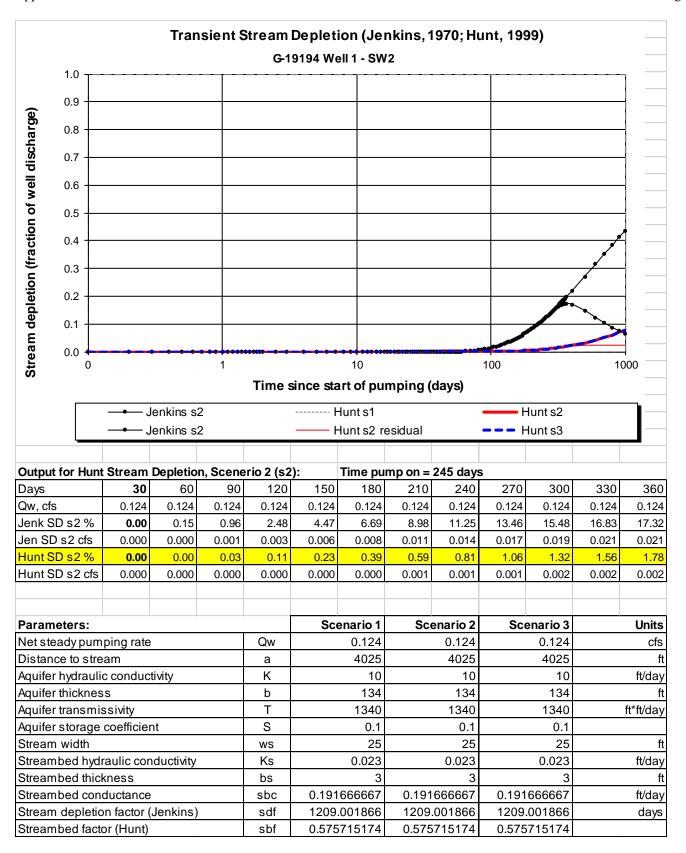
Input Data:	Var Name	Scenario 1	Scenario 2	Scenario 3	Units	
Total pumping time	t		245		d	
Radial distance from pumped well:	Г		800.00		ft	Q conversions
Pumping rate	Q		0.1		cfs	55.65 gpm
Hydraulic conductivity	K	13	13	13	ft/day	0.12 cfs
Aquifer thickness	b		100		ft	7.44 cfm
Storativity	S_1		0.10000			10,713.60 cfd
	S_2		0.10000			0.25 af/d
Transmissivity Conversions	T_f2pd	1,340	1,340	1,340	ft2/day	
	T_ft2pm	0.9306	0.9306	0.9306	ft2/min	
	T_gpdpft	10,023	10,023	10,023	gpd/ft	


Recalculate Use the Recalculate button if recalculation is set to manual








Date: 11/29/2021

