

Summary of the Harney Basin Groundwater Budget

U.S. Geological Survey and Oregon Water Resources Department Groundwater Study Advisory Committee, 10/12/2022

U.S. Department of the Interior U.S. Geological Survey

Budgets for Upland and Lowland Areas

- Lowland areas
 - Central basin valleys and floodplains
 - Precipitation is generally
 9–11 inches per year
 - Where more than 90% of pumpage occurs
- Upland areas
 - Precipitation is generally more than 11 inches per year
 - All areas beyond lowland boundary

Key Takeaways

Upland groundwater budget

- Minimally affected by groundwater development
- Generally represents the natural system

Lowland groundwater budget

- Accounts for most groundwater development
- Is out of balance by about -110,000 acre-feet per year
- Current imbalance represents groundwater removed from aquifer storage

Mean Annual Groundwater Budget

(in acre-feet per year)

Garcia and others (2022)

Mean Annual Groundwater Budget

(in acre-feet per year)

¹Net pumpage = total pumpage – reinfiltration of pumped groundwater

Garcia and others (2022)

Total Upland Recharge by Region

 Total upland recharge = 288,000 acre-feet per year

≈USGS

Garcia and others (2022)

Total Upland Discharge by Region

 Total upland discharge = 239,000 acre-feet per year

Total Lowland Recharge by Region

- Total lowland recharge = 173,000 acre-feet per year
 - Infiltration of surface water (67%)
 - Groundwater inflow from uplands (28%)
 - Infiltration of pumped groundwater (5%)

Total Lowland Discharge by Region

- Total lowland discharge = 283,000 acre-feet per year
 - Groundwater evapotranspiration and spring discharge (45%)
 - Groundwater pumpage (54%)
 - Groundwater flow to Malheur River Basin (1%)

Lowland Groundwater Budget Imbalance by Region

- Recharge discharge
- Total imbalance
 - 110,000 acre-feet per year
- Pumpage is currently removing groundwater from aquifer storage and likely capturing a small amount of natural discharge

Conclusions

- More than 70% of upland recharge discharges in the uplands
- Pumpage is currently removing groundwater from aquifer storage and is likely capturing a small amount of natural discharge
- The largest budget deficit is in the northern region where pumpage exceeds recharge

References

Garcia, C.A., Corson-Dosch, N.T., Beamer, J.P., Gingerich, S.B., Grondin, G.H., Overstreet, B.T., Haynes, J.V., and Hoskinson, M.D., 2022, Hydrologic budget of the Harney Basin groundwater system, southeastern Oregon: U.S. Geological Survey Scientific Investigations Report 2021–5128, 144 p.,

https://doi.org/10.3133/sir20215128.

Gingerich, S.B., Garcia, C.A., and Johnson, H.M., 2022, Groundwater resources of the Harney Basin, southeastern Oregon: U.S. Geological Survey Fact Sheet 2022–3052, 6 p., <u>https://doi.org/10.3133/fs20223052</u>.

Groundwater Resources of the Harney Basin

Harney Basin Groundwater Study Advisory Committee October 12, 2022

MALHETIR LARE

U.S. Geological Survey/Oregon Water Resources Department

U.S. Department of the Interior U.S. Geological Survey

HARNEY LAKE

Key Takeaways

- Most groundwater pumped from lowland wells is ancient and not being replenished at meaningful human timescales.
- The effects of pumping vary across the basin depending on the local geology, the amount of recharge, and the amount of withdrawal
- Pumping large volumes of groundwater from...
 - …low-permeability rocks causes deep drawdown over relatively small areas
 - ...high-permeability rocks causes shallow drawdown over large areas

Lowland groundwater is mostly ancient:

recharged 5,000–30,000 years ago

Based on analysis of tritium and carbon-14 ages and stable isotopes of hydrogen

Irrigation pumpage tripled since 1991

permeability uplands

Base map modified from U.S. Geological Survey and other digital data, various scales. Projection: UTM Zone 11 North. North American Datum of 1983

Low-permeability uplands

From Gingerich and others, 2022

- Groundwater flow paths are shallow and limited by low permeability
- About 70 % of upland recharge discharges at the land surface nearby
- Groundwater discharge is the primary source of flow in upland streams, springs, wetlands, and meadows during the dry summer months

Pumping large volumes of groundwater from low-permeability rocks causes deep drawdown over relatively small areas

≥USGS

Weaver Spring/Dog Mountain

Base map modified from U.S. Geological Survey and other digital data, various scales. Projection: UTM Zone 11 North. North American Datum of 1983

Weaver Spring/Dog Mountain area

 Most water produced from a local area composed of highly permeable rocks surrounded by much less permeable rocks

≊USGS

From Gingerich and others, 2022

Weaver Spring/Dog Mountain area

- Water levels declined more than 140 feet from predevelopment levels
- Now lowest part of hydrologic flow system (previously was Harney Lake)
- Ancient water is being pumped at rate that isn't being replenished by sparse modern recharge

Weaver Spring/Dog Mountain area

• Some water levels declined 8 feet per year since 2016

Northern lowlands and Crane are similar cases to WS/DM

Some water levels declined 5 feet per year since 2008

Some water levels declined 1–2 feet per year since 2008

≊USGS

From Gingerich and others, 2022

Pumping large volumes of groundwater from highpermeability rocks causes shallow drawdown over large areas

≥USGS

Base map modified from U.S. Geological Survey and other digital data, various scales. Projection: UTM Zone 11 North. North American Datum of 1983

Silver Creek floodplain area

- Most water produced from a widespread highly permeable zone of rocks
- Water levels declined about 10 feet from predevelopment levels
- Small groundwater-level declines over a large area
- Groundwater withdrawal likely will affect Warm Springs Valley and may affect lower Silver Creek water levels

Silver Creek floodplain area

Some water levels declined 0.5 feet per year since 2015

Virginia Valley is a similar case to Silver Creek Valley

Some water levels declined 1 feet per year since 2010

From Gingerich and others, 2022

Areas with less drawdown mainly due to higher recharge and less groundwater withdrawal

Key Takeaways—again

- Most groundwater pumped from lowland wells is ancient and not being replenished at meaningful human timescales.
- The effects of pumping vary across the basin depending on the local geology, the amount of recharge, and the amount of withdrawal
- Pumping large volumes of groundwater from...
 - …low-permeability rocks causes deep drawdown over relatively small areas
 - ...high-permeability rocks causes shallow drawdown over large areas

References and related reports

- Beamer, J.P., and Hoskinson, M.D., 2021, Historical irrigation water use and groundwater pumpage estimates in the Harney Basin, Oregon, 1991–2018: Oregon Water Resources Department Open File Report 2021–02, 53 p. [Also available at https://www.oregon.gov/owrd/wrdreports/OWRD_OFR_2021-02_Harney_Basin_METRIC_Irrigation_Use_Report.pdf.]
- Boschmann, D.E., 2021, Generalized geologic compilation map of the Harney Basin: Oregon Water Resources Department Open File Report 2021–01, 57 p. [Also available at https://www.oregon.gov/owrd/wrdreports/OFR_2021-01_report.pdf.]
- Corson-Dosch, N.T., and Garcia, C.G., 2022, Soil-water-balance (SWB) model archive used to simulate mean annual upland recharge from infiltration of precipitation and snowmelt in Harney Basin, Oregon, 1982–2016: U.S. Geological Survey data release. [Also available at https://doi.org/10.5066/P94NH4D8.]
- Garcia, C.A., Corson-Dosch, N.T., Beamer, J.P., Gingerich, S.B., Grondin, G.H., Overstreet, B.T., Haynes, J.V., and Hoskinson, M.D., 2022, Hydrologic budget of the Harney Basin groundwater system, Oregon: U.S. Geological Survey Scientific Investigations Report 2021–5128, 140 p. [Also available at https://doi.org/10.3133/sir20215128.]
- Garcia, C.A., Haynes, J.V., Overstreet, B., and Corson-Dosch, N., 2021, Supplemental data—Hydrologic budget of the Harney Basin groundwater system, Oregon: U.S. Geological Survey data release. [Also available at https://doi.org/10.5066/P9QABFML.]
- Gingerich, S.B., Johnson, H.M., Boschmann, D.E., Grondin, G.H., and Garcia, C.A., 2021, Contour data-set of the
 potentiometric surfaces of shallow and deep groundwater-level altitudes in Harney Basin, Oregon, February–March
 2018: U.S. Geological Survey data release. [Also available at https://doi.org/10.5066/P9ZJTZUV.]
- Gingerich, S.B., Garcia, C.A., and Johnson, H.M., 2022, Groundwater resources of the Harney Basin, southeastern Oregon: U. S. Geological Survey Fact Sheet 2022-3052, 6 p. https://doi.org/10.3133/fs20223052.

References and related reports-Cont.

- Gingerich, S.B., Johnson, H.M., Boschmann, D.E., Grondin, G.H., and Garcia, C.A., 2022, Groundwater resources of the Harney Basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2021–5103, 116 p. [Also available at https://doi.org/10.3133/sir20215103.]
- Gingerich, S.B., Johnson, H.M., Boschmann, D.E., Grondin, G.H., Garcia, C.A., and Schibel, H.J., 2022, Location information, discharge, and water-quality data for selected wells, springs, and streams in the Harney Basin, Oregon: U.S. Geological Survey data release. [Also available at https://doi.org/10.5066/P9J0FE5M.]
- Grondin, G.H., 2021, Methods and results for estimating groundwater pumped, returned, and consumed for nonirrigation uses in the Harney Basin, Oregon: Oregon Water Resources Department Open File Report 2021–03, 28
 p. [Also available at https://www.oregon.gov/owrd/wrdreports/OWRD_OFR_2021-003_Harney_Basin_non_irrigation_GW_use_report_stamped.pdf.]
- Grondin, G.H., Boschmann, D.E., Barnett, H.J., and Scandella, B.P., 2021, Methods and results for estimating the hydraulic characteristics of the subsurface materials in the Harney Basin, Oregon: Oregon Water Resources Department Open File Report 2021–04, 63 p. [Also available at https://www.oregon.gov/owrd/wrdreports/OFR_2021-04_Harney_Basin_subsurface_hydraulic_properties.pdf.]

https://www.usgs.gov/centers/oregon-water-science-center/science/harney-basin-groundwater-study#overview

