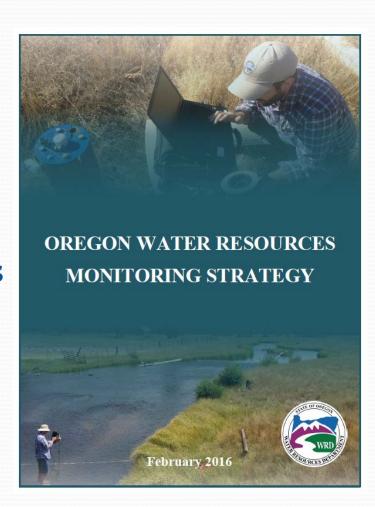
Oregon Water Resources Monitoring Strategy


Mellony Hoskinson

February 26, 2016

Overview

- Reasons for development
- Monitoring Priorities
- Recommended Monitoring Actions
- Implementation

Reasons for Development

- Key Performance Measures (KPMs)
 - ➤ Better understanding of surface water and groundwater resources across the state
 - ➤ Increase number of gaging stations and observation wells
- Efficient and effective use of resources
- Coordinate monitoring efforts
 - Federal and State agencies
 - > Tribes
 - Local monitoring groups
 - > STREAM Team
- Integrated Water Resources Strategy
 - > 2012 Recommended Actions 1b and 1c
 - Improved water resources data collection and monitoring
 - > 2017 Coming Pressures (Monitoring Priorities)

Monitoring Priorities

- Climate Change
- Extreme Events
- Groundwater Protection
- Water Management
- Instream Needs
- Water Supply
- Partnering with other agencies

Recommended Monitoring Actions

The Department has identified and recommended specific monitoring actions that should be taken to address each monitoring priority.

- Identify streamflow type
- Record is long-term, year round
- Data are transmitted in real-time

- Monitor snow-rain transition zones
- Monitor groundwater levels in declining areas
- Early warning indicators of high flows

Climate Change

- Altered hydrology of streams
- Rising temperatures
- Precipitation as rain instead of snow
 - > Reduction in summer flows

Recommended Monitoring Actions

- > Natural streamflow
- Record is long-term, year round
- Located in areas of rain-snow transitions

Mt. Ashland Ski Bowl (April 1, 2015)

Climate Change

- Altered hydrology of streams
- Rising temperatures
- Precipitation as rain instead of snow
 - > Reduction in summer flows

Recommended Monitoring Actions

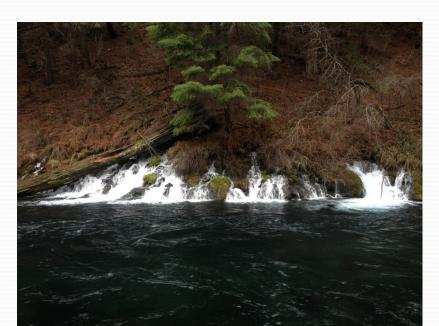
- > Natural streamflow
- Record is long-term, year round
- Located in areas of rain-snow transitions

Mt. Ashland Ski Bowl (Typical April)

Extreme Events

- Floods
- Drought
- Wildfires
 - > Flash flooding
 - > Severe debris flows

- > Early warning indicators
- > Effective monitoring
 - > High flows
 - > Low flows
- Rapidly deploy gages in recently burned watersheds



Groundwater Protection

- Groundwater Levels
 - > Inform conjunctive use management
 - ➤ Issuing new groundwater permits
- Studies of Oregon's aquifers
 - > Capacity, location, extent
 - > Assess groundwater availability
- Surface water/Groundwater Interactions

- Long-term data collection
- Hydraulic connection between aquifers
- > Pair monitoring wells with stream gages

Water Management

- Distribution and regulation
- Water availability
 - > Understand
 - > Predict
- Water use data

- > Timely and effective
- > Install flow meters
- Measures return flows
- Measures consumptive use rates

Instream Needs

- Recreation
- Pollution abatement
- Navigation
- Fish and wildlife populations

- Sensitive, threatened, and endangered species
- Restoration and conservation activities
- Scenic waterways

Water Supply

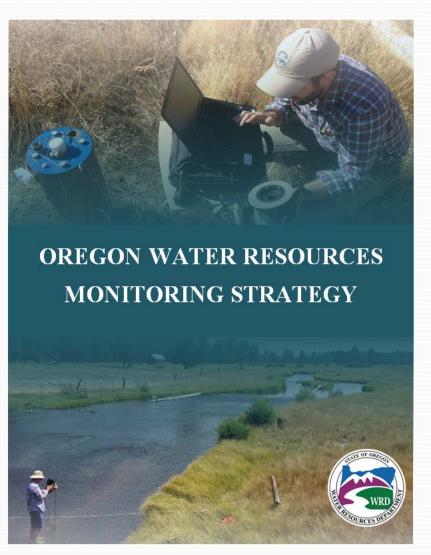
- Population increases
- Changing climate
- Shifts in land use
- Water demand
- Water management practices

- Establish gages and wells in watersheds with predicted increase in demand
- Measures snow-pack and runoff
- Measures actual water use

Partnering with Other Agencies

- Water supply development projects
- Develop flow prescriptions
- Monitor water quality
- Restore and conserve habitats

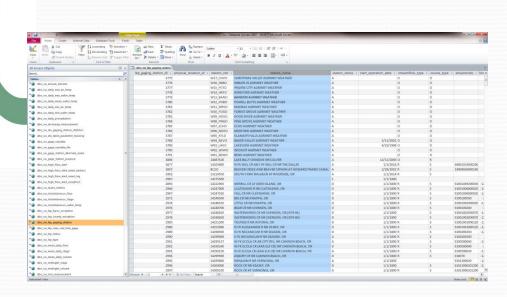
OVEB


- Partner with USGS, ODFW, DEQ, OWEB, tribes
- Develop monitoring protocols
 - Deploying instruments
 - Data collection, management, and sharing

Implementing the Monitoring Strategy

Next Steps

- Database Enhancements
 - ➤ Advanced querying capabilities
- Coordinate with external partners
- Network evaluations
 - Evaluate current and potential monitoring sites
 - Meet needs of Monitoring Priorities
 - > Determine gaps in monitoring data


Database Enhancements

- Add new attributes
 - > Natural streamflow
 - > Regulation of instream water rights
 - > Extreme events
 - Surface water/groundwater interactions
- Update/verify current attributes
 - ➤ Update elevation
 - Verify streamflow type
- Flag problematic sites
 - ➤ Data quality
 - ➤ Safety concerns
 - ➤ Difficult to access

What can I do with updated data?

- Is the stream flow type regulated or natural?
- Are there significant diversions above the gage?
- Can the gage be paired with local wells?
- What other data is being collected?

Coordinate with External Partners

- Solicited input on monitoring site locations
 - Shared survey withSTREAM Team members
 - ➤ DEQ, ODF, ODA, and OWEB utilize water quantity data
 - Feedback considered on future monitoring locations

Salmon River near Otis

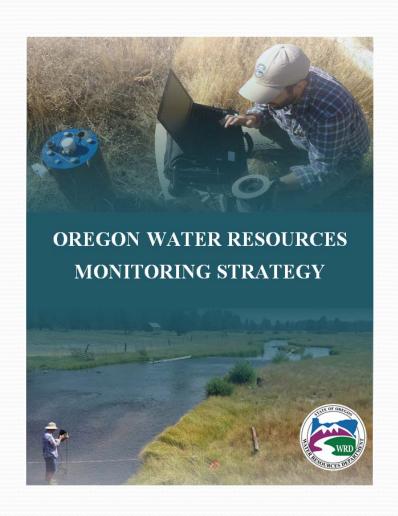
Network Evaluations

- Database enhancements
- Input from partners
- Meeting needs of **Monitoring Priorities**
- Determine future monitoring site locations

OWRD STREAM GAGING NETWORK **EVALUATION FOR WATER DISTRIBUTION**

Jonathan L. La Marche, PE

State of Oregon Water Resources Department


Open File Report SW 2011 - 01

November 2011

Acknowledgements

Brenda Bateman Ivan Gall Jonathan LaMarche Ken Lite Rachel LovellFord Rich Marvin Alyssa Mucken Ken Stahr Karl Wozniak

Questions?

Mellony Hoskinson

Technical Services Division
Oregon Water Resources Department
503-986-0832

Mellony.D.Hoskinson@wrd.state.or.us

